
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Fairclough et al. Journal of Activity, Sedentary and Sleep Behaviors             (2026) 5:1 
https://doi.org/10.1186/s44167-025-00091-x

Journal of Activity, Sedentary 
and Sleep Behaviors

*Correspondence:
Stuart J. Fairclough
Stuart.Fairclough@edgehill.ac.uk

Full list of author information is available at the end of the article

Abstract
Background  Average acceleration (AvAcc) and intensity gradient (IG) are accelerometer metrics which when 
combined describe the volume and intensity distribution of physical activity, sedentary behaviour, and sleep across 
the 24-h cycle. Little is known about trajectories of children’s AvAcc and IG over time on weekdays and weekends. This 
study describes school year trajectories of children’s weekday and weekend AvAcc and IG.

Methods  During 2023–24 249 children (8–9 years old; 51.4% girls) wore accelerometers for 24 h⋅day−1 over 7-days 
at three time points (Autumn, Winter/Spring, Summer). AvAcc and IG were calculated for weekdays and weekends. 
K-means cluster analyses were performed on Autumn data to group participants according to their combined AvAcc 
and IG profiles. Linear mixed models examined school year weekday and weekend AvAcc and IG trajectories for the 
whole sample (Aim 1) and for the clusters (Aim 2).

Results  Aim 1: There were significant increases in weekday AvAcc in Summer compared to Winter/Spring (β = 3.94, 
95% CI = 1.20, 6.68) and Autumn (β = 4.43, 95% CI = 2.47, 6.40), but not IG. Weekend AvAcc and IG were relatively 
stable. Aim 2: Three cluster groupings of children were identified (Most Active, Somewhat Active (weekdays) / Active 
(weekends), and Least Active). Weekday AvAcc increased significantly from Winter/Spring to Summer in all groups 
(+ 3.6–4.6 mg, 95% CIs > 0) and from Autumn to Summer in the less active groups only (+ 5.2–5.8 mg, 95% CIs > 0). 
IG remained stable for the Most and Somewhat Active groups, with a significant increase from Autumn to Summer 
observed in the Least Active group (+ 0.05, 95% CI = 0.01–0.09). There were no significant within-cluster group 
changes in weekend AvAcc or IG, although the Least Active children had the most positive AvAcc and IG trajectories.

Conclusions  Weekday physical activity volume but not intensity increased over the school year, while both 
dimensions of weekend activity had stable trajectories. Weekday and weekend cluster groups had distinct physical 
activity profiles which followed subtly different AvAcc and IG trajectories. The results reinforce the complementary 
insights provided by studying AvAcc and IG together and have implications for children’s physical activity intervention 
programming.
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Background
Assessing 24-h movement behaviours with accelerom-
etry captures duration, volume, and intensity character-
istics relevant to physical activity, sedentary behaviour, 
and sleep [1]. Average acceleration (AvAcc) and intensity 
gradient (IG) are directly measured accelerometer met-
rics which when applied over the 24-h cycle describe the 
volume (AvAcc) and intensity distribution (IG) of all daily 
movement [2]. AvAcc but not IG is strongly correlated 
with cut-point derived moderate-to-vigorous physical 
activity (MVPA) [2, 3], which is traditionally reported in 
accelerometer studies. Moreover, AvAcc and IG are inde-
pendently associated with health and wellbeing outcomes 
in children [3] and adults [2, 4] and thus, provide more 
nuanced information on how physical activity volume 
and intensity relate to such outcomes than cut-point-
based metrics.

Previous studies of children’s AvAcc and IG have 
been limited by reliance on cross-sectional data, which 
are typically averaged across all days of the week [3, 5, 
6]. Consequently, no empirical evidence exists report-
ing longitudinal trajectories of these metrics, and little 
is known about how they differ between weekdays and 
weekends [7]. Weekdays and weekends provide very dif-
ferent stimuli for children to engage in physical activity, 
including structure of the days, physical activity oppor-
tunities, home routines, and social environments [7–9]. 
Most cross-sectional studies observe higher levels of 
physical activity and less time spent sedentary on week-
days compared to weekends [7, 8, 10], while longitudi-
nal studies suggest that trajectories of cut-point derived 
MVPA are generally stable [11]. However, little is known 
about weekday and weekend AvAcc and IG, particularly 
when assessed longitudinally. This study aims to add to 
the current knowledge base by addressing this gap.

Children’s physical activity is characterised by substan-
tial inter-individual variability which may predict distinct 
patterns of change [12], whereby children with different 
activity profiles may respond differently over time to sea-
sonal influences, environmental changes, or maturational 
processes [13]. Further, from a public health perspec-
tive, understanding whether physical activity inequali-
ties widen or narrow over time is important for targeting 
interventions and services effectively [14]. Cluster-based 
analysis can allocate participants into groups based on 
common characteristics, such as physical activity pro-
files. The longitudinal stability of physical activity for 
each cluster can subsequently be examined to provide 
deeper insights into children’s physical activity trajec-
tories (e.g., whether less active children show increases 

over time relative to more active peers [15, 16]. Such 
approaches have potential to reveal heterogeneity in chil-
dren’s physical activity trajectories [17], but to date these 
analyses have not been used with AvAcc and IG.

