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Abstract 
A broad range of computational models are available for animal-free chemical safety assessment. The models 
are used to predict a variety of endpoints, including adverse effects or apical endpoints, toxicokinetic properties 
and exposure, often from chemical structure or in vitro inputs alone. To support their wider use, such models 
need to be Findable, Accessible, Interoperable, Reusable (FAIR). This study has reevaluated the existing FAIR 
principles applied to quantitative structure-activity relationships (QSARs) in order to adapt these principles to a 
wider range of computational models. Despite the breadth and variety of approaches, many computational 
models comprise common components including the training series, information about the modelling engine and 
the model itself. As a result, a refined set of four FAIR Lite principles is proposed based on the methodological 
foundations of computational toxicology which are unambiguously understood by practitioners such as 
developers and end-users. To this end, it is proposed that to comply with the original , a computational toxicology 
model should be associated with (i) a globally unique identifier for model citation; (ii) the capture and curation of 
the model; (iii) the metadata for the dependent and independent variables and, where possible, data; and (iv) 
storage in a searchable and interoperable platform. The FAIR Lite principles are mapped onto the original FAIR 
principles applied to QSARs, thereby demonstrating that a simpler checklist approach covers all aspects.  
 
Plain language summary 
Many types of computational models are used in animal-free chemical safety assessment. These are utilized to 
make predictions for numerous endpoints, primarily focusing on the hazardous properties of, or exposure to, a 
chemical substance. The models use information from chemical structures and/ or properties, or other non-
animal data as inputs. It is essential that the risk assessor or toxicologist can find and utilize the models with 
confidence. The previously developed Findable, Accessible, Interoperable and Reusable (FAIR) principles for 
computational models are a framework intended to ensure that models are accessible and stored appropriately. 
This investigation has refined the original FAIR principles applied to computational models to capture information 
for all types of modelling approaches that may be used in chemical safety assessment. The new principles, 
termed FAIR Lite, encapsulate the original principles in four criteria relating to identifiers, description of a model, 
its (meta)data and storage.  
 
 
 
Introduction 
 
The move to modernize chemical safety assessment, without the overt reliance on animals, will depend on a number of 

technologies. Amongst the new approaches, computational models are finding use as part of the replacement strategy of the 
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traditional animal tests for hazard identification (either directly or as part of a weight-of-evidence), estimation of exposure to 

chemicals and substances, as well as the utilization of in vitro, in chemico and -omics data (Barber et al., 2024). 

Computational approaches will also be fundamental building blocks of tiered testing strategies including, but not limited to, 

Integrated Approaches to Testing and Assessment (IATA) (Delrue et al., 2016), Defined Approaches (DAs) (Macmillan and 

Chilton, 2019) and Next Generation Risk Assessment (NGRA) (Baltazar et al., 2020) as well as approaches such as the 

ASPIS Safety Profiling Algorithm (ASPA) (Luijten, 2024), which attempts to provide a workflow as the backbone to 

implementing NGRA.  

There is an exceptionally broad range of types of computational models that may be applied in NGRA, and hence 

in tiered strategies such as ASPA (Madden et al., 2020; Westmoreland et al., 2022). Table 1 summarizes a variety of 

computational models that have been used to interpret, extrapolate and predict the broad spectrum of data required for 

chemical safety assessment. Typically, these models have been derived from existing experimental data, usually taken from 

historical testing or measurements, and are used to make estimates for data gaps. Such models, which may be termed in 

silico, or computational, make predictions related to the toxicodynamic interactions and toxicokinetic effects (or both) of 

chemicals relating, in part at least, to the hazard and internal exposure of the chemical (illustrative endpoints are also 

summarized in Table 1). To facilitate and support model development, there is also a need to have access to data sources. 

There are currently several initiatives for toxicological data and information sharing, such as the United States 

Environmental Protection Agency (US EPA) CompTox Chemicals Dashboard1 (Williams et al., 2017) which incorporates 

diverse data such as ToxValDB and invitroDB; COSMOS Next Generation2 (Yang et al., 2021); and Open TG-Gates 

(Igarashi et al., 2015). Whilst there are great advantages in sharing data, there are also many technological and business-

related (i.e. confidentiality) challenges (Pastor et al., 2018). The issues with aggregating human health risk assessment-

relevant information on chemicals, with a particular focus on available datasets and databases were investigated by 

Freudenthal et al. (2024). The outcome of their investigation emphasized the requirement for all stakeholders to improve 

aspects of data sharing related to data harmonization and transparency, amongst other aspects.  

To allow and encourage the use of computational models in non-animal chemical safety assessment, there is a need to 

facilitate access to the models. This is encapsulated in the Findable, Accessible, Interoperable, Reusable (FAIR) principles 

for data sharing (Wilkinson et al., 2016). The FAIR principles are also applicable to supporting the sustainability and 

reusability of research software (FAIR4RS) (Barker et al., 2022). FAIR4RS demonstrated that FAIR was applicable to 

digital objects beyond data themselves and provided the basis for adaptation of the FAIR principles for data management to 

software. The implementation of FAIR4RS enables and encourages sharing of software, as well as maximizing its impact. 

The FAIR and FAIR4RS principles were adapted for in silico models in toxicology, notably for QSARs by Cronin et al. 

