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Abstract

Background: Cardiovascular disease is the leading cause of death in chronic kidney disease
populations. The risk of major adverse cardiovascular events (MACE) is greater than that
of progression to end-stage kidney disease. An exponential increase in mortality risk is as-
sociated with declining kidney function. This study aimed to review the current landscape
of traditional and novel blood biomarkers in predicting MACE in ESKD patients. Methods:
The systematic review was registered on PROSPERO (CRD42024497403). Standard and
extensive Cochrane search methods were used. The latest search date was July 2023. Par-
ticipants were aged ≥18 years with end-stage kidney disease. Descriptive analysis was
performed and data was presented in tabular form. The hazard ratio or odds ratio was pre-
sented for potential biomarkers discovered. Results: Overall, 14 studies (4965 participants)
were included for analysis; 12 focused on participants requiring haemodialysis and 2 on
haemodialysis and peritoneal dialysis. The biomarkers analysed were Troponin I (n = 3),
Troponin T (n = 3), B-type natriuretic peptide (n = 2), N-Terminal Pro-Brain-Natriuretic
Peptide (n = 7), soluble receptors for advanced glycation end products (n = 2), Galectin
3 (n = 4), and the serum-soluble suppression of tumorigenicity-2 (n = 2). Reported study
outcomes included all-cause mortality (n = 11), MACE (n = 5), cardiac specific mortality
(n = 6), sudden cardiac death (n = 2), and first cardiovascular event (n = 3). Conclusions:
This review outlines the potential role of traditional and novel biomarkers in predicting
MACE in end-stage kidney disease. Further larger-scale research is required to establish the
validity of the study outcomes to develop new methods of cardiovascular risk prediction
in this high-risk population.
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1. Introduction
Chronic kidney disease (CKD) is increasingly acknowledged as a significant non-

communicable disease worldwide, projected to become the fourth leading cause of life
years lost by 2040 following ischaemic heart disease (IHD), stroke, and chronic obstructive
pulmonary disease [1,2]. The global all-age CKD mortality has increased by 41.5% between
1990 and 2019 [3,4]. This impending health crisis calls for developments in identifying and
managing complications associated with CKD [5–7].

CKD is an independent risk factor for cardiovascular disease (CVD) [8,9], the leading
cause of death in CKD populations [10]. For individuals with CKD, the risk of major
adverse cardiovascular events (MACE) is greater than the risk of progression to end-stage
kidney disease (ESKD) [10,11]. The exact mechanism of premature cardiovascular ageing in
CKD is likely to be multi-factorial and secondary to the chronic systemic pro-inflammatory
state associated with uraemic toxins, vascular and myocardial remodelling, atherosclero-
sis, vascular calcification, and complex dyslipidaemia [12–14]. A meta-analysis of over
100,000 participants with varying estimated glomerular filtration rate (eGFR) demon-
strated an exponential increase in mortality risk with declining kidney function with
pooled cardiovascular mortality at eGFR 15–29 mL/min/1.73 m2 hazard ratio (H.R.) 13.51
[4.89–37.35] [15]. In the UK National Health Service, the cost of excess strokes and MIs in
the CKD population is estimated at GBP 174–GBP 178 million, translating to an estimated
GBP 434,618 annual CVD morbidity expenditure, specifically in the CKD stage 5 with
macroalbuminuria cohort per 1000 patient years [16,17].

In 2016, the United States Food and Drug Administration (FDA) and the National
Institutes of Health (NIH) task group coined the definition of a biomarker: “A defined
characteristic that is measured as an indicator of normal biological processes, pathogenic
processes, or biological responses to an exposure or intervention” [18]. Cardiac Troponin
is universally accepted as the biomarker of myocardial injury [19]. However clinically
utilised cardiac biomarkers such as Troponin, B-type natriuretic peptide (BNP) and its N-
Terminal precursor (NTproBNP) continue to be scrutinised in their ability to represent the
cardiovascular risk profile in CKD [20]. Elevated troponin is associated with cardiovascular
remodelling and ventricular hypertrophy and fibrosis, a phenomenon in CKD whereas
BNP [20], released during cardiomyocyte stretch, is associated with fluid overload often
seen in ESKD [21].

