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ABSTRACT
Different regions of the tropics vary in overall tree species diversity, with the tropical Americas 
exhibiting strikingly higher regional tree species richness than Africa and Southeast Asia. We 
investigated whether these differences also occur at the local scale and whether the environmental 
conditions associated with tree species richness are consistent across tropical regions despite highly 
dissimilar species pools. A spatial random forest model was trained by using a network of 429 1-hectare 
plots across the tropics, together with 24 environmental variables, to predict plot-level tree α diversity. 
A combination of climatic, soil and topographical variables explained ∼86% of the variation in 

richness. Despite differences in regional species pools and the potentially disruptive effects of different 
geological, climatic and evolutionary histories, the relationship between environmental variables and 
local-scale tree species richness is closely similar across different continents. Our findings imply a 
pervasive role of niche-based mechanisms in structuring local tree species richness, regardless of the 
regional species assemblages. This pantropical convergence in the richness–environment relationship 
poses a challenge for ecology to explain. 

Keywords: rainforest, tree richness, modeling, climate, sample survey 
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NTRODUCTION 

igh levels of tree species richness and diversity
n tropical forests have long fascinated biologists,
epresenting an enduring challenge to ecological
heory. While many mechanisms have been pro-
osed to explain how such high levels of diversity
ave arisen and are maintained, substantial uncer-
ainty persists [1 –4 ]. To test emerging hypotheses
bout the mechanisms underlying tropical tree di-
ersity, an empirical approach is required to iden-
ify robust predictors of species richness variation
cross broad scales [5 ]. An ideal method to explore
nd explain patterns of tropical tree diversity is to
ompare standardized inventory plots [1 ]. In a pi-
neering study, Gentry [1 ] compared a relatively
imited number of plots by using least-squares re-
ression to reveal a general relationship between
rimary productivity and species richness. Other
tudies of woody plant species richness, reviewed
n [6 ], have concentrated on analysing single re-
ions separately or are extratropical, preventing
he comparison of tropical tree diversity relation-
hips between regions. Ricklefs and He [7 ] com-
ared 47 forest plots globally, fewer than half of
hich were from the tropics, finding that con-

istently warm and moist climates favored higher
ichness. However, they detected significant re-
ional variation in extratropical regions and the
imited number of plots prevented definitive com-
arison within the tropics. 
Consideration of the large differences in geo-

ogical and evolutionary history between the dif-
erent regions and subregions of tropical forest led
s to propose two main hypotheses: (i) local-scale
ree α diversity across the global tropics can be
onsistently predicted by using contemporary en-
ironmental variables, such that analogous envi-
onmental conditions will support similar levels
Page 2 of 16
of richness, irrespective of deep historical biogeo- 
graphic divergences; (ii) due to localized effects of 
forest history and dispersal lag, and the complex 
ecology of forest communities, there will be dif- 
ferences in the best predictors of 1-ha richness at 
the local scale compared with at the broader scale. 

While more recent studies have expanded 
upon this foundation, pantropical comparisons of 
the patterns and potential drivers of local tree di- 
versity remain limited. Comparing 2046 tree plots 
across Amazonia, Ter Steege et al. [8 ] demon- 
strated that a combined influence of climate and 
soil factors explained local tree richness and com- 
munity composition. In a comparison of forest 
plots from South America and Africa, Parmentier 
et al. [9 ] showed lower plot-level richness in Africa 
under similar warm and moist climatic conditions. 
In global surveys of forest plots of varying sizes, 
Keil and Chase [10 ] and Chu et al. [11 ] found
that the drivers of the variation in diversity differ 
with the plot size and spatial distance between 

samples, which are important sampling issues in 

ecology generally [12 ]. However, no studies thus 
far have addressed local tree species richness by 
using a large number of plots of standardized size 
across the world’s tropics, which is necessary for 
continental-scale comparisons. The increasing 
availability and integration of forest plot data now 

make such comparisons possible [13 ]. 
Two other important advances in environ- 

mental data science facilitate hypothesis testing 
about the patterns and processes driving trop- 
ical tree diversity. First, the availability of in- 
terpolated climate, soil and other environmen- 
tal parameters has grown immensely in recent 
years [14 –18 ]. Second, machine-learning mod- 
els enable analysis of the simultaneous effects 
of multiple factors on community structure and 
diversity across large scales [19 ,20 ]. A particularly 
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obust machine-learning method is random forest
RF) modeling, which, when combined with spa-
ial regression, enables the analysis and prediction
f spatially structured data in which observations
xhibit autocorrelation [21 ,22 ]. These models ex-
end the capabilities of traditional RF to handle
patial data more effectively, allowing spatial au-
ocorrelation and other geographic phenomena to
e incorporated into vegetation modeling. 
Here, we used the Pantropical Forests Net-

ork (PFN) of tree inventory plots assembled by
lik et al. [23 ] in combination with publicly avail-
ble environmental data surfaces [14 –18 ] to de-
ermine which environmental variables explain
lot-level tree α diversity across the global trop-
cs. We applied a spatial RF and negative bino-
ial generalized linear model to detect and com-
are the strength of empirical links between en-
ironmental variables and tree species richness.
he number of species per unit area (e.g. Gentry
1 ])—the classic measure of forest tree richness—
as its weaknesses given that stem density varies
y both biogeographic region and along climate
radients. To compare species richness while ac-
ounting for variations in sampling effort and
ompleteness, we employed rarefaction, which is
 sample-coverage-based approach based on abun-
ance data (e.g. [24 ,25 ]), together with Fisher’s α
26 ], and the ‘classical’ method of the number of
pecies recorded per plot, with the goal of improv-
ng understanding of the potential drivers and
aintenance of tropical diversity. Specifically, we

ddressed three main questions: (i) Which envi-
onmental predictors explain most of the variation
n local tree species richness across the tropics? (ii)
ow do the environmental factors associated with

ree species richness differ between broad versus
ocal scales of sample plot spacing? (iii) Given the
nvironmental predictors, does tree species rich-
ess at the 1-ha scale converge between tropical
egions to give a consistent pantropical pattern? 

