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Abstract

Fretting wear due to flow-induced vibration (FIV) remains a primary cause of fuel failure
in light water nuclear reactors. In the study of axial FIV, i.e., FIV caused by axial flows,
three vibration characteristics, namely natural frequency, damping ratio, and root-mean-
square (RMS) amplitude, are critical for mitigating fretting wear by avoiding resonance,
maximising overdamping, and preventing large-amplitude instability motion, respectively.
This paper presents a set of best practices for simulating axial FIV with a focus on predicting
these parameters based on a URANS-FSI numerical framework, utilising high-Reynolds-
number Unsteady Reynolds-Averaged Navier–Stokes (URANS) turbulence modelling and
two-way fluid–structure interaction (FSI) coupling. This strategy enables accurate and
efficient prediction of vibration parameters and offers promising scalability for full-scale
nuclear fuel assembly applications. Validation is performed against a semi-empirical model
to predict RMS amplitude and experimental benchmarking. The validation experiments
involve two setups: vibration of a square beam with fixed and roller-supported ends in
annular flow tested at Vattenfall AB, and self-excited vibration of a cantilever beam in
annular flow tested at the University of Manchester. The study recommends best practices
for numerical schemes, mesh strategies, and convergence criteria, tailored to improve the
accuracy and efficiency for each validated parameter.

Keywords: fluid–structure interaction (FSI); computational fluid dynamics (CFD); nuclear
fuel rods; fretting wear; Foam-Extend; solids4Foam; OpenFOAM

1. Introduction
Flow-induced vibrations (FIVs) remain a significant challenge in water-cooled nuclear

reactors due to their potential to cause grid-to-rod fretting (GTRF), a leading cause of
fuel rod failure. GTRF was responsible for approximately 75% of fuel failures in light
water reactors between 1999 and 2002 [1]. Although improvements in fuel design, such as
heat-treated springs and enhanced cladding, reduced this figure to 57% between 2006 and
2015 [2], GTRF remains a persistent issue.

Notably, even advanced reactors such as the European Pressurised Reactor (EPR) in
Taishan, China, experienced extended shutdowns due to GTRF in 2021 [3,4]. This highlights
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the limitations of current predictive capabilities and the need for more accurate numerical
tools. Validated computational fluid dynamics and fluid–structure interaction (CFD-FSI)
simulations are essential at the design stage to reduce FIV susceptibility and enhance fuel
reliability. Such challenges have motivated ongoing efforts to develop robust simulation
methodologies under industrial conditions.

In particular, the high-Reynolds-number axial flows within fuel assemblies demand
turbulence modelling strategies that optimise accuracy and computational efficiency. Large-
Eddy Simulation (LES) has been widely used to resolve key turbulent structures that
influence rod vibrations in axial flow [5–11]. However, the significant computational
resources required by LES limit its practical application in full-scale simulations, especially
when strong two-way FSI coupling is involved. In many cases, LES-derived pressure
fluctuations are applied to structural solvers in a decoupled manner to predict vibration
response [12–14]. While suitable for small-amplitude motion, such decoupled approaches
fail to capture structural feedback on the flow, an important limitation when simulating
high-Reynolds-number flows, where large vibration amplitudes can significantly alter
the flow domain, especially within narrow annular gaps. One-way LES-FSI was used
to predict axial-FIV responses, but the simulation became unstable for displacements
corresponding to a dimensionless near-wall distance (y+) of more than 5 [15], making such
small deformation less relevant in fretting wear studies.

A more feasible alternative for simulating axial FIV involving multiple rods or entire
fuel assemblies is the Unsteady Reynolds-Averaged Navier–Stokes (URANS) approach,
in which turbulent Reynolds stresses are modelled rather than resolved. When coupled
with a structural solver using two-way partitioned FSI coupling, this approach can capture
the mutual interaction between turbulent buffeting and structural vibration, provided
that the turbulence model is selected properly. In this work, we refer to this methodology
as URANS-FSI.

Effective mitigation of FIV-related damage relies on accurate prediction of three key
vibration parameters: natural frequency, damping ratio, and root-mean-square (RMS) am-
plitude, all determined from measurements of the rod’s displacement. Accurate predictions
of modal characteristics, including natural frequencies, mode shapes, and damping ratios,
are typically obtained by applying an initial displacement or perturbation to the structure
and observing the resulting free vibration decay. Frequency prediction is essential to avoid
resonance, which can lead to large-amplitude instability, while identifying designs with
high damping is critical for minimising fretting wear, particularly during transient events
such as reactor start-up or flow interruption. The vibration frequency in axial FIV has
been measured either by imposing an initial displacement [16,17] or through self-excitation
by turbulent axial flow, as demonstrated at Argonne National Laboratory [18] and the
University of Manchester [19–21].