(2023) with a full evaluation by Belfield et al. (2025). Whilst the FAIR principles have found application for QSARs 

(Belfield et al., 2025), the types of modelling approaches and data utilized in all aspects of computational toxicology are 

much broader, as illustrated in Table 1. Despite enormous diversity in models and modelling approaches, all data-driven 

and/or knowledge-based computational toxicology models share similar characteristics (there will be exceptions for 

simulations). Cronin et al. (2023) defined these characteristics in terms of the training series, a modelling engine and the 

model itself. The training workflow uses the modelling engine to provide the model. In contrast, the prediction workflow 

inputs a chemical into a modelling engine to make a prediction that provides new knowledge about the chemical. To 

consider the full suite of computational toxicology models in Table 1, the training series, model and modelling engine can be 

rationalized into four components: 

− Training series: dependent variables (those that are modelled); 

− Training series: independent variables (those that affect or influence the dependent variables); 

− Modelling engine: the statistical or other algorithm that allows for the creation of the predictive model; 

− Model: the parameters of the modelling engine resulting from it being exposed to the training series (this may be 

thought of as the algorithm or mathematical formula that is applied). 

At the current time, there is no single repository, or inventory, of computational toxicology models. At best, models are 

scattered throughout the historical scientific literature and some of the resources described by Belfield et al., (2025). The 

lack of a single location, or search engine, that would enable a researcher or risk assessor to find a suitable model to predict a 

particular endpoint or property, for a specific substance or group of substances is restrictive to the implementation of models. 

These issues, as well as aspects of data integration and sharing are fundamental to the replacement of animals for chemical 

safety assessment (Westmoreland et al., 2022; Cronin et al., 2025). Thus, to support non-animal chemical safety assessment, 

there is a clear requirement that all relevant computational toxicological models must be retrievable and usable, in other 

words they should be FAIR. This need goes beyond applications solely to QSARs to the broad range of models, some of 

which are summarized in Table 1. The purpose of this paper was to further enhance the existing FAIR principles (Wilkinson 

et al., 2016), their adaptation to research software (Barker et al., 2022) and, specifically for computational toxicology, QSAR 

models (Belfield et al., 2025) to provide a practical solution to supporting FAIR models. The consideration here is that a 

model is intrinsically different to, and often more complex than, the data to be modelled, or the software used for model 

development or implementation. Given that computational toxicology models comprise similar core elements (i.e., the data, 

modelling engine and model), this paper aimed to evaluate a broad range of models with a pragmatic and helpful view to 

develop a practical, condensed checklist (termed FAIR Lite), with associated solutions, for making the models FAIR. The 

intention here is to adapt the FAIR principles, applied to QSARs, to broader methodological foundations of computational 

toxicology. In addition, the FAIR Lite principles intend to be a pragmatic, lightweight, flexible and adaptable solution to 

make computational toxicology models sustainable and reusable, going beyond the application of FAIR principles to data   

 
1 https://comptox.epa.gov/dashboard/ 
2 https://ng.cosmosdb.eu/ 
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Tab. 1: A brief overview and non-exhaustive summary of the computational toxicology approaches that may be 
applied in non-animal chemical safety assessment  

Computational 
Toxicology Modelling 
Approach (acronyms 
defined in the legend) 

Brief Description and Characteristics  Endpoints Predicted Indicative 
References 
and/or 
Reviews 

Local QSAR A statistical relationship between activity and 
molecular properties relating to a restricted 
chemical space and / or a single mechanism or 
mode of action (where definable) 

Toxicological effects or 
regulatory endpoints; 
toxicokinetic and physico-
chemical properties 

Cherkasov et 
al., 2014 

Global QSAR A statistical relationship between activity and 
molecular properties related to a broad 
chemical space and multiple (or unknown) 
mechanisms or modes of action  

Toxicological effects or 
regulatory endpoints; 
toxicokinetic and physico-
chemical properties 

Madden et al., 
2020 

Structural alerts, e.g. 
within a knowledge-
based expert system or 
computational profiler 

Formalized structural pattern providing 
knowledge of chemistry underpinning a cause 
for certain adverse events 

Possibility of a molecule to 
elicit a toxicological effect 

Yang et al., 
2020 

 qAOP Development of quantitative relationships 
between Molecular Initiating Events (MIEs) and 
Key Events (KEs), or KEs and KEs, or KEs and 
adverse outcomes 

Prediction of downstream 
KEs or adverse outcomes 

Spînu et al., 
2020 

 QST Integration of various models, based around 
systems biology, to estimate toxicodynamic 
interactions and, when combined with 
modelling of toxicokinetic effects, define a 
response at the molecular level to the exposure 
of a particular dose of a substance  

Prediction of adverse 
outcomes, potentially 
following a specified 
exposure 

Sturla et al., 
2014 

IVIVE Models allowing for the extrapolation of 
nominal concentrations inducing an effect in an 
in vitro experiment to exposure that causes an 
adverse effect in an in vivo system 

In vivo effect at a particular 
dose extrapolated from an 
effect at a known in vitro 
dose  

Wambaugh et 
al., 2018 

Reverse dosimetry Models to estimate an external exposure based 
on measured internal concentrations 

The external concentration 
that would be required to 
achieve an internal (in vivo) 
concentration 

Wetmore et al., 
2015 

 PBK model Multicompartment models that predict the 
concentration of a chemical after exposure in a 
particular internal organ or tissue 

