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Abstract

A broad range of computational models are available for animal-free chemical safety assessment. The models
are used to predict a variety of endpoints, including adverse effects or apical endpoints, toxicokinetic properties
and exposure, often from chemical structure or in vitro inputs alone. To support their wider use, such models
need to be Findable, Accessible, Interoperable, Reusable (FAIR). This study has reevaluated the existing FAIR
principles applied to quantitative structure-activity relationships (QSARs) in order to adapt these principles to a
wider range of computational models. Despite the breadth and variety of approaches, many computational
models comprise common components including the training series, information about the modelling engine and
the model itself. As a result, a refined set of four FAIR Lite principles is proposed based on the methodological
foundations of computational toxicology which are unambiguously understood by practitioners such as
developers and end-users. To this end, it is proposed that to comply with the original , a computational toxicology
model should be associated with (i) a globally unique identifier for model citation; (ii) the capture and curation of
the model; (iii) the metadata for the dependent and independent variables and, where possible, data; and (iv)
storage in a searchable and interoperable platform. The FAIR Lite principles are mapped onto the original FAIR
principles applied to QSARSs, thereby demonstrating that a simpler checklist approach covers all aspects.

Plain language summary

Many types of computational models are used in animal-free chemical safety assessment. These are utilized to
make predictions for numerous endpoints, primarily focusing on the hazardous properties of, or exposure to, a
chemical substance. The models use information from chemical structures and/ or properties, or other non-
animal data as inputs. It is essential that the risk assessor or toxicologist can find and utilize the models with
confidence. The previously developed Findable, Accessible, Interoperable and Reusable (FAIR) principles for
computational models are a framework intended to ensure that models are accessible and stored appropriately.
This investigation has refined the original FAIR principles applied to computational models to capture information
for all types of modelling approaches that may be used in chemical safety assessment. The new principles,
termed FAIR Lite, encapsulate the original principles in four criteria relating to identifiers, description of a model,
its (meta)data and storage.

Introduction

The move to modernize chemical safety assessment, without the overt reliance on animals, will depend on a number of
technologies. Amongst the new approaches, computational models are finding use as part of the replacement strategy of the
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traditional animal tests for hazard identification (either directly or as part of a weight-of-evidence), estimation of exposure to
chemicals and substances, as well as the utilization of in vitro, in chemico and -omics data (Barber et al., 2024).
Computational approaches will also be fundamental building blocks of tiered testing strategies including, but not limited to,
Integrated Approaches to Testing and Assessment (IATA) (Delrue et al., 2016), Defined Approaches (DAs) (Macmillan and
Chilton, 2019) and Next Generation Risk Assessment (NGRA) (Baltazar et al., 2020) as well as approaches such as the
ASPIS Safety Profiling Algorithm (ASPA) (Luijten, 2024), which attempts to provide a workflow as the backbone to
implementing NGRA.

There is an exceptionally broad range of types of computational models that may be applied in NGRA, and hence
in tiered strategies such as ASPA (Madden et al., 2020; Westmoreland et al., 2022). Table 1 summarizes a variety of
computational models that have been used to interpret, extrapolate and predict the broad spectrum of data required for
chemical safety assessment. Typically, these models have been derived from existing experimental data, usually taken from
historical testing or measurements, and are used to make estimates for data gaps. Such models, which may be termed in
silico, or computational, make predictions related to the toxicodynamic interactions and toxicokinetic effects (or both) of
chemicals relating, in part at least, to the hazard and internal exposure of the chemical (illustrative endpoints are also
summarized in Table 1). To facilitate and support model development, there is also a need to have access to data sources.
There are currently several initiatives for toxicological data and information sharing, such as the United States
Environmental Protection Agency (US EPA) CompTox Chemicals Dashboard! (Williams et al., 2017) which incorporates
diverse data such as ToxValDB and invitroDB; COSMOS Next Generation? (Yang et al., 2021); and Open TG-Gates
(Igarashi et al., 2015). Whilst there are great advantages in sharing data, there are also many technological and business-
related (i.e. confidentiality) challenges (Pastor et al., 2018). The issues with aggregating human health risk assessment-
relevant information on chemicals, with a particular focus on available datasets and databases were investigated by
Freudenthal et al. (2024). The outcome of their investigation emphasized the requirement for all stakeholders to improve
aspects of data sharing related to data harmonization and transparency, amongst other aspects.

