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Analogous environments across the tropics have
similar levels of tree species alpha diversity
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ABSTRACT

Different regions of the tropics vary in overall tree species diversity, with the tropical Americas
exhibiting strikingly higher regional tree species richness than Africa and Southeast Asia. We
investigated whether these differences also occur at the local scale and whether the environmental
conditions associated with tree species richness are consistent across tropical regions despite highly
dissimilar species pools. A spatial random forest model was trained by using a network of 429 1-hectare
plots across the tropics, together with 24 environmental variables, to predict plot-level tree o diversity.
A combination of climatic, soil and topographical variables explained ~86% of the variation in
richness. Despite differences in regional species pools and the potentially disruptive effects of different
geological, climatic and evolutionary histories, the relationship between environmental variables and
local-scale tree species richness is closely similar across different continents. Our findings imply a
pervasive role of niche-based mechanisms in structuring local tree species richness, regardless of the
regional species assemblages. This pantropical convergence in the richness—environment relationship

poses a challenge for ecology to explain.

Keywords: rainforest, tree richness, modeling, climate, sample survey

INTRODUCTION

High levels of tree species richness and diversity
in tropical forests have long fascinated biologists,
representing an enduring challenge to ecological
theory. While many mechanisms have been pro-
posed to explain how such high levels of diversity
have arisen and are maintained, substantial uncer-
tainty persists [1-4]. To test emerging hypotheses
about the mechanisms underlying tropical tree di-
versity, an empirical approach is required to iden-
tify robust predictors of species richness variation
across broad scales [5]. An ideal method to explore
and explain patterns of tropical tree diversity is to
compare standardized inventory plots [1]. In a pi-
oneering study, Gentry [1] compared a relatively
limited number of plots by using least-squares re-
gression to reveal a general relationship between
primary productivity and species richness. Other
studies of woody plant species richness, reviewed
in [6], have concentrated on analysing single re-
gions separately or are extratropical, preventing
the comparison of tropical tree diversity relation-
ships between regions. Ricklefs and He [7] com-
pared 47 forest plots globally, fewer than half of
which were from the tropics, finding that con-
sistently warm and moist climates favored higher
richness. However, they detected significant re-
gional variation in extratropical regions and the
limited number of plots prevented definitive com-
parison within the tropics.

Consideration of the large differences in geo-
logical and evolutionary history between the dif-
ferent regions and subregions of tropical forest led
us to propose two main hypotheses: (i) local-scale
tree o diversity across the global tropics can be
consistently predicted by using contemporary en-
vironmental variables, such that analogous envi-
ronmental conditions will support similar levels
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of richness, irrespective of deep historical biogeo-
graphic divergences; (ii) due to localized effects of
forest history and dispersal lag, and the complex
ecology of forest communities, there will be dif-
ferences in the best predictors of 1-ha richness at
the local scale compared with at the broader scale.

While more recent studies have expanded
upon this foundation, pantropical comparisons of
the patterns and potential drivers of local tree di-
versity remain limited. Comparing 2046 tree plots
across Amazonia, Ter Steege et al. [8] demon-
strated that a combined influence of climate and
soil factors explained local tree richness and com-
munity composition. In a comparison of forest
plots from South America and Africa, Parmentier
etal. [9] showed lower plot-level richness in Africa
under similar warm and moist climatic conditions.
In global surveys of forest plots of varying sizes,
Keil and Chase [10] and Chu et al. [11] found
that the drivers of the variation in diversity differ
with the plot size and spatial distance between
samples, which are important sampling issues in
ecology generally [12]. However, no studies thus
far have addressed local tree species richness by
using a large number of plots of standardized size
across the world’s tropics, which is necessary for
continental-scale comparisons. The increasing
availability and integration of forest plot data now
make such comparisons possible [13].

Two other important advances in environ-
mental data science facilitate hypothesis testing
about the patterns and processes driving trop-
ical tree diversity. First, the availability of in-
terpolated climate, soil and other environmen-
tal parameters has grown immensely in recent
years [14-18]. Second, machine-learning mod-
els enable analysis of the simultaneous effects
of multiple factors on community structure and
diversity across large scales [19,20]. A particularly
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robust machine-learning method is random forest
(RF) modeling, which, when combined with spa-
tial regression, enables the analysis and prediction
of spatially structured data in which observations
exhibit autocorrelation [21,22]. These models ex-
tend the capabilities of traditional RF to handle
spatial data more effectively, allowing spatial au-
tocorrelation and other geographic phenomena to
be incorporated into vegetation modeling.