Concentration-time profile of 
a substance in an organ, 
following a specific 
exposure 

Rowland et al., 
2011 

Aggregate exposure  Models to calculate an individual total exposure 
to a substance from all sources and exposure 
routes 

Maximal exposure to a 
substance 

Safford et al., 
2015 

Molecular Mechanics Uses classical mechanics and forcefields to 
model the structure, energy, and dynamics of 
molecules based on atoms and bonds 

Conformational stability, 
steric interactions and 
energy-minimized molecular 
structures relevant to 
toxicodynamics 

Wang et al., 
2019 

Molecular docking Models that capture interactions between 
proteins and ligands at atomic level 

Binding of ligands to 
biological macromolecules 

Trisciuzzi et al., 
2018 

Quantum Mechanics Quantum chemical methods that model the 
electronic structure and properties of molecules 

Reactivity, electronic 
properties, mechanisms of 
toxicological action (e.g., 
covalent binding) 

Kostal, 2023 

MD simulations Models that predict dynamic behavior of 
biomolecules over time 
 

Time dependent properties 
i.e., changes in 
conformation, protein 
folding, protein-ligand 
binding affinity, etc. 

De Vivo, 2016 

Knowledge graphs Integration of toxicological data from multiple 
sources 

Toxicological effects or 
regulatory endpoints; 
toxicokinetic and physico-
chemical properties 

Sepehri et al., 
2025 

Active learning Model trained on active selection of most 
informative data points 

Toxicological effects or 
regulatory endpoints; 
toxicokinetic and physico-
chemical properties 
 

Nahal et al., 
2024 

QSAR: Quantitative Structure-Activity Relationship; qAOP: quantitative Adverse Outcome Pathway; QST: Quantitative Systems 
Toxicology; IVIVE: In Vitro- In Vivo Extrapolation; PBK: Physiologically-Based Kinetic; MD: Molecular Dynamics simulations 
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(Wilkinson et al., 2016) and research software (Barker et al., 2022). Thus, the FAIR Lite principles are intended to be easy to 

use, portable, transferable and flexible. In particular, they should be applicable to all computational toxicology models 

bearing in mind future technologies that may be developed, for example being derived from recent advances in AI and Large 

Language Models, as well as many of the probabilistic (e.g. Bayesian) decision-making and other machine learning (ML) 

models being applied. 

 

 
2 Methods 
 
2.1 Evaluation of Existing FAIR Principles Applied to QSARs 
The 18 core FAIR principles applied to QSARs (which gave a total of 20 principles following sub-division) (Cronin et al., 

2023; Belfield et al., 2025) were re-evaluated in this study. Using expert judgement, these principles were considered in the 

context of a broader range of computational toxicology models, as represented by those listed in Table 1. Specifically, the 13 

model types identified in Table 1 were mapped against the four components identified above (dependent data, independent 

data, modelling engine and model) to identify their key features as relevant to the overall philosophy of the FAIR Principles. 

Commonalities in the models were identified, and the FAIR principles as applied to QSARs (Cronin et al., 2023; Belfield et 

al., 2025) were adapted and streamlined. The aim was to develop revised principles that would better meet the needs of 

computational toxicology models in non-animal chemical safety assessment.  

 
2.2 Development of FAIR Lite Principles 
Following evaluation of the FAIR principles applied to QSARs, in the context of the broader use of computational models in 

toxicology and for the purposes of risk assessment, fundamental and overriding concepts and principles were identified by 

expert judgement and consensus amongst the authors. These “essential” FAIR principles which can be applied to 

computational models are herein termed FAIR Lite. The FAIR Lite principles were created to cover the requirements to 

make models sharable and reusable. A checklist was developed to allow a model developer to assess whether they had met 

the FAIR Lite principles for in silico toxicology models.  

 

2.3 Evaluation of FAIR Lite Principles 
The FAIR Lite principles were evaluated in terms of the coverage compared to the broader, more detailed set of principles 

described by Cronin et al. (2023) and Belfield et al. (2025). The evaluation was performed manually by mapping each of the 

FAIR principles applied to QSARs (Cronin et al., 2023; Belfield et al., 2025) onto the relevant FAIR Lite principles. The 

results are demonstrated in tabular form and graphically. 

 

 

3 Results and Discussion 
 
This study has investigated the possibility of ensuring that computational models for use in all aspects of (non-animal) 

chemical safety assessment are FAIR. The purpose was not to determine whether individual models were themselves FAIR, 

but rather if a common set of FAIR principles could be established relevant to the broad variety of computational toxicology 

models available. The various computational toxicology models can be defined according to their features relating to 

dependent and independent data, modelling engine and model – as described in Table 2. This exercise does not imply that all 

computational toxicology models are equivalent – this is clearly not the case – but rather that they comprise verifiable 

components. Since many computational models considered can be defined in terms of similar components, it would be 

logical to assume that some overarching considerations of the FAIR principles could be applied.  

The motivation for making computational models for every aspect of chemical safety assessment FAIR is to 

provide researchers and risk assessors full access to the best and most appropriate model for a particular task. It is also 

motivated by the current difficulties in finding and utilizing (published) models, as well as the clear responsibility to ensure 

that the outputs (especially funded from public resources) are available for future use, for instance as report by Piir et al. 

