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Predicting normative walking biomechanics ==
across the lifespan using seven simple
features

Bernard X. W. Liew"", Rachel Senden?, David Rugamer®, Emanuel Sommer?®, Kenneth Meijer?, Qichang Mei*®,
Richard Foster’ and Matthew Taylor'

Abstract

The assessment of gait impairments requires a normative reference for comparison. For a fair assessment,
comparisons must be made against a reference standing after controlling for sex, anthropometry, and walking
characteristics. This study aimed to develop statistical models that predict the lower-limb kinematics and kinetics
of walking across the lifespan of healthy participants, using seven simple covariates. Sixteen statistical models
predicted 16 joint kinematics and kinetics during walking using the covariates of sex, age, height, mass, side
(laterality), walking speed, and cadence, which were developed based on 301 participants between three to 91
years old. The root mean squared error (RMSE) ranged from 4.71° to 7.97° for joint angles, within 0.07 N/kg for
ground reaction forces, 0.09 to 0.15 Nm/kg for joint moments, and 0.33 to 0.39 W/kg for joint powers. We provide
both online and local apps which can be easily used by clinicians and scientists to generate normative walking
data with uncertainty values, which can be used for movement impairment analysis (https://github.com/EmanuelS
ommer/ShinyFOSR) .

Keywords Functional regression, Kinematics, Kinetics, Lifespan, Walking speed

Introduction

Movement impairments are common in many neu-
rological [1], musculoskeletal [2], cardiovascular [3]
disorders, and even manifest naturally due to ageing
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mass index, height), and spatiotemporal walking char-
acteristics (e.g. walking speed) [9]. To our knowledge,
there are very few tools that non-specialists can lever-
age to provide that baseline reference to make clinical
judgements.

The most common method to compare movement
impairments is based on tools, termed “gait indices’, such
as the Gait Deviation Index [10-12], Gait Profile Score
[13], and the Gillette Gait Index [10]. A challenge when
using traditional gait indices is that it requires clinicians
or researchers to collect data on individuals defined as
“normative’, from scratch, to develop a database upon
which a normative index is quantified and compared.
This process can be very time-consuming and expensive.
To our knowledge, no open-source “normative” dataset
or normative gait indices have been published to enable
researchers to compare. Another limitation of traditional
gait indices is that typical movements can be affected
by movement-specific factors, like the speed of walking
[14], and potentially individual-specific factors, like age.
This means that if the gait index was developed based
on a sample with a different characteristic from the tar-
get patient, or performed a movement with different task
requirements, traditional gait indices may classify the
target patient as impaired.

An alternative to the use of traditional gait indices is
a direct population-based statistical approach towards
quantifying an average with a measure of uncertainty
of any biomechanical parameters of interest [9, 15, 16].
Population-based statistical approaches in biomechan-
ics, such as Statistical Shape Modelling, are not new and
have been largely used to scale the morphology of dif-
ferential anatomical region(s) from a generic model to
fit the anthropometry of the measured individual [17].
Less research has focused on the statistical prediction of
normal human motion, particularly via predictive factors
that are simple, quick, and cheap to measure clinically.
A previous study reported that the sagittal plane joint
angles during walking of the ankle, knee, and hip could
be predicted within < 2°, based only on knowing an indi-
vidual’s walking speed, gender, age, and body mass index
[9]. Another study reported that lower-limb joint angles
can be predicted within a root-mean-squared error
(RMSE) of 4.45° to 6.61° based on age, height, and weight,
or based on the shape of the lower-limb bones [18].

