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ABSTRACT

This study introduces the Integrated Multiple Event Representation Framework (IMERF), a novel methodological approach for developing risk prediction models for
multiple clinical events. Using a two-stage process involving multi-task learning and dimensionality reduction, IMERF creates a visual representation of predicted
event risks and identifies clusters based on overlapping risks. The proposed framework is showcased through a case study modelling nine adverse events in critically
ill patients admitted to intensive care units (ICUs). Stage 1 was implemented using convolutional neural networks, which displayed superior performance to logistic
regression and random forest algorithms. The generative topographic mapping (GTM) algorithm was implemented in stage 2 for data visualisation and clustering. It
revealed clear patterns of adverse event risk clusters. GTM in combination with class activation maps was also employed to trace input factors influencing cluster
membership, highlighting distinct risk profiles among patients. Macro-clusters representing distinctive combinations of adverse event risk levels were also identified
by performing a hierarchical clustering on the GTM results. In conclusion, IMERF could represent a significant advancement in multiple event risk modelling by
enabling simultaneous prediction and characterisation of overlapping events and providing an interpretable framework for understanding their complex patterns. Its
application in ICUs underscores its potential for broader clinical use, including modelling clusters of conditions or multiple instances of events.

1. Introduction

A common question in medical research is how to predict the risk of
patient events within a particular study. Events, which can be either
beneficial or adverse, refers to discrete, observable occurrences or out-
comes that are relevant to the study being conducted. For instance, if a
patient undergoes a medical procedure, it is crucial to assess their risk of
experiencing complications, such as bleeding, infection or even death,
which are considered adverse events. One approach to addressing such
questions is by implementing a risk prediction model that utilises sta-
tistical or machine learning (ML) algorithms on data collected from
observational studies [1]. Having a model that can anticipate the risk of
a given event is fundamental to serving as a medical decision support
tool [2].

Most algorithms model the risk of an event as a single-output func-
tion of a set of input variables or factors. In cases where a patient is at
risk of multiple events, it is generally assumed that a model will be built
for each event separately [3]. However, events may not necessarily be
independent. For example, individuals at risk of developing multiple

co-morbidities tend to have a less favourable prognosis than those at risk
of a single condition. Moreover, modelling individual co-morbidities
independently fails to identify specific factors associated with an
increased risk of several co-morbidities simultaneously. A similar chal-
lenge arises in intensive care, where patients are at a higher risk of
developing multiple adverse events simultaneously, for instance, a pa-
tient requiring mechanical ventilation and developing atrial fibrillation
(AF) within a short time frame [4]. Detecting and characterising patients
at risk of multiple adverse events introduces additional complexity to
modelling, which single-output risk prediction models are not equipped
to handle efficiently.

The use of multi-task learning (MTL) in medical and healthcare
research is not new. Early works by Wiens et al. [5], Wang et al. [6] and
Zhou et al. [7], to mention a few, paved the way for its application. The
advent of deep learning (DL) and its widespread adoption in recent years
have significantly increased the use of MTL in risk prediction for clinical
outcomes[8-10]. MTL has also expanded to address closely related
topics, such as time-to-event modelling [11], trajectory analysis [12],
and risk profiling [13]. Most publications focus on using MTL to enhance
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model performance, yet limited attention has been given to integrating
and interpreting the model predictions. However, to the best of our
knowledge, no existing framework specifically addresses risk prediction
modelling for multiple events that is also capable of identifying clusters
of risks and uncovering factors associated with specific clusters.

In this research paper, we propose the Integrated Multiple Event Rep-
resentation Framework (IMERF): a novel methodological approach for
developing risk prediction models for multiple events. IMERF is a novel
two-stage methodological approach involving: 1) a multi-task learning
(MTL) model to predict the risks of multiple events simultaneously,
followed by 2) a dimensionality reduction (DR) model to project the
predicted risks onto a visualisation map and to identify event clusters.
IMERF can be complemented with interpretable machine learning
techniques to assist in identifying and characterising clusters and to
explain possible associations between factors and event clusters.

IMEREF is capable of realising and characterising potential associa-
tions not only between input factors and multiple events simulta-
neously—associations that cannot be identified when modelled
separately. Moreover, modelling the risks of multiple events together
has the potential to enhance prediction quality, as learning can be
shared across the various tasks. Traditionally, multiple events are
modelled by creating a composite variable, often defined by aggregating
predicted risks using hand-crafted weights. These composite events are
then used as the output variable in a statistical or ML risk prediction
model [14].

Although the proposed approach can be applied to various clinical
scenarios, this research focuses on modelling multiple adverse events in
patients admitted to intensive care units (ICUs) as a case study. It serves
as a testbed for evaluating the added value of our proposed framework.
ICU patients are critically ill, suffering from conditions that threaten
their lives. Data from ICU stays are highly heterogeneous —patients may
be admitted for a wide range of reasons, such as cardiac surgery, sepsis,
or emergency department referral, among others. Moreover, ICU pa-
tients are at higher risk of experiencing multiple negative outcomes due
to adverse events, which often leads to poor performance in traditional
risk prediction models [15]. This further strengthens the case for using
MTL to model ICU data more effectively.

