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A B S T R A C T

This study introduces the Integrated Multiple Event Representation Framework (IMERF), a novel methodological approach for developing risk prediction models for 
multiple clinical events. Using a two-stage process involving multi-task learning and dimensionality reduction, IMERF creates a visual representation of predicted 
event risks and identifies clusters based on overlapping risks. The proposed framework is showcased through a case study modelling nine adverse events in critically 
ill patients admitted to intensive care units (ICUs). Stage 1 was implemented using convolutional neural networks, which displayed superior performance to logistic 
regression and random forest algorithms. The generative topographic mapping (GTM) algorithm was implemented in stage 2 for data visualisation and clustering. It 
revealed clear patterns of adverse event risk clusters. GTM in combination with class activation maps was also employed to trace input factors influencing cluster 
membership, highlighting distinct risk profiles among patients. Macro-clusters representing distinctive combinations of adverse event risk levels were also identified 
by performing a hierarchical clustering on the GTM results. In conclusion, IMERF could represent a significant advancement in multiple event risk modelling by 
enabling simultaneous prediction and characterisation of overlapping events and providing an interpretable framework for understanding their complex patterns. Its 
application in ICUs underscores its potential for broader clinical use, including modelling clusters of conditions or multiple instances of events.

1. Introduction

A common question in medical research is how to predict the risk of 
patient events within a particular study. Events, which can be either 
beneficial or adverse, refers to discrete, observable occurrences or out
comes that are relevant to the study being conducted. For instance, if a 
patient undergoes a medical procedure, it is crucial to assess their risk of 
experiencing complications, such as bleeding, infection or even death, 
which are considered adverse events. One approach to addressing such 
questions is by implementing a risk prediction model that utilises sta
tistical or machine learning (ML) algorithms on data collected from 
observational studies [1]. Having a model that can anticipate the risk of 
a given event is fundamental to serving as a medical decision support 
tool [2].

Most algorithms model the risk of an event as a single-output func
tion of a set of input variables or factors. In cases where a patient is at 
risk of multiple events, it is generally assumed that a model will be built 
for each event separately [3]. However, events may not necessarily be 
independent. For example, individuals at risk of developing multiple 

co-morbidities tend to have a less favourable prognosis than those at risk 
of a single condition. Moreover, modelling individual co-morbidities 
independently fails to identify specific factors associated with an 
increased risk of several co-morbidities simultaneously. A similar chal
lenge arises in intensive care, where patients are at a higher risk of 
developing multiple adverse events simultaneously, for instance, a pa
tient requiring mechanical ventilation and developing atrial fibrillation 
(AF) within a short time frame [4]. Detecting and characterising patients 
at risk of multiple adverse events introduces additional complexity to 
modelling, which single-output risk prediction models are not equipped 
to handle efficiently.

The use of multi-task learning (MTL) in medical and healthcare 
research is not new. Early works by Wiens et al. [5], Wang et al. [6] and 
Zhou et al. [7], to mention a few, paved the way for its application. The 
advent of deep learning (DL) and its widespread adoption in recent years 
have significantly increased the use of MTL in risk prediction for clinical 
outcomes[8–10]. MTL has also expanded to address closely related 
topics, such as time-to-event modelling [11], trajectory analysis [12], 
and risk profiling [13]. Most publications focus on using MTL to enhance 
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model performance, yet limited attention has been given to integrating 
and interpreting the model predictions. However, to the best of our 
knowledge, no existing framework specifically addresses risk prediction 
modelling for multiple events that is also capable of identifying clusters 
of risks and uncovering factors associated with specific clusters.

In this research paper, we propose the Integrated Multiple Event Rep
resentation Framework (IMERF): a novel methodological approach for 
developing risk prediction models for multiple events. IMERF is a novel 
two-stage methodological approach involving: 1) a multi-task learning 
(MTL) model to predict the risks of multiple events simultaneously, 
followed by 2) a dimensionality reduction (DR) model to project the 
predicted risks onto a visualisation map and to identify event clusters. 
IMERF can be complemented with interpretable machine learning 
techniques to assist in identifying and characterising clusters and to 
explain possible associations between factors and event clusters.

IMERF is capable of realising and characterising potential associa
tions not only between input factors and multiple events simulta
neously—associations that cannot be identified when modelled 
separately. Moreover, modelling the risks of multiple events together 
has the potential to enhance prediction quality, as learning can be 
shared across the various tasks. Traditionally, multiple events are 
modelled by creating a composite variable, often defined by aggregating 
predicted risks using hand-crafted weights. These composite events are 
then used as the output variable in a statistical or ML risk prediction 
model [14].

Although the proposed approach can be applied to various clinical 
scenarios, this research focuses on modelling multiple adverse events in 
patients admitted to intensive care units (ICUs) as a case study. It serves 
as a testbed for evaluating the added value of our proposed framework. 
ICU patients are critically ill, suffering from conditions that threaten 
their lives. Data from ICU stays are highly heterogeneous —patients may 
be admitted for a wide range of reasons, such as cardiac surgery, sepsis, 
or emergency department referral, among others. Moreover, ICU pa
tients are at higher risk of experiencing multiple negative outcomes due 
to adverse events, which often leads to poor performance in traditional 
risk prediction models [15]. This further strengthens the case for using 
MTL to model ICU data more effectively.