To allow and encourage the use of computational models in non-animal chemical safety assessment, there is a need to
facilitate access to the models. This is encapsulated in the Findable, Accessible, Interoperable, Reusable (FAIR) principles
for data sharing (Wilkinson et al., 2016). The FAIR principles are also applicable to supporting the sustainability and
reusability of research software (FAIR4RS) (Barker et al., 2022). FAIR4RS demonstrated that FAIR was applicable to
digital objects beyond data themselves and provided the basis for adaptation of the FAIR principles for data management to
software. The implementation of FAIR4RS enables and encourages sharing of software, as well as maximizing its impact.
The FAIR and FAIR4RS principles were adapted for in silico models in toxicology, notably for QSARs by Cronin et al.
(2023) with a full evaluation by Belfield et al. (2025). Whilst the FAIR principles have found application for QSARs
(Belfield et al., 2025), the types of modelling approaches and data utilized in all aspects of computational toxicology are
much broader, as illustrated in Table 1. Despite enormous diversity in models and modelling approaches, all data-driven
and/or knowledge-based computational toxicology models share similar characteristics (there will be exceptions for
simulations). Cronin et al. (2023) defined these characteristics in terms of the training series, a modelling engine and the
model itself. The training workflow uses the modelling engine to provide the model. In contrast, the prediction workflow
inputs a chemical into a modelling engine to make a prediction that provides new knowledge about the chemical. To
consider the full suite of computational toxicology models in Table 1, the training series, model and modelling engine can be
rationalized into four components:

—  Training series: dependent variables (those that are modelled);

—  Training series: independent variables (those that affect or influence the dependent variables);

—  Modelling engine: the statistical or other algorithm that allows for the creation of the predictive model;

—  Model: the parameters of the modelling engine resulting from it being exposed to the training series (this may be

thought of as the algorithm or mathematical formula that is applied).

At the current time, there is no single repository, or inventory, of computational toxicology models. At best, models are
scattered throughout the historical scientific literature and some of the resources described by Belfield et al., (2025). The
lack of a single location, or search engine, that would enable a researcher or risk assessor to find a suitable model to predict a
particular endpoint or property, for a specific substance or group of substances is restrictive to the implementation of models.
These issues, as well as aspects of data integration and sharing are fundamental to the replacement of animals for chemical
safety assessment (Westmoreland et al., 2022; Cronin et al., 2025). Thus, to support non-animal chemical safety assessment,
there is a clear requirement that all relevant computational toxicological models must be retrievable and usable, in other
words they should be FAIR. This need goes beyond applications solely to QSARs to the broad range of models, some of
which are summarized in Table 1. The purpose of this paper was to further enhance the existing FAIR principles (Wilkinson
et al., 2016), their adaptation to research software (Barker et al., 2022) and, specifically for computational toxicology, QSAR
models (Belfield et al., 2025) to provide a practical solution to supporting FAIR models. The consideration here is that a
model is intrinsically different to, and often more complex than, the data to be modelled, or the software used for model
development or implementation. Given that computational toxicology models comprise similar core elements (i.e., the data,
modelling engine and model), this paper aimed to evaluate a broad range of models with a pragmatic and helpful view to
develop a practical, condensed checklist (termed FAIR Lite), with associated solutions, for making the models FAIR. The
intention here is to adapt the FAIR principles, applied to QSARs, to broader methodological foundations of computational
toxicology. In addition, the FAIR Lite principles intend to be a pragmatic, lightweight, flexible and adaptable solution to
make computational toxicology models sustainable and reusable, going beyond the application of FAIR principles to data

" https://comptox.epa.gov/dashboard/
2 https://ng.cosmosdb.eu/
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Tab. 1: A brief overview and non-exhaustive summary of the computational toxicology approaches that may be
applied in non-animal chemical safety assessment

Computational Brief Description and Characteristics Endpoints Predicted Indicative
Toxicology Modelling References
Approach (acronyms and/or
defined in the legend) Reviews
Local QSAR A statistical relationship between activity and Toxicological effects or Cherkasov et
molecular properties relating to a restricted regulatory endpoints; al., 2014
chemical space and / or a single mechanism or | toxicokinetic and physico-
mode of action (where definable) chemical properties
Global QSAR A statistical relationship between activity and Toxicological effects or Madden et al.,
molecular properties related to a broad regulatory endpoints; 2020
chemical space and multiple (or unknown) toxicokinetic and physico-
mechanisms or modes of action chemical properties
Structural alerts, e.g. Formalized structural pattern providing Possibility of a molecule to Yang et al.,
within a knowledge- knowledge of chemistry underpinning a cause elicit a toxicological effect 2020
based expert system or for certain adverse events
computational profiler
gAOP Development of quantitative relationships Prediction of downstream Spinu et al.,
between Molecular Initiating Events (MIEs) and | KEs or adverse outcomes 2020
Key Events (KEs), or KEs and KEs, or KEs and
adverse outcomes
QST Integration of various models, based around Prediction of adverse Sturla et al.,
systems biology, to estimate toxicodynamic outcomes, potentially 2014
interactions and, when combined with following a specified
modelling of toxicokinetic effects, define a exposure
response at the molecular level to the exposure
of a particular dose of a substance
IVIVE Models allowing for the extrapolation of In vivo effect at a particular Wambaugh et

nominal concentrations inducing an effect in an
in vitro experiment to exposure that causes an
adverse effect in an in vivo system

dose extrapolated from an
effect at a known in vitro
dose

al., 2018

Reverse dosimetry

Models to estimate an external exposure based
on measured internal concentrations