2. Methods
2.1. Overall methodological approach of IMERF

We propose IMERF as a methodological approach for modelling
multiple event risks, identifying event clusters, and determining factors
associated with their risk increase. As mentioned previously, IMERF is a
two-stage approach combining MTL and DR for visualisation and clus-
tering. The MTL algorithm implements the risk prediction model for
multiple events. In the second stage of the approach, a new dataset is
generated using the predicted event probabilities, where the number of
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columns corresponds to the number of events. A data visualisation
model based on DR techniques is then applied to map this dataset onto a
two-dimensional latent space (map). The objective is to identify regions
within the map where specific events occur or where two or more events
are likely to occur simultaneously in a group of patients. In principle,
stages 1 and 2 of IMERF can be implemented using most MTL algorithms
and data visualisation and clustering techniques, respectively. Fig. 1
illustrates the overall methodological approach underpinning IMERF.

2.2. Single-task vs multi-task learning modelling

Learning a task is the process of fitting a statistical or ML model. In
this context, a task encapsulates a dataset along with details about input
variables and a target (or outcome). Single-task learning (STL) involves
learning one task at a time, and most ML algorithms are traditionally
designed for STL. In contrast, MTL models several tasks, allowing them
to share information during the learning process. By sharing information
and parameters across tasks, MTL is generally more efficient than
modelling tasks separately (i.e. STL). In other words, MTL tasks can
achieve equivalent performance to those implemented individually via
STL but with significantly fewer parameters. Consequently, an MTL
multi-outcome model would require less data and be less prone to
overfitting compared to equivalent multiple STL models [16].

Popular ML algorithms like Random Forest, XGBoost, and Support
Vector Machines (SVM) are typically designed and used for STL prob-
lems, although MTL variants have also been proposed [17]. In recent
years, MTL models have predominantly been developed using deep
learning algorithms [16,18].

2.3. Visualisation modelling for the predicted events

DR algorithms can be used for data visualisation by mapping high-
dimensional data onto a 2- or 3-dimensional space. In our proposed
framework, the purpose of using a DR algorithm is to map the MTL risk
predictions onto a 2-dimensional space, to identify regions of interest
associated with different risk levels for events. Commonly used DR al-
gorithms for visualisation include Principal Component Analysis (PCA),
t-distributed Stochastic Neighbour Embedding (t-SNE [19]), and Uni-
form Manifold Approximation and Projection (UMAP [20]) are
commonly used for data visualisation [21].

Here, we propose employing the Generative Topographic Mapping
(GTM [22]) algorithm. Although other DR algorithms could, in princi-
ple, be utilised, GTM inherently integrates clustering and visualisation
into a single model. Unlike traditional clustering algorithms such as
k-means and hierarchical clustering, GTM is grounded in a probabilistic
framework allowing for soft assignments of data observations to clusters
with associated probabilities. Furthermore, in contrast to recent tech-
niques such as t-SNE and UMAP, the visualisation maps produced by
GTM are highly interpretable and globally consistent.
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Fig. 1. Overall methodological approach of IMERF, comprising an MTL risk prediction model (Stage 1), followed by a DR model for data visualisation and clustering

(Stage 2).
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2.4. Case study: modelling multiple adverse event risks in critically-ill
patients

2.4.1. Data source

In this study, our proposed framework was utilised to model the risk
of multiple adverse events in patients admitted to the ICU. A total of nine
commonly occurring adverse events in the ICU were considered: AF,
acute kidney injury (AKI), acute respiratory distress syndrome (ARDS),
the need for vasoactive medications (VAM), ICU length of stay greater
than 3 days (LOS-3d) and 7 days (LOS-7d), in-hospital death, as well as
30-day (30d) and 1-year (1yr) mortality.

AF refers to an irregular and often rapid heart rhythm that can lead to
blood clots, stroke, or other complications. AKI is a sudden decline in
kidney function, resulting in the accumulation of waste products and
fluid imbalances. ARDS is a severe lung condition characterised by
inflammation-mediated disruptions in alveolar membrane permeability,
leading to impaired oxygen exchange. VAMs are required to stabilise
blood pressure and maintain organ perfusion in critically ill patients
experiencing shock or haemodynamic instability. ICU length of stay is
particularly challenging to model due to its highly skewed distribution.
To address this, we defined ICU length of stay as two binary events with
cutoffs at 3 and 7 days. We applied our model to a cohort extracted from
the Medical Information Mart for Intensive Care IV (MIMIC-IV [23]), a
freely available database of de-identified electronic health records from
patients admitted to the Beth Israel Deaconess Medical Centre in Boston,
Massachusetts. We used version 2.2, released in January 2023, which
includes 299,712 patients, 431,231 hospital admissions, and 73,181 ICU
stays.

2.4.2. Formation of the data cohort

For this study, we extracted sequences of vital signs, laboratory test
results, and other clinical characteristics of patients admitted to the
hospital’s ICU. The data used for modelling was formatted as a three-
dimensional array, with dimensions representing patient admissions,
time points (hours), and variables. Patients under 18 years of age, those
with an ICU stay of less than 24 h, and patients with multiple admissions
(only their first admission was included) were excluded. Consequently,
for the purpose of this analysis, each patient was considered to have only
one hospital and ICU admission.