For 9–10 months of the year children’s lives in and out 
of school are largely structured around the school cal-
endar and its associated social and environmental con-
texts [9]. Thus, the school year is a critical annual period 
in children’s development, which has strong ecological 
validity as a longitudinal window for examining their 
physical activity. Furthermore, the school year in the 
UK typically spans autumn, winter, spring, and summer, 
encompassing the full range of climatic- and environ-
mental-related influences on physical activity, particu-
larly outdoor activity [18]. Based on these combined 
factors, the school year arguably provides a more repre-
sentative picture of longitudinal variation in children's 
‘typical’ activity behaviours than a calendar year, which 
includes extended school summer breaks that dramati-
cally alter children’s movement behaviour routines [9, 
18].

Understanding children’s physical activity volume and 
intensity distribution trajectories across the school year 
can inform critical periods for the implementation of 
targeted interventions. Moreover, directly measured 
physical activity volume and intensity profiles may bet-
ter reflect nuanced changes in activity behaviours than 
traditional accelerometer cut-point approaches, and 
thus be more informative for children’s health promotion 
efforts. To address these evidence gaps, this longitudinal 
study aimed to [1] describe the school year trajectories of 
children’s weekday and weekend AvAcc and IG, and [2] 
examine whether these trajectories varied between chil-
dren with different AvAcc and IG profiles.

Methods
Participants and settings
Participants were 249 children aged 8–9  years (51.4% 
girls) who attended seven primary schools in Pennine 
Lancashire, northwest England. The schools were located 
in areas of varying deprivation (median English Indi-
ces of Multiple Deprivation (EIMD) decile = 5 [19]) and 
ranged in size from 206 to 446 enrolled children (mean 
school enrolment = 296 children). Of these, 22.2% were 
eligible for free-school meals (FSM) which is similar to 
the 24.2% average for the region within which the schools 
were situated [20]. Schools were recruited through the 
Together an Active Future (taaf.co.uk) ‘Ready, Set, Move’ 
active schools network in Pennine Lancashire. In accor-
dance with the project ethical approvals granted by Edge 
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Hill University’s Science Research Ethics Committee 
(#ETH2324-011), consent materials were distributed to 
schools with signed informed parent/carer consent and 
child assent required for each child to participate in the 
project. Consent materials were distributed to all Year 4 
children (aged 7–8 years) in the seven schools (N = 305) 
with informed consent provided for N = 249 children 
(81.6% participation rate). Data collection occurred 
at three time points during the 2023–24 school year 
over four-week periods in November–December 2023 
(Autumn), February–March 2024 (Winter/Spring), and 
June-July 2024 (Summer).

Measures
Demographic characteristics
Schools provided child participant-level data related to 
sex, birth date, ethnicity, FSM eligibility, home postcode, 
and academic attainment. FSM eligibility (coded as yes/
no) was used as a child-level indicator of socioeconomic 
status (SES). Five ethnicity categories were adapted from 
the UK Census ethnicity classifications (White/White 
British, Mixed ethnicity, Asian/Asian British, Black/
Black British/Caribbean/African, Other ethnicity) [21]. 
For additional contextual data, EIMD rank scores were 
calculated from home postcodes to provide a neighbour-
hood-level ranked measure of deprivation ranging from 1 
(most deprived) to 32,844 (least deprived) [19].

Anthropometric measures
Height and body mass were measured using a porta-
ble stadiometer (Leicester Height Measure, Seca, Bir-
mingham, UK) and calibrated scales (813 model, Seca), 
respectively, with participants in light clothing with shoes 
removed. Body mass index (BMI) was calculated for each 
participant and BMI z-scores (BMIz) were assigned [22]. 
International Obesity Task Force BMI cut-points were 
then applied to classify participants as normal weight or 
overweight/obese [23].

Physical activity outcomes
Participants wore ActiGraph GT9X (ActiGraph, Pen-
sacola, FL, USA) or Axivity AX3 (Axivity Ltd, New-
castle-Upon-Tyne, UK) triaxial accelerometers on the 
non-dominant wrist for 24  h·day−1 over 7  days with 
recording frequency set to 100  Hz. Choice of device 
deployment depended on availability during each data 
collection time point, with ActiGraph devices being most 
commonly used (68.3% vs. 31.1%; Additional file 1, Table 
S7). ActiGraph data were downloaded using ActiLife ver-
sion 6.11.9 (ActiGraph, Pensacola, FL, USA) and saved in 
raw format as GT3X files. Axivity AX3 data were down-
loaded using OMGUI software version 1.0.0.43 (Axivity 
Ltd, Newcastle-Upon-Tyne, UK) and saved as cwa format 
raw files. Raw accelerometer data files were processed 

and all accelerometer outcomes were generated using the 
GGIR R package [24] v3.0–0, which included autocalibra-
tion using local gravity as a reference [25] and detection 
of implausible values and of non-wear. Non-wear was 
imputed by default in GGIR whereby invalid data were 
imputed by the average at similar times on other days 
of the week [26]. Wear time criteria were at least three 
valid days with ≥ 960  min·day−1 defined as a valid wear 
day, with accelerometer data excluded from analyses if 
post-calibration error was > 10  mg (milli-gravitational 
units) and/or the wear time criteria were not achieved. 
The triaxial accelerometer signals were converted into 
one omnidirectional summary measure of acceleration 
(ENMO; i.e., the Euclidean norm of the three accelerom-
eter axes with 1  g subtracted and negative values trun-
cated to zero [26]). Computed valid day ENMO values 
expressed in mg were averaged over 1-s epochs to reflect 
the intermittent nature of children’s physical activity 
behaviour and to ensure higher intensity physical activ-
ity was captured [27]. ENMO values were then used to 
generate all subsequent physical activity outcomes, as 
follows:

Average acceleration (AvAcc) is the average magnitude 
of dynamic acceleration (i.e., ENMO). It represents the 
average intensity across the day and is a proxy for physi-
cal activity volume [2]. Intensity gradient (IG) reflects the 
negative curvilinear relationship between intensity and 
time accumulated at any given intensity, and describes 
the physical activity intensity distribution across the day 
[2]. IG values are always negative, with higher (i.e., less 
negative) values indicating proportionately more time 
being spread across the full intensity profile, whereas a 
lower or more negative IG reflects proportionately less 
time spent in mid-range and higher intensities. AvAcc 
and IG are independently associated with a range of 
health and wellbeing outcomes in children [3]. Both met-
rics measured by ActiGraph and Axivity devices worn on 
the non-dominant wrist have demonstrated equivalence 
in adults without adjustment for any correction factors 
[28]. MX metrics (where X refers to an accumulated dura-
tion of time in minutes) represent the acceleration in mg 
above which the most active X minutes are accumulated. 
MX metrics are a population-independent continuous 
variable, derived from directly measured accelerations, 
and capture intensity irrespective of level of activity, or 
fitness status [29]. Fourteen MX metrics were computed 
to cover different durations of interest and thus give a 
comprehensive picture of participants’ physical activity 
profiles. These were M1, M2, M5, M10, M15, M30, M60, 
M120, M240, M360, M480, M600, M720, and M960.

Data analysis
Data preparation and analyses were performed in R (ver-
sion 4.3.3) and R Studio (v2021.09.0). Following data 
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cleaning and error checking, preliminary analysis of valid 
accelerometer wear at each data collection time point 
was conducted as device non-wear was anticipated to 
be the most likely cause of data attrition. Accelerometer 
wear time criteria were achieved by 185 (Autumn), 138 
(Winter/Spring), and 151 (Summer) participants, which 
reflected 25.7%, 44.6%, and 39.4% attrition, respectively 
(36.5% overall). Visual inspection of the distribution and 
patterns of missing data and analysis of participant char-
acteristics between those with and without accelerometer 
outcomes indicated non-systematic differences in age, 
sex, ethnicity, FSM eligibility, BMIz, or school attended 
(Additional file 1, Table S8). We therefore proceeded with 
the assumption that the data were missing at random 
and used the mice package v. 3.17.0 [30] to perform mul-
tiple imputation by chained equations to replace missing 
values.

Multiple imputation
Multiple imputation aims to minimise the impact of data 
attrition or non-response bias on data analysis by using 
available information about study participants to adjust 
parameter estimates, which can be subject to biases when 
data are missing [31]. Multiple imputation can therefore 
approximate what results would look like with complete 
observations while allowing for representation of uncer-
tainty in the results and maximising a dataset's statisti-
cal power [32]. Our dataset contained a large number of 
accelerometer variables representing identical outcomes 
for different parts of the week (e.g., AvAcc averaged 
across the week, on weekdays, and on weekends). Includ-
ing all of these variables in the same multiple imputation 
analysis presented a high risk of multicollinearity and 
poor model convergence with unreliable imputation esti-
mates. To address this, two separate longitudinal datas-
ets were created which included accelerometer data that 
were averaged across weekday or weekend days only. To 
prepare each dataset for multiple imputation, the fraction 
of missing information (FMI) was calculated for AvAcc, 
IG, and other movement behaviour outcomes. The high-
est FMI values for the outcomes of interest were 28% for 
weekday IG, and 40% for weekend AvAcc. Guided by rec-
ommendations to set m (i.e., the number of imputations) 
to ≥ 100 times the highest FMI [33], the total imputations 
in each model were set at 30 (weekday) and 40 (weekend). 
The number of weekday imputations reflected the 30% 
FMI for weekday sleep, which was a measured movement 
behaviour outcome in the wider project dataset, but not 
one that was a focus of the current study. The models 
used predictive mean matching and proportional odds 
logistic regression imputation methods and accounted 
for school-level clustering. The number of iterations per 
imputation was adjusted and checked by inspections 
of trace plots, density plots, box plots, and descriptive 

statistics to determine when satisfactory convergence 
had been achieved. Two fully converged imputed datas-
ets were generated representing the weekday and week-
end datasets.

All subsequent weekday and weekend analyses were 
conducted separately on the multiply imputed datasets, 
but to help with comparative interpretations weekday 
and weekend model results are presented together. For 
Aim 1, linear mixed models were generated using the 
lme4 v. 1.1–36 [34] and car v. 3.1–3 [35] R packages to 
examine AvAcc and IG trajectories. Covariates were 
sex, SES, ethnicity, and BMIz, with school included as a 
random effect. Physical activity profiles were examined 
through radar plot visualisation of MX metrics for dura-
tions where differences between time points were evident 
(i.e., M60 to M1).