The external concentration
that would be required to
achieve an internal (in vivo)
concentration

Wetmore et al.,
2015

PBK model Multicompartment models that predict the Concentration-time profile of | Rowland et al.,
concentration of a chemical after exposure ina | a substance in an organ, 2011
particular internal organ or tissue following a specific

exposure
Aggregate exposure Models to calculate an individual total exposure | Maximal exposure to a Safford et al.,
to a substance from all sources and exposure substance 2015
routes

Molecular Mechanics Uses classical mechanics and forcefields to Conformational stability, Wang et al.,

model the structure, energy, and dynamics of steric interactions and 2019

molecules based on atoms and bonds

energy-minimized molecular
structures relevant to
toxicodynamics

Molecular docking

Models that capture interactions between
proteins and ligands at atomic level

Binding of ligands to
biological macromolecules

Trisciuzzi et al.,
2018

Quantum Mechanics Quantum chemical methods that model the Reactivity, electronic Kostal, 2023
electronic structure and properties of molecules | properties, mechanisms of
toxicological action (e.g.,
covalent binding)
MD simulations Models that predict dynamic behavior of Time dependent properties De Vivo, 2016
biomolecules over time i.e., changes in
conformation, protein
folding, protein-ligand
binding affinity, etc.
Knowledge graphs Integration of toxicological data from multiple Toxicological effects or Sepehri et al.,
sources regulatory endpoints; 2025
toxicokinetic and physico-
chemical properties
Active learning Model trained on active selection of most Toxicological effects or Nahal et al.,
informative data points regulatory endpoints; 2024

toxicokinetic and physico-
chemical properties

QSAR: Quantitative Structure-Activity Relationship; gAOP: quantitative Adverse Outcome Pathway; QST: Quantitative Systems
Toxicology; IVIVE: In Vitro- In Vivo Extrapolation; PBK: Physiologically-Based Kinetic; MD: Molecular Dynamics simulations
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(Wilkinson et al., 2016) and research software (Barker et al., 2022). Thus, the FAIR Lite principles are intended to be easy to
use, portable, transferable and flexible. In particular, they should be applicable to all computational toxicology models
bearing in mind future technologies that may be developed, for example being derived from recent advances in Al and Large
Language Models, as well as many of the probabilistic (e.g. Bayesian) decision-making and other machine learning (ML)
models being applied.

2 Methods

21 Evaluation of Existing FAIR Principles Applied to QSARs

The 18 core FAIR principles applied to QSARs (which gave a total of 20 principles following sub-division) (Cronin et al.,
2023; Belfield et al., 2025) were re-evaluated in this study. Using expert judgement, these principles were considered in the
context of a broader range of computational toxicology models, as represented by those listed in Table 1. Specifically, the 13
model types identified in Table 1 were mapped against the four components identified above (dependent data, independent
data, modelling engine and model) to identify their key features as relevant to the overall philosophy of the FAIR Principles.
Commonalities in the models were identified, and the FAIR principles as applied to QSARs (Cronin et al., 2023; Belfield et
al., 2025) were adapted and streamlined. The aim was to develop revised principles that would better meet the needs of
computational toxicology models in non-animal chemical safety assessment.

2.2 Development of FAIR Lite Principles

Following evaluation of the FAIR principles applied to QSARs, in the context of the broader use of computational models in
toxicology and for the purposes of risk assessment, fundamental and overriding concepts and principles were identified by
expert judgement and consensus amongst the authors. These “essential” FAIR principles which can be applied to
computational models are herein termed FAIR Lite. The FAIR Lite principles were created to cover the requirements to
make models sharable and reusable. A checklist was developed to allow a model developer to assess whether they had met
the FAIR Lite principles for in silico toxicology models.

2.3 Evaluation of FAIR Lite Principles

The FAIR Lite principles were evaluated in terms of the coverage compared to the broader, more detailed set of principles
described by Cronin et al. (2023) and Belfield et al. (2025). The evaluation was performed manually by mapping each of the
FAIR principles applied to QSARs (Cronin et al., 2023; Belfield et al., 2025) onto the relevant FAIR Lite principles. The
results are demonstrated in tabular form and graphically.

3 Results and Discussion

This study has investigated the possibility of ensuring that computational models for use in all aspects of (non-animal)
chemical safety assessment are FAIR. The purpose was not to determine whether individual models were themselves FAIR,
but rather if a common set of FAIR principles could be established relevant to the broad variety of computational toxicology
models available. The various computational toxicology models can be defined according to their features relating to
dependent and independent data, modelling engine and model — as described in Table 2. This exercise does not imply that all
computational toxicology models are equivalent — this is clearly not the case — but rather that they comprise verifiable
components. Since many computational models considered can be defined in terms of similar components, it would be
logical to assume that some overarching considerations of the FAIR principles could be applied.