URANS-FSI simulations have been shown to accurately capture both first- and second-
order mode frequencies of vibration across a range of rod configurations and boundary
conditions [21,22]. These include free–fixed and fixed–free configurations, validated against
experimental data from the University of Manchester [21,23,24]; fixed–roller configurations,
validated using experiments conducted at Vattenfall AB [25,26]; fixed–fixed configurations,
validated against experimental results from Argonne National Laboratory [25,27]; and a
more complex setup involving a rod positioned between four surrounding fuel assemblies
based on experiments performed at Vattenfall AB [25,28].

Accurate prediction of damping ratio, particularly under high-density turbulent flow,
requires strong FSI coupling to ensure numerical stability due to the large added mass
effect. Damping ratios were successfully predicted using the URANS k-ω SST model [29],
validated against the experiments at Argonne National Laboratory using both wall-resolved
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and wall-function turbulence treatments [25,27]. However, in the case of the fixed–roller
configuration from Vattenfall AB, a laminar fluid model was assumed for otherwise fully
turbulent flow, yet it still achieved good agreement in the damping ratio [25]. In contrast,
the application of the URANS k-ω SST model resulted in an overprediction of the damping
ratio [30]. This discrepancy highlights the need for further testing and validation, particu-
larly for this configuration, which provides a unique and realistic axial-FIV damping case
while retaining geometric simplicity.

The RMS amplitude of vibration, on the other hand, can only be obtained without
applying any initial displacement or perturbation, relying on self-excitation by axial turbu-
lent flow. One of the main challenges in axial-FIV simulation using URANS is capturing
flow instabilities and their effects on structural response to predict accurate rod displace-
ments. While URANS with the eddy-viscosity-based (EVM) k-ω SST model can simulate
self-sustained random vibrations, it typically underpredicts the RMS amplitude by at least
two orders of magnitude compared to experiments [23,26].

To address this limitation, researchers at the Netherlands’ Nuclear Research and
Consultancy Group (NRG) developed the Pressure Fluctuation Model (PFM). The PFM
supplements URANS by introducing additional turbulent pressure fluctuations. It gener-
ates a synthetic velocity fluctuation field using a sum of divergence-free Fourier modes,
with amplitudes and spectral distributions derived from the local turbulent kinetic en-
ergy. These are used to solve the Poisson equation for pressure fluctuations, which are
then superimposed onto the URANS mean pressure field to better capture unsteady struc-
tural loading [26,31]. When combined with the k-ω SST model, the PFM has shown good
agreement with experimental RMS amplitudes in both cantilevered and fixed–fixed config-
urations under axial flow [26]. Although promising, the PFM has not yet seen widespread
adoption and requires further testing and validation.

The URANS-FSI methodology presented in this paper applies the URANS approach
without additional turbulence corrections such as the PFM, yet it successfully predicts all
three key vibration responses: frequency, damping, and RMS amplitude. This framework,
originally developed at the University of Manchester, was first validated using the Reynolds
Stress Model (RSM) with the Launder–Reece–Rodi (LRR) closure. Accurate predictions
were achieved for a blunt-end cantilever rod in a free–fixed configuration at an annular
Reynolds number of 16.4 k [23]. The computational efficiency was improved by a factor of
40 through a geometric simplification, modelling the lead-filled rod as a hollow structure
with equivalent mass concentrated in the cladding. This enabled the simulation of higher
Reynolds numbers, with validation performed at 35.1 k [32].

Building on this, the framework was extended to Reynolds numbers exceeding 60k, ap-
proaching the threshold for large-amplitude flutter-like motion [21,24]. Under reversed flow
(fixed–free configuration), vibration frequency was accurately predicted for both blunt- and
curved-end rods. However, only the curved-end configuration correctly captured the RMS
amplitude [24], while the blunt-end model significantly underpredicted it [21]. The EVM
k–ω SST model was also evaluated within the same framework. For the free–fixed configu-
ration, the model accurately reproduced RMS amplitudes consistent with the RSM LRR
results. In contrast, under fixed–free conditions, it failed to sustain self-excited vibration,
resulting in only small, likely non-physical deflections [21]. This behaviour resembles
numerical artefacts reported by others [23,26], although in the free–fixed configuration.