(2018) with regard to the use of existing QSAR models for physicochemical properties, environmental fate, ecotoxicity, 

human health and toxicokinetics. It should also be noted that the FAIR principles as applied to QSARs (Cronin et al., 2023; 

Belfield et al., 2025), or FAIR Lite principles are not intended to disqualify models with confidential or business-sensitive 

data, or commercial models where the algorithm is not disclosed; rather it is to allow data and models to be found and to be 

machine readable. The founding publication by Wilkinson et al. (2016) states that there are degrees of FAIRness and the 

modularity of the principles support a wide range of special circumstances, including highly sensitive or personally-

identifiable data, and even non-data research objects. The purpose of these FAIR Lite principles is to follow good data 

management practices that allow the models to be found and used easily in a transparent and reproducible manner that may 

allow for acceptance. Indeed, for commercial models, ensuring and demonstrating models and other products are FAIR must 

be seen as a clear business opportunity. This is in concordance with interpretation and implementation of the FAIR 

principles with regard to “provenance”, as described by Jacobsen et al. (Section 3.4.3; 2020). According to Jacobsen et al. 

(2020) provenance is interpreted as including how and why the resource was created, ownership etc. Further, the richness of 

the provenance, which we interpret as relating to the description and availability of “model”, is related to actual reuse. It 

would be anticipated that commercial models for computational toxicology can be considered FAIR if they can supply 

relevant metadata to ensure machine readability. A minimal set of metadata should be agreed as an industry standard that 

could, for example, include the unique identifier, endpoint, property or effect modelled, the required input and intended 

output variables, applicability domain, storage and/or accessibility, without releasing the model’s algorithm.   
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Tab. 2: Mapping computational toxicology models to define the key features relevant to FAIR principles as defined in 
Cronin et al., 2023  

Model type Examples of 
dependent data 

Examples of 
independent data 

Modelling engine Model 

Local QSAR Toxicity or adverse 
effects 

Limited numbers of 
physico-chemical 
properties and/ or 
molecular descriptors 

Statistical techniques suited to 
small data sets e.g. regression 
analysis, discriminant analysis 

Regression or 
discriminant analysis 
equation 

Global QSAR Toxicity or adverse 
effects 

Physico-chemical 
properties and / or 
molecular descriptors, 
fingerprints etc. 

A broad range of ML or AI 
algorithms 

Various, e.g. regression, 
classification, neural 
networks etc 

Structural 
alerts, e.g. 
within a 
knowledge-
based expert 
system or 
computational 
profiler 

Toxicity or adverse 
effects, molecular 
initiating events, 
modes / 
mechanisms of 
toxic action  

Sub-structural and/or 
functional group 
information in the form 
of structural 
fingerprints, ToxPrint 
chemotypes, etc. 

A knowledge-based structural 
alert is derived from the 
expert-identified chemistry 
related to a toxicological 
event. Computationally 
derived alerts may be derived 
from the statistical analysis of 
structural fragments and their 
association with toxicity etc.  

Identification of a 
structural alert in a 
molecule by comparison 
to a series of alerts in a 
”profiler” or other 
software 

qAOP Relationship 
between MIEs, 
KEs and an 
adverse outcome 

MIEs, KEs Statistical or mechanistic 
modelling techniques 

Quantitative model 
establishing a 
relationship between KEs 
and adverse outcomes 

QST Toxicodynamic 
interactions and 
toxicokinetic 
effects  

Information on 
systems biology and 
specified exposure to 
a chemical 

Multi-level models based on 
various statistical and 
empirical modelling techniques 

Modelling of the effect of 
an exposure to a 
xenobiotic 

IVIVE In vivo biological 
response 

Data from in vitro 
assays 

Models for extrapolation based 
on pharmacokinetic principles 

IVIVE model 

Reverse 
dosimetry 

Internal exposure 
measurements 

External 
concentrations  

Models for extrapolation of 
internal to external exposure 

Quantitative modelling of 
internal to external – 
exposure relationship 

PBK Concentration of 
chemical in 
specific 
organ/tissue 

Physiological and 
anatomical 
parameters; chemical-
specific properties 

Various types of 
multicompartmental models 
intending to simulate the 
passage, accumulation, 
metabolism etc. of a molecule 
within an organism 

Comprehensive PBK 
model for chemical 
exposure assessment 

Aggregate 
Exposure 

Exposure levels 
estimation 

Environmental 
concentrations 

Statistical models aiming to 
combine multiple sources of 
exposure to a chemical 
allowing for an overall 
exposure to be calculated 

Predictive model for the 
total exposure to a 
substance 

Molecular 
Mechanics 

Conformational 
changes, 
interaction 
energies 

Atom types, bond 
lengths/angles, force 
field parameters 

Classical force fields Energy-minimized 
molecular structures 

Molecular 
docking 

Binding energy 3D structures of 
ligands and target 
proteins 

Scoring functions  Predicted protein-ligand 
binding pose and binding 
affinity 

Quantum 
Mechanics 

Electron 
density/charge 
distribution, 
reaction energies 

Molecular geometries, 
basis sets, 
Hamiltonian operators 

Probabilistic modelling based 
on Schrodinger’s equation and 
its approximations 

Well-characterized 
electronic structure 

MD 
simulations 

Conformational 
changes, 
interaction 
energies 

Initial 3D coordinates 
of biomolecules, 
temperature, solvent 
parameters 

Physics-based simulation 
software 

Simulation trajectory 
describing molecular 
motions and interactions 

Knowledge 
graphs 

Relationships 
between 
chemicals, 
biomolecules such 
as target proteins, 
associated 
pathways and 
outcomes 

Data from different 
sources (e.g.: 
chemical and 
toxicological data, 
bioassay data, 
ontologies etc.) 

