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ABSTRACT
Current assessments of port resilience primarily focus on the risks affecting its operations, often neglecting the ripple effects across
different subsystems within a port. In multimodal container ports, these sub-systems include liner shipping, feeder shipping,
railways, and trucking. Moreover, prevailing research predominantly addresses port resilience from a macro perspective without
detailing micro-level operational concerns. This article proposes a new integrated methodology that not only considers but also
quantifies the ripple effects across different multimodal sub-systems and their impact on overall port resilience. It employs real
operational and accident data to assess the resilience of a multimodal container port under different disruption scenarios, hence
providing valuable insights into preventing systemic failures through targeted interventions at the subsystem level. The proposed
methodology comprises three principal components: a system dynamics (SD) simulation that integrates variables and factors
affecting port resilience, a resilience analysis model that converts system performance into a resilience metric based on three
fundamental criteria, and a comprehensive port system resilience assessment utilizing Evidential Reasoning (ER). Each step, from
the detailed simulation model reflecting micro-level mechanisms to aggregating information across subsystems, builds toward
determining the port’s overall resilience. Multiple disruptive scenarios are designed and derived from historical failures and field
investigations to validate the effectiveness of the proposed methodology. The results demonstrate that the proposed approach
effectively assesses port performance under disruptions, identifies critical subsystems, and supports timely recovery strategies.
Applicable to other port systems, this approach offers essential insights for improving long-term resilience in container port
operations.

1 Introduction

Seaports, critical hubs that link various transportation modes
within maritime supply chains, are pivotal to the operational
efficiency of the overall supply chain, international trade, and
economic growth. Yet, due to their unique geographical locations

and geopolitical contexts, port operations often embody high
uncertainty (Jiang et al., 2021). The collaborations necessary for
loading and unloading operations among various vehicles within
ports introduce the risks of transferring the disruptions and
impacts that propagate across different transportation modes, a
phenomenon referred to as the “ripple effect” (Verschuur et al.,
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2022). Previous research has identified that various risks, includ-
ing climate change, labor strikes, terrorism, global pandemics
(Zhou et al., 2024; Tan et al., 2022; Yang et al., 2025), and political
conflicts (Liu et al., 2025), disrupt port operations (Choi, 2021).
Moreover, studies have shown that indirect losses from the ripple
effect often exceed direct losses (Afenyo et al., 2022). It demon-
strates the urgency for new studies to generate effective strategies
designed to anticipate and withstand unforeseen disruptions,
absorb their impacts, sustain essential functions, and swiftly
recuperate, thereby enhancing port resilience (Cheng et al., 2022).

Foundational studies define port resilience as a combination
of the inherent stability and the capacity to implement rapid
mitigation strategies (Nair et al., 2010). Over time, this concept
has evolved within the transportation field, now offering a
comprehensive system-wide assessment of a system’s reliability,
vulnerability, and recovery capacity in the face of disruptions.
Extensive studies have explored port resilience from qualita-
tive (incl. conceptual), and quantitative perspectives, providing
insights from various aspects, including the port-hinterland
container transport network (Chen et al., 2018), capacity sharing,
and cross-port investments during disruptions (Li, Asadabadi,
et al., 2022), economic and social impacts of port disruptions
(Wei et al., 2022), the Ports Resilience Index (PRI) against
climate change in seaports (León-Mateos et al., 2021), and the
prioritization of initiatives based on multi-scenarios and multi-
stakeholders perspectives (Almutairi et al., 2019). Compared to
other metrics that reflect a system’s capability to respond to
unexpected disruptions (Zhang et al., 2023), resilience captures
a broader range of operational attributes and port characteristics.
Enhancing resilience first requires advancing assessment capa-
bilities through practical and efficient evaluationmethods (Wang
andYuen, 2022;NosratiMalekjahan et al., 2025). Accordingly, this
research endeavors to propose a novel assessment methodology
for port resilience, which, to the best of the authors’ understand-
ing, is the first to address how ripple effects propagate among
multiple transportation modes within ports, thereby facilitating
the development of response and recovery strategies.

Despite significant interest from both industry and academia in
managing port risks and disruptions (Gu et al., 2023; Nguyen
et al., 2023; Xin and Yang, 2026; Chen et al., 2025), three main
challenges persist after a detailed literature review (refer to
Section 2). First, very few studies on port resilience consider the
diversified internal components and thus fail to acknowledge
the ripple effects across different transportation modes such as
liner shipping, feeder shipping, railways, trucking, and container
yards. Second, the state-of-the-art resilience triangle method,
used for calculating performance over time, proves unsuitable for
measuring port resilience due to its oversight of crucial criteria.
From a port perspective, maintaining satisfactory performance
throughout the observation period is critical and should be a
primary consideration. Third, port resilience is often assessed
using a singular metric, such as handling capacity (Hossain et al.,
2019) and demand fulfillment rate (Asadabadi and Miller-Hooks,
2020). However, given ports’ intricate nature and diversified
internal structures, a broader spectrum of indicators should be
employed to evaluate port performance. Along with the chal-
lenges associated with measuring these indicators, there remains
a lack of a methodology capable of integrating them to quantify
port resilience holistically.

This study aims to bridge identified gaps by developing a new
simulation-based resiliencemeasurement framework specifically
tailored to assess the resilience of multimodal container ports,
particularly in response to subsystem disruptions that involve the
ripple effect. A system dynamics (SD) model that simulates port
operations is developed to achieve this, incorporating feedback
loops across five transportation modes: liner shipping, feeder
shipping, railway, truck, and container yard. Thismodel leverages
real port operational data and historical accident records to
generate disruptive scenarios of varying scales and durations.
Nine widely recognized port efficiency metrics are identified as
Key Performance Indicators (KPIs) to quantify the influence of
these disruptions. Building on this foundation, an innovative
resilience calculation method is applied to assess port resilience
on the basis of selected KPIs, emphasizing the highly recog-
nized and demanded balance among the three essentials of a
resilient system: reliability, robustness, and recovery. Building
on this approach, a port resilience assessment method utilizing
Evidential Reasoning (ER) is introduced, designed to synthesize
and generate resilience profiles across different hierarchies. A
three-level criterion framework is adopted to handle inputs from
five transportation modes (middle-level criteria), within each
transportation mode, except for the yard, which features two
types of KPIs as bottom-level criteria. Additionally, resilience
values obtained from simulation results are translated into a
belief structure using the Dempster-Shafer theory. The criteria
are assigned weights on the basis of entropy-based methods,
which consider data variability as an indicator of its significance.
The approach is validated via extensive testing from diverse
perspectives, with its effectiveness substantiated by experimental,
statistical, and correlation analyses. The model’s applicability is
demonstrated through an adaptable theoretical framework, broad
application prospects, and significant practical value. The key
contributions of this work are outlined as follows:

1. An original resilience evaluation approach tailored for ports
is introduced for broad application across most multimodal
container ports. This framework effectively integrates a
sequence of modeling techniques, including an SD simula-
tion model, a reliable resilience measurement approach, and
ER, to facilitate the systematic evaluation of port resilience in
various subsystem disruptions.

2. The operational risks within multimodal ports are analyzed
from a micro-perspective by segmenting the port based
on its transportation functions. An SD model, leveraging
field investigation and real data, incorporates feedback loops
to simulate the ripple effect between these transportation
modes, effectively demonstrating the cascade of disruptions
within the port.

3. An innovative resilience calculationmethod is adopted, refin-
ing the traditional resilience measurement approach com-
monly used. This advanced method balances the importance
of performance degradation rate, recovery rate, and average
performance level, aligning with the criteria necessary for a
resilient port.

Specific performance metrics are customized for different trans-
port modes within the port, and their integration through ER
enables a systemic quantification of port resilience in response to
disruptions. This article is among the first to quantitatively incor-
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porate performance across various transportation modes under
disruption into the systematic assessment of port resilience.

The structure of the rest of the article is as follows: Sec-
tion 2 introduces existing current research on port resilience as
well as related methodologies. Section 3 outlines the proposed
framework for assessing port resilience, which includes the
SD simulation, resilience calculation, and resilience evaluation
model. Section 4 presents the experimental results, along with
their corresponding analysis and interpretation. Finally, Section 5
summarizes the findings.

2 Literature Review

The typical procedure for evaluating system resilience consists
of (i) establishing KPIs, (ii) defining resilience metrics (RMs)
based on KPIs, and (iii) assessing resilience on the basis of the
predefined RMs (Chen et al., 2022). Therefore, the literature
review is structured around these three key areas to define the
state of the art.

2.1 SD in Port Operations and Ripple Effect

In port risk management, simulation methods have attracted
considerable attention due to their ability to capture the complex
and dynamic nature of transportation systems (Guo et al., 2023;
Li et al., 2024). Simulation techniques, such as SD, agent-
based modeling, discrete-event simulation, graph-theory-based
simulation, and optimization-basedmodels, are widely employed
to analyze complex system behavior, track system evolution, and
support long-term decision-making (Ivanov, 2017). Among them,
SD stands out for its capacity to model and visualize dynamic sys-
tems by mapping causal relationships among variables (Ghadge
et al., 2022; Bell et al., 2023). Compared with mathematical
approaches that often encounter computational limitations, SD
offers amore intuitive and flexiblemeans of capturing both linear
and nonlinear dynamics (Er Kara et al., 2021). Furthermore,
SD is particularly for assessing resilience under varying disrup-
tive scenarios through parameter adjustments and simulation
experiments (Valaei Sharif et al., 2023).

Within the context of port operations, studies have shown that
major disruptions lead to prolonged waiting times, underscoring
the significance of understanding and mitigating these ripple
effects to enhance port operations (Guo et al., 2023). This
terminology represents a conceptualization of risks cascading
through a network, spreading from one segment to another, and
inducing indirect secondary losses due to the interconnectivity
and dependency among network elements. This phenomenon
is also known as “risk diffusion,” “snowball effect,” “domino
effect,” “cascading effect,” and “propagation” (Ghadge et al.,
2022). These effects are evident in terms of the frequency of risk
events, their impacts, duration, and the scope of the recovery
periods (Sokolov et al., 2016).