A limitation of prior studies [9, 18] is the inclusion of
a restricted age spectrum of participants (e.g. 39 + 13
years in [9], and 22 + 2 years in [18]), the assumption of
statistical linearity between the covariates (also known
as predictors) and the biomechanical outcomes and the
inclusion only of kinematic features as outcomes for pre-
diction. It is well known that kinematic and kinetic gait
differences can be observed across the human lifespan
[19]. For example, in a study, only children reported that
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ankle push-off power (A2) appeared to mature by 4 years
old [20]. Separate research only on adults (i.e. > 18 years
old) reported that A2 power peaked again at 60 years
[19]. A population-based statistical model of gait bio-
mechanics must include participants from a wider age
spectrum of young children to very old adults. Previous
studies also assumed a linear relationship between the
included covariates and biomechanical outcomes using
statistical techniques like partial least squares regression
[18] and linear stepwise regression [9]. However, previous
studies have reported nonlinear relationships between
covariates such as age and biomechanical features like
joint power [19]. In other words, the association between
a covariate and a predictor varies depending on the value
of the covariates.

This study aims to develop statistical models that non-
specialists can use to generate normative kinematic and
kinetic data during walking, to (1) provide a baseline ref-
erence for comparison, and (2) use it as a tool for clinical
and academic education. We will do so by creating mod-
els that predict the lower-limb kinematics and kinetics of
walking across the lifespan of healthy participants, using
simple covariates that can be easily measured in clini-
cal settings, such as sex, age, height, mass, side (lateral-
ity), walking speed, and cadence. We hypothesised that
the root-mean-squared error (RMSE) for the predicted
lower-limb joint angles would be less than the previously
defined minimal detectable change threshold of < 5° [21].
For joint kinetics, we also hypothesise that the RMSE of
the predicted joint moments would be less < 0.4 Nm/Kg
[21].

Methods

Participants

Normative data collected from previous studies of Sen-
den et al. were used for this study, and the two studies
included 55 typically developed children [22] and 246
healthy adults [23].

Data collection

Three-dimensional (3D) gait analysis was performed
at the motion lab of the MUMC + using the Computer
Assisted Rehabilitation Environment (CAREN, Motek
Medical BV, Amsterdam) system. Participants walked on
an instrumented split-belt treadmill (ForceLink, Culem-
borg, 1000 Hz), while marker trajectories were captured
with a 12-camera optical motion capture system (Vicon,
Oxford, 100 Hz). Participants wore standardised gymnas-
tic shoes and a safety harness to prevent falls.

Reflective markers were placed on the following land-
marks according to the Human Body Lower Limb Model
(HBM-II) [24]: Xyphoid process, sternum, C7, T10, bilat-
eral anterior and posterior superior iliac spines, and
for both legs on the thigh, medial and lateral femoral



Liew et al. Journal of NeuroEngineering and Rehabilitation

condyles and malleoli, anterior of the tibia, second toe,
5th metatarsal, and mid-calcaneus [24]. Markers on
medial femoral condyles and malleoli were used for cali-
bration only. The pelvis had 6 degrees of freedom (DOF)
(3 global translations of pelvis origin and rotation about
Z (yaw), Y (pitch), X (roll)), the hip had three rotational
DOFs (sagittal, frontal, rotation), the knee had one sag-
ittal DOF (sagittal), and the ankle had two DOF (sagit-
tal and frontal) [24]. The position and orientation of the
segments were resolved using an inverse kinematics algo-
rithm [24].

After a six-minute familiarisation period at comfort-
able walking speed, participants walked for 250 steps at
a comfortable, slow (30% slower than comfortable), and
fast (30% faster than comfortable) speed, which were
performed in a random order. To determine comfortable
walking speed, children performed repeated overground
walking trials over a nine-meter walkway, while speed
was measured using two movement detection ports. For
the healthy adults, the RAMP protocol was used where
participants started to walk on the treadmill at 0.5 m/s
while the speed was gradually increased to 0.01 m/s every
second until a comfortable speed was reached. This was
repeated three times and the average of three repetitions
was used as the comfortable speed.