Web technologies that 
integrate data using nodes 
and edges 

A network representing 
toxicological knowledge 
gathered from multiple 
sources 

Active learning Toxicity or adverse 
effects 

Physico-chemical 
properties and / or 
molecular descriptors, 
fingerprints etc. 

Statistical techniques suited to 
the data 

Regression or 
classification model 
trained on the most 
informative data points 
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This investigation is based on internationally recognized FAIR principles, for instance those for data sharing 

(Wilkinson et al., 2016) and research software (Barker et al., 2022), but with specific consideration of their adaptation for 

toxicological QSARs (Cronin et al., 2023). A previous evaluation of the FAIR principles for toxicological QSARs (Belfield 

et al., 2025) found a number of areas where QSARs were lacking with regard to their being FAIR. These were the absence of 

a unique identifier and standardized ontologies for data and model description, not providing the data and allowing full 

interoperability with other software. These are likely to be similar to the broader range of models for computational 

toxicology and should be considered in depth.  

 

3.1 “Fair Lite” Principles for Computational Toxicology Models  
The FAIR principles applied to QSARs (Cronin et al., 2023; Belfield et al., 2025) comprise 20 criteria as listed in Table 3. 

They were developed specifically with QSARs in mind. For the consideration of a wider variety of computational toxicology 

models, there is an opportunity to refine the principles to be all-encompassing. The evaluation of a broad range of 

computational toxicology models in Table 2 demonstrates that they can be evaluated according to the principles set out in 

Cronin et al. (2023), namely that they are based on data, involve a modelling approach (the so-called model engine) and that 

there is a resultant model. This provides an opportunity to broaden and simplify the FAIR principles as applied to QSARs 

(Cronin et al., 2023; Belfield et al., 2025) for any computational toxicology model. To this end, it is proposed that to comply 

with the original FAIR principles, a computational toxicology model should demonstrate, or be associated with: 

1. A globally unique identifier for model citation. This is intended to assist in the findability of models and ensure that 

their description and data are identifiable.  

2. The capture and curation of the model. This is essential for the interoperability and reusability of the model. Without 

an appropriate description the model cannot be used appropriately.  

3. The metadata for the dependent and independent variables and, if the chosen (commercial) license allows, data. 

Description and, where appropriate, availability of data (for the training, test and validation sets) is vital for the 

transparency of the model, its findability and reusability. Data availability is subject to the sensitivity and 

confidentiality of the data. 

4. Storage of the model in a searchable and interoperable platform. The ability to store, search for, and utilise, a 

particular model is essential for its accessibility and reusability.  

These four principles are termed the “FAIR Lite” principles for computational toxicology models. The intention is to cover 

all relevant aspects of the original FAIR principles (Wilkinson et al., 2016) and FAIR4RS principles (Barker et al., 2022). It 

is recognized that models for computational toxicology offer unique challenges which, in some cases, extend these 

principles, whilst other principles may be less relevant or redundant. To demonstrate that all appropriate FAIR principles and 

criteria have been met, the original / adapted principles for QSARs have been mapped against the Wilkinson et al. (2016) 

FAIR principles (summarized in Tab. 3A and Fig. 1) and Barker et al. (2022) FAIR4RS principles (Tab. 3B and Fig. 2). It is 

clear that the four “FAIR Lite” principles capture all the criteria, with no missing principles. For mapping on FAIR4RS 

(Table 3B), some pragmatism was applied as the FAIR4RS principles were not intended to specifically capture models 

(hence no mention of models or algorithms) or the underlying data. In this regard, the FAIR Lite principles extend the 

coverage to include features that are essential for computational toxicology yet not assessed within FAIR4RS. 

The FAIR Lite criteria provide a straightforward and fundamental means of evaluating the compliance, or 

otherwise, of a computational toxicology model with the FAIR principles. The first of the four criteria is the need for a 

globally unique identifier. Currently, few models are associated with such an identifier. Belfield et al. (2025) recommended 

using the Document Object Identifier (DOI) as it is well established for publications and retrievable on internet search 

engines. For example, the QsarDB repository provides DOIs for QSAR-related data publication and to individual QSAR 

models (Ruusmann et al., 2015). The second FAIR Lite criterion is the capture and curation of the model itself, preferably in 

a machine-readable format. This implies the description of the model which can include: (i) the training series and modelling 

engine, which allow for the model to be reproduced, and (ii) the set of parameters within the model (or algorithm / formula) 

generated by the training. An example of such digitalization and organization of data, and model representation in machine 

readable manner, is the QSAR DataBank archive format (Ruusmann et al., 2014), with other efforts reviewed in Sild et al. 