In addition, there are several promising new cardiovascular biomarkers, but their
role in risk stratification in ESKD is unknown. For example, ST-2 is a circulating form
of the interleukin-33 receptor released in response to vascular congestion, inflammation,
and pro-fibrotic stimuli and is a strong independent predictor of poor outcomes in heart
failure [22,23]. Further, Galectin-3 has also been associated with cardiac morbidity in HD
patients [24–26]. Galectin-3 is a promising marker of acute- and chronic inflammation
and fibrosis prognostic of heart failure and cardiovascular morbidity [27,28]. However,
as circulating plasma levels are influenced by kidney function, their role in ESKD is
poorly understood [27]. It is therefore imperative to identify highly sensitive and specific
biomarkers, with defined threshold concentrations that can identify sub-clinical disease
leading to better risk prediction models for MACE in ESKD [29].

This study aimed to perform a systematic literature review summarising the current
landscape of traditional and novel blood biomarkers in predicting all-cause mortality and
MACE in ESKD patients to identify strengths and areas of unmet need.

2. Materials and Methods
This systematic review was registered in PROSPERO (CRD42024497403).
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Population: Patients aged ≥ 18 years, any sex or ethnicity with end-stage kidney
disease (ESKD) (defined by the Kidney Disease: Improving Global Outcomes (KDIGO)
criteria [11]) receiving haemodialysis or peritoneal dialysis

Intervention: Blood-based biomarker measurement.
Outcome: Major adverse cardiovascular events (MACE) as a composite or split into in-

dividual components such as—ischaemic heart disease, angina, acute myocardial infarction,
heart failure, atrial fibrillation or flutter, ischaemic stroke, and all-cause mortality (death).

Two online databases were searched on the 1st of July 2023: Ovid MEDLINE, and
PubMed databases.

The study designs included meta-analyses, cohort studies, case–control studies, cross-
sectional studies and case series (n > 5). The filters applied to the search tool were an
original publication date between 2013 and 2023 (allowing for an inclusion period of
10 years) and an abstract available in English with sufficient data for extraction. Studies
that did not report outcomes as hazard ratios or odds ratios were excluded alongside
secondary data and non-human studies. The reference lists of relevant literature were
hand-searched to identify any additional eligible studies. The search strategy is available
in the Supplementary Materials, Table S1.

Selection process

Four reviewers independently completed the title and subsequent abstract screen-
ing: E.D., M.E., GMc and A.R. Full-text screening was completed by E.D. with GMc and
A.R. also reviewing half the full-text screen each. At every level of review, any conflicts
were discussed and subsequently resolved. Duplicate results were screened electronically
by Rayaan software (https://www.researchgate.net/publication/311443509_Rayyan-a_
web_and_mobile_app_for_systematic_reviews, accessed on 3 June 2024), and any further
remaining duplicates were manually removed after cross-checking. Critical Appraisal
Skills Programme (CASP), a cohort study checklist was applied to each included study to
evaluate the quality of the study and determine the risk of bias [30].

Data collection and analysis

Descriptive analysis was applied to the data collected from the included studies and
presented in tabular form. The data outcomes extracted from each study were first named
author, country of study, publication year, study design, dialysis modality: Haemodialysis
(HD) or peritoneal dialysis (PD.), dialysis vintage, cohort demographics, cardiovascular
risk factors, biomarker, outcome measured, hazard ratio or odds ratio. Meta-analysis was
not performed due to heterogeneity in the data and variability of reported outcomes and
the definitions of MACE. If a study included a composite outcome, their definition was
included in the data extraction, which accounts for any inter-study variation in MACE.

Sex distribution was converted to a percentage of males. Cardiovascular risk factors
were quoted as the percentage of cohort where available. Incomplete data values were
recorded as N.A.

Biomarkers analysed in more than one study were included for full data extraction to
facilitate comparative analysis. Biomarkers included in one study or biomarkers consti-
tuted of ratio measurements were listed separately, and their full data was not extracted
or analysed.