From the electronic health records and bedside monitoring data, a
total of 28 features were selected. Relevant static data, such as age and
sex, were included alongside dynamic vital signs and laboratory features
commonly recorded in ICU settings. Dynamic features were organised
into 1 h non-overlapping time series bins during data extraction from the
MIMIC-IV database. This binning was performed to account for varying
sampling frequencies in the available data and to balance the trade-off
between missing data points and bin size [24]. Missing time points
were backfilled, while variables with a level of missingness exceeding
65 % were excluded from the analysis. Values deemed implausible were
assumed to be outliers, likely due to measurement and/or recording
errors, and were replaced with plausible extreme values. Additionally, a
second version of the dataset was created by converting all time-varying
variables into tabular representations by extracting their means and
standard deviations. This aggregated version was used to develop
baseline models, enabling performance comparisons with our proposed
pipeline.

A pairwise correlation followed by a variance inflation factor (VIF
[25]) analysis was performed on the aggregated dataset to exclude
highly correlated variables. Using a threshold value of 5, variables with
VIF values above this threshold were sequentially excluded, and VIF was
recalculated repeatedly until all remaining variables had VIF values
below the threshold.

For modelling purposes, the dynamic and aggregated data cohorts
were randomly split into training (80 %) and test (20 %) subsets. The
training subset was used for model development, while the test subset
was reserved for independent model evaluation. To ensure a fair
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comparison, all models utilised the same data splits. Variables with no
available time points for a given admission, and therefore unable to be
backfilled, appeared as missing values when aggregated. To address this,
a multivariate imputation by chained equations (MICE [26]) model was
applied to the training subset using a ridge regressor algorithm as the
estimator and was subsequently used to impute missing values in both
the training and test subsets. Additionally, the training and test data
subsets were standardised using the column means and standard de-
viations from the training subset.

2.4.3. Formation of the adverse event data

Patient adverse events were recorded in two two-dimensional arrays:
one for model development (training subset) and another for model
evaluation (test subset), with columns representing each event. The
timing of event onset was an additional criterion for determining patient
admission inclusion or exclusion. Starting at ICU admission, we defined
a 24 h variable extraction (input) window during which patient input
data were gathered. This was followed by a 2 h gap window, after which
adverse events could be considered for analysis. The gap window was
implemented to account for imprecisions in data recording times and to
minimise the risk of data leakage (i.e., attempting to predict an already
known event).

Admissions where all adverse event onsets occurred within the input
and gap windows were excluded from the analysis. We define the
outcome window as the period following the gap window. Any adverse
event occurring within the outcome window was recorded as “1” in the
outcome data arrays, while a “0” indicated that the patient did not
experience an adverse event at any time during the study period (i.e.
input, gap, and outcome windows). As expected in an ICU setting, many
patients had already developed at least one adverse event before the end
of the gap window. These patients were excluded only when the relevant
event was being modelled. Such cases were recorded as “-1” in the
outcome data arrays. Fig. 2 provides a graphical representation of this
process. Additionally, Table S2 (Supplementary Material) shows how
the adverse events were defined using the MIMIC-IV database.

2.4.4. Multiple event risk prediction modelling

The MTL model was implemented using convolutional neural net-
works (CNNs [27]) following a hard parameter-sharing MTL architec-
ture. In this approach, all tasks share a common model backbone, with
task-specific heads added for generating the final outputs. For perfor-
mance comparison, STL CNN models were also implemented, one for
each adverse event. Additionally, baseline STL models were developed
using the aggregated data and trained with logistic regression (LR) and
random forest (RF) algorithms. All models were optimised via hyper-
parameter tuning. A randomised search with 5-fold cross-validation was
used on the training subset to determine the optimal hyperparameter
values for the baseline models, while STL and MTL CNN architectures
were optimised using the hyperband search strategy. All models were
evaluated using the areas under the receiver operating characteristic
(AUC) and the precision-recall (PR-AUC) curves. Performance results on
the independent test subset are reported. Details of the hyperparameter
sets and values considered in this analysis are provided in Section S3 of
the Supplementary Material.

2.4.5. Data visualisation model using generative topographic mapping

A visualisation model was built using the predicted outputs of the
MTL model (i.e., event risks) from the training subset, and trained with
GTM. The GTM assumes that the observed data is generated through a
nonlinear and topology-preserving mapping from a low-dimensional
latent space in it* onto a manifold embedded in the high-dimensional
space, R, where the observed data reside. The GTM latent space is
constrained to form a uniform discrete grid of M centres. Each of these
centres is responsible for generating a spherical Gaussian density func-
tion in the D-dimensional data space. Collectively, these centres form M
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Fig. 2. Example of an ICU stay with four outcome events. Event O2 is excluded for this admission, as its onset occurred during the input window (02 = —1). Events

01 and O4 are coded as 1, as their onsets occurred during the outcome window, whereas O3 is coded as 0, as it did not occur during the outcome window.

clusters in the data space, with each cluster corresponding to a Gaussian
component in the model. In this sense, the GTM can be understood as a
special case of a Gaussian mixture model in which each component in
the mixture defines the probability of an observable data point given a
latent centre.

The GTM not only can assign data points to clusters but also visu-
alises them in a cluster membership map by projecting the latent centres.
The GTM latent space can be used for visualisation purposes when its
dimensionality is two (L = 2). In this case, the mode probability (i.e., the
highest cluster probability) is used to determine the cluster membership
of each data point. A GTM membership map is constructed as a two-
dimensional histogram, with node size representing the number of
data points allocated to each cluster. In addition, cluster centres in the
data space, henceforth referred to as reference vectors, act as data
prototypes. Reference maps associated with each variable can be
generated based on the components of the reference vectors. These
reference maps are typically visualised as heatmaps, with variable
values represented through colour coding. Reference maps are particu-
larly useful for interpreting the relationship between each variable and
the corresponding GTM clusters.