The motivation for making computational models for every aspect of chemical safety assessment FAIR is to
provide researchers and risk assessors full access to the best and most appropriate model for a particular task. It is also
motivated by the current difficulties in finding and utilizing (published) models, as well as the clear responsibility to ensure
that the outputs (especially funded from public resources) are available for future use, for instance as report by Piir et al.
(2018) with regard to the use of existing QSAR models for physicochemical properties, environmental fate, ecotoxicity,
human health and toxicokinetics. It should also be noted that the FAIR principles as applied to QSARs (Cronin et al., 2023;
Belfield et al., 2025), or FAIR Lite principles are not intended to disqualify models with confidential or business-sensitive
data, or commercial models where the algorithm is not disclosed; rather it is to allow data and models to be found and to be
machine readable. The founding publication by Wilkinson et al. (2016) states that there are degrees of FAIRness and the
modularity of the principles support a wide range of special circumstances, including highly sensitive or personally-
identifiable data, and even non-data research objects. The purpose of these FAIR Lite principles is to follow good data
management practices that allow the models to be found and used easily in a transparent and reproducible manner that may
allow for acceptance. Indeed, for commercial models, ensuring and demonstrating models and other products are FAIR must
be seen as a clear business opportunity. This is in concordance with interpretation and implementation of the FAIR
principles with regard to “provenance”, as described by Jacobsen et al. (Section 3.4.3; 2020). According to Jacobsen et al.
(2020) provenance is interpreted as including how and why the resource was created, ownership etc. Further, the richness of
the provenance, which we interpret as relating to the description and availability of “model”, is related to actual reuse. It
would be anticipated that commercial models for computational toxicology can be considered FAIR if they can supply
relevant metadata to ensure machine readability. A minimal set of metadata should be agreed as an industry standard that
could, for example, include the unique identifier, endpoint, property or effect modelled, the required input and intended
output variables, applicability domain, storage and/or accessibility, without releasing the model’s algorithm.
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Tab. 2: Mapping computational toxicology models to define the key features relevant to FAIR principles as defined in

Cronin et al., 2023

biomolecules such
as target proteins,
associated
pathways and
outcomes

toxicological data,
bioassay data,
ontologies etc.)

Model type Examples of Examples of Modelling engine Model
dependent data independent data
Local QSAR Toxicity or adverse | Limited numbers of Statistical techniques suited to | Regression or
effects physico-chemical small data sets e.g. regression | discriminant analysis
properties and/ or analysis, discriminant analysis | equation
molecular descriptors
Global QSAR Toxicity or adverse | Physico-chemical A broad range of ML or Al Various, e.g. regression,
effects properties and / or algorithms classification, neural
molecular descriptors, networks etc
fingerprints etc.
Structural Toxicity or adverse | Sub-structural and/or A knowledge-based structural Identification of a
alerts, e.g. effects, molecular functional group alert is derived from the structural alert in a
within a initiating events, information in the form | expert-identified chemistry molecule by comparison
knowledge- modes / of structural related to a toxicological to a series of alerts in a
based expert mechanisms of fingerprints, ToxPrint event. Computationally “profiler” or other
system or toxic action chemotypes, etc. derived alerts may be derived software
computational from the statistical analysis of
profiler structural fragments and their
association with toxicity etc.
gAOP Relationship MIEs, KEs Statistical or mechanistic Quantitative model
between MIEs, modelling techniques establishing a
KEs and an relationship between KEs
adverse outcome and adverse outcomes
QST Toxicodynamic Information on Multi-level models based on Modelling of the effect of
interactions and systems biology and various statistical and an exposure to a
toxicokinetic specified exposure to empirical modelling techniques | xenobiotic
effects a chemical
IVIVE In vivo biological Data from in vitro Models for extrapolation based | IVIVE model
response assays on pharmacokinetic principles
Reverse Internal exposure External Models for extrapolation of Quantitative modelling of
dosimetry measurements concentrations internal to external exposure internal to external —
exposure relationship
PBK Concentration of Physiological and Various types of Comprehensive PBK
chemical in anatomical multicompartmental models model for chemical
specific parameters; chemical- | intending to simulate the exposure assessment
organ/tissue specific properties passage, accumulation,
metabolism etc. of a molecule
within an organism
Aggregate Exposure levels Environmental Statistical models aiming to Predictive model for the
Exposure estimation concentrations combine multiple sources of total exposure to a
exposure to a chemical substance
allowing for an overall
exposure to be calculated
Molecular Conformational Atom types, bond Classical force fields Energy-minimized
Mechanics changes, lengths/angles, force molecular structures
interaction field parameters
energies
Molecular Binding energy 3D structures of Scoring functions Predicted protein-ligand
docking ligands and target binding pose and binding
proteins affinity
Quantum Electron Molecular geometries, | Probabilistic modelling based Well-characterized
Mechanics density/charge basis sets, on Schrodinger’s equation and | electronic structure
distribution, Hamiltonian operators | its approximations
reaction energies
MD Conformational Initial 3D coordinates Physics-based simulation Simulation trajectory
simulations changes, of biomolecules, software describing molecular
interaction temperature, solvent motions and interactions
energies parameters
Knowledge Relationships Data from different Web technologies that A network representing
graphs between sources (e.g.: integrate data using nodes toxicological knowledge
chemicals, chemical and and edges gathered from multiple

sources

Active learning

Toxicity or adverse
effects

Physico-chemical
properties and / or

molecular descriptors,

fingerprints etc.