3. Results
3.1. Data Extraction

An online database search was completed in July 2023 and yielded 658 results. A total
of 197 duplicates were identified and removed. The remaining 461 records were screened
by abstract, and a subsequent 124 were included for full-text review. The final number of

https://www.researchgate.net/publication/311443509_Rayyan-a_web_and_mobile_app_for_systematic_reviews
https://www.researchgate.net/publication/311443509_Rayyan-a_web_and_mobile_app_for_systematic_reviews
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papers included for full data extraction and analysis was 14. A further 13 studies reported
biomarkers unique to one study or biomarker ratios. No further papers were included from
screening reference lists. The process of study selection is summarised in Figure 1.
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Identification of studies via databases and registers 

Figure 1. Prisma flowchart outlining process for study selection for inclusion in review.

3.2. Quality Assessment

The CASP checklist was applied to all included studies. The checklist highlighted the
risk of bias in those studies whereby exclusion criteria was not stipulated. Furthermore,
cardiovascular risk factors were deemed important confounding factors that were not
reported within some studies. See Supplementary Table S2 for CASP checklist results.
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3.3. Demographics and Study Design

The total number of participants included in the 14 papers for full-text extraction was
4965 (range 104–3218). The mean age was 63 years (range 57–71), and 58% of participants
were male sex. The mean body mass index (B.M.I) of the participants was 24 kg/m2, the
number of participants who smoke was 33% and 43% of participants had a diagnosis
of diabetes. There was variation in the cardiovascular co-morbidities reported between
studies, with 3 studies not reporting any data in this regard. See Supplementary Table S3
for full details.

Of the included studies, 12 were based on patients who were receiving haemodial-
ysis (HD) [31–42], and 2 studies were based on patients who were receiving HD
and/or peritoneal dialysis (PD) [43,44]. The median dialysis vintage was 3.5 years
(range < 3 months–9.3 years), although there was variability in the completeness of report-
ing, with some studies only referencing the inclusion/exclusion criteria without explicitly
including dialysis vintage. The median follow-up period was 32 months (range 20–60).

Reported study outcomes included all-cause mortality (n = 11), cardiac specific mor-
tality (n = 6), major adverse cardiovascular events (MACE) (n = 6), sudden cardiac death
(n = 2), and the first cardiovascular event (n = 3).

3.4. Included Biomarkers

A summary of included studies, biomarkers and outcomes reported is included
in Table 1. The biomarkers included for analysis were Troponin I (n = 3), Troponin T
(n = 3), B-type natriuretic peptide (BNP) (n = 2), N-Terminal Pro-Brain-Natriuretic Peptide
(NTproBNP), (n = 7), soluble receptor for advanced glycation end products (sRAGE) (n = 2),
Galectin 3 (Gal–3) (n = 4) and serum-soluble suppression of tumorigenicity-2 (sST2) (n = 2).
Studies reporting biomarkers unique to one study or biomarkers ratios that were not
included for full data analysis are found in Supplementary Table S4.

Due to heterogeneity of the data and the definitions of outcome, a formal meta-analysis
was not conducted. Report HR for all-cause mortality, ranged from 1.41 to 23.7.

Cardiac Troponin: Troponin I (n = 3), Troponin T (n = 3)

Cardiac troponin forms part of the contractile apparatus of the cardiac myofilament.
Three isoforms of troponin are present designated T, I and C. Currently immunoassays, of
high analytical sensitivity are used in clinical practice to measure cardiac specific troponin T
and I. Cardiac troponin is accepted as a biomarker of myocardial injury [19]. The results are
summarised in Table 1. Six studies analysed Troponin as a biomarker: Troponin I (n = 3),
Troponin T (n = 4). Apart from Otsuka et al. [38], all these studies selected a biomarker
threshold for Troponin. All-cause mortality was calculated for Troponin across all the
studies apart from Kruzan et al. [35] whereby the outcome was sudden cardiac death only.
Hayashi et al. [43] was one of only two studies that recruited incident dialysis patients,
both PD (n = 220) and HD (n = 28), analysing all-cause and cardiac specific mortality. PD
and HD outcomes were not directly compared. In 89 participants, sample collection for
Troponin T levels occurred at two time points: 3–6 months and 1–2 weeks before dialysis
initiation. This additional analysis showed an increase in Troponin T level from 0.02 to
0.04 ng/mL (p-value < 0.001 with multi-variate logistic regression analysis showing male
sex and the degree of change in diastolic blood pressure were associated with the observed
Troponin T increase [43].
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Table 1. Study design, biomarker threshold and outcome data.