A main goal of this study is to determine
hether local tree richness and the environ-
ental factors associated with it differ amongst

he world’s major tropical regions. Such a global
omparison is important to inquire whether
ommunity assemblage rules may be consis-
ent across geographically disparate regions—in
ther words, evolutionarily conserved underly-
ng environment–richness relationships across the
ropical forest biome. 

ESULTS 

 principal component analysis (PCA) conducted
n 24 environmental variables across 1-ha plots
Page 3 of 16
in the global tropics revealed regional differences, 
with the first two axes accounting for 40.5% of 
the variance in the variables ( Table S1 and Fig. 1 ).
Overall, the three regions exhibited moderate sep- 
aration along the first principal component (PC1), 
especially between the Americas and Asia, but 
were largely overlapping along the second prin- 
cipal component (PC2). PC1 was primarily asso- 
ciated with moisture-related variables, including 
precipitation seasonality (bio15), the precipitation 

of the driest month (bio14) and the annual range 
of monthly relative humidity (hurs_range), along 
with soil pH (phh2o), isothermality (bio03), net 
primary productivity (NPP) and annual range and 
mean of monthly surface downwelling shortwave 
flux in air (rsds_range and rsds_mean) (Fig. 1 
and Table S2). PC2 predominantly comprised 
soil-related variables, including total nitrogen, 
volumetric water content (wv0010) and soil or- 
ganic carbon content in the fine earth fraction 

(SOC), as well as topography-related variables, 
including tangential curvature (tcurv), rugged- 
ness and vector ruggedness measure (vrm) (Fig. 1 
and Table S2). The Americas exhibited greater 
variation in environmental conditions along PC1, 
characterized by higher precipitation during the 
driest month and lower precipitation seasonality 
compared with Asia and Africa (Fig. 1 ). Specifi- 
cally, Asia demonstrated the highest precipitation 

during the driest month and lower precipitation 

seasonality, while Africa showed the lowest varia- 
tion in these environmental conditions. Variation 

along PC2 was similar among the three regions 
(Fig. 1 ). 

We obtained the species richness estimated 
from rarefaction based on sample coverage (Fig. 2 ) 
and Fisher’s α from a standardized sample of 
stems. By analysing non-spatial and spatial RF 

based on the observed richness, Fisher’s α and the 
richness from rarefaction data returned high ‘out- 
of-bag’ R2 values (0.83–0.88), demonstrating a ro- 
bust ability to predict 1-ha-scale tree species rich- 
ness from the 24 environmental predictors across 
the global tropics (Fig. 3 and Table S1). 

Training the RF for each of the three richness
measures revealed that the predicted tree species 
richness at the 1-ha scale was highly heteroge- 
neous across the tropics (Fig. 4 a and Figs S6a 
and S7a), with the predicted richness highest in 

western South America, particularly the Andean–
Amazon foothills and Colombian Chocó, the ma- 
jor islands of Southeast Asia, and New Guinea 
(Fig 4 a). Low levels of predicted local species di-
versity were found across most of tropical Africa, 
eastern and southern Amazonia and continental 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
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Figure 1. PCA of 24 environmental variables for 1-ha tropical tree plots in the Americas, Africa and Asia. Marginal density plots above and 
to the right of the biplot show the distribution of samples from each region along the first (PC1) and second (PC2) principal components, 
respectively. Percentages on each axis represent the variation explained by the respective principal component. 
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Analysis using non-spatial RF revealed that
io14 was identified as the most important sin-
le variable for predicting tree richness, followed
y phh2o (Fig. 4 b). The interaction between the
recipitation of the driest month and the pro-
ortion of silt particles in the fine earth fraction
silt) also contributed significantly to the model
Fig. 4 b). Spatial RF, which accounted for spa-
ial autocorrelation (see Methods S1), showed a
igher importance of moisture-related variables,
ncluding hurs_range, bio15, the mean monthly
otential evapotranspiration (pet_penman_mean)
nd the mean monthly climate moisture index
cmi_mean) (Fig. 4 c). In contrast, the importance
f soil-related variables, such as pH and silt, re-
ained relatively consistent, while the interaction
etween the precipitation of the driest month and
ilt (bio14..pca..silt) decreased in importance. An
dditional analysis in which non-spatial and spa-
ial RF were applied to a thinned set of sample lo-
ations separated by at least 50, 100 and 200 km
howed a diminished importance of soil-related
Page 4 of 16
variables such as pH, SOC and silt (Fig. 4 d and
Fig. S8b and d). This reduction was particularly 
pronounced with thinning of 100 and 200 km, for 
which the importance of soil pH and silt decreased 
markedly. In contrast, variables associated with 

moisture (e.g. hurs_range, cmi_mean), growing 
season (e.g. NPP), solar radiation (e.g. rsds_mean) 
and topography (e.g. topographic position index 
[tpi]) increased in importance. 