For Aim 2, the mclust package v. 6.1.1 [36] was used 
to perform k-means cluster analyses on Autumn AvAcc 
and IG to group participants according to their com-
bined physical activity volume and intensity distribu-
tion profiles. This cluster analysis method was selected 
as it is computationally more straightforward to achieve 
successful model convergence with longitudinal mul-
tiply imputed data. To account for the different units of 
measurement used for AvAcc and IG, and to avoid one 
outcome artificially dominating the clustering process, 
AvAcc and IG were firstly converted to z-scores to allow 
the analyses to be conducted using standardised values. 
This ensured that true multivariate patterns in the data 
were identified rather than the clustering being biased 
by the different measurement scales. K-means cluster-
ing solutions from 1 to 6 clusters were evaluated using 
the elbow plot method (Additional file, Figures S1 and 
S2) and silhouette analysis. Cluster separation was visu-
alised with t-distributed Stochastic Neighbour Embed-
ding (t-SNE) plots generated using the RTsne package 
v. 0.15 [37]. Once the number of clusters were decided, 
cluster trajectories for AvAcc and IG were analysed using 
separate linear mixed models (lme4 [34] and mitml v. 
0.4–5 [38] packages). For each cluster, pairwise com-
parisons of time point predicted means were undertaken 
with the Holm–Bonferroni adjustment applied to con-
trol for familywise error. All models were adjusted for 
cluster*time-point interactions, sex, SES, ethnicity, and 
BMIz. School-level random effects were not included as 
preliminary models indicated negligible between-school 
variance. Weekday and weekend physical activity profiles 
of each cluster over the school year were visualised with 
radar plots [39] of M60, M30, M15, M10, M5, M2, and 
M1 values. For all Aim 1 and 2 analyses, the mice [30] and 
mitml [38] packages were used to pool estimates from 
each imputed dataset using Rubin’s Rules [40]. Statistical 
significance was determined by 95% confidence intervals. 
The Anthropic Claude Sonnet 4.5 Large Language Model 
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was used within Microsoft Visual Studio Code v. 1.100.3 
for data analysis code troubleshooting and refinement.

Results
The weekday and weekend imputed datasets included 
data from 249 children. Intra-class correlations for 
school-level variance across time points were low (week-
day ICC range = 0.003–0.03; weekend = 0.01–0.02), indi-
cating that schools were too similar for a school-level 
effect on the children’s physical activity volume and 
intensity distributions to be detected. Descriptive char-
acteristics of the children and their Autumn unadjusted 
physical activity outcomes are presented in Table 1.

Aim 1
Aim 1 examined adjusted trajectories of AvAcc and IG 
across the school year separately for weekday and week-
ends (Additional file 1, Tables S1 and S2). Weekday 

AvAcc was stable between Autumn and Winter/Spring 
then significantly increased from Winter/Spring to Sum-
mer (β = 3.94, 95% CI = 1.20, 6.68; Fig. 1). Summer AvAcc 
was also significantly higher than at Autumn (β = 4.43, 
95% CI = 2.47, 6.40). Weekday AvAcc was significantly 
associated with sex (boys > girls; β = 7.04, 95% CI = 5.48, 
8.61), and there was an inverse association between BMIz 
and AvAcc (β = -0.72, 95% CI = − 1.38, − 0.07). Follow-
up analyses indicated no significant sex*time point or 
BMIz*time point interactions. Weekday IG was stable 
across the three time points with only small non-signif-
icant increases evident between Autumn, Winter/Spring, 
and Summer (Fig. 1). Risk of multicollinearity in all mod-
els was low (VIF range = − 1.0 to 3.0).

Adjusted weekend AvAcc values were lower than week-
day values at Autumn and Summer, whereas weekend IG 
values (Fig. 1) were lower at all time-points. Both week-
end metrics were relatively stable with no significant 
changes evident between time points (Additional file 1, 
Table S2).

Figures  2a and b present the children’s respective 
weekday and weekend MX values describing the physi-
cal activity profiles underlying the trajectories of AvAcc 
and IG over the school year. On weekdays, physical 
activity profiles overlapped at Autumn and Winter/
Spring and increased in intensity linearly at Summer for 
all MX durations. These increases were particularly evi-
dent from M30 and were most pronounced during the 
most active 5, 2, and 1 min of the day (Fig. 2a). Weekend 
physical activity profiles showed that activity intensity 
from M60 to M1 increased between Autumn to Winter/
Spring and Summer when similar levels of acceleration 
were apparent at all MX durations (Fig.  2b). Further, at 
all time points, weekend M10 (range = 756 to 826  mg) 
to M1 (range = 1879 to 2004  mg) were lower than for 
weekday (M10 range = 797 to 875  mg; M1 range = 2203 
to 2434 mg), which reflects the higher observed weekday 
AvAcc and IG. Irrespective of weekday or weekend, at all 
time points the most active accumulated 60 min were at 
intensities greater than brisk walking/3 Metabolic Equiv-
alents of Task (METS) (i.e., > 200 mg [41]). The children 
also accrued between 10 and 15 min of accelerations at 
or above 6 METS (i.e., 707 mg [41]; i.e., at an equivalent 
intensity to running), highlighting that this was a highly 
active sample of children.