2. Methods

2.1. Overall methodological approach of IMERF

We propose IMERF as a methodological approach for modelling 
multiple event risks, identifying event clusters, and determining factors 
associated with their risk increase. As mentioned previously, IMERF is a 
two-stage approach combining MTL and DR for visualisation and clus
tering. The MTL algorithm implements the risk prediction model for 
multiple events. In the second stage of the approach, a new dataset is 
generated using the predicted event probabilities, where the number of 

columns corresponds to the number of events. A data visualisation 
model based on DR techniques is then applied to map this dataset onto a 
two-dimensional latent space (map). The objective is to identify regions 
within the map where specific events occur or where two or more events 
are likely to occur simultaneously in a group of patients. In principle, 
stages 1 and 2 of IMERF can be implemented using most MTL algorithms 
and data visualisation and clustering techniques, respectively. Fig. 1
illustrates the overall methodological approach underpinning IMERF.

2.2. Single-task vs multi-task learning modelling

Learning a task is the process of fitting a statistical or ML model. In 
this context, a task encapsulates a dataset along with details about input 
variables and a target (or outcome). Single-task learning (STL) involves 
learning one task at a time, and most ML algorithms are traditionally 
designed for STL. In contrast, MTL models several tasks, allowing them 
to share information during the learning process. By sharing information 
and parameters across tasks, MTL is generally more efficient than 
modelling tasks separately (i.e. STL). In other words, MTL tasks can 
achieve equivalent performance to those implemented individually via 
STL but with significantly fewer parameters. Consequently, an MTL 
multi-outcome model would require less data and be less prone to 
overfitting compared to equivalent multiple STL models [16].

Popular ML algorithms like Random Forest, XGBoost, and Support 
Vector Machines (SVM) are typically designed and used for STL prob
lems, although MTL variants have also been proposed [17]. In recent 
years, MTL models have predominantly been developed using deep 
learning algorithms [16,18].

2.3. Visualisation modelling for the predicted events

DR algorithms can be used for data visualisation by mapping high- 
dimensional data onto a 2- or 3-dimensional space. In our proposed 
framework, the purpose of using a DR algorithm is to map the MTL risk 
predictions onto a 2-dimensional space, to identify regions of interest 
associated with different risk levels for events. Commonly used DR al
gorithms for visualisation include Principal Component Analysis (PCA), 
t-distributed Stochastic Neighbour Embedding (t-SNE [19]), and Uni
form Manifold Approximation and Projection (UMAP [20]) are 
commonly used for data visualisation [21].

Here, we propose employing the Generative Topographic Mapping 
(GTM [22]) algorithm. Although other DR algorithms could, in princi
ple, be utilised, GTM inherently integrates clustering and visualisation 
into a single model. Unlike traditional clustering algorithms such as 
k-means and hierarchical clustering, GTM is grounded in a probabilistic 
framework allowing for soft assignments of data observations to clusters 
with associated probabilities. Furthermore, in contrast to recent tech
niques such as t-SNE and UMAP, the visualisation maps produced by 
GTM are highly interpretable and globally consistent.

Fig. 1. Overall methodological approach of IMERF, comprising an MTL risk prediction model (Stage 1), followed by a DR model for data visualisation and clustering 
(Stage 2).
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2.4. Case study: modelling multiple adverse event risks in critically-ill 
patients

2.4.1. Data source
In this study, our proposed framework was utilised to model the risk 

of multiple adverse events in patients admitted to the ICU. A total of nine 
commonly occurring adverse events in the ICU were considered: AF, 
acute kidney injury (AKI), acute respiratory distress syndrome (ARDS), 
the need for vasoactive medications (VAM), ICU length of stay greater 
than 3 days (LOS-3d) and 7 days (LOS-7d), in-hospital death, as well as 
30-day (30d) and 1-year (1yr) mortality.

AF refers to an irregular and often rapid heart rhythm that can lead to 
blood clots, stroke, or other complications. AKI is a sudden decline in 
kidney function, resulting in the accumulation of waste products and 
fluid imbalances. ARDS is a severe lung condition characterised by 
inflammation-mediated disruptions in alveolar membrane permeability, 
leading to impaired oxygen exchange. VAMs are required to stabilise 
blood pressure and maintain organ perfusion in critically ill patients 
experiencing shock or haemodynamic instability. ICU length of stay is 
particularly challenging to model due to its highly skewed distribution. 
To address this, we defined ICU length of stay as two binary events with 
cutoffs at 3 and 7 days. We applied our model to a cohort extracted from 
the Medical Information Mart for Intensive Care IV (MIMIC-IV [23]), a 
freely available database of de-identified electronic health records from 
patients admitted to the Beth Israel Deaconess Medical Centre in Boston, 
Massachusetts. We used version 2.2, released in January 2023, which 
includes 299,712 patients, 431,231 hospital admissions, and 73,181 ICU 
stays.

2.4.2. Formation of the data cohort
For this study, we extracted sequences of vital signs, laboratory test 

results, and other clinical characteristics of patients admitted to the 
hospital’s ICU. The data used for modelling was formatted as a three- 
dimensional array, with dimensions representing patient admissions, 
time points (hours), and variables. Patients under 18 years of age, those 
with an ICU stay of less than 24 h, and patients with multiple admissions 
(only their first admission was included) were excluded. Consequently, 
for the purpose of this analysis, each patient was considered to have only 
one hospital and ICU admission.