To train the GTM model, the number of GTM clusters was set to 400,
arranged in a 20 x 20 square grid. Although other grid sizes could be
considered, it is important to emphasise that GTM is relatively insensi-
tive to the number of clusters selected. Due to GTM’s topographic re-
lationships between clusters, altering the number of clusters effectively
changes the resolution of the visualisation maps. Additionally, the

Predictions data

number of radial basis functions (RBFs) of the Gaussian mixture was set
to 100, ensuring at least four latent points per RBF. The RBF widths and
regularisation hyperparameters were optimised using a grid search
strategy. Hierarchical clustering was applied to the GTM prototypes
(reference vectors) to identify macro-clusters representing combined
risks of adverse events. As proposed by Bellfield et al. [28], hierarchical
clustering can be applied to group GTM clusters into macro-clusters,
further enhancing the interpretability of the GTM data visualisation
model.

2.4.6. Model interpretation

GTM reference maps were produced to aid in identifying associations
between the predicted event risks and the clustering structure estab-
lished by the GTM. These maps facilitate the identification of regions
where patients are at risk of not only a specific adverse event but also
multiple adverse events concurrently. To trace back how variations in
the input variables may influence the GTM clusters, we extracted class
activation maps (CAMs). Specifically, we used HiResCAM [29] to
highlight specific segments of the input time series that are most
strongly associated with the model’s predictions and clustering patterns.

2.4.7. Overall IMERF implementation with ICU data

Fig. 3 illustrates the IMERF approach for modelling multiple patient
adverse event risks in the ICU. Python 3.11 was used to implement all
models. Specifically, traditional ML models were implemented using
scikit-learn 2.5, CNN models were implemented using TensorFlow 2.9,

Membership map

hd

CNN-MTL multi-outcome
risk prediction model

Input variables
(vitals, tests, etc)

GTM multi-outcome
data visualisation model

Macro-clustering
I model

!
O ole
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o 0©O

Reference maps

Macro-clusters

Fig. 3. IMERF implementation using CNN-MTL for stage 1 and GTM for stage 2. GTM reference maps and macro-clusters are extracted to aid in the interpretation of

IMERF’s results.
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and the GTM model was implemented using the ugtm package, which
was extended to support macro-clusters as described in Ref. [30].

3. Results
3.1. Descriptive analysis

The VIF analysis led to the exclusion of the mean blood pressure
(mean BP) variable. The final list of variables included in the analysis is
presented in Table 1, which also provides their medians, interquartile
ranges (IQRs), and minimum and maximum values. The results of the
pairwise correlation and VIF analyses are detailed in Section S1 of the
Supplementary Material.

The final cohort used for the analysis comprised 37,253 admissions,
predominantly consisting of older male adults (67 years old, 56.92 %).
The summary statistics in Table 1 indicate that this is a highly hetero-
geneous patient cohort, with some variables exhibiting extreme values
that deviate significantly from their medians, particularly among labo-
ratory test results.

Table 2 presents the prevalence of the adverse events considered in
this study, along with the number of admissions per event included in
the analysis. It can be observed that most AF and AKI events occurred
after the data collection and gap windows (i.e. after 26 h). In contrast, a

Table 1
Variables used in the analysis, including their descriptive statistics. The total
number of patient admissions included in the analysis was N = 37,253.

Variable Statistics
Demographics
Frequency  Proportion (%)
Sex: [Female] 16,050 (43.08)
[Male] 21,203 (56.92)
Median IQR Extreme values
Age 67.00 (55.00,78.00) (18.00,89.00)
Weight [kg] 79.23 (66.35,94.20) (30.10,296.80)
Height [cm] 170.09 (162.78,177.90)  (120.00,231.07)
Vitals
Capillary refill rate (CRT) 0.00 (0.00,0.00) (0.00,1.00)
Diastolic blood pressure 61.00 (53.00,71.00) (30.00,120.00)
[mmHg]
Heart rate [bpm] 83.00 (72.00,96.00) (20.00,200.00)
Respiratory rate (RR) 18.00 (15.00,22.00) (4.00,60.00)
[breaths/min]

Oxygen saturation (SO2) [%] 97.00 (95.00,99.00) (40.00,100.00)

Systolic blood pressure 116.00 (103.00,131.00) (50.00,250.00)
[mmHg]

Temperature [Celsius] 36.83 (36.56,37.17) (26.50,42.30)

Glasgow Coma Scale (GCS) 14.00 (10.00,15.00) (3.00,15.00)
(total)

Oxygen therapy settings

Fraction of inspired oxygen 50.00 (40.00,60.00) (21.00,100.00)
(Fi02)

Positive end-expiratory 5.00 (5.00,5.15) (0.00,20.00)
pressure (PEEP) [cm H20]

Laboratory tests

Alanine aminotransferase 29.00 (17.00,67.00) (7.00,5000.00)
(ALT) [U/L]

Anion gap [mEq/L] 14.00 (11.00,16.00) (5.00,40.00)

