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Introduction
Movement impairments are common in many neu-
rological [1], musculoskeletal [2], cardiovascular [3] 
disorders, and even manifest naturally due to ageing 
[4]. The traditional approach to assessing movements 
occurs in a lab, involves three-dimensional motion cap-
ture using multiple optical cameras and force plates [5]. 
With rapid advancements in computer vision and sensor 
technologies, movement assessments can now be eas-
ily undertaken in clinical environments, using ubiqui-
tous technologies, requiring no specialised training [6]. 
Assessing movement impairments in patients requires 
the comparison with typical reference standards from a 
healthy person or cohort [7, 8]. To ensure a correct inter-
pretation, comparisons must be made with healthy con-
trols after controlling for sex, anthropometry (e.g. body 
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Abstract
The assessment of gait impairments requires a normative reference for comparison. For a fair assessment, 
comparisons must be made against a reference standing after controlling for sex, anthropometry, and walking 
characteristics. This study aimed to develop statistical models that predict the lower-limb kinematics and kinetics 
of walking across the lifespan of healthy participants, using seven simple covariates. Sixteen statistical models 
predicted 16 joint kinematics and kinetics during walking using the covariates of sex, age, height, mass, side 
(laterality), walking speed, and cadence, which were developed based on 301 participants between three to 91 
years old. The root mean squared error (RMSE) ranged from 4.71° to 7.97° for joint angles, within 0.07 N/kg for 
ground reaction forces, 0.09 to 0.15 Nm/kg for joint moments, and 0.33 to 0.39 W/kg for joint powers. We provide 
both online and local apps which can be easily used by clinicians and scientists to generate normative walking 
data with uncertainty values, which can be used for movement impairment analysis (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​E​m​a​n​​u​e​​l​S​
o​m​m​e​r​/​S​h​i​n​y​F​O​S​R) .
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mass index, height), and spatiotemporal walking char-
acteristics (e.g. walking speed) [9]. To our knowledge, 
there are very few tools that non-specialists can lever-
age to provide that baseline reference to make clinical 
judgements.

The most common method to compare movement 
impairments is based on tools, termed “gait indices”, such 
as the Gait Deviation Index [10–12], Gait Profile Score 
[13], and the Gillette Gait Index [10]. A challenge when 
using traditional gait indices is that it requires clinicians 
or researchers to collect data on individuals defined as 
“normative”, from scratch, to develop a database upon 
which a normative index is quantified and compared. 
This process can be very time-consuming and expensive. 
To our knowledge, no open-source “normative” dataset 
or normative gait indices have been published to enable 
researchers to compare. Another limitation of traditional 
gait indices is that typical movements can be affected 
by movement-specific factors, like the speed of walking 
[14], and potentially individual-specific factors, like age. 
This means that if the gait index was developed based 
on a sample with a different characteristic from the tar-
get patient, or performed a movement with different task 
requirements, traditional gait indices may classify the 
target patient as impaired.

An alternative to the use of traditional gait indices is 
a direct population-based statistical approach towards 
quantifying an average with a measure of uncertainty 
of any biomechanical parameters of interest [9, 15, 16]. 
Population-based statistical approaches in biomechan-
ics, such as Statistical Shape Modelling, are not new and 
have been largely used to scale the morphology of dif-
ferential anatomical region(s) from a generic model to 
fit the anthropometry of the measured individual [17]. 
Less research has focused on the statistical prediction of 
normal human motion, particularly via predictive factors 
that are simple, quick, and cheap to measure clinically. 
A previous study reported that the sagittal plane joint 
angles during walking of the ankle, knee, and hip could 
be predicted within < 2°, based only on knowing an indi-
vidual’s walking speed, gender, age, and body mass index 
[9]. Another study reported that lower-limb joint angles 
can be predicted within a root-mean-squared error 
(RMSE) of 4.45° to 6.61° based on age, height, and weight, 
or based on the shape of the lower-limb bones [18].