From the electronic health records and bedside monitoring data, a 
total of 28 features were selected. Relevant static data, such as age and 
sex, were included alongside dynamic vital signs and laboratory features 
commonly recorded in ICU settings. Dynamic features were organised 
into 1 h non-overlapping time series bins during data extraction from the 
MIMIC-IV database. This binning was performed to account for varying 
sampling frequencies in the available data and to balance the trade-off 
between missing data points and bin size [24]. Missing time points 
were backfilled, while variables with a level of missingness exceeding 
65 % were excluded from the analysis. Values deemed implausible were 
assumed to be outliers, likely due to measurement and/or recording 
errors, and were replaced with plausible extreme values. Additionally, a 
second version of the dataset was created by converting all time-varying 
variables into tabular representations by extracting their means and 
standard deviations. This aggregated version was used to develop 
baseline models, enabling performance comparisons with our proposed 
pipeline.

A pairwise correlation followed by a variance inflation factor (VIF 
[25]) analysis was performed on the aggregated dataset to exclude 
highly correlated variables. Using a threshold value of 5, variables with 
VIF values above this threshold were sequentially excluded, and VIF was 
recalculated repeatedly until all remaining variables had VIF values 
below the threshold.

For modelling purposes, the dynamic and aggregated data cohorts 
were randomly split into training (80 %) and test (20 %) subsets. The 
training subset was used for model development, while the test subset 
was reserved for independent model evaluation. To ensure a fair 

comparison, all models utilised the same data splits. Variables with no 
available time points for a given admission, and therefore unable to be 
backfilled, appeared as missing values when aggregated. To address this, 
a multivariate imputation by chained equations (MICE [26]) model was 
applied to the training subset using a ridge regressor algorithm as the 
estimator and was subsequently used to impute missing values in both 
the training and test subsets. Additionally, the training and test data 
subsets were standardised using the column means and standard de
viations from the training subset.

2.4.3. Formation of the adverse event data
Patient adverse events were recorded in two two-dimensional arrays: 

one for model development (training subset) and another for model 
evaluation (test subset), with columns representing each event. The 
timing of event onset was an additional criterion for determining patient 
admission inclusion or exclusion. Starting at ICU admission, we defined 
a 24 h variable extraction (input) window during which patient input 
data were gathered. This was followed by a 2 h gap window, after which 
adverse events could be considered for analysis. The gap window was 
implemented to account for imprecisions in data recording times and to 
minimise the risk of data leakage (i.e., attempting to predict an already 
known event).

Admissions where all adverse event onsets occurred within the input 
and gap windows were excluded from the analysis. We define the 
outcome window as the period following the gap window. Any adverse 
event occurring within the outcome window was recorded as “1” in the 
outcome data arrays, while a “0” indicated that the patient did not 
experience an adverse event at any time during the study period (i.e. 
input, gap, and outcome windows). As expected in an ICU setting, many 
patients had already developed at least one adverse event before the end 
of the gap window. These patients were excluded only when the relevant 
event was being modelled. Such cases were recorded as “-1” in the 
outcome data arrays. Fig. 2 provides a graphical representation of this 
process. Additionally, Table S2 (Supplementary Material) shows how 
the adverse events were defined using the MIMIC-IV database.

2.4.4. Multiple event risk prediction modelling
The MTL model was implemented using convolutional neural net

works (CNNs [27]) following a hard parameter-sharing MTL architec
ture. In this approach, all tasks share a common model backbone, with 
task-specific heads added for generating the final outputs. For perfor
mance comparison, STL CNN models were also implemented, one for 
each adverse event. Additionally, baseline STL models were developed 
using the aggregated data and trained with logistic regression (LR) and 
random forest (RF) algorithms. All models were optimised via hyper
parameter tuning. A randomised search with 5-fold cross-validation was 
used on the training subset to determine the optimal hyperparameter 
values for the baseline models, while STL and MTL CNN architectures 
were optimised using the hyperband search strategy. All models were 
evaluated using the areas under the receiver operating characteristic 
(AUC) and the precision-recall (PR-AUC) curves. Performance results on 
the independent test subset are reported. Details of the hyperparameter 
sets and values considered in this analysis are provided in Section S3 of 
the Supplementary Material.

2.4.5. Data visualisation model using generative topographic mapping
A visualisation model was built using the predicted outputs of the 

MTL model (i.e., event risks) from the training subset, and trained with 
GTM. The GTM assumes that the observed data is generated through a 
nonlinear and topology-preserving mapping from a low-dimensional 
latent space in RL onto a manifold embedded in the high-dimensional 
space, R

D, where the observed data reside. The GTM latent space is 
constrained to form a uniform discrete grid of M centres. Each of these 
centres is responsible for generating a spherical Gaussian density func
tion in the D-dimensional data space. Collectively, these centres form M 
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clusters in the data space, with each cluster corresponding to a Gaussian 
component in the model. In this sense, the GTM can be understood as a 
special case of a Gaussian mixture model in which each component in 
the mixture defines the probability of an observable data point given a 
latent centre.

The GTM not only can assign data points to clusters but also visu
alises them in a cluster membership map by projecting the latent centres. 
The GTM latent space can be used for visualisation purposes when its 
dimensionality is two (L = 2). In this case, the mode probability (i.e., the 
highest cluster probability) is used to determine the cluster membership 
of each data point. A GTM membership map is constructed as a two- 
dimensional histogram, with node size representing the number of 
data points allocated to each cluster. In addition, cluster centres in the 
data space, henceforth referred to as reference vectors, act as data 
prototypes. Reference maps associated with each variable can be 
generated based on the components of the reference vectors. These 
reference maps are typically visualised as heatmaps, with variable 
values represented through colour coding. Reference maps are particu
larly useful for interpreting the relationship between each variable and 
the corresponding GTM clusters.