Here, we used the Pantropical Forests Net-
work (PFN) of tree inventory plots assembled by
Slik et al. [23] in combination with publicly avail-
able environmental data surfaces [14-18] to de-
termine which environmental variables explain
plot-level tree o diversity across the global trop-
ics. We applied a spatial RF and negative bino-
mial generalized linear model to detect and com-
pare the strength of empirical links between en-
vironmental variables and tree species richness.
The number of species per unit area (e.g. Gentry
[1])—the classic measure of forest tree richness—
has its weaknesses given that stem density varies
by both biogeographic region and along climate
gradients. To compare species richness while ac-
counting for variations in sampling effort and
completeness, we employed rarefaction, which is
a sample-coverage-based approach based on abun-
dance data (e.g. [24,25]), together with Fisher’s «
[26], and the ‘classical’ method of the number of
species recorded per plot, with the goal of improv-
ing understanding of the potential drivers and
maintenance of tropical diversity. Specifically, we
addressed three main questions: (i) Which envi-
ronmental predictors explain most of the variation
in local tree species richness across the tropics? (ii)
How do the environmental factors associated with
tree species richness differ between broad versus
local scales of sample plot spacing? (iii) Given the
environmental predictors, does tree species rich-
ness at the 1-ha scale converge between tropical
regions to give a consistent pantropical pattern?

A main goal of this study is to determine
whether local tree richness and the environ-
mental factors associated with it differ amongst
the world’s major tropical regions. Such a global
comparison is important to inquire whether
community assemblage rules may be consis-
tent across geographically disparate regions—in
other words, evolutionarily conserved underly-
ing environment-richness relationships across the
tropical forest biome.

RESULTS

A principal component analysis (PCA) conducted
on 24 environmental variables across 1-ha plots
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in the global tropics revealed regional differences,
with the first two axes accounting for 40.5% of
the variance in the variables (Table S1 and Fig. 1).
Overall, the three regions exhibited moderate sep-
aration along the first principal component (PC1),
especially between the Americas and Asia, but
were largely overlapping along the second prin-
cipal component (PC2). PC1 was primarily asso-
ciated with moisture-related variables, including
precipitation seasonality (bio15), the precipitation
of the driest month (bio14) and the annual range
of monthly relative humidity (hurs_range), along
with soil pH (phh20), isothermality (bio03), net
primary productivity (NPP) and annual range and
mean of monthly surface downwelling shortwave
flux in air (rsds_range and rsds_mean) (Fig. 1
and Table S2). PC2 predominantly comprised
soil-related variables, including total nitrogen,
volumetric water content (wv0010) and soil or-
ganic carbon content in the fine earth fraction
(SOC), as well as topography-related variables,
including tangential curvature (tcurv), rugged-
ness and vector ruggedness measure (vrm) (Fig. 1
and Table S2). The Americas exhibited greater
variation in environmental conditions along PC1,
characterized by higher precipitation during the
driest month and lower precipitation seasonality
compared with Asia and Africa (Fig. 1). Specifi-
cally, Asia demonstrated the highest precipitation
during the driest month and lower precipitation
seasonality, while Africa showed the lowest varia-
tion in these environmental conditions. Variation
along PC2 was similar among the three regions
(Fig. 1).

We obtained the species richness estimated
from rarefaction based on sample coverage (Fig. 2)
and Fisher's « from a standardized sample of
stems. By analysing non-spatial and spatial RF
based on the observed richness, Fisher’s « and the
richness from rarefaction data returned high ‘out-
of-bag’ R? values (0.83-0.88), demonstrating a ro-
bust ability to predict 1-ha-scale tree species rich-
ness from the 24 environmental predictors across
the global tropics (Fig. 3 and Table S1).

Training the RF for each of the three richness
measures revealed that the predicted tree species
richness at the 1-ha scale was highly heteroge-
neous across the tropics (Fig. 4a and Figs S6a
and S7a), with the predicted richness highest in
western South America, particularly the Andean—
Amazon foothills and Colombian Chocd, the ma-
jor islands of Southeast Asia, and New Guinea
(Fig 4a). Low levels of predicted local species di-
versity were found across most of tropical Africa,
eastern and southern Amazonia and continental
Southeast Asia.
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Figure 1. PCA of 24 environmental variables for 1-ha tropical tree plots in the Americas, Africa and Asia. Marginal density plots above and
to the right of the biplot show the distribution of samples from each region along the first (PC1) and second (PC2) principal components,
respectively. Percentages on each axis represent the variation explained by the respective principal component.
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Analysis using non-spatial RF revealed that
biol4 was identified as the most important sin-
gle variable for predicting tree richness, followed
by phh2o (Fig. 4b). The interaction between the
precipitation of the driest month and the pro-
portion of silt particles in the fine earth fraction
(silt) also contributed significantly to the model
(Fig. 4b). Spatial RF, which accounted for spa-
tial autocorrelation (see Methods S1), showed a
higher importance of moisture-related variables,
including hurs_range, biol5, the mean monthly
potential evapotranspiration (pet_penman_mean)
and the mean monthly climate moisture index
(cmi_mean) (Fig. 4c). In contrast, the importance
of soil-related variables, such as pH and silt, re-
mained relatively consistent, while the interaction
between the precipitation of the driest month and
silt (bio14..pca..silt) decreased in importance. An
additional analysis in which non-spatial and spa-
tial RF were applied to a thinned set of sample lo-
cations separated by at least 50, 100 and 200 km
showed a diminished importance of soil-related
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variables such as pH, SOC and silt (Fig. 4d and
Fig. S8b and d). This reduction was particularly
pronounced with thinning of 100 and 200 km, for
which the importance of soil pH and silt decreased
markedly. In contrast, variables associated with
moisture (e.g. hurs_range, cmi_mean), growing
season (e.g. NPP), solar radiation (e.g. rsds_mean)
and topography (e.g. topographic position index
[tpi]) increased in importance.