According to spatial RF, the Americas, Africa 
and Asia exhibited similar relationships between 

tree species richness and six dominant envi- 
ronmental variables: bio14, phh2o, hurs_range, 
bio15, silt and pet_penman_mean ( Fig. S9). In 

all three regions, the tree richness was highest in 

areas with abundant moisture in the driest month 

(bio14; Fig. S9a). Conversely, the richness was 
low in areas with high soil pH and silt fraction, 
except in Asia, where the richness increased with 

silt ( Fig. S9b and e). High tree richness was also 
associated with a low annual range of monthly 
near-surface relative humidity, precipitation 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
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easonality and mean monthly potential evap-
transpiration, peaking when these were ap-
roximately 5% −6%, 25–35 mm and 110–
15 mm/month, respectively ( Fig. S9c, d and
). Notably, the Americas displayed a large varia-
ion in the precipitation of the driest month, soil
H and silt, whereas Asia exhibited substantial
Page 5 of 16
variation in the humidity range, precipitation 

seasonality and monthly potential evapotranspi- 
ration. Africa showed a low variation in these 
parameters compared with the other two regions. 

The contribution of the six dominant environ- 
mental variables to local tree species richness var- 
ied within and across the regions. In areas with 
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igh precipitation, low seasonality in rainfall and
ow soil pH ( Figs S10 and S11), the predictive con-
ribution of these climatic variables to species rich-
ess within the RF model was reduced ( Figs S12
nd S13). For example, in areas with low soil pH
 ∼3.7–4), such as the Amazon ( Fig. S10b), the im-
ortance of soil pH in the spatial RF decreased
 Fig. S12b). By contrast, in areas characterized by
igh soil pH, such as India and southeast Africa,
his soil parameter was a critical predictor in the
odel ( Fig. S12b). 
The negative binomial generalized linear

odels (glm.nb) demonstrated a weaker ability
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than the RF to predict local tree species rich- 
ness, whether estimated from rarefaction (OOB 

R2 = 0.69), Fisher’s α (OOB R2 = 0.70) or ob- 
served richness (OOB R2 = 0.72) ( Fig. S14). 
Moreover, in contrast to results from the spa- 
tial RF, the glm.nb found that Africa and Asia 
exhibited similar levels of local tree species rich- 
ness, both of which were significantly lower 
than those of the Americas ( Tables S6 and S7). 
Despite those differences, the direction and sig- 
nificance of the effects of important precipitation 

(e.g. bio14, bio15, mean monthly vapor pressure 
deficit [vpd_mean], hurs_range, temperature 
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mean monthly minimum air temperature of the
oldest month [bio06]) and soil variables (e.g. pH,
ilt) were similar between the two approaches
 Tables S6 and S7). Variables showing a signifi-
ant interaction between Africa and the Americas
ncluded cmi_mean, hurs_range, vpd_mean, clay
roportion, soil pH and tcurv ( Tables S6 and
7). Both the glm.nb and RF models showed
onsistent results, indicating that variables such as
io14, pH, hurs_range, silt and bio15 are impor-
ant factors in controlling α diversity. While RF
xcels in predictive power ( R2 = 0.86), capturing
omplex, nonlinear relationships, the glm.nb
odel ( R2 = 0.69) also explains a large portion of

he richness (Fig. 2 and Fig. S14). This demon-
trates glm.nb’s ability to capture substantial data
ariability despite its lower R2 . Crucially, glm.nb
hows significant regional differences between the
hree regions, confirming broad-scale patterns.

hile the results from glm.nb and RF diverged
n important ways, the RF model is given prece-
ence here due to its superior OOB R2 values and
apacity to incorporate nonlinear effects [27 ,28 ].
owever, the glm.nb model offers the advantage
f interpretability and simplicity, which can be
rucial for understanding the underlying factors
riving richness. Therefore, while RF may pro-
ide superior predictive accuracy, glm.nb remains
 valuable tool for future additional exploratory
nalysis and hypothesis testing. 

When environmental variables were grouped
nto seven categories—temperature, precipitation,
rowing season, solar radiation, soil, topography
nd co-limitation, which means no single type of
nvironmental factor dominates—the local tree
pecies richness was largely explained by the same
hree categories: co-limitation, precipitation and
oil (Fig. 5 ). Referring to areas in which no single
ategory dominates, co-limitation represented the
ost important category, accounting for 30.02%
f the variation in local tree species richness
Fig. 5 b). Precipitation (22.90%) and soil (17.56%)
ere the next most important categories, fol-

owed by solar radiation (11.71%) and topography
11.10%). In contrast, temperature (2.05%) and
rowing season (4.65%) were relatively unimpor-
ant overall, but increased in significance at higher
atitudes and altitudes within the tropics (Fig. 5 a).
olar radiation and growing season tended to gain
mportance relative to other categories where
he species richness was low, particularly near
0°N and 10–20 °S latitude. Along the latitudinal
radient, co-limitation, moisture and soil were
he dominant categories explaining the richness
ariation in the three regions. Compared with
ther regions, along the longitudinal gradient, the
Page 7 of 16
growing season and solar radiation were more 
important in Africa, while the soil and precipi- 
tation categories were most important in Asia. 
Overall, species richness in most tropical regions 
is constrained by multiple environmental factors, 
indicating a co-limitation effect, particularly 
in areas of higher species richness close to the 
equator. 