To train the GTM model, the number of GTM clusters was set to 400, 
arranged in a 20 × 20 square grid. Although other grid sizes could be 
considered, it is important to emphasise that GTM is relatively insensi
tive to the number of clusters selected. Due to GTM’s topographic re
lationships between clusters, altering the number of clusters effectively 
changes the resolution of the visualisation maps. Additionally, the 

number of radial basis functions (RBFs) of the Gaussian mixture was set 
to 100, ensuring at least four latent points per RBF. The RBF widths and 
regularisation hyperparameters were optimised using a grid search 
strategy. Hierarchical clustering was applied to the GTM prototypes 
(reference vectors) to identify macro-clusters representing combined 
risks of adverse events. As proposed by Bellfield et al. [28], hierarchical 
clustering can be applied to group GTM clusters into macro-clusters, 
further enhancing the interpretability of the GTM data visualisation 
model.

2.4.6. Model interpretation
GTM reference maps were produced to aid in identifying associations 

between the predicted event risks and the clustering structure estab
lished by the GTM. These maps facilitate the identification of regions 
where patients are at risk of not only a specific adverse event but also 
multiple adverse events concurrently. To trace back how variations in 
the input variables may influence the GTM clusters, we extracted class 
activation maps (CAMs). Specifically, we used HiResCAM [29] to 
highlight specific segments of the input time series that are most 
strongly associated with the model’s predictions and clustering patterns.

2.4.7. Overall IMERF implementation with ICU data
Fig. 3 illustrates the IMERF approach for modelling multiple patient 

adverse event risks in the ICU. Python 3.11 was used to implement all 
models. Specifically, traditional ML models were implemented using 
scikit-learn 2.5, CNN models were implemented using TensorFlow 2.9, 

Fig. 2. Example of an ICU stay with four outcome events. Event O2 is excluded for this admission, as its onset occurred during the input window (O2 = − 1). Events 
O1 and O4 are coded as 1, as their onsets occurred during the outcome window, whereas O3 is coded as 0, as it did not occur during the outcome window.

Fig. 3. IMERF implementation using CNN-MTL for stage 1 and GTM for stage 2. GTM reference maps and macro-clusters are extracted to aid in the interpretation of 
IMERF’s results.
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and the GTM model was implemented using the ugtm package, which 
was extended to support macro-clusters as described in Ref. [30].

3. Results

3.1. Descriptive analysis

The VIF analysis led to the exclusion of the mean blood pressure 
(mean BP) variable. The final list of variables included in the analysis is 
presented in Table 1, which also provides their medians, interquartile 
ranges (IQRs), and minimum and maximum values. The results of the 
pairwise correlation and VIF analyses are detailed in Section S1 of the 
Supplementary Material.

The final cohort used for the analysis comprised 37,253 admissions, 
predominantly consisting of older male adults (67 years old, 56.92 %). 
The summary statistics in Table 1 indicate that this is a highly hetero
geneous patient cohort, with some variables exhibiting extreme values 
that deviate significantly from their medians, particularly among labo
ratory test results.

Table 2 presents the prevalence of the adverse events considered in 
this study, along with the number of admissions per event included in 
the analysis. It can be observed that most AF and AKI events occurred 
after the data collection and gap windows (i.e. after 26 h). In contrast, a 

substantial proportion of patients developed earlier ARDS (~41 %) or 
VAM (~35 %) and were consequently excluded from the analysis. 
Overall, the reported prevalences indicate a significant degree of class 
imbalance among the tasks.

3.2. Model performances

Tables 3 and 4 report model performance results as measured by the 
AUC and PR-AUC, respectively. All scores are accompanied by their 
corresponding confidence intervals. Overall, CNN-based models 
demonstrated better performance than LR and RF models, although 
differences in the PR-AUC of AF models are negligible. Additionally, STL 
and MTL models performed very similarly when implemented using 
CNNs. The performance results also indicate that ARDS was the most 
challenging event to predict, as evidenced by the low average values of 
AUC and PR-AUC, along with wide confidence intervals. In contrast, 
death-related event models exhibited the best performance, regardless 
of the algorithm used. Furthermore, the LOS-7d models outperformed 
LOS-3d models based on the AUC.

The performance of LOS-7d models was much lower when evaluated 
using the PR-AUC, which is expected given that the prevalence of the 
LOS-7d event is approximately one-third of that of LOS-3d (Table 2).

3.3. Multiple event visualisation model

Results of the GTM model trained on the predicted event risks are 
shown in Fig. 4. The resulting GTM membership map is scattered, 
although the number of admissions seems to be slightly higher on the 
left-hand side of the map. Additionally, a relatively significant number 
of clusters allocated less than 100 patients, which could be a symptom of 
high heterogeneity in the data. The resulting GTM reference maps 
(Fig. 4b) show a clear pattern of how GTM arranged the risk data on the 

Table 1 
Variables used in the analysis, including their descriptive statistics. The total 
number of patient admissions included in the analysis was N = 37,253.