Aim 2
Aim 2 identified clusters of children with distinct physi-
cal activity volume and intensity profiles and exam-
ined cluster-specific trajectories of AvAcc and IG over 
the school year. Clusters were developed separately for 
weekday and weekend. Descriptive characteristics of the 
children in each cluster are presented in Additional file 
1 (Tables S3 (weekday) and S4 (weekend)). For weekday 

Table 1  Participants’ descriptive characteristics and unadjusted 
Autumn physical activity outcomes (Mean (SD) unless otherwise 
stated)
Variable All (N = 249) Boys 

(n = 121)
Girls 
(n = 128)

Age (y) 8.70 (0.42) 8.71 (0.43) 8.69 (0.42)
Height (cm) 132.43 (5.91) 133.09 (5.77) 131.81 (5.99)
Weight (kg) 31.29 (6.86) 31.28 (6.47) 31.29 (7.24)
BMI (kg⋅m2) 17.72 (3.01) 17.55 (2.84) 17.88 (3.16)
BMIz 0.35 (1.09) 0.60 (1.14) 0.12 (0.99)
Weight status
Normal weight (%) 72.17 75.92 68.62
Overweight/obese (%) 27.83 24.08 31.38
FSM eligibility (%) 16.87 14.88 18.75
EIMD rank 14,865.39 

(1015.62)
14,346.12 
(1018.51)

15,356.27 
(1015.38)

Ethnicity
White/White British (%) 78.31 79.34 77.34
Mixed ethnicity (%) 3.61 2.48 4.69
Asian/Asian British (%) 17.67 18.18 17.19
Other ethnicity (%) 0.40 0.00 0.78
Physical activity outcomes
Number of valid 
weekdays

4.41 (0.94) 4.29 (1.0) 4.52 (0.88)

Weekday wear time 
(min⋅day−1)

1363.81 
(108.97)

1355.82 
(105.91)

1371.36 
(111.29)

Weekday AvAcc (mg) 46.89 (10.86) 51.12 (10.78) 42.89 (9.36)
Weekday IG  − 2.08 (0.14)  − 2.03 (0.12)  − 2.14 (0.13)
Number of valid week-
end days

1.57 (0.77) 1.48 (0.80) 1.65 (0.73)

Weekend wear time 
(min⋅day−1)

1351.40 
(140.48)

1335.79 
(149.73)

1366.15 
(129.61)

Weekend AvAcc (mg) 43.60 (19.49) 45.60 (20.34) 41.70 (18.49)
Weekend IG  − 2.18 (0.18)  − 2.15 (0.18)  − 2.20 (0.17)
Legend. BMI body mass index, FSM free-school meals, EIMD English Indices 
of Multiple Deprivation, min minutes, AvAcc average acceleration, mg 
milligravitational unit, IG intensity gradient
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physical activity, elbow plot inspection demonstrated the 
presence of 3-cluster groupings (Additional file 1, Figure 
S1) and the pooled silhouette score of 0.33 supported a 
moderate and acceptable cluster structure that reflected 
the typical variation in children’s physical activity lev-
els. The weekday t-SNE plot showed clear cluster sepa-
ration confirming the presence of three distinct groups 
(Fig. 3a). The clusters were balanced, representing 30.7% 
(n = 76), 34.5% (n = 86), and 34.8% (n = 87) of the sample 
and were characterised as follows: Cluster 1 (Most Active) 
was above the sample average physical activity volume 
and intensity (mean combined standardised AvAcc and 

IG = 0.54), was made up of 61.60% boys with 73.40% clas-
sified as normal weight; Cluster 2 (Somewhat Active) was 
marginally below average (mean combined standardised 
AvAcc and IG = − 0.10), had 39.70% boys, and 73.10% 
classed as normal weight; Cluster 3 (Least Active) was 
more substantially below average (mean combined stan-
dardised AvAcc and IG = − 0.32), consisted of 39.50% 
boys and 70.20% of participants with normal weight. The 
cluster centroids for AvAcc were 53.0 mg (Most Active), 
45.3 mg (Somewhat Active), and 43.9 mg (Least Active). 
The corresponding values for IG were − 2.01, − 2.09, and 
− 2.14, respectively.

Fig. 2  MX metrics school year a weekday and b weekend physical activity profiles. Each plot shows M60, M30, M15, M10, M5, M2, and M1

 

Fig. 1  Adjusted weekday and weekend average acceleration and intensity gradient trajectories over the school year. Note Estimates are adjusted for sex, 
SES, ethnicity, and BMIz. Ribbons indicate 95% confidence intervals with the Y-axis scales reflecting the full range of 95% confidence intervals. ‡ = Sum-
mer > Winter/Spring (p = .005); † = Summer > Autumn (p < .001). AvAcc average acceleration, IG intensity gradient, mg milligravitational units
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A 3-cluster solution was also evident for weekend phys-
ical activity based on the inflection point in the elbow 
plot (Additional file 1, Figure S2) and pooled silhouette 
score of 0.48. Figure  3b demonstrates the distinct clus-
ter separation between the three groups. The sample was 
relatively equally distributed between the clusters (Clus-
ter 1 = 31.2%/n = 78, Cluster 2 = 33.6%/n = 84, and Clus-
ter 3 = 35.1%/n = 87). These were labelled as Most Active 
(Cluster 1; mean combined standardised AvAcc and 
IG = 0.38, 49.40% boys, 72.20% normal weight), Active 
(Cluster 2; mean combined standardised AvAcc and 
IG = 0.32, 48.70% boys, 71.70% normal weight), and Least 

Active (Cluster 3; mean combined standardised AvAcc 
and IG = -0.09, 47.80% boys, 72.50% normal weight). The 
cluster centroids for weekend AvAcc were 51.1 mg (most 
Active), 49.7 mg (Active), and 41.0 mg (Least Active), and 
− 2.11, − 2.12, and − 2.18, respectively for IG.