Among the methods discussed, SD emerged as crucial for study-
ing the ripple effects in large-scale systems that exhibit complex,
multi-variable interactions (Liu, Wang, et al., 2023). This method
addressed the complex interdependencies among port operations,

energy, resources (Garbolino et al., 2016), technology, regional
economics, and pandemics (Korzebor and Nahavandi 2024;
Anderson et al., 2023). For instance, SD was utilized to examine
how policy influences the disaster preparedness behaviors among
industry actors, revealing a bidirectional relationship between
regulatory measures and industry responses (Kwesi-Buor et al.,
2019). Moreover, an SD model was employed to evaluate the
effectiveness of three congestion alleviation strategies for dual-
port operations during the COVID-19 epidemic (Lin et al., 2022).
It was also applied to explore the impact of COVID-19 on shipping
and port operations across five subsystems, assessing economic
impacts under six scenarios regarding epidemic duration and
capacity recovery (Zhou et al., 2022). The effectiveness and ver-
satility of a novel SD model integrating the SEIR epidemiological
framework were demonstrated by evaluating container port con-
gestion, using Ningbo Zhoushan Port as a case study (Liu, Wang,
et al., 2023). Furthermore, SD was adopted and implemented
through a conceptual framework and data-driven simulation to
evaluate the congestion at Shanghai Port (Xu et al., 2021). SD-
based simulations effectively captured time-dependent factors,
including disruption duration escalation, capacity degradation,
and recovery processes. For systems characterized by temporal
changes in their behavior, SD outperformed other previously
utilized simulationmethods, as supported by earlier works (Chen
et al., 2021; Becerra-Fernandez et al., 2020). Moreover, the time-
varying outputs derived from SD serve as a foundation for
calculating resilience values. On the basis of previous literature
analysis, the adaptability and strength of SD in our proposed
model were recognized; therefore, SD is selected in this article
to establish causal relationships within the port under risk and
simulate the ripple effect.

2.2 Port Resilience Measurement

Many concepts were adopted to evaluate the performance of
transportation systems during exposure to risks, among which
the concept of resilience has gained growing scholarly attention
recently (Wan et al., 2018). Traditionally, risk is characterized
by the combination of severity and its likelihood or frequency.
As a result, risk assessment primarily emphasizes the statistical
fitting of probabilities and consequences (Choi, 2021). In contrast,
resilience assessment takes a more holistic view by evaluating
a system’s capacity to anticipate, withstand unexpected hazards,
preserve essential functions, and recover swiftly. This is particu-
larly relevant for port operations, where the ability to continue
functioning during and after disruptions is critical. Strengthen-
ing this capacity holds both practical value for operation and
theoretical significance.

Consequently, this has resulted in the development of many
metrics and indicators (Eisenberg et al., 2019). Summarizing pre-
vious studies, RMs are categorized into three types: topological,
attribute-, and performance-based (Wang and Yuen, 2022), as
shown in Table 1.

Topological metrics originate from graph theory principles (Bai
et al., 2023), attribute-based metrics focus on particular fea-
tures like recovery speed or efficiency, which may vary on the
basis of the chosen attribute, and performance-based metrics
assess resilience in terms of system degradation and restoration
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TABLE 1 Comparison of different resilience metrics.

Advantages Disadvantages References

Topological metrics 1. Simple, suitable for a large-
scale network;

2. Focus on network structure

1. Sacrifice accuracy;
overlooks traffic flow
and redistribution;

2. Neglect dynamic features

Bai et al. (2023); Asadabadi and
Miller-Hooks (2020); Dui et al.
(2021); Liu, Yang, et al. (2023)

Attribute-based metrics 1. Reflect system dynamics;

2. Facilitate comparison
across different systems

1. Definition varies among
attributes and requires
predefinition;

2. Exclusively focus on spe-
cific periods

Gu et al. (2020); Xu et al.
(2022); Cheng et al. (2022)

Performance-based metrics 1. Reflect system dynamics;

2. Access the performance
throughout the entire
duration;

3. Standardize different
dimensions

1. Hard to evaluate the instan-
taneous rate of change

Gu and Liu (2023); Zhen et al.
(2022); Zohoori et al. (2023)

throughout the disruption and restoration phase (Cheng et al.,
2022). Graphically, performance-based metrics often measure
resilience as the area beneath the performance curve, also
known as the “resilience triangle” (Wan et al., 2018). Although
specific performance indicators vary significantly across different
systems and studies, using performance-based methods sim-
plifies the selection of appropriate performance indicators. It
enables the standardization of metrics across different dimen-
sions, making it a recognized and popular choice in resilience
measurement. In this study, disruptions at ports lead to adverse
effects on several KPIs. As a result, performance-based metrics
are deemed the most suitable for assessing resilience in this
context.

The resilience triangle remains a widely adopted method in
performance-based assessments,which is first introduced as early
as 2003 (Bruneau et al., 2003), where resilience is measured by
comparing the system’s performance after an external shock with
its initial level, along with the duration needed for recovery to the
original performance level. The understanding of resilience has
recently expanded and is now widely used. It no longer merely
signifies a return to a stable equilibrium but now encompasses
the capacity of socio-technical systems to sustain a specific mode
of operation (Pan et al., 2022). Therefore, a highly resilient
system should exhibit (i) a gradual decline in performance (i.e.,
low degradation rate), (ii) a swift restoration of performance
levels (i.e., high recovery rate), and (iii) consistently satisfactory
performance throughout the evaluation period (Cheng et al.,
2022). The three features are also used as three criteria tomeasure
port resilience in this study. Table 2 provides a comparison of the
formulas based on the resilience triangle and their consistency
with three fundamental resilience criteria. Specifically, formula-
tions that integrate over the complete disruption and recovery
timeline but do not distinguish between degradation and recovery
phases (Bruneau et al., 2003; Simonovic and Peck, 2013) fail to
satisfy criteria (i) and (ii), as they mix the separate attributes
of resilience. Given the complexity of the adopted method, full

details are provided in Section 3.2. The relevant notation is
provided in Table 3.

Most traditional resilience triangle methods do not satisfy the
first two resilience criteria because they do not separate the
degradation phase from the recovery phase. Under such practice,
they might equate a robust systemwith slow recovery to one with
poor robustness but high recovery capability. Therefore, this study
introduces and validates an improved computational method
from previous literature (Ayyub, 2014), refining the original
resilience triangle. This method explicitly addresses the three
distinct terms: (i) inherent reliability, (ii) average robustness,
and (iii) average recovery capacity, aligning more closely with
port stakeholders’ expectations for a resilient port. A detailed
comparison and interpretation are presented in Section 3.2.

2.3 Multiple Indicator Aggregation

Multiple indicator aggregation models serve as crucial instru-
ments for synthesizing diverse structural data when assessing
the resilience of systems with multiple indicators (Wen et al.,
2024).When applied to port resilience, it allows for the evaluation
of an extensive array of factors, surpassing the limitations of
concentrating solely on a single aspect of the port, thereby
significantly enhancing evaluation quality. In the requirements
of our research subject, objectives, and data structure, several
commonly used multi-criteria aggregation methods are reviewed
and then compared with the ER. The comparison is summarized
in Table 4.

A widely used method for multiple indicator aggregation in ER,
proposed by Yang and Singh (1994), is built on the Dempster-
Shafer evidence theory (Dempster, 2008). ER starts by estab-
lishing a multi-level framework comprising multiple KPIs with
a hierarchical structure, ranging from top-level port resilience
down to bottom-level indicators that clearly illustrate the relation-
ships and dependencies between different levels. Information at
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TABLE 2 Overview of the resilience triangle and its alignment with the resilience definition.

Reference
Formulation of the
resilience triangle

Meet the resilience definition

(i) (ii) (iii)

Bruneau et al. (2003) ∫ 𝑇𝑟
𝑇𝑖
(100 − 𝑃(𝑡))𝑑𝑡 √

Simonovic and Peck (2013)
∫ 𝑇𝑟
𝑇𝑖

𝑃(𝑡)𝑑𝑡

∫ 𝑇𝑟
𝑇𝑖

𝑃0(𝑡)𝑑𝑡
√

Franchin and Cavalieri (2015)
∫ 𝑇𝑟
𝑇𝑖

𝑃(𝑡)𝑑𝑡

𝑃0(𝑡)(𝑇𝑖−𝑇𝑟)
√

Habibi et al. (2025)
∫ 𝑇𝑟
𝑇𝑖

𝑃(𝑡)𝑑𝑡

𝑇𝑖−𝑇𝑟
√

Mugume et al. (2015)
∫ 𝑇𝑟
𝑇𝑖

(𝑃0(𝑡)−𝑃(𝑡))𝑑𝑡

𝑃0(𝑡)
√

Cimellaro et al. (2010) 𝛼
∫
𝑇𝑓
𝑇𝑖

𝑓(𝑡)𝑑𝑡

Δ𝑇𝑓
+ (1 − 𝛼)

∫ 𝑇𝑟
𝑇𝑓

𝑟(𝑡)𝑑𝑡

Δ𝑇𝑟
√ √

Chanda and Srivastava (2016)
∫ 𝑇𝑟
𝑇𝑖

[𝑃0(𝑡)−min{𝑃(𝑡)}]𝑑𝑡

∫ 𝑇𝑟
𝑇𝑖

[𝑇𝑟𝑃0(𝑡)−min{𝑃0(𝑡)}]𝑑𝑡
√

Kadri et al. (2015)
∫ 𝑇𝑟
𝑇𝑖

𝑃(𝑡)𝑑𝑡

(𝑇𝑟−𝑇𝑖) ∫
𝑇𝑟
𝑇𝑖

𝑃0(𝑡)𝑑𝑡
√

Ayyub (2014) Equation (2) in Section 3.2 √ √ √

TABLE 3 Notations of performance indicators employed in resilience quantification.

Notation Description

𝑇0 Time when disruption occurs
𝑇𝑖 Time when disruption impact onsets
𝑇𝑓 Time when performance degrades to an unacceptable level, upon which the recovery action starts, if applicable
𝑇𝑟 Time when system totally recovers
Δ𝑇𝑓 Duration from 𝑇𝑖 to the moment of lowest performance 𝑇𝑓

Δ𝑇𝑟 Duration from 𝑇𝑓 to the moment of total recovery 𝑇𝑟

𝑃0(𝑡) System performance level without disruption at time 𝑡
𝑃(𝑡) System performance level under disruption at time 𝑡
𝑓(𝑡) System performance level throughout failure phase at time 𝑡
𝑟(𝑡) System performance level throughout recovery phase at time 𝑡

TABLE 4 Comparison of other commonly used aggregation methods.

Aggregation methods Advantage Disadvantage

Utility Values (weighted sum) Simple and computationally
efficient

Cannot evaluate resilience at the sub-system level

Analytic Hierarchy Process
(AHP);

Clear hierarchical structure Require strict pairwise-consistency, which is hard to guarantee
when expert opinions are incomplete or conflicting

Fuzzy set (Gu and Liu, 2023) Handle uncertainty Assume monotonicity among criteria and do not expose middle
layer results

TOPSIS (Wang et al., 2022) Data-driven evaluation Ignore epistemic uncertainty and provide no mechanism for
conflict resolution

DEMATEL (Liu, Gu, et al., 2023;
Liang et al., 2025)

Reveal causal relationships Heavily reliant on expert judgment and results, highly
dependent on subjective inputs

Bayesian Network (BN) (Liang
et al., 2025)

Handle uncertainty Demand conditional-independence assumptions and
substantial prior data, both impractical in our context

Risk Analysis, 2025 5
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each level is assessed and processed independently before being
aggregated upward. This progressive handling is well suited for
aggregating hierarchical criteria of large volumes of scenarios,
as it preserves intermediate belief distributions across all levels,
ensuring transparency in the identification of resilience at any
specific level (Yang and Xu, 2013). In this research, the focus
extends beyond solely assessing the overall resilience of the port.
It also includes the resilience of various transportation modes
due to (i) their significant managerial value and (ii) the dynamic
behaviors of them under disruptions, which reveal patterns of
ripple effects. Additionally, the aggregated criteria originate from
different areas of the port and hence are inherently independent.
Advanced ER-based models were applied in various resilience-
related studies, such as navigational risks in inland waterways
(Zhang et al., 2016), port vulnerability (Jiang et al., 2021), and
canal vulnerability (Jiang et al., 2023). In comparison, ER yields
more objective conclusions than traditional aggregation models,
such as AHP and DEMATEL. Consequently, ER is chosen to
enable the practical assessment and integration of the resilience
of individual transportation mode and their interdependence.