This paper consolidates these findings into a comprehensive URANS-FSI simulation
framework for accurately predicting modal characteristics and RMS vibration response across
various rod configurations and flow conditions. The focus is on achieving robust, efficient,
and validated predictions under high-Reynolds-number axial flows. Validation is performed
against two key experimental benchmarks: the fixed–roller configuration from Vattenfall
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AB for damping and the cantilevered rod setup from the University of Manchester for RMS
amplitude. Frequency prediction is not discussed in detail, as its accuracy using URANS-FSI
has already been widely demonstrated in prior studies. The following sections present the
URANS-FSI methodology, describe the experimental setups, discuss key results, and conclude
with best practice recommendations for future axial-FIV simulations.

2. URANS-FSI Methodology
2.1. Overview

This study employs a two-way partitioned fluid–structure interaction (FSI) approach
in which the fluid and solid domains are solved separately and iteratively coupled. Both
domains are discretised using the finite volume method (FVM) to maintain consistency at
the interface and facilitate future integration into a monolithic solver framework. The open-
source platform Foam-Extend v4.0, together with the solids4foam toolbox [33], is used for
the implementation. All solvers were compiled and run in single precision to improve
computational efficiency during the strongly coupled FSI procedure.

The following subsections outline the governing equations and numerical schemes
applied for both fluid and solid domains.

2.2. Fluid Flow

The incompressible unsteady Reynolds-averaged Navier–Stokes (URANS) equations
govern the turbulent flow field and consist of the mass and momentum conservation
equations, given in Equations (1) and (2), respectively. In the Arbitrary Lagrangian–Eulerian
(ALE) formulation, the mesh velocity is incorporated into the convective term, specifically
the second term on the left-hand side of Equation (2), to account for the relative motion
between the fluid and moving mesh boundaries, as shown below.

∂Ui
∂xi

= 0 (1)

∂Ui
∂t

+
∂

∂xj
(Ui − wi)Uj = − 1

ρ f

∂P
∂xi

+
∂

∂xj

(
ν

∂Ui
∂xj

− uiuj

)
(2)

Here, U is the time-averaged velocity component, w is the mesh velocity, ρ f is the fluid
density, and ν is the kinematic viscosity. The Reynolds stress tensor, −uiuj, arises from
turbulence modelling in the URANS approach and contributes to the effective momentum
diffusivity. The mesh velocity (w) is determined by solving a Laplacian equation, as given
in Equation (3).

∂

∂xi

(
γ

∂wi
∂xj

)
= 0 (3)

Here, γ is a spatially varying diffusion coefficient, set proportional to the square of the
inverse distance from the interface to improve mesh quality near the solid boundary.

To improve the prediction of unsteady flow characteristics, the convective term gov-
erning the transport of momentum is discretised using the Central Difference Scheme
(CDS). As an unbounded scheme, CDS minimises numerical diffusivity and is especially
effective in accurately capturing large-scale flow instabilities near the rod’s free end. In con-
trast, the convection terms in the turbulence transport equations are discretised using
the first-order upwind scheme (FOUS), which is bounded and biased in the downstream
direction, thereby enhancing numerical stability. Pressure–velocity coupling is handled
using the Pressure-Implicit with Splitting of Operators (PISO) algorithm [34], in conjunction
with Rhie–Chow interpolation adapted for dynamic meshes [35]. To ensure stability and
accuracy, three PISO iterations are performed per time step.
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Turbulence closure is handled within the URANS framework using two modelling
approaches:

1. Eddy Viscosity Model (EVM)
2. Reynolds Stress Model (RSM)

The EVM is based on the Boussinesq approximation, which relates the Reynolds stress
tensor (Rij) to the mean strain rate through a turbulent viscosity (µt), given by

Rij = −ρfuiuj = µt

(
∂Ui
∂xj

+
∂Uj

∂xi

)
− 2

3
ρfkδij (4)

The eddy viscosity, µt, is typically derived as a function of the turbulent kinetic energy
(k) and a second turbulence scale, such as the specific dissipation rate ω, where ω = ϵ/k.
EVM formulations solve transport equations for k, along with either ϵ or ω, depending
on the model variant. In this study, the k–ω Shear Stress Transport (SST) model [29] is
employed for closure.