According to spatial RF, the Americas, Africa
and Asia exhibited similar relationships between
tree species richness and six dominant envi-
ronmental variables: biol4, phh2o, hurs_range,
biol5, silt and pet_penman_mean (Fig. S9). In
all three regions, the tree richness was highest in
areas with abundant moisture in the driest month
(bio14; Fig. S9a). Conversely, the richness was
low in areas with high soil pH and silt fraction,
except in Asia, where the richness increased with
silt (Fig. S9b and e). High tree richness was also
associated with a low annual range of monthly
near-surface relative humidity, precipitation
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seasonality and mean monthly potential evap-
otranspiration, peaking when these were ap-
proximately 5%—6%, 25-35 mm and 110-
115 mm/month, respectively (Fig. S9¢, d and
f). Notably, the Americas displayed a large varia-
tion in the precipitation of the driest month, soil
pH and silt, whereas Asia exhibited substantial
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variation in the humidity range, precipitation
seasonality and monthly potential evapotranspi-
ration. Africa showed a low variation in these
parameters compared with the other two regions.

The contribution of the six dominant environ-
mental variables to local tree species richness var-
ied within and across the regions. In areas with
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Figure 4. Predicted tree species richness at the 1-ha scale and importance of environmental variables based on non-
spatial and spatial RF. (a) Local tree species richness estimated from rarefaction and predicted using non-spatial RF
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high precipitation, low seasonality in rainfall and
low soil pH (Figs S10 and S11), the predictive con-
tribution of these climatic variables to species rich-
ness within the RF model was reduced (Figs S12
and S13). For example, in areas with low soil pH
(~3.7-4), such as the Amazon (Fig. S10b), the im-
portance of soil pH in the spatial RF decreased
(Fig. S12b). By contrast, in areas characterized by
high soil pH, such as India and southeast Africa,
this soil parameter was a critical predictor in the
model (Fig. S12b).

The negative binomial generalized linear
models (glm.nb) demonstrated a weaker ability
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than the RF to predict local tree species rich-
ness, whether estimated from rarefaction (OOB
R? = 0.69), Fisher's « (OOB R?> = 0.70) or ob-
served richness (OOB R* = 0.72) (Fig. S14).
Moreover, in contrast to results from the spa-
tial RF, the glm.nb found that Africa and Asia
exhibited similar levels of local tree species rich-
ness, both of which were significantly lower
than those of the Americas (Tables S6 and S7).
Despite those differences, the direction and sig-
nificance of the effects of important precipitation
(e.g. bio14, bio15, mean monthly vapor pressure
deficit [vpd_mean], hurs_range, temperature
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(mean monthly minimum air temperature of the
coldest month [bio06]) and soil variables (e.g. pH,
silt) were similar between the two approaches
(Tables S6 and S7). Variables showing a signifi-
cant interaction between Africa and the Americas
included cmi_mean, hurs_range, vpd_mean, clay
proportion, soil pH and tcurv (Tables S6 and
S7). Both the glm.nb and RF models showed
consistent results, indicating that variables such as
bio14, pH, hurs_range, silt and bio15 are impor-
tant factors in controlling « diversity. While RF
excels in predictive power (R? = 0.86), capturing
complex, nonlinear relationships, the glm.nb
model (R? = 0.69) also explains a large portion of
the richness (Fig. 2 and Fig. S14). This demon-
strates glm.nb’s ability to capture substantial data
variability despite its lower R%. Crucially, glm.nb
shows significant regional differences between the
three regions, confirming broad-scale patterns.
While the results from glm.nb and RF diverged
in important ways, the RF model is given prece-
dence here due to its superior OOB R? values and
capacity to incorporate nonlinear effects [27,28].
However, the glm.nb model offers the advantage
of interpretability and simplicity, which can be
crucial for understanding the underlying factors
driving richness. Therefore, while RF may pro-
vide superior predictive accuracy, glm.nb remains
a valuable tool for future additional exploratory
analysis and hypothesis testing.