3 Methodology

A comprehensive description of the proposed methodology is
given in this section to assess the resilience of multimodal
container ports. External factors, such as economic fluctuations,
technological advancements, and regulatory changes, are treated
as upstream causes, and after their impact on internal disruptions
is clearly identified, they can be integrated into the current
model framework to evaluate the influence of external factors
on port resilience. As shown in Figure 1, the methodology
begins with simulating port operations under normal conditions
using SD in Section 3.1. Subsequently, disruptive scenarios are
introduced by adjusting specific variables, identified as disruption
variables. The variation in value ranges of disruption variables
simulates different levels of impact, with each scenario defined
by disruption type, intensity, and duration. The selection of dis-
ruption variables and their corresponding value ranges is justified
by historical accident reports from port operations and expert
input, as detailed in Section 4.1.1. These disruption scenarios
are then used as simulation inputs to generate time dependent
outputs of port performance, measured through various KPIs.
Given the multimodal structure of ports, each mode is evaluated
using dedicated KPIs. For each disruptive scenario, the value
of a given KPI under both normal and this disruptive scenario
serves as input for calculating a resilience value based on the
formula in Section 3.2. This process is repeated across all selected
KPIs, generating a set of individual resilience values that reflect
different aspects of port performance. The ER model receives
these inputs and combines them to derive an overall resilience
score, which serves as the final output and represents the port’s
integrated performance under the given disruptive scenario. The
subsequent sections will outline the procedures for developing
the simulation model, calculating resilience for each KPI, and
assessing port resilience in Section 3.3.

3.1 Port Operations Simulation

Modern equipment, layout designs, and operational protocols
of container ports are highly standardized. Therefore, research

findings from several typical multimodal ports support the devel-
opment of operational processes for a conceptual, generic con-
tainer port. Among all port operations, loading and unloading,
container storage, container collection (export), and distribution
(import) are deemed essential for ensuring smooth operations.
Thus, this article’s development of the port operation simulation
model primarily focuses on these critical activities.

The development process for the simulationmodel comprises the
following steps: (i) establishing modeling hypotheses, (ii) iden-
tifying the simulation procedures, (iii) selecting input variables,
and (iv) selecting output variables (KPIs).

3.1.1 Simulation Hypothesis

A series of hypotheses is formulated, grounded in field obser-
vations and relevant scholarly works, before introducing the
simulationmodel (Liu,Wang, et al., 2023; Li, Haralambides, et al.,
2022; Jin et al., 2021).

1. The multimodal container port incorporates four modes of
transportation: liner shipping, feeder shipping, railway trans-
port, and trucking. Liner and feeder shipping are modeled
as distinct components, reflecting their unique operational
demands and functions in container supply chains. Liner
containerships, typically operating over long distances, call at
hub ports, whereas feeder containerships connect these hubs
to regional feeder ports.

2. Liner containerships deliver inbound containers and subse-
quently distribute them via feeder containerships, trains, and
trucks. In return, outbound containers are gathered in storage
yards via feeders, trains, and trucks then loaded onto liner
containerships for export.

3. Internal trucks facilitate intra-port movements, supporting
operations across all transportation modes within the port.

4. Yard truck operations include internal and external trucks,
with internal trucks prioritized to ensure consistent oper-
ational efficiency, independent of external truck numbers.
Therefore, internal truckwaiting times are typically excluded
from consideration.

5. Resource constraints, such as limited cranes, berths, and
trucks, hinder smooth container handling processes.

6. Disruptions within ports often spread through the interac-
tions facilitated by internal trucks.

3.1.2 Simulation Procedures

In SD, causal loop diagrams that depict causal relationships
illustrate the principles guiding the simulation procedures.
This subsection aims to clarify the operational logic of mul-
timodal container ports by providing a detailed description of
the causal loop diagram’s structure. Beyond the four primary
transportation modes, the port incorporates centralized facilities
dedicated to the temporary storage, sorting, and transship-
ment of containers, which occupy a significant expanse of the
port’s spatial allocation. Therefore, the SD model is developed

6 Risk Analysis, 2025
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FIGURE 1 Methodology framework. DoB, Degree of Belief; ER, Evidential Reasoning; KPI, Key Performance Indicator.

modularly, comprising five key transportation modes (subsys-
tems): liner shipping, feeder shipping, container yard, truck, and
railway.

On the basis of field investigation and prior studies, the causal
loops for each subsystem are identified and classified by trans-
portation modes in Table 5. Notably, L2 (liner shipping), L4
(feeder shipping), and L6 (railway) all include truck related
variables associated with L7 and L8 (truck operations) due to the
role of internal trucks as a key connector. Moreover, as shown in
Figure 2, truck density serves as a central node linking multiple
transportation modes. The detailed operational workflow for
these transportation modes is presented in Figure A1. On the
basis of field investigation and prior studies, the causal loops for
each subsystem are identified and classified by transportation
modes in Table 5, highlighting the modular structure. However,
L2 (liner shipping), L4 (feeder shipping), and L6 (railway) all
include truck related variables associated with L7 and L8 (truck
operations). This is due to the role of internal trucks as a
key connector between various port areas. Reflected in our
model, in Figure 2, truck density is positioned as a central node
connecting multiple transportation modes. Additionally, for each
transportation mode, the components in the causal loop diagram
are translated into specific variables, supported by constants,
parameters, intermediate variables, and shadow variables. These

elements are interconnected through mathematical equations,
enabling simulation, as shown in Figure A2. Additionally, it is
crucial to recognize that these interconnections not only highlight
the functional dependencies across subsystems but also provide
potential pathways for the propagation of ripple effects within the
port system.

The general causal loop diagram demonstrates how various
factors interact with each other. Directional arrows are used
to visualize causal links, where the origin indicates the cause
and the arrowhead denotes the resulting effect. These links are
further classified by “+” or “−” signs, indicating whether the
relationship is reinforcing or counteracting. A “+” suggests a
positive correlation, whereas a “−” shows a negative effect. When
multiple factors form a loop, these symbols also indicate whether
the loop acts as a positive reinforcing loop or a negative balancing
loop, as shown in Figure 2. The underlying mechanisms in each
feedback loop are explained in the figure.

L1 represents a feedback structure of the liner shipping subsys-
tem, illustrating how resource availability impacts the waiting
metric of liner containerships. Abundant berthing resources,
along with necessary loading and unloading equipment, enhance
operational speed, increase containership departure rates, and
consequently reduce the queue ofwaiting containerships. L2, also

Risk Analysis, 2025 7
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TABLE 5 Details of the loops of each subsystem.

Notation Subsystem Detail

L1 Liner shipping Liner vessels density →̄ Available resource for each liner vessel
+
→ Liner vessels loading and

unloading efficiency
+
→ Liner vessels departure rate →̄ Liner vessels density

L2 Liner shipping Liner vessels loading and unloading efficiency
+
→ Internal trucks for liner vessels

+
→ Truck density

→̄ Liner vessels loading and unloading efficiency

L3 Feeder shipping Feeder vessels density →̄ Available resource for each feeder vessel
+
→ Feeder vessels loading and

unloading efficiency
+
→ Feeder vessels departure rate →̄ Feeder vessels density

L4 Feeder shipping Feeder vessels loading and unloading efficiency
+
→ Internal trucks for feeder vessels

+
→ Trucks

density →̄ Feeder vessels loading and unloading efficiency

L5 Railway Trains density →̄ Available resource for each train
+
→ Trains loading and unloading efficiency

+
→ Trains departure rate →̄ Trains density

L6 Railway Trains loading and unloading efficiency
+
→ Internal trucks for train

+
→ Trucks density →̄ Trains

loading and unloading efficiency

L7 Truck Trucks density →̄ Available resource for each external truck
+
→ External trucks loading and

unloading efficiency
+
→ External trucks departure →̄ Trucks density

L8 Truck Trucks density
+
→ Traffic jam →̄ External trucks loading and unloading efficiency

+
→ External

trucks loading and unloading time →̄ Trucks density

FIGURE 2 Causal loop diagram.

within the liner shipping subsystem, focuses on a feedback loop
featuring internal trucks. Container transfer operations depend
on the synchronized movement of internal trucks between the
quay side and the yard side, making the availability of internal
trucks critical for efficient operations. Insufficient internal truck
support directly undermines the efficiency of liner container
ships’ loading and unloading processes. Conversely, increased

internal trucks might cause heightened congestion, leading to
delays, longer turnaround times, and decreased operational
efficiency.

L3 (feeder shipping), L5 (railway), and L7 (trucking) follow the
same logic as L1. L4 (feeder shipping) and L6 (railway) follow the
same logic as L2.

8 Risk Analysis, 2025
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TABLE 6 Input variables.

Subsystem Factor

Container Inventory (Li et al., 2023; Jin et al.,
2021; Lin et al., 2022)

Containers inventory level, export and import flow rate, and container cutoff time

Liner shipping (Zhou et al., 2022; Liu, Wang,
et al., 2023; Xu et al., 2021)

Arrival and departure rate of liner vessels, availability of loading and unloading
resources (berths, cranes), handling efficiency (cranes, trucks, berthing process), and

capacity (workload of containers)
Feeder shipping (Lee and Jin 2013; Emde
and Boysen 2016)

Arrival and departure rate of feeder vessels, availability of loading and unloading
resources (berths, cranes), handling efficiency (cranes, trucks, berthing process), and

capacity (workload of containers)
Truck (Liu, Wang, et al., 2023; Li,
Haralambides, et al., 2022; Li et al., 2018)

Arrival and departure rate of external trucks, availability of loading and unloading
resource (internal trucks, yards cranes), handling efficiency (cranes), traveling speed,

capacity (workload of containers), and traveling distance
Railway (Xu et al., 2021; Schulz et al., 2021;
Liu, Wang, et al., 2023)

Arrival and departure rate of trains, availability of loading and unloading resources
(tracks, cranes), handling efficiency (cranes, trucks), and capacity (workload of

containers)

L8 illustrates the feedback loop in which truck density influences
the efficiency of both external and internal truck loading and
unloading operations. Truck operations at a container port dis-
tinguish between (i) external trucks, which handle deliveries and
pickups between the port and hinterland, and (ii) internal trucks,
which move containers within the port among storage yards and
other locations. High truck density leads to traffic congestion,
which extends turnover time and reduces the efficiency of both
types of trucks. Consequently, the departure rate of external
trucks decreases, further exacerbating the congestion in the
container yard.