Statistical techniques suited to
the data

Regression or
classification model
trained on the most
informative data points
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This investigation is based on internationally recognized FAIR principles, for instance those for data sharing
(Wilkinson et al., 2016) and research software (Barker et al., 2022), but with specific consideration of their adaptation for
toxicological QSARs (Cronin et al., 2023). A previous evaluation of the FAIR principles for toxicological QSARs (Belfield
et al., 2025) found a number of areas where QSARs were lacking with regard to their being FAIR. These were the absence of
a unique identifier and standardized ontologies for data and model description, not providing the data and allowing full
interoperability with other software. These are likely to be similar to the broader range of models for computational
toxicology and should be considered in depth.

3.1 “Fair Lite” Principles for Computational Toxicology Models

The FAIR principles applied to QSARs (Cronin et al., 2023; Belfield et al., 2025) comprise 20 criteria as listed in Table 3.

They were developed specifically with QSARs in mind. For the consideration of a wider variety of computational toxicology

models, there is an opportunity to refine the principles to be all-encompassing. The evaluation of a broad range of

computational toxicology models in Table 2 demonstrates that they can be evaluated according to the principles set out in

Cronin et al. (2023), namely that they are based on data, involve a modelling approach (the so-called model engine) and that

there is a resultant model. This provides an opportunity to broaden and simplify the FAIR principles as applied to QSARs

(Cronin et al., 2023; Belfield et al., 2025) for any computational toxicology model. To this end, it is proposed that to comply

with the original FAIR principles, a computational toxicology model should demonstrate, or be associated with:

1. A globally unique identifier for model citation. This is intended to assist in the findability of models and ensure that
their description and data are identifiable.

2. The capture and curation of the model. This is essential for the interoperability and reusability of the model. Without
an appropriate description the model cannot be used appropriately.

3. The metadata for the dependent and independent variables and, if the chosen (commercial) license allows, data.
Description and, where appropriate, availability of data (for the training, test and validation sets) is vital for the
transparency of the model, its findability and reusability. Data availability is subject to the sensitivity and
confidentiality of the data.

4. Storage of the model in a searchable and interoperable platform. The ability to store, search for, and utilise, a
particular model is essential for its accessibility and reusability.

These four principles are termed the “FAIR Lite” principles for computational toxicology models. The intention is to cover

all relevant aspects of the original FAIR principles (Wilkinson et al., 2016) and FAIR4RS principles (Barker et al., 2022). It

is recognized that models for computational toxicology offer unique challenges which, in some cases, extend these
principles, whilst other principles may be less relevant or redundant. To demonstrate that all appropriate FAIR principles and

criteria have been met, the original / adapted principles for QSARs have been mapped against the Wilkinson et al. (2016)

FAIR principles (summarized in Tab. 3A and Fig. 1) and Barker et al. (2022) FAIR4RS principles (Tab. 3B and Fig. 2). It is

clear that the four “FAIR Lite” principles capture all the criteria, with no missing principles. For mapping on FAIR4RS

(Table 3B), some pragmatism was applied as the FAIR4RS principles were not intended to specifically capture models

(hence no mention of models or algorithms) or the underlying data. In this regard, the FAIR Lite principles extend the

coverage to include features that are essential for computational toxicology yet not assessed within FAIR4RS.

The FAIR Lite criteria provide a straightforward and fundamental means of evaluating the compliance, or
otherwise, of a computational toxicology model with the FAIR principles. The first of the four criteria is the need for a
globally unique identifier. Currently, few models are associated with such an identifier. Belfield et al. (2025) recommended
using the Document Object Identifier (DOI) as it is well established for publications and retrievable on internet search
engines. For example, the QsarDB repository provides DOIs for QSAR-related data publication and to individual QSAR
models (Ruusmann et al., 2015). The second FAIR Lite criterion is the capture and curation of the model itself, preferably in
a machine-readable format. This implies the description of the model which can include: (i) the training series and modelling
engine, which allow for the model to be reproduced, and (ii) the set of parameters within the model (or algorithm / formula)
generated by the training. An example of such digitalization and organization of data, and model representation in machine
readable manner, is the QSAR DataBank archive format (Ruusmann et al., 2014), with other efforts reviewed in Sild et al.
(2020). The capture and curation of a model will be also dependent on licensing and commercial considerations. Even if the
model cannot be made available, it is in the interest of a vendor or supplier that the model is adequately documented and can
be found and utilized. It is noted that representations of chemical structure such as SMILES and InChl may not be
considered as persistent identifiers. Neither do they contain the 3D structural information that is available in, for instance, a
.mol or .sdf file. The third criterion is that the metadata which describe the model are provided and, where possible, also the
data on which the model is derived. The metadata must also include licensing information, which is necessary for users of
the model to comply with restrictions on commercial use and licensing terms. (Meta)data need to be described in a consistent
manner so that they are unambiguous, e.g., using a standardized ontology for toxicological tests and descriptor data (a
summary of potential ontologies is provided in Table S1). In the context of computational toxicology, it is also important to
distinguish between the licensing of model data and its (meta)data. Due to commercial interests and legal implications,
restricted access to computational models might be reasonable. Therefore, an open license is highly recommended for the
(meta)data to make the information about the models accessible and usable. Finally, according to the fourth criterion, models
require a permanent, searchable storage solution where they can be used, downloaded, or linked to a model provider.