DISCUSSION 

The relationship between environmental 
factors and species richness 
The RF analysis and glm.nb model showed that 
variation in tropical tree species richness was 
consistently predictable by using 24 primary 
environmental variables across the three main 

biogeographic regions of the tropics. Local tree 
species richness predicted by RF were strongly 
correlated with those based on sample coverage 
estimation from rarefaction and Fisher’s α across 
the tropics, with the observed raw richness and 
predicted richness showing similar results in the 
RF analysis ( Table S5) and relatively lower in the 
glm.nb model. While these relationships are em- 
pirical, the strength of the predictions implies that, 
across the world’s tropical forests, local species 
richness at the 1-ha scale is largely deterministic. 
The results showed that local tree diversity tends 
to converge on similar levels of richness when 

conditions are similar. This trend holds despite 
the fact that a minority of genera and almost no
species of trees exist in common between the stud- 
ied biogeographic regions, with different families 
and genera having undergone their own patterns 
of diversification within each region [29 –32 ]. 

A noteworthy nuance emerges when compar- 
ing the relationship of individual environmental 
variables to species richness: although the corre- 
lations between any single environmental vari- 
able and richness are relatively weak, simultane- 
ous incorporation of all environmental predic- 
tors in the RF analysis achieved high predictive 
power ( R2 > 0.86). Furthermore, sensitivity anal- 
ysis highlighted that the importance of these in- 
teractions is context-dependent: the trained RF 

model reflected the specific range of environmen- 
tal conditions in the current dataset. While predic- 
tive relationships might shift with the inclusion of 
additional forest plots (taking in a greater range of 
local environments or subregions), the sample size 
as it already stands is very large and in diverse set-
tings, so we regard these inferences to be robust 
and unlikely to change substantially with the ad- 
dition of more samples. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data


Natl Sci Rev, 2026, Vol. 13, nwaf465

0

25

50

75

100

0 20 40
Longitude

0

25

50

75

100

−110 −90 −70 −50
Longitude

P
re

ce
nt

ag
e

0

25

50

75

100

75 100 125 150
Longitude

Solar_radiation
Precipitation
Temperature
Grow_season
Co_limitation
Soil
Topography0255075100

−20

−10

0

10

20

La
tit

ud
e

Precentage

50

100

150

200

Solar_radiation Precipitation Temperature Grow_season Co_limitation Soil Topography

R
ic

hn
es

s

11.71% 2.05% 4.65%22.90% 30.02% 17.56% 11.10%

a

b

Figure 5. Geographical distribution of predominance of seven categories of environmental variables. Co-limitation refers to areas in which 
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Our results suggest that moisture-related vari-
bles are more important at the large scale, while
he soil-related variables play a relatively more
mportant role at the local scale. The relatively
trong local effect of soil factors is consistent with
he mosaic of soil-influenced habitats that can ex-
st at a fairly local scale within the tropics, pro-
ucing differences in tropical tree communities
33 ,34 ]. 

The strongest climate-related predictors of tree
ichness identified in the RF and sensitivity anal-
sis (Figs 4 and 5 ) were those reflecting aspects of
he moisture supply to vegetation, with variations
n temperature playing a less important role. The
stimated npp itself is high on the list of predic-
ors at large scales (50, 100 and 200 km; Fig. 4 d
Page 8 of 16
and Fig. S8). In general, the climate factors that 
emerge as importantly correlated with tree species 
richness were all consistent with conditions that 
favor plant growth and productivity rather than 

conditions that impose severe water stress or sup- 
press photosynthesis due to low temperatures. 
This reinforces and refines the patterns linking 
tree diversity and plant physiology/productivity 
that have long been noted [1 ,2 ,6 ,35 ]. While re-
lationships between species richness and climate 
have been demonstrated in other studies [36 ,37 ], 
what is striking in these new results is how pre- 
dictable the overall relationship is when soil fac- 
tors were included (discussed below) and how 

consistent the relationship is across different re- 
gions of the tropics. 
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The question of why such environment–
ichness relationships exist for trees is one of the
reatest conundrums in ecology and evolution [2 ].
xplanations vary from the legacy of a moist trop-
cal origin of angiosperms [38 ] to the niche par-
itioning capabilities of more productive ecosys-
ems [35 ] to the lack of physiological extremes,
hich allows functional equivalency and thus both
reater diversity of growth architectures [39 –41 ]
nd extensive niche overlap [3 ] that favors the co-
xistence of high species richness. 

Certain internal patterns of influence on
pecies richness within each tropical re-
ion are discernible (Fig. 5 and Figs S10–
13). Towards higher latitudes of the trop-
cs, species richness was more strongly im-
acted by factors related to temperature and
rowing season, whereas, closer to the equator,
oisture-related factors were more important