3.1.3 Variable Selection

The stock-flow diagram is derived from the causal loop dia-
gram through a careful selection of variables that accurately
represent the logical relationships outlined previously. In the
simulation model, variables are categorized as input and output
variables (KPIs), both of which are time dependent. Input
variables comprise constants and intermediate parameters nec-
essary for model formulation and execution. Output variables,
represented as KPIs, are obtained after simulation and used
to evaluate port performance. This section begins by detailing
the rationale for selecting input and output variables, followed
by a description of the key variables adopted for performance
evaluation. Finally, it features a modular illustration of the
stock-flow diagram, encompassing five subsystems and various
quantitative variables, as shown in Figure A2. The relevant
variables used in these models are outlined in Table 6. For details
on each variable and its calculation method, please refer to
Table A1.

This model’s primary objective is to evaluate the impact of
potential disruptions on port efficiency. Therefore, KPIs for
port operations are established on the basis of industry stan-
dards and expert insights. Additionally, the chosen output
variables are widely recognized metrics for evaluating con-
tainer port efficiency, supported by the sources referenced in
Table 7.

3.2 Resilience Measurement Method

On the basis of the simulation in Section 3.1, port performance
under normal conditions is presented as a time-dependent curve
𝑃0(𝑡) in Figure 3. By adjusting the disruption variables, the
disrupted performance curve 𝑃(𝑡) is also generated. Both curves
are illustrated in Figure 3 at the same time. Although the
performance curves represent the temporal dynamics of port
operations, they do not provide a comprehensive measure of the
port’s overall ability to resist and recover from disruptions. To
overcome this limitation, the resilience trianglemethod is applied
to convert the time-dependent performance curve into a single,
integrated resilience value.

As explained in the previous section, the commonly used
resilience triangle method, which no longer fully meets current
needs, is depicted in the following equation. The notations
involved are listed in Table 3 in Section 2.2:

 =
∫ 𝑇𝑟
𝑇𝑖

𝑃 (𝑡) 𝑑t

∫ 𝑇𝑟
𝑇𝑖

𝑃0 (𝑡) 𝑑t
(1)

where is the ratio of disruptive and normal performance during
the disruptive and recovery periods. It is explained in detail
that various configurations of 𝑃(𝑡) and 𝑇𝑟 can yield identical
resilience values , yet they may exhibit distinct resilience
features (Sun et al. 2024). The misinterpretation is due to two
inherent flaws. First, the traditional method does not formally
define nor incorporate the performance turning point (i.e., the
point when performance reaches the bottom and the recovery
process begins) into the assessment, despite this point being
visually identifiable and significant in shaping the performance
curve. Consequently, the performance degradation and recovery
phases are treated as a single continuous period. Second, this
prevents the independent evaluation of robustness (before the
lowest point) and recovery (after the lowest point).

To improve Equation (1), this work adopts a novel resilience
assessment that incorporates multiple perspectives, as shown in

Risk Analysis, 2025 9
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TABLE 7 Main performance indicators.

Category KPIs References

Liner shipping Amount of waiting liner vessels Liu, Wang, et al. 2023; Zhou et al. 2022
Liner vessels dwell time

Feeder shipping Amount of waiting for feeder containerships Emde and Boysen 2016; Jin et al. 2021
Feeder vessels dwell time

Railway Amount of waiting trains Schulz et al. 2021
Trains dwell time

Trucking Amount of external trucks in the port Liu, Wang, et al. 2023; Xu et al. 2021; Li et al. 2018
Turnaround time of external trucks Li et al. 2018; Sun et al. 2022

Container yard The inventory level of containers in the port Liu, Wang, et al. 2023; Lin et al. 2022; Xu et al. 2021

Abbreviation: KPIs, Key Performance Indicators.

Performance

P(t)

Time

P(Tf)

Ti Tf Tr

Original state

P0(t) New equibulium

Pre-disruption During disruption Post-disruption

Disruptive 

event

Δ Tf

Failure period Recovery period

Residual 

performance

Δ Tr

f(t) r(t)

(1) reliability:

(2) robustness & 
redundancy:

(3) resourcefulness & 
rapidity:

T0 Failure duration Recovery duration

=
∫ ( )

∫ 0( )
=
∫ ( )

∫ 0( )

(4) resilience

Disruptive state

=
+ ∆ + ∆

+ ∆ + ∆

FIGURE 3 Resilience quantification using performance indicators.

Equation (2) and Figure 3 (Ayyub, 2014). This method follows a
structured and theoretically grounded approach, which has been
recognized within the research community (Cheng et al., 2022,
Sun et al., 2024). Yet, its application in port resilience evaluations
remains unexplored:

𝑅𝑒 =
𝑇𝑖+𝐹Δ𝑇𝑓+𝑅Δ𝑇𝑟
𝑇𝑖+Δ𝑇𝑓+Δ𝑇𝑟

𝐹 =
∫
𝑇𝑓
𝑇𝑖

𝑓(𝑡)𝑑𝑡

∫
𝑇𝑓
𝑇𝑖

𝑃0(𝑡)𝑑𝑡

𝑅 =
∫ 𝑇𝑟
𝑇𝑓

𝑟(𝑡)𝑑𝑡

∫ 𝑇𝑟
𝑇𝑓

𝑃0(𝑡)𝑑𝑡

(2)

where the failure profile 𝐹 is considered a measure of robustness
and redundancy, and the recovery profile 𝑅 is considered a

measure of resourcefulness and rapidity. Upon decomposing 𝑅,
it is divided into three parts:

1. The normalized time required for a disturbance to take effect
𝑇𝑖

𝑇𝑟
. In theory, it indicates the proportion of the incident to

the entire duration. However, in practice, the onset of effects
from each disturbance varies. This factor quantifies the time
required for the effects of a disturbance to take hold.

2. The product of normalized failure performance 𝐹 and
normalized failure duration Δ𝑇𝑓

𝑇𝑟
.

3. The product of normalized recovery performance 𝑅𝑐 and
normalized recovery duration Δ𝑇𝑟

𝑇𝑟
.

10 Risk Analysis, 2025
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The notations involved in Figure 3 are listed in Table 3 in
Section 2.2. Under each disruption scenario, port performance
is evaluated from the perspective of each KPI, resulting in
a performance curve 𝑃(𝑡) as illustrated in Figure 3. In this
method, 𝑃(𝑡) is further divided at time 𝑇𝑓 , when performance
reaches its minimum, into two parts: 𝑓(𝑡) representing perfor-
mance degradation from the disruption onset to 𝑇𝑓 and 𝑟(𝑡)

for the recovery phase from 𝑇𝑓 until the port performance
returns to its original level. Under port resilience framework,
𝑅𝑒 is decomposed into three indicators: (i) inherent reliabil-
ity, (ii) average robustness, and (iii) average recovery capacity.
By extending previous models to incorporate all three core
dimensions of resilience, this approach allows for an ade-
quate characterization and summarization of the resilience of
a multimodal container port throughout the entire disruptive
period.

3.3 Port Resilience Evaluation Model Based on
ER

The port’s operational performance is assessed across multiple
dimensions using the KPIs listed in Table 7. According to
Section 3.2, the time independent assessment is converted into a
set of resilience values corresponding tomultiple KPIs. Therefore,
a key methodological challenge is to integrate these KPI-based
resilience values to derive both overall port resilience and the
resilience specific to each transportation mode. To address this,
resilience values are calculated for each KPI under a given
disruptive scenario. The ER approach then aggregates these into
an overall value while retaining individual characteristics. The
integration process is achieved through the following steps from
Section 3.3.1 to Section 3.3.4, respectively:

1. Formulation of hierarchy structure: The hierarchy is
formulatedwith three levels of criteria to account formultiple
KPIs (bottom-level criteria) across transportation modes
(middle-level criteria) and overall port resilience (top-level
criteria).

2. Resilience value and belief structure: The steps intro-
duced in Section 3.2 determine the resilience value for each
disruptive scenario. Subsequently, this score is mapped into a
belief distribution.

3. Weight determination: The influence of low-level criteria
on higher level criteria is determined on the basis of the
information they encompass.

4. Overall resilience integration: Employing the established
criteria hierarchy, the model calculates the port’s overall
resilience on the basis of belief distributions and determined
weights.

3.3.1 Part 1: Formulation of Hierarchy Structure

A hierarchical structure with three levels of criteria is con-
structed, as depicted in Figure 4. At the top level, the overall
resilience of the port is denoted by 𝑅. At the second level, the port
is segmented on the basis of five distinct transportation modes:
liner shipping 𝑅1, feeder shipping 𝑅2, railway 𝑅3, trucking 𝑅4, and

container yard 𝑅5. Apart from 𝑅5, eachmode comprises two types
of KPIs, labeled as 𝑅𝑗,𝑘 .

3.3.2 Part 2: Resilience Value and Belief Structure

Due to the shift to individual KPI rather than a hierarchical
structure in this section, the KPIs previously denoted as 𝑅𝑗,𝑘 ,
are now defined as 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑖 , . . . , 𝑒𝐼}, indexed by 𝑖 ∈

[1, 9], where each 𝑒𝑖 corresponds to𝑅𝑗,𝑘. 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑙, . . . , 𝑎𝐿}

defines the alternative vector, containing a total of 𝐿 disrup-
tive scenarios. 𝐻 = {𝐻1,𝐻2, . . . , 𝐻𝑛, . . . , 𝐻𝑁} represents the set of
resilience grades with 𝑁 indicating the total number of grades.
The resilience score for KPI 𝑒𝑖 under a disruptive scenario
l is given by 𝛼𝑖(𝑎𝑙), and the procedure for obtaining it is
outlined in Section 3.2. The range for each resilience grade
is determined by the distribution of resilience values across
all KPIs. For example, the four grades of 𝑅 are defined as
{′𝑠𝑡𝑟𝑜𝑛𝑔′,′ 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒′,′ 𝑤𝑒𝑎𝑘′,′ 𝑚𝑖𝑛𝑖𝑚𝑎𝑙′ } according to previous
research (Xu et al., 2023; Gu and Liu 2023). When 𝛼𝑖(𝑎𝑙) falls
between two predefined grades, a linear distribution method
is applied. The belief distribution 𝑆(𝑒𝑖(𝑎𝑙)), evaluated from the
perspective of 𝑒𝑖 under the specific disruption scenario 𝑎𝑙 , is
presented in the following equation:

𝑆 (𝑒𝑖 (𝑎𝑙)) = 𝐻𝑛, 𝛽𝑛,𝑖 (𝑎𝑙) , . . . , 𝐻𝑁, , 𝛽𝑁,𝑖 (𝑎𝑙) 𝑛 = 1, 2, . . . , 𝑁 (3)

where𝑁 = 4,𝐻𝑛 represents the 𝑛 th evaluation grade, and 𝛽𝑛,𝑖(𝑎𝑙)

indicates the Degree of Belief (DoB) from the perspective of 𝑒𝑖 ,
the resilience of the port is evaluated as 𝐻𝑛 under the disruptive
scenario 𝑎𝑙 . Significantly, 0 ≤ 𝛽𝑛,𝑖(𝑎𝑙) ≤ 1 and

∑𝑁

𝑛=1 𝛽𝑛,𝑖(𝑎𝑙) ≤ 1. In
this study,

∑𝑁

𝑛=1 𝛽𝑛,𝑖(𝑎𝑙) = 1, which ensures that the assessment
is complete, and there is no residual mass unassigned to any
grade, that is, 𝛽𝑛,𝑖(𝑎𝑙) ≡ 0 for any 𝑒𝑖. This subjectivity is cap-
tured through the belief distribution framework, allowing for a
thorough consideration of all available information.