(2020). The capture and curation of a model will be also dependent on licensing and commercial considerations. Even if the 

model cannot be made available, it is in the interest of a vendor or supplier that the model is adequately documented and can 

be found and utilized. It is noted that representations of chemical structure such as SMILES and InChI may not be 

considered as persistent identifiers. Neither do they contain the 3D structural information that is available in, for instance, a 

.mol or .sdf file. The third criterion is that the metadata which describe the model are provided and, where possible, also the 

data on which the model is derived. The metadata must also include licensing information, which is necessary for users of 

the model to comply with restrictions on commercial use and licensing terms. (Meta)data need to be described in a consistent 

manner so that they are unambiguous, e.g., using a standardized ontology for toxicological tests and descriptor data (a 

summary of potential ontologies is provided in Table S1). In the context of computational toxicology, it is also important to 

distinguish between the licensing of model data and its (meta)data. Due to commercial interests and legal implications, 

restricted access to computational models might be reasonable. Therefore, an open license is highly recommended for the 

(meta)data to make the information about the models accessible and usable. Finally, according to the fourth criterion, models 

require a permanent, searchable storage solution where they can be used, downloaded, or linked to a model provider. 

To make the FAIR Lite criteria into a practical scheme, Table 4 provides a checklist that could be used to evaluate whether 

any computational toxicology model complies with the principles and possible solutions to allow for compliance. It must be 

emphasized that neither the FAIR nor the FAIR Lite Principles are intended to validate a model, e.g. such as may be required 

for regulatory use, or determine data quality. For example, model validation, e.g., for regulatory acceptance of a prediction, 

should be performed separately, with approaches such as the implementation of the OECD Principles for the Validation of  
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Tab. 3A: Mapping of the FAIR Principles as applied to QSARs (Cronin et al., 2023; Belfield et al., 2025) against the FAIR 
Lite Principles  

FAIR Principles for In Silico Models and QSARs for toxicology 
(from Cronin et al., 2023; Belfield et al., 2025) 

FAIR Lite 
1: Unique 
Identifier 

FAIR Lite 
2: Model 
Capture 
and 
Curation 

FAIR Lite 
3: 
(Meta)Dat
a 

FAIR Lite 
4: 
Storage 

Models should be Findable 

F1. Each model is assigned a globally unique and persistent identifier 
and different versions are assigned distinct identifiers. 

X    

F2 Models are described with rich metadata covering all aspects of the 
model. (F2.1.) Models are associated with searchable metadata for the 
property or endpoint to be predicted. 

  X  

F2 Models are described with rich metadata covering all aspects of the 
model. (F2.2.) Models are associated with searchable metadata or 
descriptions of the chemicals (e.g. InCHI or SMILES), or chemical 
class(es), within the model, or a description of its applicability domain. 

 X X  

F3. Models' (meta)data clearly and explicitly include the identifier of the 
model they describe and are registered or indexed in a searchable 
resource. 

X  X  

F4. Models are registered or indexed in a searchable resource. (F4.1) 
Models' identifiers should be optimized to allow for use in multiple 
search engines. 

X   X 

Models should be Accessible 

A1. Models are retrievable by their identifier using a standardized 
communications protocol. (A1.1.) The model (and any associated 
protocol represented by the model (meta)data) is openly accessible or 
re-implementable. 

X   X 

A1. Models are retrievable by their identifier using a standardized 
communications protocol. (A1.2.) The model (and any associated 
protocol) allows for an authentication and authorization procedure, 
where necessary. 

X   X 

A2. Model (meta)data are accessible even when the model is no longer 
available, unless restricted for commercial, ethical or data protection 
reasons (e.g., blinding of confidential chemical structures). 

   X 

Models should be Interoperable 

I1. The models and their (meta)data are described in a standardized 
manner, i.e., standards to define chemical structures, endpoints, 
molecular descriptors and modelling algorithms. 

 X X  

I2. The model reads, writes and exchanges data in a way that meets 
domain-relevant community standards. 

 X  X 

I3. The model must be interoperable with other software, e.g., with a 
clearly defined input/output i.e., with an appropriate Application 
Programming Interface (API) for shared web services. 

 X  X 

I4. (Meta)data use a formal, accessible, shared, and broadly applicable 
language for knowledge representation. 

  X  

I5. (Meta)data use vocabularies that follow FAIR principles.  X X X 

I6. The model includes qualified references to other objects, such as 
molecular descriptors. 

 X   

Models should be Reusable 

R1. The model is available for its use in some format (e.g., source code, 
executable, library or service). 

 X  X 

R2. The usage license of the model should be clearly defined and 
appropriate to encourage its use. 

  X  

R3. The storage of the model and (meta)data should be done on a 
sustainable and future-proofed platform, anticipating the impact on the 
availability of software changes over time. 

 X  X 

R4. Software includes qualified references to other software, e.g., so 
that the correct molecular descriptors can be obtained, either as part of 
the model or storage of the molecular descriptors software or 
experimental protocol.  

 X  X 

R5. (Meta)data are richly described with a plurality of accurate and 
relevant attributes. (R5.1) The model and its (meta)data are associated 
with detailed provenance. 

 X X  

R6. The model and its (meta)data meet domain-relevant community 
standards for documentation. 