Cluster-specific trajectories of physical activity volume and 
intensity
Weekday physical activity volume and intensity distri-
bution trajectories differed substantially (Fig.  4; Addi-
tional File, Table S5). In all three cluster groups AvAcc 
significantly increased between Winter/Spring and 

Fig. 4  Adjusted weekday average acceleration and intensity gradient trajectories of the three clusters over the school year. Note Estimates are adjusted 
for sex, SES, ethnicity, and BMIz. Ribbons indicate 95% confidence intervals with the Y-axis scales reflecting the full range of 95% confidence intervals. 
a Somewhat Active AvAcc Summer > Winter/Spring; b Somewhat Active AvAcc Summer > Autumn (p = .009); c = Least Active AvAcc Summer > Winter/
Spring (p = .03); d = Least Active AvAcc Summer > Autumn (p = .009); e = Least Active IG Summer > Autumn (p = .007). AvAcc average acceleration, IG inten-
sity gradient, mg milligravitational units

 

Fig. 3  t-distributed Stochastic Neighbour Embedding plots demonstrating cluster separation for pooled a weekday and b weekend data
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Summer (Most Active: predicted change = 4.63  mg, 
95% CI = 1.96, 7.29; Somewhat Active: predicted 
change = 3.87 mg, 95% CI = 1.36, 6.38; Least Active: pre-
dicted change = 3.60  mg, 95% CI = 1.12, 6.08). Increases 
in AvAcc were also evident between Autumn and Sum-
mer in the two lesser active groups (Somewhat Active: 
predicted change = 5.17  mg, 95% CI = 2.66, 7.68; Least 
Active: predicted change = 5.78 mg, 95% CI = 3.29, 8.26). 
IG trajectories were stable for the Most and Somewhat 
Active groups, although there was a significant increase 
between Autumn and Summer for the Least Active 
group (predicted change = 0.05, 95% CI = 0.01, 0.09). Sex 
was associated with weekday AvAcc and IG, indicating 
that boys were more active than girls (AvAcc: β = 2.97, 
95%CI = 0.76, 5.18; IG: β = 0.04, 95%CI = 0.01, 0.06). Fur-
ther, there was a significant inverse association between 
BMIz and weekday IG (β = − 0.01, 95%CI = − 0.02, 
− 0.004), but not any significant sex or BMIz interaction 
effects with time-point or cluster.

There were no significant within-cluster group changes 
in weekend AvAcc or IG, although the temporal patterns 
were inconsistent between groups (Fig.  5; Additional 
file 1, Table S6). Specifically, while the Most Active and 
Active groups showed modest reductions in weekend 
AvAcc and IG, both metrics had small upwards trajec-
tories in the Least Active group (all adjusted p > 0.05). 
Boys recorded significantly higher weekend IG than girls 

(β = 0.04, 95% CI = 0.01, 0.07), but there were no signifi-
cant sex* time point or sex*cluster interactions.

The weekday and weekend physical activity profiles of 
participants in the Least Active and Somewhat Active 
(weekday)/Active (weekend) clusters were characterised 
by increased MX intensities for durations between 10 
and 1 min at Summer compared to Autumn (Additional 
file 1; Figures S3 and S4). For the Most Active clusters, 
changes in weekday MX metrics between Autumn and 
Summer were negligible but decreased between M15 and 
M1 in Winter/Spring. Weekend MX outcomes for the 
Most Active cluster overlapped all three time points from 
M5 to M1. As was observed for the whole sample, irre-
spective of weekday or weekend at all time points M60 
values for each cluster were at an intensity greater than 
brisk walking/3 METS (i.e., > 200 mg [41]).

Discussion
This study analysed school year trajectories of week-
day and weekend physical activity volume and intensity 
distribution in a sample of 8–9-year-old children and 
in groups clustered by AvAcc and IG profiles. The find-
ings demonstrate distinct trajectory patterns for physical 
activity volume versus intensity distribution, particularly 
on weekdays where significant changes in AvAcc were 
observed for the whole sample and cluster groups.

Fig. 5  Adjusted weekend average acceleration and intensity gradient trajectories of the three clusters over the school year. Note. Estimates are adjusted 
for sex, SES, ethnicity, and BMIz. Ribbons indicate 95% confidence intervals with the Y-axis scales reflecting the full range of 95% confidence intervals. mg 
milligravitational units
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Aim 1
Summer weekday AvAcc was significantly higher than 
Winter/Spring and Autumn, which contrasted with the 
more stable trajectory of weekday IG. Although our 
study is the first to report longitudinal changes in chil-
dren’s AvAcc and IG the results are consistent with pre-
vious seasonal variation research using MVPA, which is 
strongly correlated with AvAcc in children (e.g., r = 0.96 
[3]). For example, a 2022 meta-analysis showed that 
MVPA was significantly higher in summer relative to 
fall (autumn) [18], while an earlier study of a population-
representative sample of UK 7–8  year olds reported 
most MVPA during the summer months [13]. The find-
ing that weekday IG was relatively stable with only small 
increases evident between time points suggests that 
increases in physical activity volume were quite evenly 
spread across the intensity distribution, rather than being 
due to increases in higher intensity activities. The stable 
weekday IG values could also reflect increases in AvAcc 
through lower intensity activities which would have 
blunted any gains in IG. Moreover, it is plausible that 
IG was less variable among children who participated in 
organised sports and therefore accumulated compara-
tively more time in higher intensity activities across the 
school year, irrespective of season (e.g., netball in autumn 
and winter and track and field in summer, or football 
throughout the year [42]). The weekday IG trajectory 
also shows that intensity distributions across the physi-
cal activity intensity spectrum were consistent over the 
school year, indicating that the volume of weekday physi-
cal activity rather than the intensity distribution may 
have been be more influenced by multidimensional sea-
sonal factors (e.g., weather and daylight hours [18], access 
to outdoor open/play spaces [43], parental restrictions 
[44], school policies [45], and physical activity opportuni-
ties offered by schools [46]). These results highlight how 
AvAcc and IG together provide a more nuanced picture 
of physical activity engagement, than reporting either in 
isolation, or than MVPA which shares a high proportion 
of variance with AvAcc [2, 3].