The force plate configurations for the analog data were
set at 10 Hz for the low-pass prefilter frequency and 20
N for the force threshold. Marker trajectories and force
plate data were filtered with a unidirectional 2nd order
Butterworth filter at 6 Hz. Gait event detection was
defined based on a combination of heel marker kinemat-
ics and force plate data (exceeding the threshold of 50
N) [25]. Custom Matlab scripts were used to check data
quality and calculate spatiotemporal parameters, kine-
matics, and kinetics. Kinematic and kinetic data were
time-normalised to 100 data points between two con-
secutive initial contacts for each side. GRF, joint moment
and power data were subsequently normalised to body
mass (kg). The kinematic and kinetic trajectories have
been uploaded and are freely available in the Open Sci-
ence Framework (OSF) (children: https://osf.io/3xqew/;
adults: https://ost.io/t72cw/).

Statistical analysis

All analyses were conducted in R software (v4.4.2) using
the refund package (v0.1-37). We developed 16 statistical
models to predict 16 kinematic and kinetic trajectories
— angles (hip flexion, abduction, rotation; knee flexion;
ankle plantarflexion and inversion), GRF (vertical and
anterior-posterior), moments (hip flexion, abduction,
rotation; knee flexion; ankle plantarflexion), and powers
(hip, knee, ankle flexion). For all models, the same covari-
ates were included: sex (male or female), age (years),
walking speed (m/s), body mass (kg), height (m), cadence
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(steps/min), side (left or right), and the random effect of
the subject. We use a function-on-scalar model for each
of the three joints — specifically the pffr function in the
refund package. As a functional additive model, we model
the expectation of each outcome trajectory yi(t) for every
subject i at gait point t.

Yi (t) = Bo (t) + fage (agei, t) + fspeed (speed;, )
+ feadence (cadence;, t) + frt (height;,t)
+ fmass (mass;, t) + sexiBsex
+ sideifside + bi () + €45

where By(t) is the model’s time-varying intercept, P, a
time-independent effect of sex, B4, a time-independent
effect of side, f(, £) indicate functional effects that are
estimated to be non-linear both in the direction of the
covariate and across time, bi(¢) are time-varying random
intercepts, and g, and independent Gaussian error term.

An 80:20 split of the data was performed to create a
training set (80%, n = 240 participants) to develop the
models, and a testing set (n = 61 participants) to validate
the accuracy of the outcome predictions. The prediction
performance of the models was determined by compar-
ing the 16 predicted outcomes in the test set, against their
original values using the Root Integrated Mean Squared
Error (BW), relative Root Integrated Mean Squared Error
(relRMSE, %) [26], and Pearson correlation coefficient
(cor) [27, 28].

RMSE — \/f gw[uobs (t) ;“‘Pred (t)]th (1)

RMSE

0.5 [Zle (maxo<e<r (i (1) — ming<ecr (i (t)))} (2)
x 100%

relRMSE =

where T represents the stance duration between initial
contact and toe-off, wups (t) represents the value at the
t'"time point of the observed outcome, wuy;.cq (t) repre-
sents the value at the t!"time point of the predicted out-
come, and 7 represents either the observed or predicted
outcomes. We also report the association (point estimate
and 95% confidence interval [CI]) between the outcomes
and each of the fixed effect covariates. For the continuous
covariates of age, speed, cadence, height and mass, we
selected the 25th, 50th, and 75th quantiles of the values
to plot the smooth association estimate.

To make the model open source and easily accessible,
we retrained the models using the entire dataset (n=301)
and created a shiny app (https://github.com/EmanuelS
ommer/ShinyFOSR) for readers to input different cova
riate values to predict the mean waveform value of dif-
ferent kinematic and kinetic outcomes. Readers can use
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the app to predict, plot, and export the values as a figure
and table. We also included a reference with a detailed
and easy set of instructions to download and use the app
locally on their computer. This local version can predict
the mean values and the 95%CI or the standard deviation.