First Author
Country

Year

Study
Design

Dialysis
Modality Participants (n) Biomarker Biomarker Threshold Outcome Measure Number with

Outcome
Hazard Ratio or Odds Ratio with [95%

Confidence Interval]

Alam et al. [31]
Canada

2013

Single Centre
Prospective HD a 133 Troponin I 0.06 µg/L

All-cause mortality 23 2.83
[1.49–5.37]

Cardiac specific mortality
(AMI b, CCF c, fatal

arrhythmia)
15 4.04

[1.46–11.2]

Hayashi et al. [43]
Japan
2017

Single Centre
Prospective

HD
PD d

248
220 HD
28 PD

Troponin T 0.01 ng/mL
All-cause mortality 51 1.47

[1.15–1.88]

Cardiac specific mortality
(Not specified) 10 1.479

[0.93–2.36]

Kawagoe et al. [33]
Japan
2018

Multi-centre
Prospective HD 1310 NTproBNP Continuous

pg/mL

All-cause mortality 144 4.62
[3.48–6.14]

Cardiac specific mortality
(ischemic or haemorrhagic

stroke, AMI, CCF, or rupture of
an aortic aneurysm)

54 4.95
[3.11–7.89]

Schwermer et al. [39]
Poland

2015

Multi-centre
Prospective HD 321 NT-proBNP Continuous

pg/mL All-cause mortality 97 1.41
[1.17–1.70]

Dozio et al. [44]
Italy
2018

Single–centre
Prospective

HD
PD

123
56 HD
67 PD

sRAGE e Continuous pg/mL All-cause mortality 23
1.04

[1.01–1.08]
(ODDS RATIO)

Jung et al. [32]
Korea
2017

Single- centre
Prospective HD 199 sRAGEs Continuous

ng/mL All-cause mortality 27 1.074
[0.59–1.97]

Kruzan et al. [35]
USA
2016

Multi-centre
Prospective

SECONDARY DATA
HD 503

NTproBNP

(ng/mL)
Continuous and tertiles

Sudden cardiac death
(out-of-hospital deaths) 75

1.33
[1.21–1.46]

59–1710 Reference

1728–7269 1.99
[1.25–3.14]

7350–273,502 4.49
[2.61–7.71]

Troponin I

(pg/mL)
Continuous and tertiles

1.19
[1.06–1.32]

<0.0015 Reference

0.015–0.039 1.82
[1.06–3.10]

0.040–3.09 2.14
[1.46–3.13]
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Table 1. Cont.

First Author
Country

Year

Study
Design

Dialysis
Modality Participants (n) Biomarker Biomarker Threshold Outcome Measure Number with

Outcome
Hazard Ratio or Odds Ratio with [95%

Confidence Interval]

Otsuka et al. [38]
Japan
2019

Single centre
Prospective HD 104

hs Troponin T Continuous
(ng/Ml)

MACE
(all-cause death, AMI requiring

coronary revascularisation,
and stroke)

51

3.12
[1.79–5.44]

BNP Continuous
(pg/mL)

1.90
[1.09–3.32]

Shafi et al. [40]
USA
2014

Multi-centre
Prospective HD 446

Troponin I ≥0.1 ng/mL All-cause mortality 323 1.75
[1.37–2.24]

NT-proBNP ≥9252 pg/mL Cardiac specific mortality 143 2.29
[1.55–3.38]

(All outcome measured for one of the biomarkers
above threshold and not demonstrated

separately)

First CVE 271 1.67
[1.32–2.10]

Sun et al. [41]
China
2021

Single centre
Prospective HD 180

hs-Troponin T 14 pg/mL All-cause mortality 37
hs-Troponin T BNP

3.32
[1.93–5.71]

2.24
[1.47–3.43]

BNP
Continuous

pg/mL

First fatal or non-fatal CVE 84 3.02
[2.11–4.31]

2.36
[1.83–3.04]