A limitation of prior studies [9, 18] is the inclusion of 
a restricted age spectrum of participants (e.g. 39 ± 13 
years in [9], and 22 ± 2 years in [18]), the assumption of 
statistical linearity between the covariates (also known 
as predictors) and the biomechanical outcomes and the 
inclusion only of kinematic features as outcomes for pre-
diction. It is well known that kinematic and kinetic gait 
differences can be observed across the human lifespan 
[19]. For example, in a study, only children reported that 

ankle push-off power (A2) appeared to mature by 4 years 
old [20]. Separate research only on adults (i.e. ≥ 18 years 
old) reported that A2 power peaked again at 60 years 
[19]. A population-based statistical model of gait bio-
mechanics must include participants from a wider age 
spectrum of young children to very old adults. Previous 
studies also assumed a linear relationship between the 
included covariates and biomechanical outcomes using 
statistical techniques like partial least squares regression 
[18] and linear stepwise regression [9]. However, previous 
studies have reported nonlinear relationships between 
covariates such as age and biomechanical features like 
joint power [19]. In other words, the association between 
a covariate and a predictor varies depending on the value 
of the covariates.

This study aims to develop statistical models that non-
specialists can use to generate normative kinematic and 
kinetic data during walking, to (1) provide a baseline ref-
erence for comparison, and (2) use it as a tool for clinical 
and academic education. We will do so by creating mod-
els that predict the lower-limb kinematics and kinetics of 
walking across the lifespan of healthy participants, using 
simple covariates that can be easily measured in clini-
cal settings, such as sex, age, height, mass, side (lateral-
ity), walking speed, and cadence. We hypothesised that 
the root-mean-squared error (RMSE) for the predicted 
lower-limb joint angles would be less than the previously 
defined minimal detectable change threshold of ≤ 5° [21]. 
For joint kinetics, we also hypothesise that the RMSE of 
the predicted joint moments would be less ≤ 0.4 Nm/Kg 
[21].

Methods
Participants
Normative data collected from previous studies of Sen-
den et al. were used for this study, and the two studies 
included 55 typically developed children [22] and 246 
healthy adults [23].

Data collection
Three-dimensional (3D) gait analysis was performed 
at the motion lab of the MUMC + using the Computer 
Assisted Rehabilitation Environment (CAREN, Motek 
Medical BV, Amsterdam) system. Participants walked on 
an instrumented split-belt treadmill (ForceLink, Culem-
borg, 1000 Hz), while marker trajectories were captured 
with a 12-camera optical motion capture system (Vicon, 
Oxford, 100 Hz). Participants wore standardised gymnas-
tic shoes and a safety harness to prevent falls.

Reflective markers were placed on the following land-
marks according to the Human Body Lower Limb Model 
(HBM-II) [24]: Xyphoid process, sternum, C7, T10, bilat-
eral anterior and posterior superior iliac spines, and 
for both legs on the thigh, medial and lateral femoral 
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condyles and malleoli, anterior of the tibia, second toe, 
5th metatarsal, and mid-calcaneus [24]. Markers on 
medial femoral condyles and malleoli were used for cali-
bration only. The pelvis had 6 degrees of freedom (DOF) 
(3 global translations of pelvis origin and rotation about 
Z (yaw), Y (pitch), X (roll)), the hip had three rotational 
DOFs (sagittal, frontal, rotation), the knee had one sag-
ittal DOF (sagittal), and the ankle had two DOF (sagit-
tal and frontal) [24]. The position and orientation of the 
segments were resolved using an inverse kinematics algo-
rithm [24].

After a six-minute familiarisation period at comfort-
able walking speed, participants walked for 250 steps at 
a comfortable, slow (30% slower than comfortable), and 
fast (30% faster than comfortable) speed, which were 
performed in a random order. To determine comfortable 
walking speed, children performed repeated overground 
walking trials over a nine-meter walkway, while speed 
was measured using two movement detection ports. For 
the healthy adults, the RAMP protocol was used where 
participants started to walk on the treadmill at 0.5  m/s 
while the speed was gradually increased to 0.01 m/s every 
second until a comfortable speed was reached. This was 
repeated three times and the average of three repetitions 
was used as the comfortable speed.

The force plate configurations for the analog data were 
set at 10 Hz for the low-pass prefilter frequency and 20 
N for the force threshold. Marker trajectories and force 
plate data were filtered with a unidirectional 2nd order 
Butterworth filter at 6 Hz. Gait event detection was 
defined based on a combination of heel marker kinemat-
ics and force plate data (exceeding the threshold of 50 
N) [25]. Custom Matlab scripts were used to check data 
quality and calculate spatiotemporal parameters, kine-
matics, and kinetics. Kinematic and kinetic data were 
time-normalised to 100 data points between two con-
secutive initial contacts for each side. GRF, joint moment 
and power data were subsequently normalised to body 
mass (kg). The kinematic and kinetic trajectories have 
been uploaded and are freely available in the Open Sci-
ence Framework (OSF) (children: https://osf.io/3xqew/; 
adults: https://osf.io/t72cw/).