Results

Basic descriptive summaries of the cohort can be found
in Figure. 1. Figures 2 and 3 illustrate the average pre-
dicted kinematic and kinetic trajectories, alongside the
observed trajectories in the test dataset. RMSE ranged
from 4.71° to 7.97° for kinematic data, while relRMSE
ranged from 9.85% to 50.72% (Table 1). Accuracy was
the best generally for sagittal plane joint angles and the
poorest for transverse plane angles (Table 1). For kinetic
data, the statistical models predicted GRFs to be within
0.07 N/kg and <7% for RMSE, and relRMSE (Table 1).
The statistical models were better at predicting joint
moments than joint powers, with an accuracy for the
former ranging from 0.09 to 0.15 Nm/kg for RMSE and
9.23% to 24.71% for relRMSE; and for the latter ranging
from 0.33 to 0.39 W/kg for RMSE and 12.98 to 17.91% for
relRMSE (Table 1).
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Smooth effect plots

The smooth effect plots support the nonlinear association
between the included covariates of age and speed and
the kinematic and kinetic outcomes. For the covariate
age, the greatest effect is on the hip sagittal plane angle
at 26% of the gait cycle, where at the age of 46 years it
was associated with greater hip extension angle by -16.9°
(95%CI -17.3° to -16.5°) (Fig. 4). For joint moments, age
had the greatest effect on the hip sagittal moment, where
at age 46 years, it was associated with greater hip flexion
moment by -0.35Nm/kg (95%CI -0.36 to -0.33Nm/kg) at
21% of the gait cycle (Fig. 5). Age also had the greatest
effect on hip flexion power, where at age 46 years, it was
associated with greater hip power absorption by -0.35 W/
kg (95%CI -0.39 to -0.31 W/kg) at 19% of the gait cycle
(Fig. 5).

For the covariate speed, the greatest effect is on the hip
sagittal angle at 1% of the gait cycle, where with a speed
of 1.84 m/s, it was associated with an increase in hip flex-
ion angle 13.4° (95%CI 13.4° to 14.2°) (Fig. 6). For joint
moments, speed had the greatest effect on the hip sagittal
moment, where at a speed of 1.84 m/s, it was associated
with an increase in hip extensor moment by 0.43Nm/kg
(95%CI 0.42 to 0.45Nm/kg) at 1% of the gait cycle (Fig. 7).
Speed had the greatest effect on ankle plantarflexion
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Table 1 Accuracy of predicted kinematic and kinetic trajectories

Variables RMSE relRMSE (%) Correla-
tion

Hip Sagittal Angle (°) 7.97 (3.48) 16.59 (8.45) 0.94 (0.06)

Hip Frontal Angle (°) 3.44 (1.45) 38(9.7) 0.89 (0.09)

Hip Transverse Angle (°) 794 (3.32) 50.72 (22.1) 0.44 (0.44)

Knee Sagittal Angle (°) 6.21(2.78) 9.85 (4.7) 0.97 (0.04)

Ankle Sagittal Angle (°) 471 (4.13) 18.96(19.22)  0.88(0.1)

Ankle Frontal Angle (°) 7.71 (5.85) 4581 (4346) 038(0.35)

GRF AP (N/kg) 0.02 (0.01) 6.63 (3.85) 0.96 (0.06)

GRF Vertical (N/kg) 0.07 (0.03) 6.15(2.7) 0.99 (0.02)

Hip Sagittal Moment (Nm/ 3(0.08) 11.07 (7.56) 093 (0.11)

kg)

Hip Frontal Moment (Nm/  0.12 (0.04) 11.18 3.8) 0.96 (0.04)

ka)

Hip Transverse Moment 0.09 (0.03) 2471 (10.16)  0.79(0.2)

(Nm/kg)

Knee Sagittal Moment 0.15 (0.06) 17.26 (8.38) 0.83(0.21)

(Nm/kg)

Ankle Sagittal Moment 0.15(0.07) 9.23(5.13) 0.96 (0.06)

(Nm/kg)

Hip Sagittal Power (W/kg)  0.33(0.18) 17.61(7.22) 0.84(0.15)

Knee Sagittal Power (W/kg) 0.34 (0.15) 17.91 (5.18) 0.78(0.16)

Ankle Sagittal Power (W/ 0.39(0.18) 12.98 (6.18) 0.79(0.25)

k)
RMSE - root mean squared error; relRMSE - relative root mean squared error;
AP - anterior-posterior; GRF - ground reaction force.

power, where at a speed of 1.84 m/s it was associated with
an increase in power generation by 0.82 W/kg (95%CI
0.79 to 0.85 W/kg) at 49% of the gait cycle (Fig. 7).