MACE
(non-fatal AMI; non-fatal

CVA h; CCF; Cardiac specific
mortality

78 3.37
[2.32–4.89]

2.22
[1.43–3.34]

Voroneanu et al. [42]
Romania 2018

Multi-centre
Prospective HD 173

Galectin 3
(Gal–3)

median levels MACE
(Death and CV events (AMI;

SCD i; non-fatal CVA)

47

28.1 ng/mL

NT-proBNP 4234 pg/mL low
NT-proBNP–low Gal-3 reference

low NT-proBNP–high
Gal-3

2.1
[0.79–5.63]

high NT-proBNP–low Gal-3 1.98
[0.73–5.35]

high
NT-proBNP–high Gal-3

3.65
[1.45–9.21]

Liu et al. [36]
China
2022

Single centre
Prospective HD 506 Gal–3

8.65
ng/mL

All-cause mortality 188 1.92
[1.17–3.17]

Cardiac specific mortality 125 2.47
[1.25–4.87]
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Table 1. Cont.

First Author
Country

Year

Study
Design

Dialysis
Modality Participants (n) Biomarker Biomarker Threshold Outcome Measure Number with

Outcome
Hazard Ratio or Odds Ratio with [95%

Confidence Interval]

Kim et al. [34]
Korea
2021

Single centre
Prospective HD 296

Gal–3

Continuous
ng/mL

All-cause mortality 36
Gal–3 sST2

1.35
[0.93–1.97]

1.81
[1.24–2.65]

Serum-soluble
suppression of

tumorigenicity-2
(sST2)

MACE
(Unstable angina pectoris,

AMI, TIA j, CVA, and CCF)
69 1.04

[0.82–1.33]
1.100

[0.855–1.414]

Obokata et al. [37]
Japan
2016

Single centre
Prospective HD 423

Gal–3

Continuous
ng/mL

All-cause mortality 48

23.7
[6.45–86.9]

<8.1 Reference

8.1–15.2 2.89
[1.04–8.02]

>15.2 6.51
[2.52–16.8]

sST2

Continuous
ng/mL

10.6
[4.98–22.5]

<0.237 Reference

0.237–0.299 1.12
[0.43–2.91]

>0.299 4.15
[1.91–9.03]

NTproBNP

Continuous
pg/mL

3.85
[2.22–6.68]

<2440 Reference

2440–8220 1.55
[0.60–4]

>8220 4.7
[2.07–10.7]
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Table 1. Cont.

First Author
Country

Year

Study
Design

Dialysis
Modality Participants (n) Biomarker Biomarker Threshold Outcome Measure Number with

Outcome
Hazard Ratio or Odds Ratio with [95%

Confidence Interval]

Obokata et al. [37]
Japan
2016

Gal–3

Continuous
ng/mL

Composite-all cause death and
MACE

(non-fatal AMI; CCF
hospitalisation; non-fatal CVA)

78

50.1
[16.7–151]

<8.1 Reference

8.1–15.2 2.13
[0.96–4.73]

>15.2 7.06
[3.47–14.4]

sST2

Continuous
ng/mL

8.87
[4.73–16.6]

<0.237 Reference

0.237–0.299 0.93
[0.46–1.88]

>0.299 3.21
[1.82–5.66]

NTproBNP

Continuous
pg/mL

3.31
[2.02–4.83

<2440 Reference

2440–8220 0.91
[0.47–1.77]

>8220 2.71
[1.57–4.71]

All results were displayed as hazards ratio apart from one which used odds ratio, a HD—Haemodialysis, b AMI—Acute myocardial infarction, c CCF—Congestive cardiac failure, d PD—Peritoneal
dialysis, e sRAGE—Soluble receptor for advanced glycation end products, h CVA—Cerebrovascular accident, i SCD—Sudden cardiac death, j TIA—Transient ischaemic attack.



Kidney Dial. 2025, 5, 39 10 of 18

BNP and NTpro BNP: BNP (n = 2), NTproBNP (n = 7)

The natriuretic peptides are polypeptide hormones produced and secreted by the
cardiac atria or ventricular myocytes. For various reasons, including in vivo and in vitro
stability B-type Natriuretic Peptide (BNP) and its N-terminal precursor are recommended
for clinical use. BNP and NT-proBNP are released in a 1:1 molar ratio from predominately
the cardiac ventricular myocytes in response to an increase in ventricular stretch. BNP and
NTproBNP are recommended as screening biomarkers for heart failure, with high negative
predictive value [45].