Calcium ion (CA2+) [mmol/ 1.12 (1.07,1.18) (0.80,2.50)

1]

Glucose [mmol/1] 126.00 (105.00,156.50)  (40.00,1000.00)
Haemoglobin [g/dL] 10.60 (9.20,12.20) (4.00,20.00)
Lactate [mmol/L] 1.70 (1.20,2.50) (0.30,15.00)
Magnesium [mmol/L] 2.00 (1.80,2.30) (0.40,5.00)
Partial pressure of oxygen 107.00 (71.00,160.00) (30.00,600.00)
(PO2) [mmHg]
pH 7.36 (7.29,7.41) (6.80,7.80)
Phosphate [mmol/L] 3.40 (2.80,4.10) (0.80,8.00)
Platelets [count/L] 187.00 (136.00,249.00)  (10.00,1000.00)
Potassium [mmol/L] 4.10 (3.80,4.50) (2.00,6.50)
Prothrombin time (PT) [s] 13.70 (12.40,15.70) (8.00,40.00)
Serum creatinine (SCr) [mg/ 0.90 (0.70,1.30) (0.30,15.00)

dL]
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Table 2

Event frequencies and prevalences (percentages in brackets).
Event Included No event Event
AF 31,731 (85.18) 29,002 (91.40) 2729 (8.60)
AKI 36,560 (98.14) 33,920 (92.78) 2640 (7.22)
ARDS 21,940 (58.89) 20,649 (94.12) 1291 (5.88)
VAM 23,950 (64.29) 21,630 (90.31) 2320 (9.69)
LOS-3d 37,253 (100.00) 23,148 (62.14) 14,105 (37.86)
LOS-7d 37,253 (100.00) 32,903 (88.32) 4350 (11.68)
In-hospital death 37,253 (100.00) 33,042 (88.70) 4211 (11.30)
30d mortality 37,253 (100.00) 31,055 (83.36) 6198 (16.64)

lyr mortality 37,253 (100.00) 27,190 (72.99) 10,063 (27.01)

substantial proportion of patients developed earlier ARDS (~41 %) or
VAM (~35 %) and were consequently excluded from the analysis.
Overall, the reported prevalences indicate a significant degree of class
imbalance among the tasks.

3.2. Model performances

Tables 3 and 4 report model performance results as measured by the
AUC and PR-AUC, respectively. All scores are accompanied by their
corresponding confidence intervals. Overall, CNN-based models
demonstrated better performance than LR and RF models, although
differences in the PR-AUC of AF models are negligible. Additionally, STL
and MTL models performed very similarly when implemented using
CNNs. The performance results also indicate that ARDS was the most
challenging event to predict, as evidenced by the low average values of
AUC and PR-AUC, along with wide confidence intervals. In contrast,
death-related event models exhibited the best performance, regardless
of the algorithm used. Furthermore, the LOS-7d models outperformed
LOS-3d models based on the AUC.

The performance of LOS-7d models was much lower when evaluated
using the PR-AUC, which is expected given that the prevalence of the
LOS-7d event is approximately one-third of that of LOS-3d (Table 2).

3.3. Multiple event visualisation model

Results of the GTM model trained on the predicted event risks are
shown in Fig. 4. The resulting GTM membership map is scattered,
although the number of admissions seems to be slightly higher on the
left-hand side of the map. Additionally, a relatively significant number
of clusters allocated less than 100 patients, which could be a symptom of
high heterogeneity in the data. The resulting GTM reference maps
(Fig. 4b) show a clear pattern of how GTM arranged the risk data on the

Table 3
Model performance report, measured using AUC with corresponding confidence
intervals in brackets.

Event LR RF CNN-STL CNN-MTL

AF 0.74 (0.72, 0.75 (0.73, 0.77 (0.75, 0.77 (0.75,
0.76) 0.77) 0.78) 0.78)

AKI 0.74 (0.72, 0.76 (0.74, 0.78 (0.76, 0.77 (0.75,
0.76) 0.78) 0.80) 0.79)

ARDS 0.63 (0.58, 0.68 (0.64, 0.72 (0.68, 0.71 (0.68,
0.67) 0.72) 0.75) 0.75)

VAM 0.74 (0.71, 0.73 (0.71, 0.76 (0.74, 0.77 (0.75,
0.76) 0.76) 0.78) 0.79)

LOS-3d 0.72 (0.71, 0.72 (0.71, 0.77 (0.75, 0.76 (0.75,
0.73) 0.74) 0.78) 0.77)

LOS-7d 0.77 (0.75, 0.77 (0.76, 0.81 (0.80, 0.82 (0.80,
0.79) 0.79) 0.83) 0.83)

In-hospital 0.86 (0.85, 0.85 (0.83, 0.89 (0.88, 0.89 (0.88,
death 0.87) 0.86) 0.90) 0.90)

30d mortality 0.85 (0.84, 0.84 (0.83, 0.88 (0.87, 0.88 (0.87,
0.86) 0.85) 0.89) 0.89)

lyr mortality 0.82 (0.81, 0.82 (0.81, 0.85 (0.84, 0.85 (0.85,
0.83) 0.83) 0.86) 0.86)
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Table 4
Model performance report, measured using PR-AUC with corresponding confi-
dence intervals in brackets.