When environmental variables were grouped
into seven categories—temperature, precipitation,
growing season, solar radiation, soil, topography
and co-limitation, which means no single type of
environmental factor dominates—the local tree
species richness was largely explained by the same
three categories: co-limitation, precipitation and
soil (Fig. 5). Referring to areas in which no single
category dominates, co-limitation represented the
most important category, accounting for 30.02%
of the variation in local tree species richness
(Fig. 5b). Precipitation (22.90%) and soil (17.56%)
were the next most important categories, fol-
lowed by solar radiation (11.71%) and topography
(11.10%). In contrast, temperature (2.05%) and
growing season (4.65%) were relatively unimpor-
tant overall, but increased in significance at higher
latitudes and altitudes within the tropics (Fig. 5a).
Solar radiation and growing season tended to gain
importance relative to other categories where
the species richness was low, particularly near
10°N and 10-20 °S latitude. Along the latitudinal
gradient, co-limitation, moisture and soil were
the dominant categories explaining the richness
variation in the three regions. Compared with
other regions, along the longitudinal gradient, the
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growing season and solar radiation were more
important in Africa, while the soil and precipi-
tation categories were most important in Asia.
Overall, species richness in most tropical regions
is constrained by multiple environmental factors,
indicating a co-limitation effect, particularly
in areas of higher species richness close to the
equator.

DISCUSSION

The relationship between environmental
factors and species richness

The RF analysis and glm.nb model showed that
variation in tropical tree species richness was
consistently predictable by using 24 primary
environmental variables across the three main
biogeographic regions of the tropics. Local tree
species richness predicted by RF were strongly
correlated with those based on sample coverage
estimation from rarefaction and Fisher’s « across
the tropics, with the observed raw richness and
predicted richness showing similar results in the
RF analysis (Table S5) and relatively lower in the
glm.nb model. While these relationships are em-
pirical, the strength of the predictions implies that,
across the world’s tropical forests, local species
richness at the 1-ha scale is largely deterministic.
The results showed that local tree diversity tends
to converge on similar levels of richness when
conditions are similar. This trend holds despite
the fact that a minority of genera and almost no
species of trees exist in common between the stud-
ied biogeographic regions, with different families
and genera having undergone their own patterns
of diversification within each region [29-32].

A noteworthy nuance emerges when compar-
ing the relationship of individual environmental
variables to species richness: although the corre-
lations between any single environmental vari-
able and richness are relatively weak, simultane-
ous incorporation of all environmental predic-
tors in the RF analysis achieved high predictive
power (R? > 0.86). Furthermore, sensitivity anal-
ysis highlighted that the importance of these in-
teractions is context-dependent: the trained RF
model reflected the specific range of environmen-
tal conditions in the current dataset. While predic-
tive relationships might shift with the inclusion of
additional forest plots (taking in a greater range of
local environments or subregions), the sample size
as it already stands is very large and in diverse set-
tings, so we regard these inferences to be robust
and unlikely to change substantially with the ad-
dition of more samples.
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Our results suggest that moisture-related vari-
ables are more important at the large scale, while
the soil-related variables play a relatively more
important role at the local scale. The relatively
strong local effect of soil factors is consistent with
the mosaic of soil-influenced habitats that can ex-
ist at a fairly local scale within the tropics, pro-
ducing differences in tropical tree communities
[33,34].

The strongest climate-related predictors of tree
richness identified in the RF and sensitivity anal-
ysis (Figs 4 and 5) were those reflecting aspects of
the moisture supply to vegetation, with variations
in temperature playing a less important role. The
estimated npp itself is high on the list of predic-
tors at large scales (50, 100 and 200 km; Fig. 4d
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and Fig. S8). In general, the climate factors that
emerge as importantly correlated with tree species
richness were all consistent with conditions that
favor plant growth and productivity rather than
conditions that impose severe water stress or sup-
press photosynthesis due to low temperatures.
This reinforces and refines the patterns linking
tree diversity and plant physiology/productivity
that have long been noted [1,2,6,35]. While re-
lationships between species richness and climate
have been demonstrated in other studies [36,37],
what is striking in these new results is how pre-
dictable the overall relationship is when soil fac-
tors were included (discussed below) and how
consistent the relationship is across different re-
gions of the tropics.
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The question of why such environment—
richness relationships exist for trees is one of the
greatest conundrums in ecology and evolution [2].
Explanations vary from the legacy of a moist trop-
ical origin of angiosperms [38] to the niche par-
titioning capabilities of more productive ecosys-
tems [35] to the lack of physiological extremes,
which allows functional equivalency and thus both
greater diversity of growth architectures [39-41]
and extensive niche overlap [3] that favors the co-
existence of high species richness.

Certain internal patterns of influence on
species richness within each tropical re-
gion are discernible (Fig. 5 and Figs S10-
S13). Towards higher latitudes of the trop-
ics, species richness was more strongly im-
pacted by factors related to temperature and
growing season, whereas, closer to the equator,
moisture-related factors were more important
(Fig. 5). Although particular categories of envi-
ronmental factors cause a variation in the species
richness in some areas, most regions are subject to
co-limitation by multiple categories of environ-
mental factors (Fig. 5). The high species richness
observed in tropical regions may be maintained
through the interaction of multiple factors and
co-limitation [19]. In natural environments, plant
growth is impacted by multiple variables [42],
with the optimal growth occurring when these
interacting variables attain a state of conducive
equilibrium [43]. In this study, these co-limitation
areas likely create environmental conditions
under which resources are relatively balanced,
favoring the survival of various species and thus
making these areas high in species richness. Given
the relatively limited attention given to the role of
soil parameters in affecting the patterns of trop-
ical tree diversity, soil pH surprisingly emerges
as influential in the RF analysis, especially at the
local scale (Fig. 4b and c, and Fig. S8). The role
of soil pH has long been known as an influence
on more local-scale patterns in tropical forest
composition [34] and soil pH is known to play a
major role in plant ecology in general [44]. Soil
pH correlates with a range of other factors, such as
nutrient concentrations and availability, includ-
ing the mobility of toxic ions such as aluminum
[45]. The species composition of vegetation can
itself influence the soil pH and other soil factors
[46-48], but the possibility of complex feedback
loops between species diversity and soil being
significant on the pantropical scale can only be
considered as speculative.