Weekend AvAcc and IG trajectories were relatively 
stable, with only small increases observed between time 
points. This concurs with longitudinal studies of cut-
point derived MVPA on weekday and weekend days 
[11]. As anticipated, AvAcc and IG were lower on week-
end days which corresponds with a previous weekday vs 
weekend comparison of children’s AvAcc and IG [7] and 
other studies reporting alternative weekday and weekend 
physical activity outcomes [18]. It is possible that differ-
ent mechanisms were driving weekend physical activ-
ity volume and intensity, which were characterised by 
greater variability than the weekday data. Weekdays fol-
low a highly consistent structure with repeated opportu-
nities for physical activity engagement over the week [9]. 

During weekends there is far less structure and greater 
within- and between-child discretionary time which 
gives children more autonomy to participate in a range 
of activities across the intensity spectrum [8]. When chil-
dren have increased choice and agency over their rec-
reational activities, they may be more likely to choose 
sedentary and low intensity activities [47]. This would 
be reflected in low IG values with a greater proportion 
of time spent at the lower end of the intensity distribu-
tion. This supposition aligns with our weekend vs. week-
day findings and those of others [8, 11, 48], although we 
acknowledge the absence of supporting contextual data.

It is not possible to discern precisely what drove the dif-
ferences in the trajectory patterns of AvAcc and IG over 
the school year from accelerometer data alone, but it is 
likely that weather and climatic conditions played a role. 
In Autumn and Winter/Spring the average temperature 
and daylight hours were relatively similar (4.0 and 6.7 °C, 
and 8.5 and 10.6  hday−1, respectively [49]), but in Sum-
mer increased substantially to 18.3 °C and 16.7  hday−1 
[49], respectively. On weekdays the consistent structure 
of school and daily routines may have contributed to the 
children’s physical activity behaviours being largely unaf-
fected by the cooler and shorter days in Autumn and 
Winter/Spring. Conversely, the longer daylight hours and 
higher temperatures in Summer likely afforded increased 
opportunities for physical activity-promoting adaptations 
to the weekday structure (e.g., fewer break times spent 
indoors due to poor weather, more outdoor physical 
education and school sports, increased active commut-
ing, more outdoor activities in the home and neighbour-
hood). It is also possible that improved weather and 
climatic conditions in Summer predisposed some chil-
dren to be more active at weekends. This though was not 
supported by our results, potentially due to the mitigat-
ing influences of low structure, increased discretionary 
time, and greater autonomy [8] at weekends for children 
to choose low active and sedentary pursuits [47].

Aim 2
Cluster analysis of combined AvAcc and IG profiles 
resulted in three groups each from the weekday and 
weekend datasets. For weekday clusters there was a 
disproportionate number of girls in the Most Active 
(38.40%) and Least Active groups (60.50%) (Additional 
file 1, Table S5). This was consistent with the signifi-
cant associations between sex and both physical activ-
ity metrics and sex differences typically reported in 
children’s physical activity studies [3, 7, 16, 50]. In con-
trast, weekend cluster memberships were more balanced 
(Most Active = 50.60% girls, Active = 51.30% girls, Least 
Active = 52.20% girls). This could reflect that for some 
children, and girls in particular, the more flexible struc-
ture of weekend days facilitated different opportunities 
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for physical activity that were not available or as appeal-
ing on weekdays [51] (e.g., structured community sports 
activities not offered at school or family-oriented walking 
and play in natural spaces [52]).

For weekdays, consistent within-cluster changes in 
AvAcc but not IG were observed, which aligned with 
our Aim 1 results. Nevertheless, there were some dif-
ferences between clusters which may provide valuable 
insights to inform targeted physical activity promotion 
strategies. For example, the largest increases in weekday 
AvAcc and IG between Autumn and Summer were in the 
Least Active children, with the smallest increases in the 
Most Active. These weekday differences were reflected 
in the school-year changes in MX metrics for the most 
active 10 min to 1 min of the day. In contrast, the week-
end results were more inconsistent. There are some simi-
larities between these results and those from an earlier 
group-based trajectory modelling of UK Millennium 
Cohort Study physical activity data [16]. In boys and 
girls the steepest declines in MVPA over 8-years were 
in the most active groups, while the least active groups 
had the smallest reductions [16]. Although the trajec-
tory duration of this study is much longer than in ours, it 
still highlights how changes in physical activity over time 
are not uniform for all children but vary between groups 
with different baseline physical activity levels. This has 
implications for targeted physical activity programming 
and interventions, which are often overlooked in favour 
of a universal ‘one-size-fits-all’ approach [53]. The AvAcc 
and IG cluster trajectories and MX metrics also show 
that the Least Active children’s gains in physical activity 
were more consistent than the other groups, suggesting 
that the influence of seasonal variation and associated 
enhanced opportunities for activity [43, 45] may have 
been strongest for these children.