Nine studies analysed BNP (n = 2) and NTproBNP (n = 7) in their ability to predict
all-cause mortality (Table 1).

In their study, Shafi et al. [40] chose a specific threshold for NTproBNP based on
one previous HD study of MACE outcomes in diabetic HD patients [46]. In this study,
all outcome measures (all-cause mortality, cardiac specific mortality, first CV event) were
evaluated for one of the biomarkers (Troponin I or NTproBNP) when above the defined
threshold; therefore, their predictive value cannot be fully interpreted, neither can the
efficacy of a combined biomarker strategy using Troponin I and NTproBNP. Voroneanu
et al. [42] used the median level of NTproBNP as the threshold, with H.R. for incident MACE
based on a combination of NTproBNP and Galectin 3 (Gal–3). The risk of incident MACE
was increased when both biomarkers were above threshold, H.R 3.65 (95% confidence
interval (CI), 1.45–9.21).

Soluble suppression of tumorigenicity-2 (sST2): (n = 2)

Serum-soluble suppression of tumorigenicity 2 (sST2) is an inflammatory mediator,
part of the interleukin (IL)-1 receptor family [47]. It has been identified as a potential
cardiovascular biomarker as it has been proven to be upregulated in cardiomyocytes ex-
posed to mechanical [48,49] stretch or strain [47]. Kim et al. [34], in a study of 296 prevalent
HD patients with a dialysis vintage of 4 years investigated sSt2 as a continuous variable;
all-cause mortality H.R 1.811 [CI 1.240–2.645], MACE H.R 1.100 [CI 0.855–1.414]. Obokota
et al. [37] with 423 HD participants, dialysis vintage 5.8 years again analysing sSt2 as a
continuous variable demonstrated that it was able to predict all-cause mortality with a H.R
of 10.6 [4.98–22.5] and predict MACE with a H.R of 8.87 [4.73–16.6].

Soluble receptor for advanced glycation end products (sRAGE): (n = 2)

sRAGE binding results in a cascade of pro-inflammatory cytokines, including nuclear
factor kappa-β activation, expression of pro-inflammatory cytokines and oxidative stress
which is linked to the pathophysiology of CVD [50,51]. Dozio et al. [44] included 123 par-
ticipants (56 HD and 67 PD), reported an odds ratio for all-cause mortality of 1.044 [CI
1.009–1.083]. While Jung et al. [32] reported a H.R of 1.074 [CI 0.587–1.967] for all-cause
mortality in 199 HD patients. Both studies analysed sRAGE as a continuous variable.

Galectin 3 (Gal–3): (n = 4)

Galectin 3 can be considered a multi-functional regulatory molecule found in multiple
different human tissues and has been associated with a plethora of diseases, hence lacking in
clinical specificity [52]. It promotes pro-inflammatory characteristics that can be associated
with atherosclerotic plaque formation and the development of cardiac fibrosis in heart
failure [53,54].

Liu et al. [36] defined a Gal-3 threshold of 8.65ng/mL using a bioinformatic software
X-tile version 3.6.1 [55]. This study of 506 HD patients of dialysis vintage of >3 months
and 60 months follow up, reported an all-cause mortality H.R 1.92 [1.17–3.17] and cardiac-
specific mortality H.R 2.47 [1.25–4.87], although limited cardiovascular demographics were
reported or included in the analysis. Kim et al. [34], a single centre study of 296 preva-
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lent HD patients with 36 months follow up found no association between Gal-3 and
all-cause mortality H.R 1.354 [0.931–1.971], MACE (unstable angina pectoris, acute coro-
nary syndrome, transient ischaemic attack, stroke, and congestive cardiac failure) H.R 1.042
[0.820–1.325].