Event LR RF CNN-STL CNN-MTL
AF 0.22 (0.18, 0.22 (0.18, 0.21 (0.17, 0.22 (0.19,
0.25) 0.26) 0.25) 0.26)
AKI 0.21 (0.17, 0.20 (0.16, 0.24 (0.20, 0.23 (0.19,
0.25) 0.24) 0.28) 0.26)
ARDS 0.12 (0.07, 0.13 (0.08, 0.16 (0.11, 0.15 (0.10,
0.18) 0.18) 0.20) 0.20)
VAM 0.29 (0.25, 0.21 (0.17, 0.32 (0.28, 0.32 (0.29,
0.32) 0.25) 0.35) 0.36)
LOS-3d 0.62 (0.61, 0.64 (0.62, 0.70 (0.68, 0.69 (0.68,
0.63) 0.65) 0.71) 0.70)
LOS-7d 0.33 (0.30, 0.34 (0.31, 0.40 (0.37, 0.40 (0.37,
0.36) 0.37) 0.43) 0.43)
In-hospital 0.49 (0.46, 0.49 (0.46, 0.57 (0.55, 0.58 (0.55,
death 0.52) 0.51) 0.59) 0.60)
30d mortality 0.56 (0.53, 0.55 (0.53, 0.62 (0.60, 0.64 (0.62,
0.58) 0.57) 0.63) 0.66)
1yr mortality 0.64 (0.62, 0.63 (0.61, 0.69 (0.67, 0.70 (0.69,
0.65) 0.64) 0.70) 0.71)

membership map. By their inspection, it is observed that the member-
ship map’s bottom left represents patients at very low risk of any of the
considered events. In addition, ARDS risk almost splits the membership
map into two well-defined regions, with the top and top-right ones
allocated to higher risks. A similar scenario is presented with AKI,
although with higher risks concentrated in the top-right corner. GTM
reference maps also show some level of correlation between LOS-3d and
LOS-7d, which is anticipated as patients with LOS longer than 7 days
would have stayed longer than 3 days. A similar situation is observed
between In-hospital death, 30d mortality and 1yr mortality. It is also
interesting to see the representation of AF risk by GTM, which seems to
be split into several areas that overlap with other event risks. Overall,
Fig. 4b indicates a high degree of overlap between two or more events,
suggesting that the number of patients at risk of several events is
significant.

Fig. 5 presents the resulting class activation maps generated using
HiResCAM for five randomly selected patient admissions. According to
the figure, the implemented CNN-MTL model predicted an overall low
risk of adverse events for Patient I (bottom-left in the membership map),
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with the model focusing primarily on lower diastolic BP, highest hae-
moglobin and GCS Total variable values. In contrast, high risks of ARDS,
VAM, and in-hospital death were predicted for Patient II (bottom-right
in the membership map), with predominant attention on high lactate
and low magnesium values. GTM placed Patient III in the bottom-centre
of the membership map, which is associated with a predicted high risk of
developing AF. The CNN-MTL model focused on glucose changes, early
heart hate increase, low magnesium and POy, levels, as well as patient
age and sex. According to the membership map, Patient IV is at high risk
of developing AKI only. The HiResCAM results indicate that glucose
changes, SCr levels, initial systolic BP, and low temperature values were
particularly relevant to the risk predictions. In contrast, Patient V is
predicted to be at risk of multiple adverse events: ARDS (high risk), VAM
(medium), LOS-3d (high), LOS-7d (medium-high), in-hospital death
(medium), and 30-day and 1-year mortalities (medium-high). The CNN-
MTL model focused particularly on early low ALT, changes in anion gap,
diastolic BP and systolic BP, decreasing FiO2, heart rate variability, and
changes in magnesium, platelets, and PO2 values. Additionally, some
attention was directed towards late temperature increases and changes
in GCS Total.

The results of the macro-clustering are displayed in Figs. 6 and 7. The
hierarchical clustering algorithm partitioned the GTM prototype data
into 10 macro-clusters (Fig. 6). Fig. 7 shows the predicted event risks
averaged across the estimated macro-clusters. According to these re-
sults, Cluster 1 represents patients simultaneously at medium risk of AF
and AKI, high risk of VAM, LOS-3d/-7d, In-hospital death, 30d/1yr
mortalities, and very high risk of ARDS. In contrast, Cluster 8 groups
patients with the lowest predicted risk of any adverse events. Patients in
Cluster 3 are at very high risk of ARDS and VAM, those in Cluster 4 are at
very high risk of AF, while Cluster 7 is characterised by very high risk of
VAM and Cluster 9 by very high risk of AKI. Moreover, Cluster 6 rep-
resents patients at an increasing risk of death (medium risk for In-
hospital death, high risk for 30d mortality, and higher risk for lyr
mortality). Patients in this cluster are also predicted to be at significant
risk of AF, VAM, and LOS-3d. In contrast, Cluster 2 groups patients at
low risk of death but very high risk of ARDS and VAM, and high risk of
LOS-3d. Finally, Cluster 10 represents patients at medium-low to me-
dium risk of developing multiple adverse events.

AF AKI
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Fig. 4. Resulting GTM membership (a) and reference maps (b). In (a), node size represents the number of admissions allocated to each cluster. Event risks
(probabilities) are colour-coded from light grey to red, indicating low to high risk, respectively.
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Fig. 5. Random selection of five patient admissions, their cluster allocations in the GTM membership map (top row), and the resulting HiResCAM plots, one per
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line plot, the horizontal and vertical axes represent time (24 h) and normalised variable values (ranging from 0, lowest, to 1, highest), respectively. HiResCAM
continuous values are colour-coded from purple to light yellow, indicating low to high attention values. Abbreviations as in Table 1.