Fig. 5 ). Although particular categories of envi-
onmental factors cause a variation in the species
ichness in some areas, most regions are subject to
o-limitation by multiple categories of environ-
ental factors (Fig. 5 ). The high species richness
bserved in tropical regions may be maintained
hrough the interaction of multiple factors and
o-limitation [19 ]. In natural environments, plant
rowth is impacted by multiple variables [42 ],
ith the optimal growth occurring when these

nteracting variables attain a state of conducive
quilibrium [43 ]. In this study, these co-limitation
reas likely create environmental conditions
nder which resources are relatively balanced,
avoring the survival of various species and thus
aking these areas high in species richness. Given

he relatively limited attention given to the role of
oil parameters in affecting the patterns of trop-
cal tree diversity, soil pH surprisingly emerges
s influential in the RF analysis, especially at the
ocal scale (Fig. 4 b and c, and Fig. S8). The role
f soil pH has long been known as an influence
n more local-scale patterns in tropical forest
omposition [34 ] and soil pH is known to play a
ajor role in plant ecology in general [44 ]. Soil
H correlates with a range of other factors, such as
utrient concentrations and availability, includ-
ng the mobility of toxic ions such as aluminum
45 ]. The species composition of vegetation can
tself influence the soil pH and other soil factors
46 –48 ], but the possibility of complex feedback
oops between species diversity and soil being
ignificant on the pantropical scale can only be
onsidered as speculative. 

While a lower soil pH may be seen as a phys-
ologically more extreme environment, for the
bove reasons, in fact, tree species richness tends
Page 9 of 16
to be highest in the lowest pH soils in our dataset
( Figs S9b and S10b). Empirically, this supports 
previous results from studies in other biomes 
that plant species richness peaks in low soil pH 

of ∼4 [49 ] and declines as the pH increases
( Fig. S9b). A widely discussed principle in plant 
ecology is that a certain degree of physiological 
‘stress’—such as low soil pH—may suppress plant 
growth and productivity, reducing the compet- 
itive ability of faster-growing generalists [44 ]. 
In the context of disturbance events at varying 
scales, this may reduce competitive exclusion 

and enable a greater number of species to coexist 
[44 ,50 ,51 ]. 

While it is reasonable to focus on the potential 
effect of environmental factors on the trees them- 
selves, it is also crucial to consider that other fac-
tors could be at work, without directly involving 
the physiology of the trees as the primary driver.
For instance, the Janzen–Connell hypothesis sug- 
gests that the diversity levels in tropical forests are 
controlled by the intensity of attacks by insect her- 
bivores and pathogens [2 ,52 –54 ]—with constantly 
warm and moist conditions favoring the special- 
ization of insect pest or pathogen populations and 
the strong density-dependent control of tree pop- 
ulations allowing more tree species to coexist lo- 
cally. There is considerable evidence that a degree 
of selective pest pressure can maintain diversity 
in plant communities, but inconsistent evidence 
that density-dependent mortality is stronger in the 
tropics than in temperate regions [2 ]. However, to 
explain the patterns seen here, the pest-pressure 
effect would need to operate in a finely modu- 
lated way along environmental and species rich- 
ness gradients within the tropics, quite aside from 

whether it differs between tropical and temper- 
ate regions. A potential effect of the soil pH on
herbivory—perhaps with respect to the extent of 
the species pools on different soil types and per- 
haps in affecting the nutrient or secondary com- 
pound content of plants or the growth rate of fresh 

edible tissues—might also be involved in the ob- 
served relationship with soil factors. 

Convergence in richness amongst 
biogeographic regions 
From the analysis of this dataset, there is no ob-
vious evidence for any regional influence produc- 
ing anomalously high or low tree species richness 
relative to the overall pantropical trend. When 

1-ha richness data from all the regions are over- 
laid on the same scatterplot, the Americas, Asia 
(including Wallacea and Australasia) and trop- 
ical Africa all fall close to one another, within 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
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argins of error (Fig. 3 and Figs S14–S16). The
patial RF model demonstrates that analogous en-
ironments support comparable richness levels,
rrespective of regional species pools ( Fig. S17).
his contrasts with the overall comparison of re-
ions without accounting for equivalent environ-
ents. Most strikingly, there is particularly high

pecies richness for some plots in the Americas
Fig. 3 and Figs S14–S16). One of the primary pre-
ictors, and possible drivers, of the elevated diver-
ity in the neotropics appears to be this region’s
onsistently higher levels of moisture, as expressed
y a range of factors in the RF model [55 ]. This
ay be further reinforced by the region’s relatively

ow soil pH values, which we find correlate signif-
cantly with species richness independently of cli-
ate. When the RF model was implemented, the

nomalously high richness of the Americas dis-
ppeared and was explicable almost exclusively in
erms of empirical environmental factors. 

The close similarity in richness between tropi-
al regions, when compared in terms of the com-
inations of environmental factors that best pre-
ict richness, is evident despite the divergent ge-
logical, climatic and evolutionary histories of
hese regions that span tens of millions of years
29 ,38 ,56 ,57 ]. Independent evolution and diver-
ification of clades has given a distinctive taxo-
omic composition to the forests in each of the
ain regions—the Americas, South East Asia (and
allacea/Oceania) and tropical Africa [38 ,56 ,57 ].

n each region, the composition and distribution
f flora have been influenced by continental col-
isions, mountain building and the cooling and
rying of the climate in the Cenozoic [30 ,56 –59 ].
or instance, tropical Africa lost a large propor-
ion of its previous diversity during the late Ceno-
oic/Quaternary due to the drying of the climate,
specially during glacial episodes [38 ,56 ,57 ], and
ow has restricted total richness and phylogenetic
iversity of trees at the regional scale [23 ,30 ]. The
ossil pollen record also shows that the rainforests
f northern Australia have been through strong
rying episodes in which their areal extent was
everely restricted [38 ,56 ,57 ]. While the climate
istory of the tropical forests of India is not well
nown, it is possible that, as a relatively dry and
mall rainforest enclaves it, it could also have gone
hrough past climate bottlenecks [56 ]. The uplift
f the Andes created a complex topographical gra-
ient that facilitated allopatric speciation and the
stablishment of numerous microhabitats, leading
o species diversification [60 ,61 ]. 