To make the FAIR Lite criteria into a practical scheme, Table 4 provides a checklist that could be used to evaluate whether

any computational toxicology model complies with the principles and possible solutions to allow for compliance. It must be

emphasized that neither the FAIR nor the FAIR Lite Principles are intended to validate a model, e.g. such as may be required
for regulatory use, or determine data quality. For example, model validation, e.g., for regulatory acceptance of a prediction,
should be performed separately, with approaches such as the implementation of the OECD Principles for the Validation of
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Tab. 3A: Mapping of the FAIR Principles as applied to QSARs (Cronin et al., 2023; Belfield et al., 2025) against the FAIR

Lite Principles

FAIR Principles for In Silico Models and QSARs for toxicology
(from Cronin et al., 2023; Belfield et al., 2025)

FAIR Lite
1: Unique
Identifier

FAIR Lite
2: Model
Capture
and
Curation

FAIR Lite
3:
(Meta)Dat
a

FAIR Lite
4:
Storage

Models should be Findable

F1. Each model is assigned a globally unique and persistent identifier
and different versions are assigned distinct identifiers.

F2 Models are described with rich metadata covering all aspects of the
model. (F2.1.) Models are associated with searchable metadata for the
property or endpoint to be predicted.

F2 Models are described with rich metadata covering all aspects of the
model. (F2.2.) Models are associated with searchable metadata or
descriptions of the chemicals (e.g. INCHI or SMILES), or chemical
class(es), within the model, or a description of its applicability domain.

F3. Models' (meta)data clearly and explicitly include the identifier of the
model they describe and are registered or indexed in a searchable
resource.

F4. Models are registered or indexed in a searchable resource. (F4.1)
Models' identifiers should be optimized to allow for use in multiple
search engines.

Models should be Accessible

A1. Models are retrievable by their identifier using a standardized
communications protocol. (A1.1.) The model (and any associated
protocol represented by the model (meta)data) is openly accessible or
re-implementable.

A1. Models are retrievable by their identifier using a standardized
communications protocol. (A1.2.) The model (and any associated
protocol) allows for an authentication and authorization procedure,
where necessary.

A2. Model (meta)data are accessible even when the model is no longer
available, unless restricted for commercial, ethical or data protection
reasons (e.g., blinding of confidential chemical structures).

Models should be Interoperable

1. The models and their (meta)data are described in a standardized
manner, i.e., standards to define chemical structures, endpoints,
molecular descriptors and modelling algorithms.

12. The model reads, writes and exchanges data in a way that meets
domain-relevant community standards.

13. The model must be interoperable with other software, e.g., with a
clearly defined input/output i.e., with an appropriate Application
Programming Interface (API) for shared web services.

14. (Meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation.

15. (Meta)data use vocabularies that follow FAIR principles.

16. The model includes qualified references to other objects, such as
molecular descriptors.

Models should be Reusable

R1. The model is available for its use in some format (e.g., source code,
executable, library or service).

R2. The usage license of the model should be clearly defined and
appropriate to encourage its use.

R3. The storage of the model and (meta)data should be done on a
sustainable and future-proofed platform, anticipating the impact on the
availability of software changes over time.

R4. Software includes qualified references to other software, e.g., so
that the correct molecular descriptors can be obtained, either as part of
the model or storage of the molecular descriptors software or
experimental protocol.

R5. (Meta)data are richly described with a plurality of accurate and
relevant attributes. (R5.1) The model and its (meta)data are associated
with detailed provenance.