While a lower soil pH may be seen as a phys-
iologically more extreme environment, for the
above reasons, in fact, tree species richness tends

Page 9 of 16

to be highest in the lowest pH soils in our dataset
(Figs S9b and S10b). Empirically, this supports
previous results from studies in other biomes
that plant species richness peaks in low soil pH
of ~4 [49] and declines as the pH increases
(Fig. S9b). A widely discussed principle in plant
ecology is that a certain degree of physiological
‘stress—such as low soil pH—may suppress plant
growth and productivity, reducing the compet-
itive ability of faster-growing generalists [44].
In the context of disturbance events at varying
scales, this may reduce competitive exclusion
and enable a greater number of species to coexist
[44,50,51].

While it is reasonable to focus on the potential
effect of environmental factors on the trees them-
selves, it is also crucial to consider that other fac-
tors could be at work, without directly involving
the physiology of the trees as the primary driver.
For instance, the Janzen-Connell hypothesis sug-
gests that the diversity levels in tropical forests are
controlled by the intensity of attacks by insect her-
bivores and pathogens [2,52-54]—with constantly
warm and moist conditions favoring the special-
ization of insect pest or pathogen populations and
the strong density-dependent control of tree pop-
ulations allowing more tree species to coexist lo-
cally. There is considerable evidence that a degree
of selective pest pressure can maintain diversity
in plant communities, but inconsistent evidence
that density-dependent mortality is stronger in the
tropics than in temperate regions [2]. However, to
explain the patterns seen here, the pest-pressure
effect would need to operate in a finely modu-
lated way along environmental and species rich-
ness gradients within the tropics, quite aside from
whether it differs between tropical and temper-
ate regions. A potential effect of the soil pH on
herbivory—perhaps with respect to the extent of
the species pools on different soil types and per-
haps in affecting the nutrient or secondary com-
pound content of plants or the growth rate of fresh
edible tissues—might also be involved in the ob-
served relationship with soil factors.

Convergence in richness amongst
biogeographic regions

From the analysis of this dataset, there is no ob-
vious evidence for any regional influence produc-
ing anomalously high or low tree species richness
relative to the overall pantropical trend. When
1-ha richness data from all the regions are over-
laid on the same scatterplot, the Americas, Asia
(including Wallacea and Australasia) and trop-
ical Africa all fall close to one another, within
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margins of error (Fig. 3 and Figs S14-S16). The
spatial RF model demonstrates that analogous en-
vironments support comparable richness levels,
irrespective of regional species pools (Fig. S17).
This contrasts with the overall comparison of re-
gions without accounting for equivalent environ-
ments. Most strikingly, there is particularly high
species richness for some plots in the Americas
(Fig. 3 and Figs S14-S16). One of the primary pre-
dictors, and possible drivers, of the elevated diver-
sity in the neotropics appears to be this region’s
consistently higher levels of moisture, as expressed
by a range of factors in the RF model [55]. This
may be further reinforced by the region’s relatively
low soil pH values, which we find correlate signif-
icantly with species richness independently of cli-
mate. When the RF model was implemented, the
anomalously high richness of the Americas dis-
appeared and was explicable almost exclusively in
terms of empirical environmental factors.

The close similarity in richness between tropi-
cal regions, when compared in terms of the com-
binations of environmental factors that best pre-
dict richness, is evident despite the divergent ge-
ological, climatic and evolutionary histories of
these regions that span tens of millions of years
[29,38,56,57]. Independent evolution and diver-
sification of clades has given a distinctive taxo-
nomic composition to the forests in each of the
main regions—the Americas, South East Asia (and
Wallacea/Oceania) and tropical Africa [38,56,57].
In each region, the composition and distribution
of flora have been influenced by continental col-
lisions, mountain building and the cooling and
drying of the climate in the Cenozoic [30,56-59].
For instance, tropical Africa lost a large propor-
tion of its previous diversity during the late Ceno-
zoic/Quaternary due to the drying of the climate,
especially during glacial episodes [38,56,57], and
now has restricted total richness and phylogenetic
diversity of trees at the regional scale [23,30]. The
fossil pollen record also shows that the rainforests
of northern Australia have been through strong
drying episodes in which their areal extent was
severely restricted [38,56,57]. While the climate
history of the tropical forests of India is not well
known, it is possible that, as a relatively dry and
small rainforest enclaves it, it could also have gone
through past climate bottlenecks [56]. The uplift
of the Andes created a complex topographical gra-
dient that facilitated allopatric speciation and the
establishment of numerous microhabitats, leading
to species diversification [60,61].