Despite all of these different histories and po-
ential trajectories, brought about by climatic and
ectonic history, and regional-scale diversifica-
Page 10 of 16
tions, it is striking that, from the perspective of the 
1-ha-sample scale, all the regions that we distin- 
guish here adhere closely to the same pantropical 
pattern of richness in relation to present-day en- 
vironmental conditions (Fig. 2 and Figs S14–S16). 

The very close correspondence in tree species 
richness between the regions, despite all of the his- 
torical legacy factors that could have potentially 
caused a divergence in diversity, implies the ex- 
istence of precise control by ‘governance’ factors 
in the forest community that tends to cause the 
richness to settle at a particular level. Many poten- 
tial mechanisms have been put forward to explain 

how the tree species richness in tropical forests is 
maintained [2 ], including those discussed above. 
It is, however, surprising that the mechanisms at 
work are able to operate so precisely, all across 
the tropics, to modulate the local-scale richness 
when there are so many factors that would be ex- 
pected to cause the richness to diverge. Overall, 
the mechanisms invoked to explain the high tree 
species richness of tropical forests and its variation 

within the world’s tropical forests can be grouped 
into two kinds. Disequilibrium hypotheses in- 
voke time-dependent processes of the progressive 
buildup of diversity by diversification or migra- 
tion and its destruction by extinction [58 ]. Ac- 
cording to such mechanisms, there is no ‘lid’ on the 
maximum diversity in the tropics and differences 
in diversity reflect the balance between diversifi- 
cation events and extinction events. Equilibrium 

hypotheses, by contrast, assume that there is a set 
capacity to the number of tree species that can co- 
exist in any one place and that differences in di- 
versity reflect differences in this capacity. This set 
of mechanisms necessarily depends upon differ- 
ences in niche structuring—e.g. the number of dis- 
crete niches available due to the heterogeneity of 
microenvironments [62 ], the narrowness of spe- 
cialized niches that is possible in a given environ- 
ment (affecting the opportunities for slotting in 

extra species) [63 ] or the degree of overlap in tree
species niches that can occur before competitive 
exclusion begins to reduce the diversity [64 ,65 ]. In 

our opinion, the results of this study support a pre- 
dominance of equilibrium- or niche-based mecha- 
nisms, as the relationships between environmen- 
tal parameters and hectare-scale species richness 
are so strongly convergent between different parts 
of the world. If the vagaries of diversification and 
extinction were more important in affecting the 
richness, then we might expect to see large differ- 
ences in local diversity between different regions 
under similar environmental conditions. 

Whatever the ecological mechanisms that me- 
diate the relationship between environmental 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
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arameters and tree species richness, they appear
o operate consistently and in combination along
 sliding scale in terms of the levels of richness
hat they permit. Whilst it is intuitively hard to
ccept that such mechanisms could exert their ef-
ects so precisely between different regions of the
orld with their own distinct tropical tree floras

hat have been separated for tens of millions of
ears, this is indeed what the results of our study
uggest. 

ONCLUSIONS 

lthough regional species pools differ due to
istinct geological histories, analogous environ-
ental conditions yield similar local richness
atterns. The broad-scale approach employed in
his study, combined with spatial RF analysis, has
emonstrated that there is a striking predictability
n pantropical tree species richness sampled at the
ectare scale. This predictability involves a com-
ination of environmental factors, with climate
nd to some extent soil showing strong correla-
ions with tree species richness patterns across
nd between tropical regions. Pantropical regions
xhibit high species richness, primarily due to the
ntricate interplay of co-limitation that creates
table and balanced conditions. Although regional
pecies pools differ, analogous environmental
onditions yield similar local richness patterns.
 multifactorial interplay of evolutionary and
cological mechanisms is presumably at work in
ontrolling this consistency of species richness,
reventing regional divergence. The observed
ariation in tropical species richness must be seen
s the outcome of a range of different factors
cting simultaneously, sometimes in parallel and
ometimes in opposition to one another. It is pos-
ible that these multiple factors each act through a
ange of different ecological mechanisms, requir-
ng separate elucidation. These findings decisively
trengthen the case for the niche theory, revealing
ts remarkable predictive power. They provide
ompelling evidence that niche segregation is
 pervasive and dominant force, structuring
ommunities from local patches to broad re-
ional landscapes, even in the presence of diverse
egional species assemblages. Furthermore, by
lucidating the contemporary environmental con-
rols on species richness, this work contributes a
ital context for predicting plant diversity changes
nder future warming scenarios. 
Whilst identification of the true underly-

ng mechanisms involved remains a fundamen-
al challenge for ecology, this study contributes
o the ongoing challenge in ecology to iden-
Page 11 of 16
tify and understand the controls on biological 
diversity. 

In this paper, we had originally hypothesized 
that local-scale tree α diversity across the global 
tropics can be consistently predicted by using 
contemporary environmental variables, such that 
analogous environmental conditions will support 
similar levels of richness, irrespective of deep his- 
torical biogeographic divergences. This hypothe- 
sis has survived its test, with striking predictability 
of species richness as sampled at the hectare scale. 
We also hypothesized that variation in richness on 

more localized scales between samples would be 
governed by a distinct set of influences. Despite 
some subtle scale-related differences, this was es- 
sentially disproven, with similar sets of environ- 
mental factors governing throughout. 