Variable Statistics

Demographics
​ Frequency Proportion (%) ​
Sex: [Female] 16,050 (43.08) ​
[Male] 21,203 (56.92) ​
​ Median IQR Extreme values
Age 67.00 (55.00,78.00) (18.00,89.00)
Weight [kg] 79.23 (66.35,94.20) (30.10,296.80)
Height [cm] 170.09 (162.78,177.90) (120.00,231.07)
Vitals
Capillary refill rate (CRT) 0.00 (0.00,0.00) (0.00,1.00)
Diastolic blood pressure 

[mmHg]
61.00 (53.00,71.00) (30.00,120.00)

Heart rate [bpm] 83.00 (72.00,96.00) (20.00,200.00)
Respiratory rate (RR) 

[breaths/min]
18.00 (15.00,22.00) (4.00,60.00)

Oxygen saturation (SO2) [%] 97.00 (95.00,99.00) (40.00,100.00)
Systolic blood pressure 

[mmHg]
116.00 (103.00,131.00) (50.00,250.00)

Temperature [Celsius] 36.83 (36.56,37.17) (26.50,42.30)
Glasgow Coma Scale (GCS) 

(total)
14.00 (10.00,15.00) (3.00,15.00)

Oxygen therapy settings
Fraction of inspired oxygen 

(FiO2)
50.00 (40.00,60.00) (21.00,100.00)

Positive end-expiratory 
pressure (PEEP) [cm H2O]

5.00 (5.00,5.15) (0.00,20.00)

Laboratory tests
Alanine aminotransferase 

(ALT) [U/L]
29.00 (17.00,67.00) (7.00,5000.00)

Anion gap [mEq/L] 14.00 (11.00,16.00) (5.00,40.00)
Calcium ion (CA2+) [mmol/ 

l]
1.12 (1.07,1.18) (0.80,2.50)

Glucose [mmol/l] 126.00 (105.00,156.50) (40.00,1000.00)
Haemoglobin [g/dL] 10.60 (9.20,12.20) (4.00,20.00)
Lactate [mmol/L] 1.70 (1.20,2.50) (0.30,15.00)
Magnesium [mmol/L] 2.00 (1.80,2.30) (0.40,5.00)
Partial pressure of oxygen 

(PO2) [mmHg]
107.00 (71.00,160.00) (30.00,600.00)

pH 7.36 (7.29,7.41) (6.80,7.80)
Phosphate [mmol/L] 3.40 (2.80,4.10) (0.80,8.00)
Platelets [count/L] 187.00 (136.00,249.00) (10.00,1000.00)
Potassium [mmol/L] 4.10 (3.80,4.50) (2.00,6.50)
Prothrombin time (PT) [s] 13.70 (12.40,15.70) (8.00,40.00)
Serum creatinine (SCr) [mg/ 

dL]
0.90 (0.70,1.30) (0.30,15.00)

Table 2 
Event frequencies and prevalences (percentages in brackets).

Event Included No event Event

AF 31,731 (85.18) 29,002 (91.40) 2729 (8.60)
AKI 36,560 (98.14) 33,920 (92.78) 2640 (7.22)
ARDS 21,940 (58.89) 20,649 (94.12) 1291 (5.88)
VAM 23,950 (64.29) 21,630 (90.31) 2320 (9.69)
LOS-3d 37,253 (100.00) 23,148 (62.14) 14,105 (37.86)
LOS-7d 37,253 (100.00) 32,903 (88.32) 4350 (11.68)
In-hospital death 37,253 (100.00) 33,042 (88.70) 4211 (11.30)
30d mortality 37,253 (100.00) 31,055 (83.36) 6198 (16.64)
1yr mortality 37,253 (100.00) 27,190 (72.99) 10,063 (27.01)

Table 3 
Model performance report, measured using AUC with corresponding confidence 
intervals in brackets.

Event LR RF CNN-STL CNN-MTL

AF 0.74 (0.72, 
0.76)

0.75 (0.73, 
0.77)

0.77 (0.75, 
0.78)

0.77 (0.75, 
0.78)

AKI 0.74 (0.72, 
0.76)

0.76 (0.74, 
0.78)

0.78 (0.76, 
0.80)

0.77 (0.75, 
0.79)

ARDS 0.63 (0.58, 
0.67)

0.68 (0.64, 
0.72)

0.72 (0.68, 
0.75)

0.71 (0.68, 
0.75)

VAM 0.74 (0.71, 
0.76)

0.73 (0.71, 
0.76)

0.76 (0.74, 
0.78)

0.77 (0.75, 
0.79)

LOS-3d 0.72 (0.71, 
0.73)

0.72 (0.71, 
0.74)

0.77 (0.75, 
0.78)

0.76 (0.75, 
0.77)

LOS-7d 0.77 (0.75, 
0.79)

0.77 (0.76, 
0.79)

0.81 (0.80, 
0.83)

0.82 (0.80, 
0.83)

In-hospital 
death

0.86 (0.85, 
0.87)

0.85 (0.83, 
0.86)

0.89 (0.88, 
0.90)

0.89 (0.88, 
0.90)

30d mortality 0.85 (0.84, 
0.86)

0.84 (0.83, 
0.85)

0.88 (0.87, 
0.89)

0.88 (0.87, 
0.89)

1yr mortality 0.82 (0.81, 
0.83)

0.82 (0.81, 
0.83)

0.85 (0.84, 
0.86)

0.85 (0.85, 
0.86)
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membership map. By their inspection, it is observed that the member
ship map’s bottom left represents patients at very low risk of any of the 
considered events. In addition, ARDS risk almost splits the membership 
map into two well-defined regions, with the top and top-right ones 
allocated to higher risks. A similar scenario is presented with AKI, 
although with higher risks concentrated in the top-right corner. GTM 
reference maps also show some level of correlation between LOS-3d and 
LOS-7d, which is anticipated as patients with LOS longer than 7 days 
would have stayed longer than 3 days. A similar situation is observed 
between In-hospital death, 30d mortality and 1yr mortality. It is also 
interesting to see the representation of AF risk by GTM, which seems to 
be split into several areas that overlap with other event risks. Overall, 
Fig. 4b indicates a high degree of overlap between two or more events, 
suggesting that the number of patients at risk of several events is 
significant.