Despite all of these different histories and po-
tential trajectories, brought about by climatic and
tectonic history, and regional-scale diversifica-
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tions, it is striking that, from the perspective of the
1-ha-sample scale, all the regions that we distin-
guish here adhere closely to the same pantropical
pattern of richness in relation to present-day en-
vironmental conditions (Fig. 2 and Figs S14-S16).
The very close correspondence in tree species
richness between the regions, despite all of the his-
torical legacy factors that could have potentially
caused a divergence in diversity, implies the ex-
istence of precise control by ‘governance’ factors
in the forest community that tends to cause the
richness to settle at a particular level. Many poten-
tial mechanisms have been put forward to explain
how the tree species richness in tropical forests is
maintained [2], including those discussed above.
It is, however, surprising that the mechanisms at
work are able to operate so precisely, all across
the tropics, to modulate the local-scale richness
when there are so many factors that would be ex-
pected to cause the richness to diverge. Overall,
the mechanisms invoked to explain the high tree
species richness of tropical forests and its variation
within the world’s tropical forests can be grouped
into two kinds. Disequilibrium hypotheses in-
voke time-dependent processes of the progressive
buildup of diversity by diversification or migra-
tion and its destruction by extinction [58]. Ac-
cording to such mechanisms, there is no ‘lid’ on the
maximum diversity in the tropics and differences
in diversity reflect the balance between diversifi-
cation events and extinction events. Equilibrium
hypotheses, by contrast, assume that there is a set
capacity to the number of tree species that can co-
exist in any one place and that differences in di-
versity reflect differences in this capacity. This set
of mechanisms necessarily depends upon differ-
ences in niche structuring—e.g. the number of dis-
crete niches available due to the heterogeneity of
microenvironments [62], the narrowness of spe-
cialized niches that is possible in a given environ-
ment (affecting the opportunities for slotting in
extra species) [63] or the degree of overlap in tree
species niches that can occur before competitive
exclusion begins to reduce the diversity [64,65]. In
our opinion, the results of this study support a pre-
dominance of equilibrium- or niche-based mecha-
nisms, as the relationships between environmen-
tal parameters and hectare-scale species richness
are so strongly convergent between different parts
of the world. If the vagaries of diversification and
extinction were more important in affecting the
richness, then we might expect to see large differ-
ences in local diversity between different regions
under similar environmental conditions.
Whatever the ecological mechanisms that me-
diate the relationship between environmental
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parameters and tree species richness, they appear
to operate consistently and in combination along
a sliding scale in terms of the levels of richness
that they permit. Whilst it is intuitively hard to
accept that such mechanisms could exert their ef-
fects so precisely between different regions of the
world with their own distinct tropical tree floras
that have been separated for tens of millions of
years, this is indeed what the results of our study
suggest.

CONCLUSIONS

Although regional species pools differ due to
distinct geological histories, analogous environ-
mental conditions yield similar local richness
patterns. The broad-scale approach employed in
this study, combined with spatial RF analysis, has
demonstrated that there is a striking predictability
in pantropical tree species richness sampled at the
hectare scale. This predictability involves a com-
bination of environmental factors, with climate
and to some extent soil showing strong correla-
tions with tree species richness patterns across
and between tropical regions. Pantropical regions
exhibit high species richness, primarily due to the
intricate interplay of co-limitation that creates
stable and balanced conditions. Although regional
species pools differ, analogous environmental
conditions yield similar local richness patterns.
A multifactorial interplay of evolutionary and
ecological mechanisms is presumably at work in
controlling this consistency of species richness,
preventing regional divergence. The observed
variation in tropical species richness must be seen
as the outcome of a range of different factors
acting simultaneously, sometimes in parallel and
sometimes in opposition to one another. It is pos-
sible that these multiple factors each act through a
range of different ecological mechanisms, requir-
ing separate elucidation. These findings decisively
strengthen the case for the niche theory, revealing
its remarkable predictive power. They provide
compelling evidence that niche segregation is
a pervasive and dominant force, structuring
communities from local patches to broad re-
gional landscapes, even in the presence of diverse
regional species assemblages. Furthermore, by
elucidating the contemporary environmental con-
trols on species richness, this work contributes a
vital context for predicting plant diversity changes
under future warming scenarios.

Whilst identification of the true underly-
ing mechanisms involved remains a fundamen-
tal challenge for ecology, this study contributes
to the ongoing challenge in ecology to iden-
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tify and understand the controls on biological
diversity.

In this paper, we had originally hypothesized
that local-scale tree o diversity across the global
tropics can be consistently predicted by using
contemporary environmental variables, such that
analogous environmental conditions will support
similar levels of richness, irrespective of deep his-
torical biogeographic divergences. This hypothe-
sis has survived its test, with striking predictability
of species richness as sampled at the hectare scale.
We also hypothesized that variation in richness on
more localized scales between samples would be
governed by a distinct set of influences. Despite
some subtle scale-related differences, this was es-
sentially disproven, with similar sets of environ-
mental factors governing throughout.