4. Discussion

In this paper, we proposed IMERF, a novel integrated machine
learning framework for modelling and representing multiple events.
This innovative methodological approach advances the development of
risk prediction models by enabling the simultaneous prediction and
characterisation of complex associations between input factors and
multiple events. It uncovers relationships that remain invisible when
events are modelled independently, offering unprecedented insights into
risk patterns. By leveraging shared learning across tasks, it pushes the
boundaries of prediction accuracy, outperforming traditional methods.

Unlike outdated approaches that rely on manually constructed com-
posite variables with arbitrary weights, this innovative framework
directly models multiple events, delivering superior interpretability,
precision, and transformative potential for risk modelling.

Although IMERF was used for modelling multiple adverse events in
patients admitted to the ICU to showcase its capabilities, our proposed
framework has significant potential for addressing many other clinical
questions. IMERF is an ideal framework for modelling clusters of med-
ical conditions and discovering new ones. We firmly believe that IMERF
is a much-needed approach for integrated multiple event risk modelling.
For example, an IMERF model could be implemented for integrated risk
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Fig. 6. Results of the macro-clustering. Macro-clusters are colour-coded and overlaid onto the GTM membership map (a). To enhance clarity, the same map is

presented with all GTM nodes represented at an equal size (b).
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Fig. 7. Average predicted event risks per macro-cluster. In each bar plot, the horizontal axis represents the average risk for each event.

modelling of individuals at risk of developing multiple co-morbidities.
Additionally, IMERF can be considered for modelling several instances
of a single event, such as helping to characterise patients at risk of
developing paroxysmal, persistent, or permanent AF; or conditions with
a concurrent nature, such as elevated blood pressure (BP) and stroke.

The proposed IMERF is a two-stage approach comprising a multiple-
event risk prediction model and a data visualisation and clustering
model. Although the aim of this study was not to develop a predictive
model that maximises performance, we took the usual measures towards
that goal. We can speculate that by testing a broader range of hyper-
parameters and considering more ML algorithms, higher performances
could still be achieved. However, we believe that the reported results are
close to their performance ceilings, given the data and variables used.
When comparing the performance of models that treat the input vari-
ables as sequences (CNN-STL and CNN-MTL), rather than as aggregated
tabular data (LR and RF), it is not surprising that the former produced
higher scores, which aligns with results previously reported in Refs.
[31-33] when using similar data.

Additionally, the implementation of the multiple event risk predic-
tion model using an MTL architecture offers clear advantages over a

multiple STL approach, even when both architectures achieve equiva-
lent performance scores: MTL models tend to be more compact,
requiring significantly fewer parameters to be learned than their mul-
tiple STL counterparts. Consequently, the implemented CNN-MTL model
would be considerably less prone to overfitting than the CNN-STLs. It is
also known that MTL can enhance the performance of less well-defined,
smaller tasks by leveraging the larger, better-defined ones [16,34,35].
However, we did not observe this effect in our results, which may
indicate little room for performance improvement in the data.

With regard to Stage 2 of the IMERF, we previously mentioned that
any algorithm for data visualisation and clustering could, in principle,
be used. However, we believe that the use of GTM as our preferred
choice is justified. Although non-linear, GTM is inherently interpretable,
making it a valuable tool for exploring complex relationships within the
data. In this case study, reference maps were generated to assist in
identifying associations between the predicted event risks and the
clustering structure established by the GTM. These maps enabled the
identification of regions where patients are at risk not only of a specific
adverse event but also of multiple adverse events occurring simulta-
neously. This interpretability aids in understanding how clusters
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represent combined risks, which is crucial for clinical decision-making
in ICU settings.

Furthermore, depending on the algorithm employed for the multi-
event risk prediction model, it is possible to trace how input variables
influence the GTM clusters. This traceability adds another layer of
interpretability, allowing researchers and clinicians to better understand
the relationships between patient features and adverse event risks. In
our case study, we leveraged the CNN-MTL model to extract class acti-
vation maps via HiResCAM. We used this approach to highlight specific
segments of the input time series data that were most strongly associated
with the model’s predictions. By combining the interpretability of GTM
reference maps with the explanatory insights provided by HiResCAM,
we obtained a more comprehensive understanding of the underlying
relationships between input features, event risks, and clustering
patterns.

The results of applying our proposed IMERF to model critically-ill
patients highlight the utility and need for a novel methodological
approach that addresses the analysis and interpretation of multiple
events simultaneously. A key aspect of IMERF lies in its ability to
identify clusters based on overlapping risks of multiple events. When
IMERF was applied in our case study, the results revealed clearly
differentiated clusters based on the considered events. For instance,
patients II and III (Fig. 5) were both at risk of AF, yet they presented
significantly different risks of death, with patient II showing a much
higher risk. This distinction was confirmed by the event reference maps
shown in Fig. 4.