R6. The model and its (meta)data meet domain-relevant community
standards for documentation.
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Tab. 3B: Mapping of the FAIR Principles for Research Software (FAIR4RS) (taken from Barker et al., 2022) against the

FAIR Lite Principles

FAIR Principles for Research Software (FAIR4RS) (taken from Barker FAIR Lite | FAIR Lite | FAIR Lite FAIR Lite
et al., 2022) 1: Unique | 2: Model 3: 4:
Identifier | Capture (Meta)Data | Storage
and
Curation
Software, and its associated metadata, is easy for both humans and machines to find
F1. Software is assigned a globally unique and persistent identifier. F1.1. X
Components of the software representing levels of granularity are assigned
distinct identifiers.
F1. Software is assigned a globally unique and persistent identifier. F1.2. X
Different versions of the software are assigned distinct identifiers.
F2. Software is described with rich metadata. X
F3. Metadata clearly and explicitly include the identifier of the software they X X
describe.
F4. Metadata are FAIR, searchable and indexable. X X
Software, and its metadata, is retrievable via standardized protocols
A1. Software is retrievable by its identifier using a standardized X X X
communications protocol. A1.1. The protocol is open, free, and universally
implementable.
A1. Software is retrievable by its identifier using a standardized X X X
communications protocol. A1.2. The protocol allows for an authentication
and authorization procedure, where necessary.
A2. Metadata are accessible, even when the software is no longer available. | X X X

Software interoperates with other software by exchanging data and/or m
programming interfaces (APIs), described through standards

etadata, and/or through interaction via application

I1. Software reads, writes and exchanges data in a way that meets domain- X X
relevant community standards.
12. Software includes qualified references to other objects. X X

Software is both usable (can be executed) and reusable (can be understood, modified, built upon, or incorporated into

other software)

R1. Software is described with a plurality of accurate and relevant attributes. X X
R1.1. Software is given a clear and accessible license.
R1. Software is described with a plurality of accurate and relevant attributes. X X X
R1.2. Software is associated with detailed provenance.
R2. Software includes qualified references to other software. X X
R3. Software meets domain-relevant community standards. X X

Fig. 1: Relationships between FAIR principles as applied
to QSARs (Cronin et al., 2023; Belfield et al., 2025) and
FAIR Lite principles for in silico models

Fig. 2: Relationships between FAIR4RS principles
(Barker et al., 2022) and FAIR Lite principles
for in silico models
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Tab. 4: A checklist for the FAIR Lite criteria for computational toxicology models and solutions to ensure compliance

FAIR Lite Checklist Solutions
Principle
1. Unique Is a unique and permanent A Document Object Identifier (DOI) is searchable and ubiquitous.
identifier identifier provided for the model?
2. Model Is the model described and / or The capture of the model should include the description of the training
capture and | documented in a standardized series and model engine (sufficient to allow the model to be
curation ontology that meets community reproduced), in addition to the parameters generated within the model.
standards? Specifically for open Where appropriate, the model should be represented in a machine-
models: is the model readable format, such as Predictive Model Markup Language (PMML),
representation in a standardized Open Neural Network Exchange (ONNX), etc., so it can be utilized.
format that can be downloaded Standardized ontologies should be used to describe the model (see
and used? Table S1). Where standard ontologies are not available, terms from
e.g. OECD Test Guidelines, regulatory guidance, current terminology in
the scientific literature, etc., should be used.
Is the applicability domain of the A viable description of the applicability domain, encompassing
model stated? chemical, property, metabolic, mechanistic information as appropriate.
Are performance, diagnostic and As appropriate and required, estimates of model fit and predictivity
quality assurance data and should be available. Preferably, all model-related data should be
information provided? available to calculate any relevant statistical metrics.
3. Are the dependent (input) Dependent data, e.g. toxicity values (and units), on which the model
(Meta)data (meta)data of the model described | was developed should be described, i.e. number and type of chemicals,
and / or provided (for an open and, where appropriate, values provided. Actual values should be
access model)? provided unless restricted by the license agreement or for commercial
reasons.
Are the independent (descriptor) Independent data, e.g. physico-chemical properties, molecular
(meta)data of the model described | descriptors for QSARs, coordinates, parameters for simulations etc.
and / or provided (for an open should be described, i.e. details on measurements, software version, if
access model)? appropriate, and, where appropriate, values provided. Actual values
should be provided unless restricted by the license agreement or for
commercial reasons.
Are (meta)data made available Standardized ontologies should be used to describe the dependent and
using standardized ontologies independent data. Where standard ontologies are not available, terms
meeting community standards? from e.g. OECD Test Guidelines, regulatory guidance, etc. should be
used.
Is a license agreement available? Restrictions on the use of the model, or an appropriate license
agreement, e.g. Creative Commons, commercial, should be provided.
4. Storage Is the information on the data, A relevant storage platform such as QSAR Databank (QsarDB),
model, license, etc. stored on a BioModels etc. should be used.
suitable platform allowing for
searching and retrieval?
Is the code (or other software) of Code, or the model could be made available through a bespoke
the model available for open storage platform or via a public storage facility, e.g. GitHub, Zenodo
access models or available from a etc.
third party e.g. a software vendor?
Can the model be integrated with An API, or similar, is provided should the code or model not be
other software to enable efficient immediately usable.
use?