 X X X 
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Tab. 3B: Mapping of the FAIR Principles for Research Software (FAIR4RS) (taken from Barker et al., 2022) against the 
FAIR Lite Principles  

FAIR Principles for Research Software (FAIR4RS) (taken from Barker 
et al., 2022) 

FAIR Lite 
1: Unique 
Identifier 

FAIR Lite 
2: Model 
Capture 
and 
Curation 

FAIR Lite 
3: 
(Meta)Data 

FAIR Lite 
4: 
Storage 

Software, and its associated metadata, is easy for both humans and machines to find 

F1. Software is assigned a globally unique and persistent identifier. F1.1. 
Components of the software representing levels of granularity are assigned 
distinct identifiers. 

X    

F1. Software is assigned a globally unique and persistent identifier. F1.2. 
Different versions of the software are assigned distinct identifiers. 

X    

F2. Software is described with rich metadata.   X  

F3. Metadata clearly and explicitly include the identifier of the software they 
describe. 

X  X  

F4. Metadata are FAIR, searchable and indexable.   X X 

Software, and its metadata, is retrievable via standardized protocols 

A1. Software is retrievable by its identifier using a standardized 
communications protocol. A1.1. The protocol is open, free, and universally 
implementable. 

X X  X 

A1. Software is retrievable by its identifier using a standardized 
communications protocol. A1.2. The protocol allows for an authentication 
and authorization procedure, where necessary. 

X X  X 

A2. Metadata are accessible, even when the software is no longer available. X X X  

Software interoperates with other software by exchanging data and/or metadata, and/or through interaction via application 
programming interfaces (APIs), described through standards 

I1. Software reads, writes and exchanges data in a way that meets domain-
relevant community standards. 

 X  X 

I2. Software includes qualified references to other objects.  X  X 

Software is both usable (can be executed) and reusable (can be understood, modified, built upon, or incorporated into 
other software) 

R1. Software is described with a plurality of accurate and relevant attributes. 
R1.1. Software is given a clear and accessible license. 

  X X 

R1. Software is described with a plurality of accurate and relevant attributes. 
R1.2. Software is associated with detailed provenance. 

 X X X 

R2. Software includes qualified references to other software.  X  X 

R3. Software meets domain-relevant community standards.  X  X 

 
 

Fig. 1: Relationships between FAIR principles as applied  Fig. 2: Relationships between FAIR4RS principles  
to QSARs (Cronin et al., 2023; Belfield et al., 2025) and   (Barker et al., 2022) and FAIR Lite principles 
FAIR Lite principles for in silico models   for in silico models 
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Tab. 4: A checklist for the FAIR Lite criteria for computational toxicology models and solutions to ensure compliance  

FAIR Lite 
Principle  

Checklist Solutions 

1. Unique 
identifier 

Is a unique and permanent 
identifier provided for the model? 

A Document Object Identifier (DOI) is searchable and ubiquitous. 

2. Model 
capture and 
curation 

Is the model described and / or 
documented in a standardized 
ontology that meets community 
standards? Specifically for open 
models: is the model 
representation in a standardized 
format that can be downloaded 
and used? 
 

The capture of the model should include the description of the training 
series and model engine (sufficient to allow the model to be 
reproduced), in addition to the parameters generated within the model. 
Where appropriate, the model should be represented in a machine-
readable format, such as Predictive Model Markup Language (PMML), 
Open Neural Network Exchange (ONNX), etc., so it can be utilized. 
Standardized ontologies should be used to describe the model (see 
Table S1). Where standard ontologies are not available, terms from 
e.g. OECD Test Guidelines, regulatory guidance, current terminology in 
the scientific literature, etc., should be used. 

Is the applicability domain of the 
model stated?  

A viable description of the applicability domain, encompassing 
chemical, property, metabolic, mechanistic information as appropriate.  

Are performance, diagnostic and 
quality assurance data and 
information provided? 

As appropriate and required, estimates of model fit and predictivity 
should be available. Preferably, all model-related data should be 
available to calculate any relevant statistical metrics. 

3. 
(Meta)data 

Are the dependent (input) 
(meta)data of the model described 
and / or provided (for an open 
access model)? 

Dependent data, e.g. toxicity values (and units), on which the model 
was developed should be described, i.e. number and type of chemicals, 
and, where appropriate, values provided. Actual values should be 
provided unless restricted by the license agreement or for commercial 
reasons.  

Are the independent (descriptor) 
(meta)data of the model described 
and / or provided (for an open 
access model)? 

Independent data, e.g. physico-chemical properties, molecular 
descriptors for QSARs, coordinates, parameters for simulations etc. 
should be described, i.e. details on measurements, software version, if 
appropriate, and, where appropriate, values provided. Actual values 
should be provided unless restricted by the license agreement or for 
commercial reasons. 

Are (meta)data made available 
using standardized ontologies 
meeting community standards? 

Standardized ontologies should be used to describe the dependent and 
independent data. Where standard ontologies are not available, terms 
from e.g. OECD Test Guidelines, regulatory guidance, etc. should be 
used.  

Is a license agreement available? Restrictions on the use of the model, or an appropriate license 
agreement, e.g. Creative Commons, commercial, should be provided.  

4. Storage Is the information on the data, 
model, license, etc. stored on a 
suitable platform allowing for 
searching and retrieval? 

A relevant storage platform such as QSAR Databank (QsarDB), 
BioModels etc. should be used. 

Is the code (or other software) of 
the model available for open 
access models or available from a 
third party e.g. a software vendor? 