Statistical analysis
All analyses were conducted in R software (v4.4.2) using 
the refund package (v0.1-37). We developed 16 statistical 
models to predict 16 kinematic and kinetic trajectories 
– angles (hip flexion, abduction, rotation; knee flexion; 
ankle plantarflexion and inversion), GRF (vertical and 
anterior-posterior), moments (hip flexion, abduction, 
rotation; knee flexion; ankle plantarflexion), and powers 
(hip, knee, ankle flexion). For all models, the same covari-
ates were included: sex (male or female), age (years), 
walking speed (m/s), body mass (kg), height (m), cadence 

(steps/min), side (left or right), and the random effect of 
the subject. We use a function-on-scalar model for each 
of the three joints – specifically the pffr function in the 
refund package. As a functional additive model, we model 
the expectation of each outcome trajectory yi(t) for every 
subject i at gait point t.

	

yi (t) = β0 (t) + fage (agei, t) + fspeed (speedi, t)
+ fcadence (cadencei, t) + fht (heighti, t)
+ fmass (massi, t) + sexiβsex

+ sideiβside + bi (t) + εij

where β0(t) is the model’s time-varying intercept, βsex a 
time-independent effect of sex, βside a time-independent 
effect of side, f(, t) indicate functional effects that are 
estimated to be non-linear both in the direction of the 
covariate and across time, bi(t) are time-varying random 
intercepts, and εi and independent Gaussian error term.

An 80:20 split of the data was performed to create a 
training set (80%, n = 240 participants) to develop the 
models, and a testing set (n = 61 participants) to validate 
the accuracy of the outcome predictions. The prediction 
performance of the models was determined by compar-
ing the 16 predicted outcomes in the test set, against their 
original values using the Root Integrated Mean Squared 
Error (BW), relative Root Integrated Mean Squared Error 
(relRMSE, %) [26], and Pearson correlation coefficient 
(cor) [27, 28].

	
RMSE =

√´ T

0 [uobs (t) − upred (t)]2dt

T
� (1)

	

relRMSE = RMSE

0.5
[∑2

i=1 (max0<t<T (ui (t)) − min0<t<T (ui (t)))
]

× 100%
� (2)

where T  represents the stance duration between initial 
contact and toe-off, uobs (t) represents the value at the 
tthtime point of the observed outcome, upred (t) repre-
sents the value at the tthtime point of the predicted out-
come, and i represents either the observed or predicted 
outcomes. We also report the association (point estimate 
and 95% confidence interval [CI]) between the outcomes 
and each of the fixed effect covariates. For the continuous 
covariates of age, speed, cadence, height and mass, we 
selected the 25th, 50th, and 75th quantiles of the values 
to plot the smooth association estimate.

To make the model open source and easily accessible, 
we retrained the models using the entire dataset (n = 301) 
and created a shiny app (​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​​b​.​​c​o​​m​​/​E​m​a​​n​u​​e​l​S​
o​m​m​​e​r​/​S​h​i​n​y​F​O​S​R) for readers to input different ​c​o​v​a​
r​i​a​t​e values to predict the mean waveform value of dif-
ferent kinematic and kinetic outcomes. Readers can use 

https://osf.io/3xqew/
https://osf.io/t72cw/
https://github.com/EmanuelSommer/ShinyFOSR
https://github.com/EmanuelSommer/ShinyFOSR
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the app to predict, plot, and export the values as a figure 
and table. We also included a reference with a detailed 
and easy set of instructions to download and use the app 
locally on their computer. This local version can predict 
the mean values and the 95%CI or the standard deviation.

Results
Basic descriptive summaries of the cohort can be found 
in Figure.  1. Figures  2 and 3 illustrate the average pre-
dicted kinematic and kinetic trajectories, alongside the 
observed trajectories in the test dataset. RMSE ranged 
from 4.71° to 7.97° for kinematic data, while relRMSE 
ranged from 9.85% to 50.72% (Table  1). Accuracy was 
the best generally for sagittal plane joint angles and the 
poorest for transverse plane angles (Table 1). For kinetic 
data, the statistical models predicted GRFs to be within 
0.07  N/kg and < 7% for RMSE, and relRMSE (Table  1). 
The statistical models were better at predicting joint 
moments than joint powers, with an accuracy for the 
former ranging from 0.09 to 0.15 Nm/kg for RMSE and 
9.23% to 24.71% for relRMSE; and for the latter ranging 
from 0.33 to 0.39 W/kg for RMSE and 12.98 to 17.91% for 
relRMSE (Table 1).