3.3.3 Part 3: Weight Determination

The resilience value of a specific KPI may demonstrate a biased
influence on the overall evaluation outcomes of port resilience.
Therefore, it is essential to effectively incorporate information
from multiple KPIs to bridge this critical gap. This scenario
exemplifies a classical multi-criteria assessment where it is
critical to allocateweights to each information source (KPIs of the
port) based on their significance. The entropy weight method is
employed to determine the relative importance of different KPIs
in the resilience evaluation. This data-driven approach offers
a practical alternative to expert-based judgment. Given that all
KPIs are evaluated under the same set of disruption scenarios,
a KPI that exhibits greater sensitivity to these disruptions implies
a stronger impact on the affected corresponding transportation
mode. Such aspects should therefore be given higher priority in
the resilience evaluation framework to ensure that their influence
on overall port resilience is accurately represented (Feng et al.,
2023; Wang et al., 2022; Shakibaei et al., 2024; Liu et al., 2017).

Typically, the entropy weighting method begins with data stan-
dardization to neutralize the influence of measurement units.
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Overall Resilience

R

Liner Shipping 

R₁

Feeder Shipping

R₂

Railway 

R₃

Trucking

R₄

Container Yard

R₅

Amount of waiting trains R₃,₁

Waiting time for trains R₃,₂

Amount of external trucks R₄,₁

External trucks working time R₄,₂

Amount of liner ships at anchorage R₁,₁

Waiting time for liner ships R₁,₂

Amount of feeder ships at anchorage R₂,₁

Waiting time for feeder ships R₂,₂

Volume of containers in port R5,₁

FIGURE 4 The three-level hierarchy for port resilience evaluation.

However, this initial step is unnecessary when resilience values
fall within the same range, as introduced in Section 3.2. The
probability set 𝑃𝑖 is computed on the basis of the proportion of
the 𝑙 th disruptive scenario in the 𝑖 th KPI, which is denoted by
𝑝𝑖(𝑎𝑙). Therefore, the probability used in the entropy calculation
is obtained by

𝑃𝑖 = {𝑝𝑖 (𝑎1) , 𝑝𝑖 (𝑎2) , . . . , 𝑝𝑖 (𝑎𝐿)} =

{
𝛼𝑖 (𝑎1)∑𝐿

𝑙=1 𝛼𝑖 (𝑎1)
, . . . ,

𝛼𝑖 (𝑎𝐿)∑𝐿

𝑙=1 𝛼𝑖 (𝑎𝐿)

}

(4)
The entropy of the ith KPI, denoted as 𝑄𝑖 , is then determined on
the basis of the definition of information entropy:

𝑄𝑖 = −𝑘
𝐿∑
𝑙=1

𝑝𝑖 (𝑎1) ln (𝑝𝑖 (𝑎1)) (5)

𝑘 = 1

𝑙𝑛𝐿
(6)

where 𝑘 is a constant associated with sample size 𝐿. A larger 𝑄𝑖

means the 𝑖th KPI has more entropy, which suggests that it offers
less useful information. Therefore, the entropy weight 𝑤𝑖 of KPI
𝑒𝑖 is determined by

𝑤𝑖 =
𝑑𝑖∑𝐼

𝑖=1 𝑑𝑖

(7)

where𝑑𝑖 = 1 − 𝑄𝑖 is the information utility value and the entropy-
based weight 𝑤𝑖 for each KPI is derived by normalizing its
corresponding 𝑑𝑖 .

To capture cumulative effects and highlight extreme values, the
weight assigned to each transportation mode is determined by
summing all associated weights of KPIs.

3.3.4 Part 4: Overall Resilience Integration

On the basis of the belief distribution (Section 3.3.2) and weights
(Section 3.3.3), the ER approach is applied to aggregate the values
of KPIs from multiple transportation modes across the port, thus
constructing a final belief distribution indicating the influence
level of disruption. The basic probability mass 𝑚𝑛,𝑖 , representing
the belief degree to which KPI 𝑒𝑖 , supports the hypothesis that its
upper level transportation mode is assigned to grade 𝐻𝑛:

𝑚𝑛,𝑖 = 𝑤𝑖𝛽𝑛,𝑖𝑛 = 1, 2, . . . , 𝑁, 𝑖 = 1, 2, . . . , 𝐼 (8)

𝑚𝐻,𝑖 = 1 −
𝑁∑
𝑛=1

𝑤𝑖𝛽𝑛,𝑖 𝑖 = 1, 2, . . . , 𝐼 (9)

where 𝑚𝐻,𝑖 denotes the unallocated probability mass not
attributable to any specific evaluation grade 𝐻𝑛 by KPI 𝑒𝑖 . This
residual is separated into two components 𝑚̄𝐻,𝑖 and 𝑚̃𝐻,𝑖 , which
are obtained by

𝑚̄𝐻,𝑖 = 1 − 𝑤𝑖𝑖 = 1, 2, . . . , 𝐼 (10)

𝑚̃𝐻,𝑖 = 𝑤𝑖

(
1 −

𝑁∑
𝑛=1

𝛽𝑛,𝑖

)
𝑖 = 1, 2, . . . , 𝐼 (11)

where 𝑚̄𝐻,𝑖 is bounded by the inherent weight of the criterion 𝑒𝑖 ,
revealing how much other indicators influence the evaluation;
𝑚̃𝐻,𝑖 results from incomplete assessment information.

According to the hierarchy structure in Figure 4, the basic
probability mass from the bottom-level 𝑅𝑗,𝑘 is first aggregated
to the middle-level 𝑅ℎ using the recursive ER algorithm. This
approach is then repeated until aggregation reaches the top-level
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𝑅. The probability mass 𝑚𝑛,𝐼(𝑖) quantifies the degree to which
the 𝑖th KPI within the set 𝐸(𝑒𝑖) endorse the evaluation grade
𝐻𝑛, whereas 𝑚𝐻,𝑖 unallocated probability mass not attributable
to any specific evaluation grade by these KPIs. Initially, 𝑚𝑛,𝐼(𝑖) =
𝑚𝑛,1 and 𝑚𝐻,𝐼(𝑖) = 𝑚𝐻,1. The combined probability mass for 𝑖 =
1, 2, . . . , 𝐿 are derived as follows:

𝑚𝑛,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1)
(
𝑚𝑛,𝐼(𝑖)𝑚𝑛,𝑖+1 +𝑚𝑛,𝐼(𝑖)𝑚𝐻,𝑖+1 +𝑚𝐻,𝐼(𝑖)𝑚𝑛,𝑖+1

)
(12)

𝑚̃𝐻,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1)
(
𝑚̃𝐻,𝐼(𝑖)𝑚̃𝐻,𝑖+1 + 𝑚̄𝐻,𝐼(𝑖)𝑚̃𝐻,𝑖+1 + 𝑚̃𝐻,𝐼(𝑖)𝑚̄𝐻,𝑖+1

)
(13)

𝑚̄𝐻,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1)
(
𝑚̄𝐻,𝐼(𝑖)𝑚̄𝐻,𝑖+1

)
(14)

𝐾𝐼(𝑖+1) =

(
1 −

𝑁∑
𝑡=1

𝑁∑
𝑗=1,𝑗≠𝑡

𝑚𝑡,𝐼(𝑖)𝑚𝑗,𝑖+1

)−1

(15)

where 𝑚𝑛,𝐼(𝑖+1) denotes the degree of support for 𝐻𝑛 when
recursively combining the DoB of the ith KPI with (𝑖 + 1)th KPI.
𝐾𝐼(𝑖+1) serves as the normalization factor. After aggregating all the
information, the combined DoB is obtained as follows:

𝛽𝑛 =
𝑚𝑛,𝐼(𝐿)

1 − 𝑚̄𝐻,𝐼(𝐿)

𝑛 = 1, 2, . . . , 𝑁 (16)

𝛽𝐻 =
𝑚̃𝐻,𝐼(𝐿)

1 − 𝑚̄𝐻,𝐼(𝐿)

(17)

where 𝛽𝑛 represents the aggregated DoB that a resilience value
is evaluated as 𝐻𝑛, and 𝛽𝐻 is the aggregated DoB that remains
unassigned to any specific evaluation grade, indicating the level of
uncertainty in the assessment. Port resilience under the scenario
𝑎𝑙 is characterized by the subsequent belief-based distribution:

𝑆 (𝑅 (𝑎𝑙)) = {(𝐻𝑛, 𝛽𝑛 (𝑎𝑙)) , 𝑛 = 1, 2, . . . , 𝑁; (𝐻𝑁, 𝛽𝑁 (𝑎𝑙))} (18)

where 𝑆(𝑅(𝑎𝑙)) denotes the belief distribution of the overall port
resilience under the disruption scenario 𝑎𝑙 . Through a linear
transformation, a single overall resilience value 𝑅(𝑎𝑙) is derived.
The same approach is used to evaluate the resilience of different
transport modes:

𝑅 (𝑎𝑙) =
𝑁∑
𝑛=1

𝑛 − 1

𝑁 − 1
𝛽𝑛 (𝑎𝑙) (19)

4 Experimental Results

4.1 Experiment Setup and Design

4.1.1 Disruption Settings

To validate the performance and practicality of the methodology,
it is essential to select a port with significant international

influence, advanced multimodal transport facilities, and rep-
resentative risk profiles. Therefore, a globally recognized con-
tainer port with an integrated multimodal transport system is
selected for empirical analysis. This port serves as a key hub
for container transshipment through waterways, highways, and
railways, making it an ideal site for analyzing the ripple effects
of interconnected systems. Moreover, given that most container
ports adhere to a standardized layout and utilize consistent equip-
ment, the nature of accidents tends to be uniform (Bogalecka and
Dąbrowska, 2023; Lu and Borgonovo, 2023), which ensures that
the insights gained from the study apply to other ports.

The data for this study are grounded on three primary data
sources: (i) A field investigationwas conducted at the investigated
port in September 2023, during which the real-time operational
datawere collected and firsthand insights into daily port activities
were gained. These findings help define the logical flow of
container port operational processes. (ii) Expert interviews are
involved throughout the model construction, including the vari-
able selection (refer to Table 6) and identification of KPIs (refer
to Table 7), the interaction among variables and subsystems, the
selection of disruptive scenarios (refer to Table 8), and the model
validation. (iii) Port accident reports from 1998 to 2021 are ana-
lyzed to extract disruption patterns and quantify corresponding
scenarios. Recent findings indicate that port equipment failures,
container structural damage, and traffic accidents are the most
frequently occurring port accident types. From the perspective
of consequences, equipment damage, personal injury, and traffic-
related incidents are the most common causes of severe damage.
A recently published related study provides additional detailed
information for data collection and model validation (Zhang
et al., 2025).