Code, or the model could be made available through a bespoke 
storage platform or via a public storage facility, e.g. GitHub, Zenodo 
etc. 

Can the model be integrated with 
other software to enable efficient 
use? 

An API, or similar, is provided should the code or model not be 
immediately usable. 

 
QSARs (OECD, 2007). However, FAIR data and models are required for their assessment and validation, especially through 

automated means. To encourage the FAIRification of computational models, the questions in Table 4 (or adaptations 

thereof) could be implemented into procedures such as the QSAR Assessment Framework (QAF) (OECD, 2023; Gissi et al., 

2024) or within in silico toxicology protocols (Myatt et al., 2018). The QAF will not, of course, be of use or appropriate for 

all of the broad range of computational models described in Tables 1 and 2. Therefore, it may also be appropriate to add in 

the requirement for the development of tiered strategies, e.g., DAs, IATAs, NGRA, etc., that the models used have a FAIR 

Lite checklist completed – this would enable a researcher to repeat the approach or apply it to another problem formulation.  

The proposed FAIR Lite principles fit well into the FAIR principles as applied to QSARs (Cronin et al., 2023; 

Belfield et al., 2025) (Fig. 1) and other considerations already published. There is little doubt that FAIR principles, firstly 

proposed for data sharing (Wilkinson et al., 2016), crystalize the ethical and pragmatic considerations of all toxicologists and 

risk assessors using toxicology models and data. This is specifically with regard to making data and technologies, including 

the derivation of new knowledge based on the models, available and sharable for use. The FAIR Lite principles can also 

guide the development of federated systems where multiple QSARs models of various organizations are co-trained on 

proprietary data to optimize a single QSAR model without direct access to raw data. When all parties involved in 

collaborations adhere to FAIR principles in documenting their predictive models, it federated learning will foster greater 

trust and facilitates the adoption of privacy-enhancing methods (Smajić et al., 2023).  

There have been a number of applications of the FAIR principles to areas within toxicology, notably to make new 

approach methodologies (NAMs) transparent and accessible (Colborne et al., 2023), with areas such as nanotoxicology 

taking the lead (Ammar et al., 2024; Barrick et al., 2023; Bossa et al., 2021; Furxhi et al., 2023; Jeliazkova et al., 2021) as 

well as being applied to Adverse Outcome Pathways (AOPs) (Mortensen et al., 2022; 2025; Wittwehr et al., 2024) and 

chemoinformatics technologies (Steinbeck, 2025). The current FAIR Lite principles aim to ensure that a user can find and 
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reuse a computational toxicology model to make predictions to support chemical safety assessment. This is particularly 

relevant to the plethora of published models currently not findable or usable, and to ensure that this does not occur again. It 

is intended that adherence to the FAIR Lite principles, as a minimum, should facilitate the process of better storage and 

searching for models.  

Whilst the FAIR Lite checklist is intended to be straightforward for use, it is not intended to be a “pass/fail”, but rather 

a qualitative indication of where a model may fall short of the overall FAIR principles and progress, or update is required. 

Pragmatism will undoubtedly be necessary to implement the principles, at least for the short-term. For instance, we do not 

currently have the technologies for standardizing toxicological terms and ontologies to comply fully with the “Model 

Capture and Curation” FAIR Lite principle. Despite the lack of an overarching ontology, the requirements have been 

identified and proposals made for such a framework (Hardy et al., 2012), as well as for QSARs (Russman et al., 2014; Sild et 

al., 2020; Spjuth et al., 2010) and nanomaterials (Hastings et al., 2015). A selection of existing, relevant ontologies is 

summarized in Table S1. The ontologies in Table S1 cover various aspects of the description of models and (meta)data. It is 

clear that to make these ontologies usable for computational toxicology effort is required to combine the relevant terms from 

them into the required overarching ontology. It should be recognized that resources are needed to support the FAIRification 

of computational models. Whilst FAIR is a laudable aim, it will not succeed without more significant input into the 

platforms for sustainable models and the development of globally accepted community standards to describe data and 

models.  

 
 
4 Conclusions 
 
A variety of computational toxicology models will be required to implement non-animal chemical safety assessments. The 

application of the FAIR principles to computational toxicology models is essential. This study has confirmed that certain 

fundamental criteria should be met to make a computational toxicology model FAIR. Four fundamental FAIR Lite principles 

for computational toxicology models, based on methodological foundations of computational toxicology and unambiguously 

understood by practitioners such as developers and end-users, are proposed. The aim in their development was that they are 

easy to use and understand, as well as being applicable to all types of computational models. As such, the FAIR Lite 

principles simplify the process of demonstrating the FAIRness of a computational model for toxicology. The FAIR Lite 

principles include the need for a globally unique identifier, the provision of data for dependent and independent variables, 

standardized and accepted vocabularies, documentation and a storage platform to make models interoperable and searchable. 

It is recommended that these criteria, or adaptations thereof, are integrated formally into the process for the validation of 

computational toxicology (e.g., into the QSAR Assessment Framework (QAF)). Meeting the criteria for FAIRness of any 

computational model will require informatics infrastructure (i.e., to provide access to the training data and model engine, 

preferably within a searchable database), establishing minimal levels of (meta)data (with particular reference to commercial 

models), as well as creating and confirming the overarching ontologies to describe all aspects of the models.  
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