Smooth effect plots
The smooth effect plots support the nonlinear association 
between the included covariates of age and speed and 
the kinematic and kinetic outcomes. For the covariate 
age, the greatest effect is on the hip sagittal plane angle 
at 26% of the gait cycle, where at the age of 46 years it 
was associated with greater hip extension angle by -16.9° 
(95%CI -17.3° to -16.5°) (Fig. 4). For joint moments, age 
had the greatest effect on the hip sagittal moment, where 
at age 46 years, it was associated with greater hip flexion 
moment by -0.35Nm/kg (95%CI -0.36 to -0.33Nm/kg) at 
21% of the gait cycle (Fig.  5). Age also had the greatest 
effect on hip flexion power, where at age 46 years, it was 
associated with greater hip power absorption by -0.35 W/
kg (95%CI -0.39 to -0.31 W/kg) at 19% of the gait cycle 
(Fig. 5).

For the covariate speed, the greatest effect is on the hip 
sagittal angle at 1% of the gait cycle, where with a speed 
of 1.84 m/s, it was associated with an increase in hip flex-
ion angle 13.4° (95%CI 13.4° to 14.2°) (Fig.  6). For joint 
moments, speed had the greatest effect on the hip sagittal 
moment, where at a speed of 1.84 m/s, it was associated 
with an increase in hip extensor moment by 0.43Nm/kg 
(95%CI 0.42 to 0.45Nm/kg) at 1% of the gait cycle (Fig. 7). 
Speed had the greatest effect on ankle plantarflexion 

Fig. 1  Descriptive characteristics of the included participants (n = 301). Point estimate reflect means with error bars representing one standard deviation 
(a – e), apart from the number of participants (f ). Red (male), green (female)
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Fig. 3  Average predicted (blue) kinetic trajectories against the observed (black) trajectories for the test dataset

 

Fig. 2  Average predicted (blue) kinematic trajectories against the observed (black) trajectories for the test dataset
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power, where at a speed of 1.84 m/s it was associated with 
an increase in power generation by 0.82  W/kg (95%CI 
0.79 to 0.85 W/kg) at 49% of the gait cycle (Fig. 7).

Discussion
Determination of impaired movement depends on know-
ing normal movement. Statistical modelling based on 
simple clinical measures represents a simple way that 
scientists and clinicians can predict key walking bio-
mechanics of healthy individuals. The RMSE averaged 
across the stride cycle for the lower-limb joint angles was 
< 8°, poorer than our hypothesis of < 5°, and also margin-
ally poorer than prior studies < 7° [18]. In support of our 
hypothesis, the RMSE was between 0.09 and 0.15 Nm/
kg for joint moments, and this was also better than prior 
studies [29].

The predicted RMSE for joint angles in this study was 
approximately 5° greater than previous studies, which 
reported that the RMSE for sagittal plane joint angles 
was within 2° [9, 30]. Previous studies have reported 
that the minimal detectable change values of lower-limb 
joint angles during walking of ~ 5°, but can increase up 
to 7° [21]. RMSE values greater than minimal detectable 
change values suggest some biomechanical outcomes 
should be used with caution. For example, readers should 
have more confidence in using our models to gener-
ate normative ankle plantarflexion angles (≤ 5°), and 
use more caution when using them to create hip axial 

rotation angles (≥ 5°) (Table 1). However, even though the 
error metrics presented reflect the waveform-averaged, 
the accuracy of our prediction models is not uniform 
across the stride cycle, as observed in Figures. 2 and 3, 
with better accuracy in some phases of the stride cycle 
than in other phases. Also, there is no consensus on a sin-
gle clinically meaningful threshold kinematic and kinetic 
value, which is likely to vary depending on the clinical 
condition and joints investigated. Users of the present 
prediction models in defining normative walking gait 
biomechanics should be aware of our reported RMSE 
values and determine clinically if these errors exceed a 
clinically meaningful threshold.