Discussion

Determination of impaired movement depends on know-
ing normal movement. Statistical modelling based on
simple clinical measures represents a simple way that
scientists and clinicians can predict key walking bio-
mechanics of healthy individuals. The RMSE averaged
across the stride cycle for the lower-limb joint angles was
< 8°, poorer than our hypothesis of < 5°, and also margin-
ally poorer than prior studies < 7° [18]. In support of our
hypothesis, the RMSE was between 0.09 and 0.15 Nm/
kg for joint moments, and this was also better than prior
studies [29].

The predicted RMSE for joint angles in this study was
approximately 5° greater than previous studies, which
reported that the RMSE for sagittal plane joint angles
was within 2° [9, 30]. Previous studies have reported
that the minimal detectable change values of lower-limb
joint angles during walking of ~ 5°, but can increase up
to 7° [21]. RMSE values greater than minimal detectable
change values suggest some biomechanical outcomes
should be used with caution. For example, readers should
have more confidence in using our models to gener-
ate normative ankle plantarflexion angles (< 5°), and
use more caution when using them to create hip axial

(2025) 22:220

Page 6 of 11

rotation angles (> 5°) (Table 1). However, even though the
error metrics presented reflect the waveform-averaged,
the accuracy of our prediction models is not uniform
across the stride cycle, as observed in Figures. 2 and 3,
with better accuracy in some phases of the stride cycle
than in other phases. Also, there is no consensus on a sin-
gle clinically meaningful threshold kinematic and kinetic
value, which is likely to vary depending on the clinical
condition and joints investigated. Users of the present
prediction models in defining normative walking gait
biomechanics should be aware of our reported RMSE
values and determine clinically if these errors exceed a
clinically meaningful threshold.

The differences in the predicted accuracy of our bio-
mechanical waveforms between studies may be due to
different validation methods [9, 30]. Previous studies
used leave-one-subject-out cross-validation (LOSOCYV)
as their validation approach [9, 30], whereas the pres-
ent study used a train-test split approach. LOSOCV uses
more data, apart from one subject, for training. This
means that a greater percentage of the data was used
for training, and a smaller percentage of data was used
to validate the model, compared to a train-test split vali-
dation approach. For example, the study of Moissenet et
al. [9] used 1325 observations (53 subjects, 5 speeds, 5
trials) for each training loop, whereas we used only 720
observations (240 subjects, 3 speeds) for training. The
present findings thus provide a more conservative esti-
mate of gait kinematics predictive modelling, which may
be more transferable to unseen real-world applications.

The present study demonstrates that normative joint
kinetics during walking can be predicted using simple
clinical measures, without having to rely on more com-
plex biomechanical inputs as predictors. The predicted
RMSE for GRF, moments, and powers in this study
ranged between 0.02 and 0.07 N/kg, 0.09 to 0.15Nm/
kg, and 0.33 to 0.39 W/kg, respectively. Surprisingly,
these error ranges were less than machine learning pre-
diction models of joint moments using 3D motion cap-
ture inputs in running (RMSE: 0.07 to 0.54Nm/kg) [29],
and less than models using inertial measurement units
(IMUs) as inputs for walking (RMSE: 0.07 to 0.24 Nm/
kg) [31]. Wouda et al. predicted vertical GRF to a RMSE
of < 0.27BW using three IMU inputs for running [32].
Another study predicted ankle joint power for walking
using IMU sensors with a RMSE of < 0.21 W/kg [33]. Sta-
tistical models like the present and others [9], are useful
for population average prediction — which cannot cap-
ture variation between movement cycles, whereas more
complex prediction models built upon biomechanical
input predictors may be more useful for capturing cycle-
specific predictions.