It is necessary to keep in mind, however, that
our study is confined to data obtained at the 1-ha
sampling scale and that other patterns may emerge
at other local sampling scales [10] or for other life
forms (e.g. lianas)—either in sub-hectare or larger
plots, or at the level of beta-diversity turnover
rates. This awaits other studies and the additional
information that comes from these will shed more
light on the mechanisms at work behind tropical
tree diversity patterns. The findings of this study
are derived from current sample surveys and the
uneven distribution of these samples may have af-
fected our results. We advocate for an increase in
sample surveys in tropical regions and the devel-
opment of a more comprehensive tropical sample
database in future scientific research.

Intriguingly, other aspects of the community
structuring of tropical forests may be found to
show striking convergence patterns across the
tropics. Cooper et al. [32] have recently revealed
a strong convergence in relative abundance data—
rather than richness, as is shown here—in for-
est plots throughout the tropics. There is a need
for further careful comparisons of the structure
and functioning of tropical forests across differ-
ent regions in order to understand how closely
they have maintained their similarities and to bet-
ter understand the driving mechanisms behind the
observed patterns.

MATERIALS AND METHODS
Tree data and richness

Tree inventory data were assembled from the PFN
of old-growth (not recently logged or cleared)
closed canopy forest plots from across the global
tropics, including the tropical dry forest and
its various transitional forms to the tropical
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rainforest [23]. All trees, defined as free-standing
woody individuals (including palms) with a di-
ameter at breast height (1.3 m) of >10 cm, were
measured and identified in each plot (Data S1). If
the species names could not be determined, then
plot-specific morphospecies were recorded, with
the closest taxonomic assignment. All morpho-
types included here were identified to the Lin-
nean species, genus or at least family level. Un-
knowns at the Linnean family level were not
included.

The numbers of individuals and species were
obtained from a total of 429 1-ha plots located in
the Americas (197 plots), Africa (150 plots) and
Asia (82 plots) (Fig. 2, Figs S3 and S4, Data S2).
The Asian region included Wallacea and Australa-
sia based on a shared floristic affinity [23]. The ge-
ographical boundaries of the tropics were defined
based on the map in [66].

In addition to the observed species richness,
we analysed the richness in each 1-ha plot es-
timated by using sample-based rarefaction and
Fisher’s « (see Methods S1). Both of these methods
are widely recognized and frequently used mea-
sures of species richness [24]. Sample-based rar-
efaction is often considered a more reliable estima-
tor of true species richness in a community, par-
ticularly when sampling is incomplete, as is fre-
quently the case in diverse assemblages [25,67].
This technique allows a more accurate comparison
across communities by taking into account unde-
tected species and different levels of sampling ef-
fort. We used the function ‘estimated’ from the iN-
EXT package in R [68] to estimate species rich-
ness based on sample coverage, which accounts for
the completeness of sampling by estimating how
well a community has been sampled. The rich-
ness was standardized to the same sample coverage
(1 ha) to compare the survey completeness of each
sample size, providing a robust measure that ac-
counts for uneven sampling efforts across the re-
gions. The rarefaction curves were plotted to vi-
sualize the richness of species across the coverage
sampling efforts, indicating that the sample cover-
age values for all the localities are quite high—most
of them are >0.8 (Fig. S1).

Our primary analysis focused on species rich-
ness estimated from sample-based rarefaction to
ensure the robustness of our estimates. Fisher’s o
was also examined given its applicability to com-
munities in which the species follow a log-series
pattern with high proportions of rare species and
for detecting the influence of abundance distri-
butions on species diversity [26,69]. Compared
with other diversity measures, these two indices
showed the strongest correlation with the ob-
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served richness (Table S4 and Fig. S2; see also
Methods S1).

Environmental data

We collected data surfaces for an initial set of
65 environmental predictors, including biocli-
matic, soil and topographic variables (Data S3-
S5). Bioclimatic data were sourced from CHELSA
(Climatologies at high resolution for the Earth’s
Land Surface Areas; http://chelsa-climate.org/),
which provides climate data at a spatial reso-
lution of 30 arc-seconds (~1 km2). Soil data
were obtained from the ISRIC World Soil Infor-
mation SoilGrids dataset (https://data.isric.org/),
which provides model-interpolated predictions of
soil parameters at a resolution of 250 m. These
predictions are derived from the integration of
data from thousands of soil cores from across
the globe, with geological, surface sediment, to-
pographic, normalized difference vegetation in-
dex and climatic background information [15].
Topographic data with a spatial resolution of
~1 km were downloaded from EarthEnv (http://
www.earthenv.org/topography). Important envi-
ronmental variables were selected by using the
Boruta algorithm from the ‘Boruta’ package [70] in
R (Data S6). Multicollinearity was addressed by as-
sessing the correlation and variance inflation fac-
tors, resulting in a refined set of 24 environmental
predictors for the RF analysis (Table S1).