The differences in the predicted accuracy of our bio-
mechanical waveforms between studies may be due to 
different validation methods [9, 30]. Previous studies 
used leave-one-subject-out cross-validation (LOSOCV) 
as their validation approach [9, 30], whereas the pres-
ent study used a train-test split approach. LOSOCV uses 
more data, apart from one subject, for training. This 
means that a greater percentage of the data was used 
for training, and a smaller percentage of data was used 
to validate the model, compared to a train-test split vali-
dation approach. For example, the study of Moissenet et 
al. [9] used 1325 observations (53 subjects, 5 speeds, 5 
trials) for each training loop, whereas we used only 720 
observations (240 subjects, 3 speeds) for training. The 
present findings thus provide a more conservative esti-
mate of gait kinematics predictive modelling, which may 
be more transferable to unseen real-world applications.

The present study demonstrates that normative joint 
kinetics during walking can be predicted using simple 
clinical measures, without having to rely on more com-
plex biomechanical inputs as predictors. The predicted 
RMSE for GRF, moments, and powers in this study 
ranged between 0.02 and 0.07 N/kg, 0.09 to 0.15Nm/
kg, and 0.33 to 0.39 W/kg, respectively. Surprisingly, 
these error ranges were less than machine learning pre-
diction models of joint moments using 3D motion cap-
ture inputs in running (RMSE: 0.07 to 0.54Nm/kg) [29], 
and less than models using inertial measurement units 
(IMUs) as inputs for walking (RMSE: 0.07 to 0.24 Nm/
kg) [31]. Wouda et al. predicted vertical GRF to a RMSE 
of < 0.27BW using three IMU inputs for running [32]. 
Another study predicted ankle joint power for walking 
using IMU sensors with a RMSE of < 0.21 W/kg [33]. Sta-
tistical models like the present and others [9], are useful 
for population average prediction – which cannot cap-
ture variation between movement cycles, whereas more 
complex prediction models built upon biomechanical 
input predictors may be more useful for capturing cycle-
specific predictions.

Whilst the present study did not specify apriori a lin-
ear relation, previous studies have assumed a linear 

Table 1  Accuracy of predicted kinematic and kinetic trajectories
Variables RMSE relRMSE (%) Correla-

tion
Hip Sagittal Angle (°) 7.97 (3.48) 16.59 (8.45) 0.94 (0.06)
Hip Frontal Angle (°) 3.44 (1.45) 21.38 (9.7) 0.89 (0.09)
Hip Transverse Angle (°) 7.94 (3.32) 50.72 (22.1) 0.44 (0.44)
Knee Sagittal Angle (°) 6.21 (2.78) 9.85 (4.7) 0.97 (0.04)
Ankle Sagittal Angle (°) 4.71 (4.13) 18.96 (19.22) 0.88 (0.1)
Ankle Frontal Angle (°) 7.71 (5.85) 45.81 (43.46) 0.38 (0.35)
GRF AP (N/kg) 0.02 (0.01) 6.63 (3.85) 0.96 (0.06)
GRF Vertical (N/kg) 0.07 (0.03) 6.15 (2.7) 0.99 (0.02)
Hip Sagittal Moment (Nm/
kg)

0.13 (0.08) 11.07 (7.56) 0.93 (0.11)

Hip Frontal Moment (Nm/
kg)

0.12 (0.04) 11.18 (3.8) 0.96 (0.04)

Hip Transverse Moment 
(Nm/kg)

0.09 (0.03) 24.71 (10.16) 0.79 (0.2)

Knee Sagittal Moment 
(Nm/kg)

0.15 (0.06) 17.26 (8.38) 0.83 (0.21)

Ankle Sagittal Moment 
(Nm/kg)

0.15 (0.07) 9.23 (5.13) 0.96 (0.06)

Hip Sagittal Power (W/kg) 0.33 (0.18) 17.61 (7.22) 0.84 (0.15)
Knee Sagittal Power (W/kg) 0.34 (0.15) 17.91 (5.18) 0.78 (0.16)
Ankle Sagittal Power (W/
kg)

0.39 (0.18) 12.98 (6.18) 0.79 (0.25)