Fig. 5 presents the resulting class activation maps generated using 
HiResCAM for five randomly selected patient admissions. According to 
the figure, the implemented CNN-MTL model predicted an overall low 
risk of adverse events for Patient I (bottom-left in the membership map), 

with the model focusing primarily on lower diastolic BP, highest hae
moglobin and GCS Total variable values. In contrast, high risks of ARDS, 
VAM, and in-hospital death were predicted for Patient II (bottom-right 
in the membership map), with predominant attention on high lactate 
and low magnesium values. GTM placed Patient III in the bottom-centre 
of the membership map, which is associated with a predicted high risk of 
developing AF. The CNN-MTL model focused on glucose changes, early 
heart hate increase, low magnesium and PO4 levels, as well as patient 
age and sex. According to the membership map, Patient IV is at high risk 
of developing AKI only. The HiResCAM results indicate that glucose 
changes, SCr levels, initial systolic BP, and low temperature values were 
particularly relevant to the risk predictions. In contrast, Patient V is 
predicted to be at risk of multiple adverse events: ARDS (high risk), VAM 
(medium), LOS-3d (high), LOS-7d (medium-high), in-hospital death 
(medium), and 30-day and 1-year mortalities (medium-high). The CNN- 
MTL model focused particularly on early low ALT, changes in anion gap, 
diastolic BP and systolic BP, decreasing FiO2, heart rate variability, and 
changes in magnesium, platelets, and PO2 values. Additionally, some 
attention was directed towards late temperature increases and changes 
in GCS Total.

The results of the macro-clustering are displayed in Figs. 6 and 7. The 
hierarchical clustering algorithm partitioned the GTM prototype data 
into 10 macro-clusters (Fig. 6). Fig. 7 shows the predicted event risks 
averaged across the estimated macro-clusters. According to these re
sults, Cluster 1 represents patients simultaneously at medium risk of AF 
and AKI, high risk of VAM, LOS-3d/-7d, In-hospital death, 30d/1yr 
mortalities, and very high risk of ARDS. In contrast, Cluster 8 groups 
patients with the lowest predicted risk of any adverse events. Patients in 
Cluster 3 are at very high risk of ARDS and VAM, those in Cluster 4 are at 
very high risk of AF, while Cluster 7 is characterised by very high risk of 
VAM and Cluster 9 by very high risk of AKI. Moreover, Cluster 6 rep
resents patients at an increasing risk of death (medium risk for In- 
hospital death, high risk for 30d mortality, and higher risk for 1yr 
mortality). Patients in this cluster are also predicted to be at significant 
risk of AF, VAM, and LOS-3d. In contrast, Cluster 2 groups patients at 
low risk of death but very high risk of ARDS and VAM, and high risk of 
LOS-3d. Finally, Cluster 10 represents patients at medium-low to me
dium risk of developing multiple adverse events.

Table 4 
Model performance report, measured using PR-AUC with corresponding confi
dence intervals in brackets.

Event LR RF CNN-STL CNN-MTL

AF 0.22 (0.18, 
0.25)

0.22 (0.18, 
0.26)

0.21 (0.17, 
0.25)

0.22 (0.19, 
0.26)

AKI 0.21 (0.17, 
0.25)

0.20 (0.16, 
0.24)

0.24 (0.20, 
0.28)

0.23 (0.19, 
0.26)

ARDS 0.12 (0.07, 
0.18)

0.13 (0.08, 
0.18)

0.16 (0.11, 
0.20)

0.15 (0.10, 
0.20)

VAM 0.29 (0.25, 
0.32)

0.21 (0.17, 
0.25)

0.32 (0.28, 
0.35)

0.32 (0.29, 
0.36)

LOS-3d 0.62 (0.61, 
0.63)

0.64 (0.62, 
0.65)

0.70 (0.68, 
0.71)

0.69 (0.68, 
0.70)

LOS-7d 0.33 (0.30, 
0.36)

0.34 (0.31, 
0.37)

0.40 (0.37, 
0.43)

0.40 (0.37, 
0.43)

In-hospital 
death

0.49 (0.46, 
0.52)

0.49 (0.46, 
0.51)

0.57 (0.55, 
0.59)

0.58 (0.55, 
0.60)

30d mortality 0.56 (0.53, 
0.58)

0.55 (0.53, 
0.57)

0.62 (0.60, 
0.63)

0.64 (0.62, 
0.66)

1yr mortality 0.64 (0.62, 
0.65)

0.63 (0.61, 
0.64)

0.69 (0.67, 
0.70)

0.70 (0.69, 
0.71)

Fig. 4. Resulting GTM membership (a) and reference maps (b). In (a), node size represents the number of admissions allocated to each cluster. Event risks 
(probabilities) are colour-coded from light grey to red, indicating low to high risk, respectively.
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4. Discussion

In this paper, we proposed IMERF, a novel integrated machine 
learning framework for modelling and representing multiple events. 
This innovative methodological approach advances the development of 
risk prediction models by enabling the simultaneous prediction and 
characterisation of complex associations between input factors and 
multiple events. It uncovers relationships that remain invisible when 
events are modelled independently, offering unprecedented insights into 
risk patterns. By leveraging shared learning across tasks, it pushes the 
boundaries of prediction accuracy, outperforming traditional methods. 