Whilst the present study did not specify apriori a lin-
ear relation, previous studies have assumed a linear
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relationship between the predictors investigated (e.g. age,
speed) and the biomechanical outcomes [9, 16], whilst
another study assumed a quadratic association with the
outcomes [30]. The present study reported a non-linear
association between age and ankle plantar flexion, given
that ankle plantar flexion increased between 23 and 48
years old and decreased from 48 to 68 years old (Fig.
4e). The non-linear association between age and our 16
biomechanical outcomes investigated was evident in
our smooth plots (Figs. 4 and 5). Studies which used lin-
ear regression methods reported non-significant linear
associations between age and ankle plantar flexion dur-
ing push-off [9], while other studies reported a decreased
ankle plantar flexion during push-off in older adults
compared to younger adults [34]. This study provides
evidence that it may not be appropriate to assume lin-
earity across all values of the covariates and the outcome
across a gait cycle. Hence, whilst linear-regression-based
approaches provide very interpretable results (e.g. a beta

coefficient), they may not adequately model the rela-
tionships between the covariates and the biomechanical
outcomes.

A strength of the present study is the fact that we
included 301 participants between three and 91 years old,
which represents a five times greater sample size than
recent studies [9]. Apart from the age category of >80
years old, the current study included >20 participants in
each decade of years for adults, included in the model-
ling, making our statistical model more representative of
a lifespan population cohort. Non-biomechanical special-
ists can use our models and online tool to quickly gener-
ate data of normal walking joint kinematics and kinetics
using simple clinically oriented variables. This is more
advantageous than existing metrics like the Gait Devia-
tion Index, which still requires data collection to estab-
lish a reference, nor can such metrics be tuned to key
personal and gait characteristics easily. For clinicians, the
normative data can be used to compare biomechanical
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values from patients collected either using traditional
motion capture or more recent portable technologies,
like OpenCap. Movement impairment assessments may
be used as an outcome measure, for prognosis, and even
for treatment-decision making. Our lifespan approach
also means that clinicians can now account for matura-
tion changes when making clinical judgements in chil-
dren and adolescents. Lastly, clinical and academic
educators may use our models for teaching purposes to
visualise normal walking biomechanics.

This study has some limitations. First, the included par-
ticipants were collected whilst walking on a treadmill,
which might differ from overground walking [35]. Differ-
ences between treadmill and overground walking ranged
from 0.84° (pelvic tilt) to 6.42° (peak knee flexion dur-
ing swing) for joint angles, and 0.02 Nm/kg (peak knee
extension moment) to 0.32 Nm/kg (peak hip extension
moment) for joint moment [35]. Second, although we
included covariates which have previously been shown to
have a significant association with walking biomechanics,
more variables may play an important role when devel-
oping population-based models which were not currently
measured, like ethnicity [36] and psychological factors
[37]. Third, our biomechanical model had only one DOF
and two DOFs at the knee and ankle, respectively. This
means that statistical models to predict the constrained

knee and ankle kinematics and kinetics were not gener-
ated. Fourth, segment kinematics, like that of the pelvis,
were not reported, given that the focus of this paper was
on joint kinematics and kinetics. Lastly, our biomechani-
cal model was not scaled geometrically to account for
factors like tibial torsion, which has a significant effect
on lower-limb joint kinematics and kinetics [38, 39].
Also, we did not assess anthropometric measurements
like femoral and tibial torsion angles to use within our
statistical models. Although this may increase the per-
formance of our models, it would also make them more
complex to use clinically.

Conclusions

Statistical models using seven clinical covariates can pre-
dict most normative walking kinematics and kinetics,
apart from non-sagittal plane kinematics, to a level com-
parable to more complex machine learning models using
biomechanical covariates. Both our online and local apps
can be used by clinicians and scientists to generate nor-
mative data with uncertainty values, which can be plotted
against patient data for reporting.
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