Having identified the major accidents, the next steps involve
defining the magnitude of these incidents from two perspectives:
their severity (Chen et al., 2022) and duration (Cao and Lam,
2018). Drawing on actual practices and expert opinions, specific
settings of the accidents are determined, as outlined in Table 8.
Subsequently, several disruption scenarios are established. The
outputs of these scenarios serve as a basis for evaluating the con-
sequences of disruption, providing the foundation for assessing
port resilience.

On the basis of the identified disruption scenarios, simulations of
port disruptions are conducted. A total of 190 different disruption
scenarios are analyzed, including 30 in liner shipping, 20 in
feeder shipping, 30 in railway, and 110 in container yards. To
direct the readers’ attention to the implications of resilience
values under different scenarios, the term “sensitivity analysis”
is not explicitly used in the subsequent analysis. Nevertheless,
the approach of varying parameter values adopted here falls
within the scope of sensitivity analysis. Disruptions should be
introduced after the system has stabilized to avoid initial biases.
To ensure this, a warm-up period of 200 h is applied. This
duration is based on the observation that the values of all
KPIs stabilize after approximately 200 h under normal operating
conditions. Additionally, to gather sufficient data and observe
long-term behavior patternswhile ensuring representative results
considering the liner shipping schedule, the simulation spans
920 h. Each scenario is repeated 30 times to calculate average
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TABLE 8 Scenario settings.

Disrupted transportation mode Disrupted component Disruption scale Disruption lasting time

Liner shipping Quay cranes 1,2,3 12,24,36,48,60,72,84,96,108,120
Feeder shipping Quay cranes 1,2 12,24,36,48,60,72,84,96,108,120
Railway Train cranes 1,2,3 12,24,36,48,60,72,84,96,108,120
Container yard Yard cranes 4,8,12,16,20,24 12,24,36,48,60,72,84,96,108,120

Traffic density 0.2,0.4,0.6,0.8,1.0 12,24,36,48,60,72,84,96,108,120

TABLE 9 Behavior reproduction validation result.

Variables Average estimate Average actual
Relative

variation (%)

Number of external trucks in port 500.81 500 0.162
Inventory level of containers in the port 102,107.5 110,000 7
Number of liner containerships in port 12.89 vessels 14 vessels 7.92
Number of feeder containerships in port 2.21 vessels 2 vessels 10.5 (accepted

after rounding up)
Number of trains in the port 2.87 trains 3 trains 4.3

values and reduce noise. Subsequently, the resilience values are
calculated using the methods detailed in Sections 3.2 and 3.3.

4.1.2 Validation

This subsection validates the proposed methodology from two
aspects: the performance of the SD simulation model and
the overall resilience assessment framework, respectively. The
reliability and accuracy of the resilience measurement method
have been verified and recognized through comparisons with
traditional approaches (Cheng et al., 2022; Sun et al., 2024);
further validation is not conducted here.

4.1.2.1 Validation for the SD Model. To validate the
SD model, established methods widely recognized in previous
studies were employed (Sterman, 2010; Qudrat-Ullah, 2012).
The specific procedures, their suitability, and the corresponding
results are documented in a recently published related work
(Zhang et al., 2025). Overall, all tests were successfully passed.

Table 9 presents the validation results for behavior reproduction,
where the simulation results are compared with historical data.
Due to the lack of data, five factors represent the five transporta-
tion modes. Prior literature suggests that variations within ±10%
were considered acceptable for model validation (Liu, Wang,
et al., 2023). The findings demonstrate that the simulation results
align closely with the actual operations of the port.

4.1.2.2 Validation of the Overall Framework. Second,
the entire framework, which includes an SD model, a resilience
calculation method, and the ER model, is validated. In previous
studies, most integrated frameworks only validated the simu-
lation part, neglecting the validation of the entire framework
(Feofilovs and Romagnoli, 2021; Blouin et al., 2024). Given the

absence of systematic methods for validating such a framework,
a limitation acknowledged by scholars (Chin et al., 2009), the
extreme condition approach from SD validation is adopted. This
approach examines whether the overall framework can effec-
tively capture the dynamic behaviors of port resilience changes.
Extreme scenarios, as detailed in Table 10, are designed for this
verification. The results confirm that under extreme disruption
conditions, resilience values decrease dramatically, as expected.
Under these extreme conditions, the resilience of the associated
KPIs often reaches a global minimum, sometimes nearing zero,
as shown in Table 11.

4.2 Experimental Results

In this section, the overall port resilience under different disrup-
tion scenarios (see Table 8) is first analyzed, identifying incident
types significantly affecting overall resilience and their statistical
characteristics. Second, the impact of these disruptions on various
transportation modes is examined in detail. Lastly, through
a correlation analysis, the article explores the characteristics
of ripple effects within the port, thereby demonstrating the
effectiveness of this study in understanding and managing port
risks.

4.2.1 Results of SD Simulation

The SD model generates time series data for nine KPIs under
various disruption scenarios characterized by different types,
magnitudes, and durations of disruptions. Given the extensive
dataset, Figure 5 depicts the variance trend of liner containerships
waiting at anchorage due to the damage of two liner quay cranes.
The duration of the disruption extends from 0 h (baseline, no
disruptions) up to 120 h.

14 Risk Analysis, 2025
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TABLE 10 Scenario settings for extreme condition test.

Transportation mode Base value
Extreme scenario

name Extreme value

Liner shipping Liner quay crane = 6 ES 1 Liner quay crane = 1, liner quay crane disruption
time = 200

Feeder shipping Quay crane handling efficiency
for feeder = 30

ES 2 Quay crane handling = 10, quay crane handling
efficiency for feeder disruption time = 240

Railway Number of transshipment
tracks = 4

ES 3 Number of transshipment tracks disruption scale = 1,
number of transshipment tracks disruption

time = 200
Trucking Max number of internal

trucks = 60
ES 4 Max number of internal trucks = 20

TABLE 11 Extreme condition test results.

Resilience value ES 1 ES 2 ES 3 ES 4

𝑅1,1 0.418 0.986 0.986 0.733
𝑅1,2 0.517 0.994 0.994 0.731
𝑅1 0.001 0.567 0.567 0.119
𝑅2,1 0.956 0.580 0.956 0.730
𝑅2,2 0.983 0.579 0.983 0.734
𝑅2 0.309 0.005 0.309 0.001
𝑅3,1 1.000 1.000 0.696 0.581
𝑅3,2 0.948 0.948 0.698 0.432
𝑅3 0.631 0.631 0.001 0.001
𝑅4,1 1.000 1.000 1.000 1.000
𝑅4,2 1.000 1.000 1.000 1.000
𝑅4 1.000 0.949 1.000 1.000
𝑅5,1 0.466 0.719 0.885 1.000
𝑅5 0.466 0.719 0.885 1.000
𝑅 0.240 0.287 0.317 0.491

4.2.2 Results of Resilience Indicated by KPIs

Considering the extensive dataset, which includes over 200
scenarios and 9 KPIs, an example involving a 120-h failure of
2 liner quay crane is chosen to demonstrate the process of
resilience calculation. A slice of Figure 5 is shown in Figure 6a.
The data are normalized on the basis of the global maximum
disruptive magnitude to construct resilience triangles, as shown
in Figure 6b. Subsequently, the resilience value is calculated using
Equation (2).

Through the above steps, the resilience values indicated by all
KPIs are calculated. Due to the vast amount of data, the results
under the liner quay crane damage scenarios are selected as
an example, as shown in Figure 7. In the case of quay crane
disruptions, the scales correspond to the removal of 1, 2, or 3
cranes, indicating progressively severe operational impacts. The
same scaling principle is applied to the remaining disruption
types in Table 8.

4.2.3 Overall Port Resilience Results

4.2.3.1 Entropy Weight Results. Using the resilience val-
ues, the weights for each KPI and each transportation mode
are determined on the basis of the entropy weight method
described in Equations (4)–(7), as shown in Table 12. From
the perspective of transportation modes, container storage is of
paramount significance, followed by liner and feeder shipping.
Rail and road transport carry the lowest weight, aligning with
typical industry patterns. At the bottom level, the weight of KPIs
shows minimal variation, indicating that they are nearly equally
important to their respective higher level indicators.

4.2.3.2 Overall Port Resilience Under Different Disrup-
tion Events. Using resilience values and weights as inputs,
the overall port resilience value across different disruption sce-
narios is derived through ER. As the primary objective of this
research is to develop and validate a systematic framework for
assessing port resilience, each disruption scenario is predefined
and treated deterministically, without incorporating uncertainty.
This assumption applies to the results presented in Figures 8–
12. Figure 8 illustrates the overall port resilience in response to
different severities of liner quay crane disruptions. Generally,
as disruption escalates (i.e., with longer durations and a fewer
operational quay cranes for liner shipping), the port resilience
value decreases accordingly. The most pronounced decline in
resilience occurs at 48 h for L1, 24 h for L2 and L3, indicating a
potential breaking point. After 60 h, the variation in resilience
values among L1, L2, and L3 becomes minimal, and the decline
rate due to prolonged disruptions also diminishes. This suggests
that the disruption duration and magnitude have a limited influ-
ence on total resilience, likely because the port system’s recovery
capabilities reach a saturation point. However, before 60 h, the
resilience values drop markedly as the severity and duration
of disruptions increase, demonstrating a heightened sensitivity.
Therefore, more attention should be focused on managing the
severity and duration of disruptions within the first 60 h, where
they tend to have a more pronounced effect.

Figure 9 illustrates the overall port resilience in response to vari-
ous feeder quay crane incidents. Like liner quay cranes, resilience
values experience substantial decreases due to disruptions within
the first 60 h, underscoring the importance of this period for
effective mitigation and the restoration of normal operations.
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FIGURE 5 SD simulation results of the number of waiting liner containershipswhen two liner quay cranes are damaged under different disruption
durations.

TABLE 12 Entropy weight results (three-decimal precision).

Resilience Weight Resilience Weight Resilience Weight Resilience Weight Resilience Weight

𝑅1 0.198 𝑅2 0.219 𝑅3 0.127 𝑅4 0.138 𝑅5 0.319
𝑅1,1 0.485 𝑅2,1 0.508 𝑅3,1 0.475 𝑅4,1 0.582 𝑅5,1 1
𝑅1,2 0.515 𝑅2,2 0.492 𝑅3,2 0.525 𝑅4,2 0.418

Additionally, the disparity between scenarios F1 and F2 is initially
small (12–24 h), widens during the 36–48-h period, and then
narrows, emphasizing the criticality of the 36–48-h-period in
managing and mitigating the disruption effects.