Unlike outdated approaches that rely on manually constructed com
posite variables with arbitrary weights, this innovative framework 
directly models multiple events, delivering superior interpretability, 
precision, and transformative potential for risk modelling.

Although IMERF was used for modelling multiple adverse events in 
patients admitted to the ICU to showcase its capabilities, our proposed 
framework has significant potential for addressing many other clinical 
questions. IMERF is an ideal framework for modelling clusters of med
ical conditions and discovering new ones. We firmly believe that IMERF 
is a much-needed approach for integrated multiple event risk modelling. 
For example, an IMERF model could be implemented for integrated risk 

Fig. 5. Random selection of five patient admissions, their cluster allocations in the GTM membership map (top row), and the resulting HiResCAM plots, one per 
variable and admission. Admission locations in the membership map are represented with red squares overlaid on the membership map, shown in light grey. In each 
line plot, the horizontal and vertical axes represent time (24 h) and normalised variable values (ranging from 0, lowest, to 1, highest), respectively. HiResCAM 
continuous values are colour-coded from purple to light yellow, indicating low to high attention values. Abbreviations as in Table 1.
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modelling of individuals at risk of developing multiple co-morbidities. 
Additionally, IMERF can be considered for modelling several instances 
of a single event, such as helping to characterise patients at risk of 
developing paroxysmal, persistent, or permanent AF; or conditions with 
a concurrent nature, such as elevated blood pressure (BP) and stroke.

The proposed IMERF is a two-stage approach comprising a multiple- 
event risk prediction model and a data visualisation and clustering 
model. Although the aim of this study was not to develop a predictive 
model that maximises performance, we took the usual measures towards 
that goal. We can speculate that by testing a broader range of hyper
parameters and considering more ML algorithms, higher performances 
could still be achieved. However, we believe that the reported results are 
close to their performance ceilings, given the data and variables used. 
When comparing the performance of models that treat the input vari
ables as sequences (CNN-STL and CNN-MTL), rather than as aggregated 
tabular data (LR and RF), it is not surprising that the former produced 
higher scores, which aligns with results previously reported in Refs. 
[31–33] when using similar data.

Additionally, the implementation of the multiple event risk predic
tion model using an MTL architecture offers clear advantages over a 

multiple STL approach, even when both architectures achieve equiva
lent performance scores: MTL models tend to be more compact, 
requiring significantly fewer parameters to be learned than their mul
tiple STL counterparts. Consequently, the implemented CNN-MTL model 
would be considerably less prone to overfitting than the CNN-STLs. It is 
also known that MTL can enhance the performance of less well-defined, 
smaller tasks by leveraging the larger, better-defined ones [16,34,35]. 
However, we did not observe this effect in our results, which may 
indicate little room for performance improvement in the data.

With regard to Stage 2 of the IMERF, we previously mentioned that 
any algorithm for data visualisation and clustering could, in principle, 
be used. However, we believe that the use of GTM as our preferred 
choice is justified. Although non-linear, GTM is inherently interpretable, 
making it a valuable tool for exploring complex relationships within the 
data. In this case study, reference maps were generated to assist in 
identifying associations between the predicted event risks and the 
clustering structure established by the GTM. These maps enabled the 
identification of regions where patients are at risk not only of a specific 
adverse event but also of multiple adverse events occurring simulta
neously. This interpretability aids in understanding how clusters 

Fig. 6. Results of the macro-clustering. Macro-clusters are colour-coded and overlaid onto the GTM membership map (a). To enhance clarity, the same map is 
presented with all GTM nodes represented at an equal size (b).

Fig. 7. Average predicted event risks per macro-cluster. In each bar plot, the horizontal axis represents the average risk for each event.
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represent combined risks, which is crucial for clinical decision-making 
in ICU settings.

Furthermore, depending on the algorithm employed for the multi- 
event risk prediction model, it is possible to trace how input variables 
influence the GTM clusters. This traceability adds another layer of 
interpretability, allowing researchers and clinicians to better understand 
the relationships between patient features and adverse event risks. In 
our case study, we leveraged the CNN-MTL model to extract class acti
vation maps via HiResCAM. We used this approach to highlight specific 
segments of the input time series data that were most strongly associated 
with the model’s predictions. By combining the interpretability of GTM 
reference maps with the explanatory insights provided by HiResCAM, 
we obtained a more comprehensive understanding of the underlying 
relationships between input features, event risks, and clustering 
patterns.

The results of applying our proposed IMERF to model critically-ill 
patients highlight the utility and need for a novel methodological 
approach that addresses the analysis and interpretation of multiple 
events simultaneously. A key aspect of IMERF lies in its ability to 
identify clusters based on overlapping risks of multiple events. When 
IMERF was applied in our case study, the results revealed clearly 
differentiated clusters based on the considered events. For instance, 
patients II and III (Fig. 5) were both at risk of AF, yet they presented 
significantly different risks of death, with patient II showing a much 
higher risk. This distinction was confirmed by the event reference maps 
shown in Fig. 4.