It is necessary to keep in mind, however, that 
our study is confined to data obtained at the 1-ha
sampling scale and that other patterns may emerge 
at other local sampling scales [10 ] or for other life
forms (e.g. lianas)—either in sub-hectare or larger 
plots, or at the level of beta-diversity turnover 
rates. This awaits other studies and the additional 
information that comes from these will shed more 
light on the mechanisms at work behind tropical 
tree diversity patterns. The findings of this study 
are derived from current sample surveys and the 
uneven distribution of these samples may have af- 
fected our results. We advocate for an increase in 

sample surveys in tropical regions and the devel- 
opment of a more comprehensive tropical sample 
database in future scientific research. 

Intriguingly, other aspects of the community 
structuring of tropical forests may be found to 
show striking convergence patterns across the 
tropics. Cooper et al. [32 ] have recently revealed 
a strong convergence in relative abundance data—
rather than richness, as is shown here—in for- 
est plots throughout the tropics. There is a need 
for further careful comparisons of the structure 
and functioning of tropical forests across differ- 
ent regions in order to understand how closely 
they have maintained their similarities and to bet- 
ter understand the driving mechanisms behind the 
observed patterns. 

MATERIALS AND METHODS 

Tree data and richness 
Tree inventory data were assembled from the PFN 

of old-growth (not recently logged or cleared) 
closed canopy forest plots from across the global 
tropics, including the tropical dry forest and 
its various transitional forms to the tropical 
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ainforest [23 ]. All trees, defined as free-standing
oody individuals (including palms) with a di-
meter at breast height (1.3 m) of ≥10 cm, were
easured and identified in each plot ( Data S1). If

he species names could not be determined, then
lot-specific morphospecies were recorded, with
he closest taxonomic assignment. All morpho-
ypes included here were identified to the Lin-
ean species, genus or at least family level. Un-
nowns at the Linnean family level were not
ncluded. 

The numbers of individuals and species were
btained from a total of 429 1-ha plots located in
he Americas (197 plots), Africa (150 plots) and
sia (82 plots) (Fig. 2 , Figs S3 and S4, Data S2).
he Asian region included Wallacea and Australa-
ia based on a shared floristic affinity [23 ]. The ge-
graphical boundaries of the tropics were defined
ased on the map in [66 ]. 
In addition to the observed species richness,

e analysed the richness in each 1-ha plot es-
imated by using sample-based rarefaction and
isher’s α (see Methods S1). Both of these methods
re widely recognized and frequently used mea-
ures of species richness [24 ]. Sample-based rar-
faction is often considered a more reliable estima-
or of true species richness in a community, par-
icularly when sampling is incomplete, as is fre-
uently the case in diverse assemblages [25 ,67 ].
his technique allows a more accurate comparison
cross communities by taking into account unde-
ected species and different levels of sampling ef-
ort. We used the function ‘estimated’ from the iN-
XT package in R [68 ] to estimate species rich-
ess based on sample coverage, which accounts for
he completeness of sampling by estimating how
ell a community has been sampled. The rich-
ess was standardized to the same sample coverage
1 ha) to compare the survey completeness of each
ample size, providing a robust measure that ac-
ounts for uneven sampling efforts across the re-
ions. The rarefaction curves were plotted to vi-
ualize the richness of species across the coverage
ampling efforts, indicating that the sample cover-
ge values for all the localities are quite high—most
f them are > 0.8 ( Fig. S1). 
Our primary analysis focused on species rich-

ess estimated from sample-based rarefaction to
nsure the robustness of our estimates. Fisher’s α
as also examined given its applicability to com-
unities in which the species follow a log-series
attern with high proportions of rare species and
or detecting the influence of abundance distri-
utions on species diversity [26 ,69 ]. Compared
ith other diversity measures, these two indices

howed the strongest correlation with the ob-
Page 12 of 16
served richness ( Table S4 and Fig. S2; see also 
Methods S1). 

Environmental data 

We collected data surfaces for an initial set of 
65 environmental predictors, including biocli- 
matic, soil and topographic variables ( Data S3–
S5). Bioclimatic data were sourced from CHELSA 

(Climatologies at high resolution for the Earth’s 
Land Surface Areas; http://chelsa-climate.org/), 
which provides climate data at a spatial reso- 
lution of 30 arc-seconds ( ∼1 km²). Soil data 
were obtained from the ISRIC World Soil Infor- 
mation SoilGrids dataset ( https://data.isric.org/), 
which provides model-interpolated predictions of 
soil parameters at a resolution of 250 m. These 
predictions are derived from the integration of 
data from thousands of soil cores from across 
the globe, with geological, surface sediment, to- 
pographic, normalized difference vegetation in- 
dex and climatic background information [15 ]. 
Topographic data with a spatial resolution of 
∼1 km were downloaded from EarthEnv ( http://
www.earthenv.org/topography). Important envi- 
ronmental variables were selected by using the 
Boruta algorithm from the ‘Boruta’ package [70 ] in 

R (Data S6). Multicollinearity was addressed by as- 
sessing the correlation and variance inflation fac- 
tors, resulting in a refined set of 24 environmental 
predictors for the RF analysis ( Table S1). 