4. Discussion
This systematic review provides an overview of the range of currently used and emerging

biomarkers in clinical practice. This review identified two routinely used clinical biomarkers,
Troponin and BNP, and three other biomarkers, namely ST2, Soluble RAGE and Galectin-3.
However, there remains a gap in the clinical use of biomarkers to stratify patients. This study
highlighted the heterogeneity of the literature in terms of methodology and the definition of
outcomes. The most frequently studied biomarkers were Troponin and NTproBNP; biomark-
ers already utilised in current clinical practice for cardiac disease. These circulating blood
cardiac biomarkers provide insight into cardiovascular structure and function, including
myocyte injury (cardiac Troponin), myocyte stress (natriuretic peptides), inflammation and
fibrosis. Cardiac Troponins and natriuretic peptides have become incorporated into many
national and international guidelines, providing advice on their measurement, diagnostic
utility, interpretation of results and diagnostic accuracy [56–58]. acute myocardial infarction
and heart failure [58]. It is worth noting, however, that circulating plasma levels of natriuretic
peptides are influenced by kidney function. As such, diagnostic threshold levels proposed in
guidelines for acute myocardial infarction and heart failure may not be appropriate in this
specific population [59]. Similarly, for reasons that are not fully understood, patients with
ESKD often have higher baseline Troponin levels, which require more cautious interpreta-
tion, leading to some suggestions that it is preferable to assess dynamic biomarker results as
opposed to set thresholds [60–62].

In the absence of novel biomarkers for CV risk prediction in CKD, clinically utilised car-
diac biomarkers such as Troponin T and NTproBNP have been applied to CKD cohorts [63].
Lidgard et al. [64] investigated the superiority of including Troponin T and NTproBNP
to Framingham and Pooled Cohort Equation (PCE), proposing that adding Troponin T,
but not NTproBNP, improved the prediction of cardiovascular events. Bundy et al. [65]
aimed to develop a risk score to predict the 10-year risk of atherosclerotic cardiovascular
disease inherent to CKD by adapting the American College of Cardiology/American Heart
Association PCE. High-sensitivity C-reactive protein (hs-CRP), Troponin-T, and NT-proBNP
were included in the PCE in a cohort of 2604 participants with CKD (average eGFR 56.0)
and demonstrated a net reclassification improvement of 10.0% (95% CI, 6.8% to 13.3%) [65].

Utilising biomarkers in combination with other causal CVD risk factors should im-
prove the risk prediction for MACE, including mortality above the currently established
standard of care [66]. Presently no validated risk prediction model acknowledges or
adjusts for the increased risk of CVD as a consequence of CKD, and more specifically
ESKD, utilising biomarkers. There is a significant increase in mortality for incident HD
patients, especially within the first six months, and an 80% higher death risk in the first
2 months [67,68]. Recently, Matsushita and colleagues [69] have evidenced that kidney
specific variables such as eGFR and proteinuria enhance the PCE’s predictive value which
highlights the need for CKD to be acknowledged when developing risk prediction models
for MACE. A systematic review by Anderson et al. [70] evidenced that multiple studies
have validated prognostic risk scores in incident dialysis patients; however, these prog-
nostic indices only use co-morbidity data or adapted current mortality scores such as the
Charlson co-morbidity index (CCI) [71] rather than including cardiac biomarkers as addi-
tional discriminators. Adopting scoring indices such as CCI (including modified versions),
Renal Epidemiology and Information Network (REIN) score [72], and the Kahn–Wright
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Index [73] was guarded given the inclusion of multiple variables and risk cut-off values,
which led to significant bias and the absence of comprehensive external validation [70].
Floege et al. [74] have developed a mortality risk score, Analysing Data, Recognising Excel-
lence, and Optimising Outcomes cohort score [AROii score] adapted from the Framingham
score that utilises routinely collected biochemical parameters such as c-reactive-protein and
albumin to predict one- and two-year mortality. In our review, Obokota et al. [37] compared
sST2 and Gal-3 to the AROii, where incorporating both novel biomarkers resulted in an
increase in predictive accuracy of all-cause mortality compared to the AROii model alone
(c-statistic 0.828 vs. 0.79). Further analysis also reported an incremental value of sST2 and
Gal-3 over NTproBNP.