According to the class activation map results from the CNN-MTL 
model, increasing levels of lactate appeared to be more relevant for 
patient II than for patient III. Elevated lactate is a common marker of 
tissue hypoxia, impaired oxygen utilisation, or metabolic stress and can 
result from conditions such as sepsis, hypovolaemia, cardiogenic shock, 
or liver dysfunction, all strongly linked to high mortality rates [36]. 
However, both patients exhibited low levels of magnesium, which was 
relevant to the CNN-MTL model. This could indicate hypomagnesaemia, 
which is associated with an increased risk of arrhythmias, including AF 
[37]. Additionally, the CNN-MTL model highlighted patient III’s 
changes in heart rate and glucose levels, both of which are known to 
contribute to AF by affecting metabolic, autonomic, and inflammatory 
pathways [38].

A similar analysis can be performed with patient IV, who was pre
dicted to have a very high risk of AKI, as indicated in the top-right corner 
of the GTM membership map. The HiResCAM results for this patient 
showed an elevated serum creatinine (SCR) level. An increase in SCR by 
0.3 mg/dL or more within 48 h, or to 1.5 times the baseline or more, 
indicates the patient has AKI [39]. Changes in glucose levels (glycaemic 
variability) also emerged as another relevant factor for the CNN-MTL 
model. Large fluctuations in glucose levels are known to be more 
strongly associated with higher rates of AKI than conditions such as 
hyperglycaemia [40].

Finally, patient V presented a very high risk of ARDS and a high risk 
of requiring VAMs. The CNN-MTL model identified variables in this 
patient that serve as markers of haemodynamic instability, such as low 
magnesium, platelet, and systolic BP levels, which are associated with 
the need for VAMs. Additionally, fluctuations in heart rate, which could 
indicate shock or inadequate perfusion, and an elevated anion gap, 
which may suggest metabolic acidosis, could also signal the need for 
VAMs [41]. Furthermore, patient V presented clear indications of ARDS 
risk, with a dramatic decrease in FiO2 and PO2 levels during the input 
time window, which could indicate symptoms of hypoxia, a hallmark of 
ARDS [42]. The relationship between ARDS and the need for VAMs is 
well-documented, as haemodynamic instability can both exacerbate and 
be exacerbated by ARDS. This is also confirmed by the GTM reference 
maps (Fig. 4b), which indicate a high correlation between the risks of 
ARDS and the need for VAMs [43].

An important consideration is to identify how much of the patterns 
revealed by the GTM visualisation model are attributable to the type of 

intensive care unit in which the patient stayed and, or their mechanical 
ventilation status. We therefore performed a stratified analysis to 
examine how reference maps and macro-clusters varied across ICUs, and 
a similar analysis to assess the influence of mechanical ventilation status 
on these visualisations and macro-cluster structures. The results of these 
analyses are presented in Section S4 of the Supplementary Material. 
Apart from the CVICU, no clear correlation was observed between ICU 
type and the GTM visualisation maps (Figs. 4 and 6 in the main manu
script and Fig. S2 in the Supplementary Material). A significant corre
lation was found between mechanical ventilation and elevated ARDS 
risk, likely because the clinical criteria for ARDS diagnosis incorporate 
mechanical ventilation parameters and oxygenation measures. Corre
lations between CVICU admissions, mechanical ventilation, and pre
dicted macro-clusters 2 and 3 (Fig. 6 in the main manuscript and Figs. S4 
and S12 in the Supplementary Material) may be explained by the higher 
prevalence of post-surgical and advanced cardiovascular cases in these 
groups, which are associated with both invasive respiratory support and 
increased risk of multiple adverse events.

A potential limitation of the current IMERF architecture is that Stage 
1 and Stage 2 are optimised independently. It could be argued that better 
overall performance might be achieved if the two stages were optimised 
concurrently. However, the downside of this approach is that it would 
necessitate the development of new formulations to enable such inte
grated optimisation, thereby significantly restricting the range of algo
rithms available for IMERF implementation.

Additionally, the IMERF approach implemented in the presented 
case study does not explicitly model the chronological order of over
lapping events. This is partly due to the algorithm used in Stage 2 of 
IMERF. In future work, the GTM Through Time [44], a version of GTM 
that explicitly models sequences, could be considered as an alternative 
to the traditional GTM implementation used in this case study. More
over, restricting the analysis to only the first admission for each patient 
likely reduces the observed rate of multiple comorbidities and adverse 
events, which represents another limitation of the case study design.

Finally, further research could explore how to fully leverage GTM’s 
potential in modelling probabilities. For instance, GTM could be used to 
determine whether a patient is likely to transition to another cluster with 
a higher (or lower) risk, thus providing deeper insights within the IMERF 
methodological approach. The proposed framework will be instru
mental in addressing the modelling of multiple adverse events within 
extensive research programmes, such as the EU projects ARISTOTELES 
[45] and TARGET [46].

5. Conclusion

We proposed IMERF, a novel ML methodological approach for 
modelling risk predictions for multiple events. This approach employs a 
two-stage process comprising an MTL model followed by a DR model for 
data visualisation and clustering. We successfully demonstrated the 
utility of IMERF in clustering events based on their predicted risk levels, 
as observed in the presented case study involving critically ill patients. 
Furthermore, the integration of GTM with the CNN-MTL’s HiResCAM 
proved to be a highly interpretable framework that facilitates under
standing of factors associated with multiple event risks occurring 
simultaneously. Finally, the extracted macro-clusters enhance IMERF’s 
interpretability by segmenting the GTM visualisation map into regions 
based on the average levels of multiple event risks. Future work includes 
the use of algorithms such as the GTM Through Time to model 
sequentially multiple event risks.
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