The practical meaningfulness of these seemingly small 
within-cluster changes merits further exploration. Pre-
liminary evidence exists proposing AvAcc of ~ 1  mg as 
the minimum clinically important difference (MCID) for 
physical activity health benefits in inactive adults [54]. 
This MCID is derived from converging empirical evi-
dence demonstrating alignment between a daily AvAcc 
increase of 0.8 to 1.0 mg and robust health-related crite-
ria [54–56]. Whilst this proposed MCID is caveated with 
some limitations [54] it does illustrate that small vol-
umes of additional physical activity may be beneficial for 
health, particularly among inactive and less active popu-
lations. Similar robust evidence would be needed for an 
equivalent MCID in children. Notwithstanding this, our 
recent work illustrates that modest increases in chil-
dren’s physical activity would confer significant health 
benefits. For example, increases in daily AvAcc of 16 mg 
(girls) and 23  mg (boys) would be sufficient volumes of 
physical activity for overweight children to move into 

the healthy weight classification based on UK BMI refer-
ence data [57]. We have also shown that adding as little 
as 3 min of vigorous intensity physical activity (i.e., inten-
sity ≥ 700 mg) into the day is associated with meaningful 
decreases in children’s BMIz [58]. Such findings are con-
sistent with those from adult epidemiology studies dem-
onstrating how short bouts of moderate and vigorous 
intensity intermittent non-exercise physical activity are 
associated with reduced cardiovascular event incidence 
and mortality [59, 60]. Collectively, these findings align 
with an approach to increasing children’s physical activ-
ity opportunities throughout the day focused on incre-
mental and incidental accumulation of short intermittent 
activity bouts.

Strengths and limitations
This study is the first to report children’s weekday and 
weekend AvAcc and IG trajectories over the school 
year. A robust analytical approach was employed using 
multiple imputation to ensure the full sample size was 
maintained and statistical power optimised for the sub-
sequent trajectory analyses. A further strength was the 
novel application of data-driven clustering to examine 
changes in school year physical activity across distinct 
groups of children. Moreover, the study had strong eco-
logical validity by focusing on the school year which is 
a critical annual period for children’s development and 
physical activity behaviours. There were also a number 
of limitations which warrant discussion. The sample was 
recruited from one geographical region, and even though 
the school day structures and practices were typical of 
primary schools elsewhere, other un-measured factors 
may have influenced the results which limits their gen-
eralisability to other locations and particularly those 
with different climates. Moreover, the possibility of sam-
pling bias cannot be overlooked as the schools were all 
involved in a wider active schools initiative, which may 
have contributed to the children’s relatively high physi-
cal activity levels. This may have created a ceiling effect 
which limited the potential for increases in AvAcc and IG 
across the time points. A further limitation was that the 
stability of the activity profile groups may have changed 
over time but using k-means clustering on the Autumn 
data precluded analysis of this. Further, although rigor-
ous analytical processes were followed, the proportion 
of missing data and resultant between-imputation vari-
ance were higher than desired, particularly for weekend 
data. This was reflected in the wide cluster trajectory 
confidence intervals, which indicated a degree of uncer-
tainty in some of the model estimates. However, had 
complete case analyses been performed 26% of the week-
day sample and 43% of the weekend sample would have 
been lost (N = 184 and N = 142, respectively). Moreover, 
this approach would have reduced statistical power and 
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increased the likelihood of bias in the analyses lead-
ing to inefficient estimations of model parameters and 
confidence intervals [61], thus reducing the validity and 
reliability of the conclusions [31]. Multiple imputation 
also necessitated having separate datasets for weekday 
and weekend data, which restricted our ability to make 
true comparisons between day-type estimates of AvAcc 
and IG. Lastly, accelerometer data alone cannot discern 
the mechanisms responsible for the observed physical 
activity trajectories. Aside from school and participant 
characteristics, we did not collect any contextual data on 
specific environmental or physical activity programming 
factors which could have influenced potential changes 
over the school year.

Conclusions
This study is the first to report weekday and weekend 
AvAcc and IG trajectories across the school year. Week-
day but not weekend AvAcc significantly increased across 
the school year while IG had relatively stable trajectories 
irrespective of weekday or weekend. The results reinforce 
the complementary insights provided by studying AvAcc 
and IG together. The findings also have implications for 
children’s physical activity intervention programming, 
which should leverage seasonal influences on physical 
activity volume (e.g., longer, dryer, warmer days) and 
consider different strategies for weekday and weekend 
days. The weekday and weekend clusters highlighted the 
presence of sub-groups characterised by different physi-
cal activity volume and intensity patterns, which may 
warrant differentiated intervention approaches, particu-
larly at weekends. Future research should build on these 
findings by employing longer-term follow-ups and inves-
tigating contextual factors influencing AvAcc and IG so 
the mechanisms of trajectory changes and between-
group differences are better understood. Further, analysis 
of the longitudinal associations between AvAcc and IG 
with health and development outcomes would provide 
important insights to guide intervention development.
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