Spatial RF

To predict species richness based on multiple en-
vironmental variables, we applied a RF combined
with spatial regression by using the ‘spatialRF’
package in R [22], which can be applied on reg-
ular or irregular data [71]. This package enhances
traditional RF techniques by accounting for spa-
tial autocorrelation when observations are not in-
dependent, but rather show geographic relation-
ships. Spatial autocorrelation based on Moran’s |
index was explicitly taken into account to improve
the model accuracy in capturing spatial patterns.
To ensure robust evaluation of the model, we em-
ployed cross-validation by dividing the data into
30 spatial folds for training and testing. Addition-
ally, spatially thinned occurrence data were gener-
ated by using the ‘thin’ function from the ‘spThin’
package [72], which filters occurrence locations
to ensure they are a set minimum distance apart
(e.g. 50 km). This spatial thinning reduces bias
from uneven species collections and was used in
RF analysis to compare the results from the full
dataset (see Methods S2).
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Statistical analysis

We used linear regression to examine the rela-
tionship between the species richness predicted
by using non-spatial and spatial RF and that esti-
mated from the sample-based rarefaction, Fisher’s
« and observed richness. The PCA was performed
to explore variation between the 24 environmen-
tal variables in the three major tropical regions:
the Americas, Africa and Asia. We used the ‘Fac-
toMineR’ package [73] in R to implement the PCA
and the ‘factoextra’ package [74] to generate a bi-
plot that enabled visualization of the results.

Spatial RF excels at capturing complex, nonlin-
ear relationships and identifying important pre-
dictors, primarily due to its predictive power [75].
As a complementary approach, the Generalized
Linear Model with Negative Binomial distribu-
tion (glm.nb) was used. This allowed us to validate
the RF results by statistically testing broad-scale
factors such as continental differences and exam-
ining linear relationships, combining data-driven
prediction with statistical inference. To quantify
the effects of the 24 environmental variables on
the species richness across the three tropical re-
gions, we applied a negative binomial general-
ized linear model (glm.nb) by using the ‘MASS’
package in R and compared the results with
those from spatial RF. Spatial RF excels in cap-
turing complex, nonlinear relationships between
species richness and environmental variables, but
does not provide interpretable coefficients that
explain the direction and magnitude of those
relationships [76]. As a complementary approach,
glm.nb was used to validate the robustness of the
RF results by enabling the identification and in-
terpretation of regional differences and linear re-
lationships between environmental predictors and
species richness. Both the main effects and the in-
teractions between environmental variables and
regions were examined by using this approach (see
Methods S3).

Sensitivity analysis

To determine which class of environmental vari-
ables (e.g. precipitation, temperature, soil, etc.)
best explained the variation in the local tree
species richness, we classified the 24 environmen-
tal variables into seven categories—temperature,
precipitation, growing season, solar radiation,
soil, topography and co-limitation—and con-
ducted a sensitivity analysis of the RF model by
following the methods of Saltelli et al. [77] and
Liang etal.[19]. All of the above analyses were per-
formed in R version 4.2.3 (R Core Team, 2024).
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The R script used for all analyses is provided in
Data Sé6.

We conducted a sensitivity analysis through
the following steps:

Step 1: Using all environmental variables X(s), we
applied the RF model to simulate the predicted
species richness Yy (s):

Yui(s) = f(X (s)),

where f{) represents the RF model, X(s) represents
the values of the environmental variables and s
represents the six categories to which the environ-
mental variables belong: E1, temperature; E2, pre-
cipitation; E3, growing season; E4, solar radiation;
E5, soil; E6, topography (Table S3).

Step 2: We then applied the RF model to predict
the tree species richness based on all the envi-
ronmental variables except those belonging to
E1, S_g; (9):

Y_opi(s) = fop (X — E1)(s)),

where f_g;() represents the RF model simulated
with all the variables except those associated with
temperature and (X - E1) (s) represents the vari-
ables of the remaining five categories (E2-E6).

Step 3: We calculated the relative sensitivity of the

predicted species richness to E1 from:
R(E1) = |Yui(s) — Yogi ()] / Yau(s).

Step 4: We repeated Steps 2 and 3 to calculate the
relative sensitivity of each of the remaining cat-
egories E2-E6. For a given area, the category
with the highest relative sensitivity and meet-
ing the threshold of relative sensitivity of >1/7
was considered that which best explained the
variation in the tree richness for that area.

Step 5: In areas in which the relative sensitivities
were <1/7 for all the categories, we hypothe-
sized that the tree richness was not related to
any single category, but rather multiple cate-
gories of environmental variables. Therefore,
we created a seventh category (E7) called co-
limitation to characterize areas in which no sin-
gle type of environmental factor dominates.

Step 6: Steps 1-5 were repeated to calculate the rel-
ative sensitivity of each of the seven categories,
including E7. To visualize the regional varia-
tion in category importance, we calculated the
relative sensitivity of each category as a per-
centage of that of all the categories and plotted
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this along latitudinal and longitudinal gradients
spanning the tropics on a map.
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