QSARs (OECD,

2007). However, FAIR data and models are required for their assessment and validation, especially through

automated means. To encourage the FAIRification of computational models, the questions in Table 4 (or adaptations
thereof) could be implemented into procedures such as the QSAR Assessment Framework (QAF) (OECD, 2023; Gissi et al.,
2024) or within in silico toxicology protocols (Myatt et al., 2018). The QAF will not, of course, be of use or appropriate for
all of the broad range of computational models described in Tables 1 and 2. Therefore, it may also be appropriate to add in
the requirement for the development of tiered strategies, e.g., DAs, IATAs, NGRA, etc., that the models used have a FAIR
Lite checklist completed — this would enable a researcher to repeat the approach or apply it to another problem formulation.

The proposed FAIR Lite principles fit well into the FAIR principles as applied to QSARs (Cronin et al., 2023;
Belfield et al., 2025) (Fig. 1) and other considerations already published. There is little doubt that FAIR principles, firstly
proposed for data sharing (Wilkinson et al., 2016), crystalize the ethical and pragmatic considerations of all toxicologists and
risk assessors using toxicology models and data. This is specifically with regard to making data and technologies, including
the derivation of new knowledge based on the models, available and sharable for use. The FAIR Lite principles can also
guide the development of federated systems where multiple QSARs models of various organizations are co-trained on
proprietary data to optimize a single QSAR model without direct access to raw data. When all parties involved in
collaborations adhere to FAIR principles in documenting their predictive models, it federated learning will foster greater
trust and facilitates the adoption of privacy-enhancing methods (Smaji¢ et al., 2023).

There have been a number of applications of the FAIR principles to areas within toxicology, notably to make new
approach methodologies (NAMs) transparent and accessible (Colborne et al., 2023), with areas such as nanotoxicology
taking the lead (Ammar et al., 2024; Barrick et al., 2023; Bossa et al., 2021; Furxhi et al., 2023; Jeliazkova et al., 2021) as
well as being applied to Adverse Outcome Pathways (AOPs) (Mortensen et al., 2022; 2025; Wittwehr et al., 2024) and
chemoinformatics technologies (Steinbeck, 2025). The current FAIR Lite principles aim to ensure that a user can find and



ALTEX, accepted manuscript
published September 25, 2025
doi:10.14573/altex.2502021

reuse a computational toxicology model to make predictions to support chemical safety assessment. This is particularly
relevant to the plethora of published models currently not findable or usable, and to ensure that this does not occur again. It
is intended that adherence to the FAIR Lite principles, as a minimum, should facilitate the process of better storage and
searching for models.

Whilst the FAIR Lite checklist is intended to be straightforward for use, it is not intended to be a “pass/fail”, but rather
a qualitative indication of where a model may fall short of the overall FAIR principles and progress, or update is required.
Pragmatism will undoubtedly be necessary to implement the principles, at least for the short-term. For instance, we do not
currently have the technologies for standardizing toxicological terms and ontologies to comply fully with the “Model
Capture and Curation” FAIR Lite principle. Despite the lack of an overarching ontology, the requirements have been
identified and proposals made for such a framework (Hardy et al., 2012), as well as for QSARs (Russman et al., 2014; Sild et
al., 2020; Spjuth et al., 2010) and nanomaterials (Hastings et al., 2015). A selection of existing, relevant ontologies is
summarized in Table S1. The ontologies in Table S1 cover various aspects of the description of models and (meta)data. It is
clear that to make these ontologies usable for computational toxicology effort is required to combine the relevant terms from
them into the required overarching ontology. It should be recognized that resources are needed to support the FAIRification
of computational models. Whilst FAIR is a laudable aim, it will not succeed without more significant input into the
platforms for sustainable models and the development of globally accepted community standards to describe data and
models.

4 Conclusions

A variety of computational toxicology models will be required to implement non-animal chemical safety assessments. The
application of the FAIR principles to computational toxicology models is essential. This study has confirmed that certain
fundamental criteria should be met to make a computational toxicology model FAIR. Four fundamental FAIR Lite principles
for computational toxicology models, based on methodological foundations of computational toxicology and unambiguously
understood by practitioners such as developers and end-users, are proposed. The aim in their development was that they are
easy to use and understand, as well as being applicable to all types of computational models. As such, the FAIR Lite
principles simplify the process of demonstrating the FAIRness of a computational model for toxicology. The FAIR Lite
principles include the need for a globally unique identifier, the provision of data for dependent and independent variables,
standardized and accepted vocabularies, documentation and a storage platform to make models interoperable and searchable.
It is recommended that these criteria, or adaptations thereof, are integrated formally into the process for the validation of
computational toxicology (e.g., into the QSAR Assessment Framework (QAF)). Meeting the criteria for FAIRness of any
computational model will require informatics infrastructure (i.e., to provide access to the training data and model engine,
preferably within a searchable database), establishing minimal levels of (meta)data (with particular reference to commercial
models), as well as creating and confirming the overarching ontologies to describe all aspects of the models.
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