Risk prediction utilising cardiac biomarkers has also been demonstrated in population-
based studies and non-dialysis CKD. Nowak et al. [75] investigated the role of includ-
ing kidney biomarkers such as eGFR and urine albumin-to-creatinine ratio (ACR) to the
Atherosclerosis Risk in Communities (ARIC) [76] calculator to predict incident heart failure
in asymptomatic patients. Samples were analysed from 450,212 participants in the UK
Biobank to reflect a broad patient demographic in the primary care setting. The results
demonstrated that adding Cystatin C-based eGFR and urine albumin-to-creatinine ratio
improved the detection of incident heart failure risk (∆C = 0.019 [95% CI, 0.015–0.022]) [75].
None of the papers in this review compared their outcome measures with currently vali-
dated and utilised CVD prediction scores. Gregg et al. [77], a study of 3218 participants
within the population-based Dallas Heart Study, included a CKD and non-CKD cohort to
evaluate both BNP and NTproBNP at a threshold of > 75th sex-based percentile to predict
all-cause mortality. This study showed all-cause mortality for BNP H.R 2.47 [95% CI, 1.63,
3.75] versus NTproBNP with a H.R of 3.66 [95% CI, 2.28, 5.88].

CKD mineral bone disease (CKD-MBD) is associated with vascular calcification, left
ventricular hypertrophy and MACE [78]. Dimkovic et al. [79] analysed 220 prevalent HD
patients and applied a Composite calcification Score (CCS) to predict the risk of cardio-
vascular death. The CCS required X-ray and ultrasound imaging to quantify the degree
of calcification. Participants with CCS in the highest quartile cardiovascular death H.R
3.776 [CI 2.063–6.912, p-value 0.000] [79]. Given the cost implications of additional imaging
modalities to complete the scoring system, utilisation of imaging markers is unlikely to
be considered a clinically applicable tool. In this systematic review, two studies utilised
imaging alongside biomarkers to form a risk prediction tool. Sun et al. [41] did not evidence
an improvement in the prediction of CV outcome by combining echocardiogram measures
of left ventricular mass index and flow velocities with Troponin T. Otsuka et al. [38] investi-
gated the combination of abnormal ankle brachial index and Troponin T, concluding that a
combination of imaging and blood biomarker was a better predictor of MACE, H.R, 4.42
(95% CI 2.29–8.51; p-value < 0.001).

Limitations

This study presents the data for the most investigated clinically utilised cardia biomark-
ers (BNP, NTpro BNP and Troponin) as well as potential cardiac biomarkers (sST2, sRAGE,
Gal–3). However, we also acknowledged that novel biomarkers may have an emerging
role which is a limitation of this paper. Further limitations include the heterogeneity in
the study protocols that were compared. While all studies did collect pre-dialysis samples,
there was no standard approach to the sample collection process. Moreover, there was
variation in the threshold chosen for biomarkers, which was especially noted in NTproBNP
and Troponin. This study focused on a specific outcome measure, MACE; however, there
was variation in the definition of MACE adopted by each study as the outcome measure.
A systematic review by Bosco [80] et al. looked at 58 observational studies with MACE
as an outcome measure and found only 8.6% matched the traditional three-point MACE



Kidney Dial. 2025, 5, 39 13 of 18

randomised control trial (RCT) definition of acute myocardial infarction, stroke, or cardio-
vascular death. The authors reported the commonest MACE component definitions were
as follows: AMI, stroke, 15.5% (9/58); AMI, stroke, all-cause mortality, 13.8% (8/58). A
further article by Bhatty et al. [81] has also called for standardising composite outcome
measures in cardiology to allow the true comparison and interpretation of trial data. In ad-
dition, all-cause mortality has been utilised as a composite outcome in some interventional
cardiology trials such as the CvLPRIT trial [82]. Further studies should aim to standardise
the methodology to enable more accurate comparisons to establish meaningful conclusions
from analysed results.

5. Conclusions
MACE, including all-cause mortality, is a significant risk in patients with ESKD. This

systematic review highlights the potential role of biomarkers to stratify intervention to
reduce the CV risk in this cohort. Further discovery science is required to uncover specific
cardiovascular biomarkers relevant to this population due to the great unmet need.
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