RMSE – root mean squared error; relRMSE – relative root mean squared error; 
AP – anterior-posterior; GRF – ground reaction force.
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relationship between the predictors investigated (e.g. age, 
speed) and the biomechanical outcomes [9, 16], whilst 
another study assumed a quadratic association with the 
outcomes [30]. The present study reported a non-linear 
association between age and ankle plantar flexion, given 
that ankle plantar flexion increased between 23 and 48 
years old and decreased from 48 to 68 years old (Fig. 
4e). The non-linear association between age and our 16 
biomechanical outcomes investigated was evident in 
our smooth plots (Figs. 4 and 5). Studies which used lin-
ear regression methods reported non-significant linear 
associations between age and ankle plantar flexion dur-
ing push-off [9], while other studies reported a decreased 
ankle plantar flexion during push-off in older adults 
compared to younger adults [34]. This study provides 
evidence that it may not be appropriate to assume lin-
earity across all values of the covariates and the outcome 
across a gait cycle. Hence, whilst linear-regression-based 
approaches provide very interpretable results (e.g. a beta 

coefficient), they may not adequately model the rela-
tionships between the covariates and the biomechanical 
outcomes.

A strength of the present study is the fact that we 
included 301 participants between three and 91 years old, 
which represents a five times greater sample size than 
recent studies [9]. Apart from the age category of >80 
years old, the current study included >20 participants in 
each decade of years for adults, included in the model-
ling, making our statistical model more representative of 
a lifespan population cohort. Non-biomechanical special-
ists can use our models and online tool to quickly gener-
ate data of normal walking joint kinematics and kinetics 
using simple clinically oriented variables. This is more 
advantageous than existing metrics like the Gait Devia-
tion Index, which still requires data collection to estab-
lish a reference, nor can such metrics be tuned to key 
personal and gait characteristics easily. For clinicians, the 
normative data can be used to compare biomechanical 

Fig. 4  Smooth plots with error clouds as 95% confidence interval for the covariate of age and joint kinematics. Black (23 years old), blue (46 years old), 
green (68 years old)
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values from patients collected either using traditional 
motion capture or more recent portable technologies, 
like OpenCap. Movement impairment assessments may 
be used as an outcome measure, for prognosis, and even 
for treatment-decision making. Our lifespan approach 
also means that clinicians can now account for matura-
tion changes when making clinical judgements in chil-
dren and adolescents. Lastly, clinical and academic 
educators may use our models for teaching purposes to 
visualise normal walking biomechanics.

This study has some limitations. First, the included par-
ticipants were collected whilst walking on a treadmill, 
which might differ from overground walking [35]. Differ-
ences between treadmill and overground walking ranged 
from 0.84° (pelvic tilt) to 6.42° (peak knee flexion dur-
ing swing) for joint angles, and 0.02 Nm/kg (peak knee 
extension moment) to 0.32 Nm/kg (peak hip extension 
moment) for joint moment [35]. Second, although we 
included covariates which have previously been shown to 
have a significant association with walking biomechanics, 
more variables may play an important role when devel-
oping population-based models which were not currently 
measured, like ethnicity [36] and psychological factors 
[37]. Third, our biomechanical model had only one DOF 
and two DOFs at the knee and ankle, respectively. This 
means that statistical models to predict the constrained 

knee and ankle kinematics and kinetics were not gener-
ated. Fourth, segment kinematics, like that of the pelvis, 
were not reported, given that the focus of this paper was 
on joint kinematics and kinetics. Lastly, our biomechani-
cal model was not scaled geometrically to account for 
factors like tibial torsion, which has a significant effect 
on lower-limb joint kinematics and kinetics [38, 39]. 
Also, we did not assess anthropometric measurements 
like femoral and tibial torsion angles to use within our 
statistical models. Although this may increase the per-
formance of our models, it would also make them more 
complex to use clinically.

Conclusions
Statistical models using seven clinical covariates can pre-
dict most normative walking kinematics and kinetics, 
apart from non-sagittal plane kinematics, to a level com-
parable to more complex machine learning models using 
biomechanical covariates. Both our online and local apps 
can be used by clinicians and scientists to generate nor-
mative data with uncertainty values, which can be plotted 
against patient data for reporting.

Fig. 5  Smooth plots with error clouds as 95% confidence interval for the covariate of age and joint kinetics. Black (23 years old), blue (46 years old), green 
(68 years old)
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Fig. 6  Smooth plots with error clouds as 95% confidence interval for the covariate of speed and joint kinematics. Black (0.92 m/s), blue (1.38 m/s), green 
(1.64 m/s)
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