According to the class activation map results from the CNN-MTL
model, increasing levels of lactate appeared to be more relevant for
patient II than for patient III. Elevated lactate is a common marker of
tissue hypoxia, impaired oxygen utilisation, or metabolic stress and can
result from conditions such as sepsis, hypovolaemia, cardiogenic shock,
or liver dysfunction, all strongly linked to high mortality rates [36].
However, both patients exhibited low levels of magnesium, which was
relevant to the CNN-MTL model. This could indicate hypomagnesaemia,
which is associated with an increased risk of arrhythmias, including AF
[37]. Additionally, the CNN-MTL model highlighted patient III's
changes in heart rate and glucose levels, both of which are known to
contribute to AF by affecting metabolic, autonomic, and inflammatory
pathways [38].

A similar analysis can be performed with patient IV, who was pre-
dicted to have a very high risk of AKI, as indicated in the top-right corner
of the GTM membership map. The HiResCAM results for this patient
showed an elevated serum creatinine (SCR) level. An increase in SCR by
0.3 mg/dL or more within 48 h, or to 1.5 times the baseline or more,
indicates the patient has AKI [39]. Changes in glucose levels (glycaemic
variability) also emerged as another relevant factor for the CNN-MTL
model. Large fluctuations in glucose levels are known to be more
strongly associated with higher rates of AKI than conditions such as
hyperglycaemia [40].

Finally, patient V presented a very high risk of ARDS and a high risk
of requiring VAMs. The CNN-MTL model identified variables in this
patient that serve as markers of haemodynamic instability, such as low
magnesium, platelet, and systolic BP levels, which are associated with
the need for VAMs. Additionally, fluctuations in heart rate, which could
indicate shock or inadequate perfusion, and an elevated anion gap,
which may suggest metabolic acidosis, could also signal the need for
VAMs [41]. Furthermore, patient V presented clear indications of ARDS
risk, with a dramatic decrease in FiO2 and PO2 levels during the input
time window, which could indicate symptoms of hypoxia, a hallmark of
ARDS [42]. The relationship between ARDS and the need for VAMs is
well-documented, as haemodynamic instability can both exacerbate and
be exacerbated by ARDS. This is also confirmed by the GTM reference
maps (Fig. 4b), which indicate a high correlation between the risks of
ARDS and the need for VAMs [43].

An important consideration is to identify how much of the patterns
revealed by the GTM visualisation model are attributable to the type of
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intensive care unit in which the patient stayed and, or their mechanical
ventilation status. We therefore performed a stratified analysis to
examine how reference maps and macro-clusters varied across ICUs, and
a similar analysis to assess the influence of mechanical ventilation status
on these visualisations and macro-cluster structures. The results of these
analyses are presented in Section S4 of the Supplementary Material.
Apart from the CVICU, no clear correlation was observed between ICU
type and the GTM visualisation maps (Figs. 4 and 6 in the main manu-
script and Fig. S2 in the Supplementary Material). A significant corre-
lation was found between mechanical ventilation and elevated ARDS
risk, likely because the clinical criteria for ARDS diagnosis incorporate
mechanical ventilation parameters and oxygenation measures. Corre-
lations between CVICU admissions, mechanical ventilation, and pre-
dicted macro-clusters 2 and 3 (Fig. 6 in the main manuscript and Figs. S4
and S12 in the Supplementary Material) may be explained by the higher
prevalence of post-surgical and advanced cardiovascular cases in these
groups, which are associated with both invasive respiratory support and
increased risk of multiple adverse events.

A potential limitation of the current IMERF architecture is that Stage
1 and Stage 2 are optimised independently. It could be argued that better
overall performance might be achieved if the two stages were optimised
concurrently. However, the downside of this approach is that it would
necessitate the development of new formulations to enable such inte-
grated optimisation, thereby significantly restricting the range of algo-
rithms available for IMERF implementation.

Additionally, the IMERF approach implemented in the presented
case study does not explicitly model the chronological order of over-
lapping events. This is partly due to the algorithm used in Stage 2 of
IMERF. In future work, the GTM Through Time [44], a version of GTM
that explicitly models sequences, could be considered as an alternative
to the traditional GTM implementation used in this case study. More-
over, restricting the analysis to only the first admission for each patient
likely reduces the observed rate of multiple comorbidities and adverse
events, which represents another limitation of the case study design.

Finally, further research could explore how to fully leverage GTM’s
potential in modelling probabilities. For instance, GTM could be used to
determine whether a patient is likely to transition to another cluster with
a higher (or lower) risk, thus providing deeper insights within the IMERF
methodological approach. The proposed framework will be instru-
mental in addressing the modelling of multiple adverse events within
extensive research programmes, such as the EU projects ARISTOTELES
[45] and TARGET [46].

5. Conclusion

We proposed IMERF, a novel ML methodological approach for
modelling risk predictions for multiple events. This approach employs a
two-stage process comprising an MTL model followed by a DR model for
data visualisation and clustering. We successfully demonstrated the
utility of IMEREF in clustering events based on their predicted risk levels,
as observed in the presented case study involving critically ill patients.
Furthermore, the integration of GTM with the CNN-MTL’s HiResCAM
proved to be a highly interpretable framework that facilitates under-
standing of factors associated with multiple event risks occurring
simultaneously. Finally, the extracted macro-clusters enhance IMERF’s
interpretability by segmenting the GTM visualisation map into regions
based on the average levels of multiple event risks. Future work includes
the use of algorithms such as the GTM Through Time to model
sequentially multiple event risks.
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