Figure 10 shows overall port resilience under different severities
of incidents involving train cranes. Throughout the study period,
resilience levels for the T1 and T2 scenarios remain constant, with
only the T3 scenario experiencing significant fluctuations when
the disruption persists for 96 h. This suggests that, compared to
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FIGURE 6 Illustration of resilience measurement on the basis of performance indicator: The number of waiting liner containerships when two
liner quay cranes are damaged for 120 h. (a) Time-series performance under disruption; (b) Normalized resilience triangle and calculated resilience
value.

incidents involving liner and feeder quay cranes, accidents in rail
operations have a lesser impact, possibly due to the higher self-
recovery capacity or redundancy inherent in railway systems.

Figure 11 depicts the overall port resilience under different traffic
congestion scenarios. Under the D1 scenario, the port’s resilience
remains largely stable, indicating that this congestion level does
not significantly impact normal port operations and remains
within acceptable limits. In the D2 scenario, resilience exhibits
a step-wise decline, with a significant drop occurring around
the 60-h mark, followed by stabilization. This suggests that this
duration represents a critical threshold for port resilience under
D2-level congestion. Under scenario D2, resilience gradually
diminishes over time. This declining trend disappears at D3,
transitioning to consistently low resilience values that remain
nearly constant over time, a pattern that also extends to D4 and
D5. Moreover, the resilience levels at D5 are slightly higher than
those at D3 and D4, possibly due to disruptions’ complex and
nonlinear effects on the overall port system.

Figure 12 illustrates the overall resilience values in the event
of yard crane failures at the container yard. As a container
block is typically served by a group of yard cranes performing
container handling tasks, the failure of a single crane is limited.
Therefore, scenarios simulating the complete failure of all crane
groups within a block are considered. Under scenarios Y1,
Y2, Y3, Y4, and Y5, the number of yard crane failures and
the durations have a minor impact on resilience. However, in
scenario Y6, when the number of malfunctioning yard cranes
exceeds 24, there is a substantial decline in port resilience,
which further decreases as the disruption time increases. In
practice, ensuring that the number of non-operational yard cranes
remains below 20 is crucial to maintain normal operations at the
port.

Figure 13 presents the statistical characteristics of overall port
resilience, including mean, error bar, and median values across
different types of disruptions. Traffic jams have the most sig-
nificant impact on port resilience, followed by liner quay crane
incidents, with train crane failures having the least impact. This
analysis provides port managers with a clear ranking of the
severity of different incidents, enabling them to develop tailored
response strategies accordingly. The error bar results indicate

significant fluctuations in resilience due to yard crane failures
and traffic congestion, reflecting the high sensitivity of the system
to the degree and duration of these disruptions. The difference
between the mean and median values, coupled with the length
of the error bars, suggests the presence of outliers. This indicates
that the resilience scores in specific disruption categories, such
as liner disruption and traffic jam, include outliers signifi-
cantly lower than most of the data, which may require special
attention.

4.2.4 Subsystem Resilience Under Different
Disruptive Scenarios

Figure 14 illustrates the average resilience values across five trans-
portation modes (i.e., 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5) under different types of
disruptions. Each axis represents a specific transportation mode,
whereas each colored line corresponds to a distinct type of dis-
ruption. The values along the axes indicate the resilience scores.
The following analysis is conducted from two perspectives: (i) the
comparative resilience of different transportation modes under
the samedisruption scenario (i.e., along a single colored line), and
(ii) the resilience of a given transportation mode under different
types of disruptions (i.e., along a single axis). On the basis of
these analyses, resource allocation can be strategically prioritized
before, during, and after disruptions, and it also facilitates the
identification of areas that are resilient and vulnerable.

First, the impacts of a specific disruption type on different
transportation modes are revealed. Liner quay crane disruptions
have the most significant impact on the liner shipping, with
resilience values around 0.3, followed by the railway, whereas
others are less affected. This suggests a strong interdependence
between liner and railway operations, with the railway par-
ticularly susceptible to such disruptions. Feeder quay crane
disruptions predominantly affect feeder shipping operations,
reducing resilience values to below 0.1, while having a minimal
impact on others. Train crane failures primarily influence railway
operations, where resilience values approximate 0.4, but their
impact is less notable in other operations. Yard crane failures
exhibit slight variation across transportation modes, maintaining
resilience values above 0.7. Traffic jams significantly disrupt the
liner, feeder, and railway operations, underscoring the essential
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FIGURE 7 Resilience calculation results due to different scales of quay crane disruptions across different durations indicated by nine KPIs.
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FIGURE 8 Impact of liner quay crane disruptions on overall
resilience.

role of container truck operations in linking seaside and railway
activities. The impact on the truck operations is moderate, with
the least influence on the container yard.

Second, the following analysis examines the resilience values of
a specific transportation mode under various disruptions. The

liner shipping records the lowest resilience when affected by liner
quay crane disruptions, dropping below 0.4, with traffic jams
also causing substantial reductions; however, it remains higher
than against other disturbances. Similarly, the resilience of feeder
shipping operations drops below 0.1 during its corresponding
incidents, with traffic jams as the next most disruptive, highlight-
ing operational similarities between liner and feeder shipping.
The railway operations experience a resilience value of around
0.4 (train crane accidents), 0.6 (traffic jams), and 0.8 (other
disruptions). The truck operations consistently exhibit resilience
between 0.7 and 0.8 across all disruptions, with yard crane
accidents posing the most significant risk. The container yard
demonstrates exceptional resilience across all disruptions, indi-
cating a robust capacity to withstand risks. In summary, seaside
shipping operations are the most vulnerable parts of the port.

4.2.5 Correlation Analysis

Figure 15 illustrates the correlation analysis results between
different resilience values represented by different KPIs. Liner
shipping disruptions in Figure 15a and feeder shipping disrup-
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FIGURE 9 Impact of feeder quay crane disruptions on overall resilience.
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FIGURE 10 Impact of train crane disruptions on overall resilience.
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FIGURE 11 Impact of traffic jams on overall resilience.
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FIGURE 13 Average, error, and median value for overall port resilience under different types of disruptions.

tions in Figure 15b extend their impact to the container yard.
However, disruptions in the railway operations only affect the
container yardminimally, as shown in Figure 15c. Additionally, as
shown in Figure 15d, the resilience values in the truck operations
show strong correlations with those from all other transportation
modes, indicating that disruptions originating from here in
this subsystem propagate throughout the entire port, leading
to widespread efficiency declines. Notably, in Figure 15e, the
container yard is particularly correlatedwith the number of trains
waiting at the port, highlighting that container backlogs signif-
icantly impair railway operational efficiency, but not the other
way around. This effect extends to feeder shipping, underscoring
the critical role of rail and waterborne feeder transport in the
container port’s logistics network. It is important to emphasize
that the observed correlations between the RMs of different
transport subsystems reflect the dependencies among system
ability, but they do not indicate the temporal sequence or lag in
disruption propagation. Thus, such analysis provides insight into
association, rather than causation or timing of ripple effects.

4.3 Implications

In this section, the implications of this research will be discussed
from three perspectives: implications on theory, practice, and
policymaking.

From a theoretical standpoint, this work advances the current
literature by addressing several critical gaps: (i) It challenges the
conventional view in port risk management that obscures the
understanding of ripple effects among interconnected transporta-
tion modes by enriching the literature based on a multimodal
examination of port disruptions; (ii) it refines resilience measure-
ment by clearly distinguishing between robustness and recovery
capabilities; (iii) it innovatively proposes a framework for port
resilience assessment by integrating SD, the resilience triangle,
and ER.

From a practical standpoint, the theoretical framework,
which accounts for the ripple effects that significantly impact
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FIGURE 14 Subsystem resilience values under different disruptions.

real-world practices and adheres to a multimodal layout, aligns
with actual operational needs. Consequently, this framework is
adaptable to ports featuring similar multimodal transshipment
systems, offering data-driven, practical, and reliable guidance for
maritime decision-makers. On the basis of historical data, the
framework objectively measures KPIs, the resilience of a specific
transportation mode, and overall port resilience under various
risk scenarios. Additionally, the correlation analysis enables a
clear identification of accident propagation patterns and resulting
ripple effects. In summary, this approach could provide relevant
stakeholders with quantitative data on the resilience of their
operations and equip safety managers and risk analysts with a
tool to understand the ripple effects within ports transparently.

From a policy perspective, the proposed methodology has broad
applicability and practical value. Its implementation can help
port operators, government agencies, and regulators enhance risk
prevention during the preparation stage, control risk propagation
during disruptions, and accelerate recovery after incidents. In
turn, this approach can mitigate the adverse impacts on shipping
companies, cargo owners, port authorities, and especially on port
workers and unions through the following:

1. This study demonstrates that traffic congestion and disrup-
tions to quay cranes handling liner containerships result
in the most substantial decline in resilience. Accordingly,
policymakers and port managers should prioritize these
areas in their prevention and emergency response strate-
gies, including routine maintenance, inventory of critical
spare parts, redundancy in key resources, and investment in
intelligent traffic control systems.

2. Resilience patterns under different disruption magnitudes
and durations help identify intervention thresholds. In gen-

eral, this study suggests that the first 60 h after a disruption
are the most critical period for resilience recovery. This calls
for setting a tailored response time point for each disruption
type. Besides, real-time monitoring and active alert systems
can help mitigate ripple effects.

3. Analyzing resilience across transportationmodes helps iden-
tify vulnerable subsystems and develop targeted strategies
based on their exposure profiles. For instance, feeder ship-
ping is primarily affected by direct risks. It requires direct,
mode-specific protection, whereas yard and liner operations
aremore susceptible to indirect ripple effects and thus require
strategies against indirect disruptions.

4. By analyzing the correlation of various KPIs under disrup-
tions, this study identifies patterns of ripple effects within
the port. Our findings indicate that disruptions originating
on the seaside propagate to the yard side, and disruptions on
the yard side affect the entire port. Therefore, policies should
target these critical transmission points by enhancing coor-
dination protocol mechanisms, such as regulating container
flow between the seaside and yard side during peak hours,
adjusting yard storage strategies, and managing internal port
traffic conditions.

5 Conclusion and Future Work

This study introduces a framework that incorporates SD sim-
ulation, resilience assessment method, and ER to examine the
resilience of multimodal ports in the face of operational distur-
bances. It segments ports on the basis of their transportation
functions to examine the ripple effects across these modes. Its
main contributions include (i) a micro perspective SD simulation
tailored for multimodal container ports; (ii) a novel resilience
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(a) Disruptions from liner shipping. 

(b) Disruptions from feeder shipping. 

(c) Disruptions from railway. 

(d) Disruptions from truck operations. 