Spatial RF 

To predict species richness based on multiple en- 
vironmental variables, we applied a RF combined 
with spatial regression by using the ‘spatialRF’ 
package in R [22 ], which can be applied on reg-
ular or irregular data [71 ]. This package enhances 
traditional RF techniques by accounting for spa- 
tial autocorrelation when observations are not in- 
dependent, but rather show geographic relation- 
ships. Spatial autocorrelation based on Moran’s I 
index was explicitly taken into account to improve 
the model accuracy in capturing spatial patterns. 
To ensure robust evaluation of the model, we em- 
ployed cross-validation by dividing the data into 
30 spatial folds for training and testing. Addition- 
ally, spatially thinned occurrence data were gener- 
ated by using the ‘thin’ function from the ‘spThin’ 
package [72 ], which filters occurrence locations 
to ensure they are a set minimum distance apart 
(e.g. 50 km). This spatial thinning reduces bias 
from uneven species collections and was used in 

RF analysis to compare the results from the full 
dataset (see Methods S2). 
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tatistical analysis 
e used linear regression to examine the rela-

ionship between the species richness predicted
y using non-spatial and spatial RF and that esti-
ated from the sample-based rarefaction, Fisher’s
and observed richness. The PCA was performed

o explore variation between the 24 environmen-
al variables in the three major tropical regions:
he Americas, Africa and Asia. We used the ‘Fac-
oMineR’ package [73 ] in R to implement the PCA
nd the ‘factoextra’ package [74 ] to generate a bi-
lot that enabled visualization of the results. 
Spatial RF excels at capturing complex, nonlin-

ar relationships and identifying important pre-
ictors, primarily due to its predictive power [75 ].
s a complementary approach, the Generalized
inear Model with Negative Binomial distribu-
ion (glm.nb) was used. This allowed us to validate
he RF results by statistically testing broad-scale
actors such as continental differences and exam-
ning linear relationships, combining data-driven
rediction with statistical inference. To quantify
he effects of the 24 environmental variables on
he species richness across the three tropical re-
ions, we applied a negative binomial general-
zed linear model (glm.nb) by using the ‘MASS’
ackage in R and compared the results with
hose from spatial RF. Spatial RF excels in cap-
uring complex, nonlinear relationships between
pecies richness and environmental variables, but
oes not provide interpretable coefficients that
xplain the direction and magnitude of those
elationships [76 ]. As a complementary approach,
lm.nb was used to validate the robustness of the
F results by enabling the identification and in-
erpretation of regional differences and linear re-
ationships between environmental predictors and
pecies richness. Both the main effects and the in-
eractions between environmental variables and
egions were examined by using this approach (see
ethods S3). 

ensitivity analysis 
o determine which class of environmental vari-
bles (e.g. precipitation, temperature, soil, etc.)
est explained the variation in the local tree
pecies richness, we classified the 24 environmen-
al variables into seven categories—temperature,
recipitation, growing season, solar radiation,
oil, topography and co-limitation—and con-
ucted a sensitivity analysis of the RF model by
ollowing the methods of Saltelli et al. [77 ] and
iang et al. [19 ]. All of the above analyses were per-
ormed in R version 4.2.3 (R Core Team, 2024).
Page 13 of 16
The R script used for all analyses is provided in
Data S6. 

We conducted a sensitivity analysis through 

the following steps: 

Step 1: Using all environmental variables X ( s ), we
applied the RF model to simulate the predicted 
species richness Yall ( s ): 

Yall (s) = f ( X ( s) ) , 
where f () represents the RF model, X ( s ) represents
the values of the environmental variables and s 
represents the six categories to which the environ- 
mental variables belong: E1, temperature; E2, pre- 
cipitation; E3, growing season; E4, solar radiation; 
E5, soil; E6, topography ( Table S3). 

Step 2: We then applied the RF model to predict
the tree species richness based on all the envi- 
ronmental variables except those belonging to 
E1, S−E1 ( s ): 

Y−E1 (s) = f−E1 ((X − E1 )( s) ) , 
where f−E1 () represents the RF model simulated 
with all the variables except those associated with 

temperature and ( X – E1) ( s ) represents the vari-
ables of the remaining five categories (E2–E6). 

Step 3: We calculated the relative sensitivity of the 
predicted species richness to E1 from: 

R(E1 ) = ∣
∣Yall (s) −Y−E1 (s) 

∣
∣ / Yall (s) . 

Step 4: We repeated Steps 2 and 3 to calculate the
relative sensitivity of each of the remaining cat- 
egories E2–E6. For a given area, the category 
with the highest relative sensitivity and meet- 
ing the threshold of relative sensitivity of ≥1/7 
was considered that which best explained the 
variation in the tree richness for that area. 

Step 5: In areas in which the relative sensitivities 
were < 1/7 for all the categories, we hypothe- 
sized that the tree richness was not related to 
any single category, but rather multiple cate- 
gories of environmental variables. Therefore, 
we created a seventh category (E7) called co- 
limitation to characterize areas in which no sin- 
gle type of environmental factor dominates. 

Step 6: Steps 1–5 were repeated to calculate the rel-
ative sensitivity of each of the seven categories, 
including E7. To visualize the regional varia- 
tion in category importance, we calculated the 
relative sensitivity of each category as a per- 
centage of that of all the categories and plotted 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf465#supplementary-data
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this along latitudinal and longitudinal gradients
spanning the tropics on a map. 
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