R1,1 R1,2 R2,1 R2,2 R3,1 R3,2 R4,1 R4,2 R5,1

R1,1

R1,2

1.000 0.991 0.088 0.992

0.991 1.000 0.080 0.993

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

R1,1 R1,2 R2,1 R2,2 R3,1 R3,2 R4,1 R4,2 R5,1

R2,1

R2,2

1.000 0.997 0.298 0.968

0.997 1.000 0.298 0.975

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

R1,1 R1,2 R2,1 R2,2 R3,1 R3,2 R4,1 R4,2 R5,1

R3,1

R3,2

1.000 0.916 0.319

0.916 1.000 0.311

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

R1,1 R1,2 R2,1 R2,2 R3,1 R3,2 R4,1 R4,2 R5,1

R4,1

R4,2

0.947 0.951 0.937 0.928 0.876 0.878 1.000 0.962 0.957

0.913 0.918 0.898 0.893 0.837 0.851 0.962 1.000 0.940

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

R1,1 R1,2 R2,1 R2,2 R3,1 R3,2 R4,1 R4,2 R5,1

R5,1 0.333 0.338 0.451 0.451 0.817 0.346 0.265 0.336 1.000

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

(e) Disruptions from the container yard. 

FIGURE 15 Interdependencies among resilience values from various KPIs of the port. (a) Disruptions from liner shipping; (b) Disruptions from
feeder shipping; (c) Disruptions from railway; (d) Disruptions from truck operations; (e) Disruptions from container yard.

calculationmethod that distinctly captures the features of disrup-
tive and recovery periods; (iii) anER approach capable of integrat-
ing interconnected and contradictory indicators; (iv) an applica-
ble framework that guides users in conducting their assessments

to enhance global port resilience ultimately. Experimental results
provide insights into how different transport subsystems and the
entire port respond to operational disruptions, as well as the
spreading patterns of ripple effects between these modes.
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The proposed framework is computationally efficient. However,
integrating three components requires data synchronization and
coordination, which substantially increases modeling complexity
as the number of disruption scenarios grows. To mitigate this,
futureworkmay employmachine learning techniques to approxi-
mate the relationship between disruption scenarios and resilience
values without the need for repeated simulations. Given the
unpredictability of risks and limited data, the framework cannot
capture all possible disruption scenarios. Future studies will
aim to identify the influence of external factors in advance
and incorporate a broader range of risk scenarios. Moreover,
the current correlation analysis does not consider time delays
between disruptions and their impacts, nor concurrent disruption
events. Future extensions could address multiple concurrent
risks, conduct sensitivity analyses over a wider parameter space,
and model ripple effects with lagged causal relationships.
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Appendix A

The operational workflow of the different transportation modes within the port is outlined below, with different colors representing different modes. As
the operational processes for feeder shipping and liner shipping are identical, they are combined for presentation purposes. Figure A1

Elaborating on the causal loop diagram, the stock-flow diagram is also developed in a modular manner, encompassing five subsystems and various
quantitative variables, as shown in Figure A2.
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FIGURE A1 Operational flow in the port.
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FIGURE A2 Stock-flow diagram of a multimodal container port. (a) Liner shipping system; (b) Feeder shipping system; (c) Container inventory
system; (d) Truck system; (e) Railway system.

Risk Analysis, 2025 27

 15396924, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.70149 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [26/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE A1 Notation used in the simulation model.

Notation Variable Unit Estimation Source

Liner shipping
system

𝜆𝑙 Ship arrival rate Vessels/Hour Poisson (1.5) Statistics representation derived from
real data

𝐵𝑙 Number of available
berth

Vessel 16 Real data

𝐸𝑙 Number of quay
cranes

Cranes 6 Real data

𝐶𝑙 Number of container
per ship

Containers Random uniform
(1000, 3000)

Statistics representation derived from
real data

𝜂𝑙 Quay crane handling
efficiency

Containers/Hour 30 Real data

𝐷𝑙𝑏 Ships berthing time Hour 1 Real data
𝐷𝑙𝑙 Ship loading and

unloading time
Hour Variable 𝐷𝑙𝑙 = max(

𝐶𝑙

𝜂𝑙𝐸𝑙
,

𝐶𝑙

𝐴𝐼𝑙𝜂𝑖
)

𝜇𝑙 Ships loading and
unloading rate

Vessels/Hour Variable 𝜇𝑙 = {

𝐿𝑙

𝐷𝑙𝑙

, 𝐿𝑙 > 0

0, 𝑒𝑙𝑠𝑒

𝐿𝑙 Amount of liner ships
at berth loading and

unloading

Vessels Variable 𝐿𝑙 = ∫ 𝑃𝑙 − 𝜇𝑙

𝐴𝑙 Amount of ships at
anchorage

Vessels Variable 𝐴𝑙 = ∫ 𝜆𝑙 − 𝑃𝑙

𝐵𝑎𝑙 Number of available
berth

Berth Variable 𝐵𝑎𝑙 = 𝐵𝑙 − 𝐿𝑙

𝑃𝑙 Ships berthing rate Vessels/Hour Variable 𝑃𝑙 = {

min(𝐵𝑎𝑙 ,𝐴𝑙)

𝐷𝑙𝑏

, 𝐵𝑎𝑙 > 0, 𝐴𝑙 > 0

0, 𝑒𝑙𝑠𝑒

Trucking
system

𝜆𝑙 Truck arrival rate TEU/Hour Poisson (500) Statistics representation derived from
real data

𝑠𝑡 Distance of external
truck route

km 5 Real data

𝑠𝑖 Distance of internal
truck route

km 3 Real data

𝜌𝑗 Truck density in jam Trucks/km 60 Average real data
𝑣𝑓 Truck free velocity km/Hour 30 Average real data
𝐷𝑖𝑙 Internal trucks

loading and
unloading time

Hour 0.05 Averaged real data

𝐸𝑦 Amount of yard
cranes

Cranes 48 Real data

𝜂𝑦 Yard crane working
efficiency

Containers/Hour 30 Real data

𝐶𝑡 External trucks
capacity

Containers/Trucks 2 Real data

𝐶𝑖 Internal trucks
capacity

Containers/Trucks 2 Real data

𝐸𝑖 Max number of
internal trucks

Trucks 60 Real data

𝑎𝑡 Intercept coefficient Dimensionless −1.5 Real data
𝑏𝑡 Slope coefficient Dimensionless 0.0045 Real data

(Continues)
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TABLE A1 (Continued)

Notation Variable Unit Estimation Source

𝐷𝑡𝑙 External
truck

loading and
unloading
time

Hour Variable 𝐷𝑡𝑙 =
1

𝑎𝑡+𝑏𝑡𝐸𝑦𝜂𝑦
𝐶𝑡

𝐷𝑡𝑡 External
truck

travelling
time

Hour Variable 𝐷𝑡𝑡 =
𝑠𝑡

𝑣

𝐷𝑡𝑤 External
truck

working
time

Hour Variable 𝐷𝑡𝑤 = 𝐷𝑡𝑡 + 𝐷𝑡𝑙

𝑣 Truck
velocity

km/Hour Variable 𝑣 = 𝑣𝑓ln(
𝜌𝑗

𝜌
)

𝐴𝑡 Amount of
external
trucks in
port

Trucks Variable 𝐴𝑡 = ∫ 𝜆𝑡 − 𝜇𝑡

𝜌 Truck
density

Trucks/km Variable 𝜌 = 𝐴𝑡+𝐴𝐼𝑖
max(𝑠𝑡 ,𝑠𝑖 )

𝜇𝑡 Truck depart
rate

Trucks/Hour Variable 𝜇𝑡 = {

𝐴𝑡

𝐷𝑡𝑤

, 𝐴𝑡 > 0

0, 𝑒𝑙𝑠𝑒

RI𝑚 Number of
required
interna
trucks for
transporta-
tion mode

𝑚

Trucks Variable RI𝑚 =
𝜂𝑚𝐸𝑚

𝜂𝑖
, ∀𝑚 =

{𝑙, 𝑓, 𝑟}

RI𝑖 Total
number of
required
Internal
trucks

Trucks Variable RI𝑖 =
∑

𝑚=𝑙,𝑓,𝑟 RI𝑚

AI𝑖 Number of
actual
internal
trucks

Trucks Variable AI𝑖 = min(𝐸𝑖, RI𝑖)

AI𝑚 Number of
actual
internal
trucks for
transporta-
tion mode

𝑚

Trucks Variable AI𝑚 =
AI𝑖RI𝑚

RI𝑖
, ∀𝑚 =

{𝑙, 𝑓, 𝑟}

𝜂𝑖 Internal
truck

working
efficiency

Containers/Hour Variable 𝜂𝑖 =
𝐶𝑖

𝐷𝑖𝑤

(Continues)
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TABLE A1 (Continued)

Notation Variable Unit Estimation Source

𝐷𝑖𝑡 Internal
truck

travelling
time

Hour Variable 𝐷𝑖𝑡 =
𝑠𝑖

𝑣

𝐷𝑖𝑤 Internal
truck

working
time

Hour Variable 𝐷𝑖𝑤 = 𝐷𝑖𝑡 + 𝐷𝑖𝑙

Container
import and
export system

𝛼 Exported containers
cutoff time

Hour 72 Averaged real data

𝛽 Imported containers
pickup time

Hour RANDOM
UNIFORM (72,

120)

Statistics representation derived from
real data

𝑥𝑓 Feeder ships export
ratio

Dimensionless 0.5 Averaged real data

𝑥𝑟 Train export ratio Dimensionless 0.5 Averaged real data
𝑥𝑡 Trucks export ratio Dimensionless 0.5 Averaged real data
𝑥𝑙 Liner ships export

ratio
Dimensionless 0.35 Averaged real data

𝑦𝑓 Feeder ships capacity Containers/Vessels Random Uniform
(500, 1000)

Statistics representation derived from
real data

𝑦𝑟 Trains capacity Containers/Trains Random Uniform
(100, 150)

Statistics representation derived from
real data

𝑦𝑙 Liner ships capacity Containers/Vessels Random Uniform
(1000, 3000)

Statistics representation derived from
real data

𝑂𝑚 Exported container by
transportation mode

𝑚

Containers Variable 𝑂𝑚 = 𝑥𝑚𝜇𝑚𝑦𝑚, ∀𝑚 = {𝑙, 𝑓, 𝑟, 𝑡}

𝑄𝑚 Imported container by
transportation mode

𝑚

Containers Variable 𝑄𝑚 = 1 − 𝑥𝑚𝜇𝑚𝑦𝑚, ∀𝑚 = {𝑙, 𝑓, 𝑟, 𝑡}

𝑂′
𝑙
𝑡 Exported container by

ship delayed
Containers Variable 𝑂′

𝑙
𝑡 = 𝑂𝑙𝑡 − 𝛼

𝑄′
𝑚 Imported container by

transportation mode
𝑚 with delay

Containers Variable 𝑄′
𝑚 = 𝑄𝑚𝑡 − 𝛽, ∀𝑚 = {𝑓, 𝑟, 𝑡}

𝑉𝑜𝑢𝑡 Volume of exported
container in port

Containers Variable 𝑉out = ∫ (𝑂𝑓 + 𝑂𝑟 + 𝑂𝑡 − 𝑂′
𝑙
)𝑑𝑡

𝑉𝑖𝑛 Volume of imported
container in port

Containers Variable 𝑉𝑖𝑛 = ∫ (𝑄𝑙 − 𝑄′
𝑓
− 𝑄′

𝑟 − 𝑄′
𝑡)𝑑𝑡
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