In contrast, the RSM provides closure by directly solving transport equations for each
of the six components of the Reynolds stress tensor (−ρ f uiuj). The general form of these
transport equations is

ρf
∂uiuj

∂t
+ ρfUk

∂uiuj

∂xk
= ρfPij − ρfϵij + ρfϕij +

∂

∂xk

[
(µ + µt)

∂uiuj

∂xk

]
(5)

The production term, Pij, which contributes to energy transfer among components, is
defined as

Pij = −
(

ujuk
∂Ui
xk

+ ujuk
∂Uj

xk

)
(6)

The remaining terms in the Reynolds stress transport equation, namely the dissipation
rate tensor (ϵij) and pressure–strain correlation (ϕij), are modelled following the approach
by Launder, Reece, and Rodi, commonly referred to as the LRR model [36]. For practical
implementation, an initial estimate of the Reynolds stress field is generated by solving the
standard k–ϵ model [37] to obtain the dissipation rate ϵ and then applying the Boussinesq
approximation (Equation (4)) to compute the initial stress distribution.

Near-wall turbulence is treated using standard wall functions, allowing the use of high-
Reynolds-number turbulence models without resolving the viscous sublayer directly. This
enables coarser mesh resolution near the wall with minimal impact on solution accuracy.

2.3. Solid Deformation

The structural domain is modelled using linear elasticity under small-strain assump-
tions. The governing equation is

ρs
∂2ui
∂t2 + [λs + µs]

∂

∂xi

(
∂uj

∂xj

)
+ µs

∂2ui

∂x2
j
+ ρs fi = 0 (7)

where u is the displacement vector; ρs is the solid density; λs and µs are the first and second
Lamé constants, respectively; and f is the body force per unit mass.

To improve numerical stability, Equation (7) is rearranged as Equation (8), adopting
the formulation in [38]. In this form, the second term, representing elastic and viscous
deformation, is treated implicitly using linear solvers, while the third term, associated with
rotational components, is handled explicitly.
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ρs
∂2ui
∂t2 − [2µs + λs]

∂

∂xi

(
∂uj

∂xj

)
︸ ︷︷ ︸

Implicit

− ∂

∂xi

(
µs

∂ui
∂xj

+ λsδij
∂uk
∂xk

+ [µs + λs]
∂uj

∂xj

)
︸ ︷︷ ︸

Explicit

= −ρs fi (8)

Equation (8) is discretised using second-order schemes within a cell-centred finite
volume method (FVM), following the approach described in [39]. The temporal term is
integrated using a second-order backward Euler method, while the displacement gradient
terms are discretised with a central difference scheme with non-orthogonal and skewness
corrections, represented by kN and kP respectively. The face-normal displacement gra-
dients are also evaluated using the central difference scheme with skewness correction,
whereas the tangential components are computed using a vertex-based Gauss method,
which interpolates gradients based on displacements at mesh vertices. In the cell-centred
FVM approach, mesh motion is determined by calculating displacements at the cell ver-
tices. Here, a linear least-squares method is used for cell-centre-to-vertex extrapolation,
replacing the conventional inverse-distance approach to improve accuracy across varying
mesh qualities [40]. The resulting discretised equation of motion forms a system of linear
algebraic equations:

aPui
[t]
P + ∑

N
aNui

[t]
N = RP (9)

aP is the diagonal coefficient, aN are the neighbouring coefficients presented in compact
form below, and RP is the source term.

aP =
9ρ f VP

4∆t2 + ∑
f

(
2µ f + λ f

) Sf
∆xf

(10)

aN = −
(

2µ f + λ f

) Sf
∆xf

(11)

RP = ρfVP

3u[t−1]
i,P

∆t2 −
3u[t−2]

i,P

4∆t2 +
2

∆t

(
∂ui
∂t

)[t−1]

P
− 1

2∆t

(
∂ui
∂t

)[t−2]

P


− ∑

f
(2µf + λf)

kN,j

(
∂ui
∂xj

)[t]

N

− kP,j

(
∂ui
∂xj

)[t]

P

∆xf Sf

+ ∑
f

nf,jq
[t]
f,j Sf + ρfb

[t]
P,iVP (12)

Sf represents the surface area at the cell face (f), VP is the volume of the control volume
(P), q is the explicitly treated term in the solid governing equation of motion (Equation (8)),
and b is the source term such as gravity. A segregated algorithm is employed, where
the displacement components in the x-, y-, and z-directions are solved separately and
then recoupled through fixed-point iterations. Fine-tuning this inter-component coupling
in a solid-only free vibration simulation has been shown to enhance the computational
efficiency of the solver while maintaining stability and accurately predicting the vibration
response, particularly the frequency [32].

2.4. Fluid–Structure Interaction Coupling

At the FSI interface, strong coupling between the turbulent flow and structural vibra-
tion is achieved using the DN–decomposition approach, a method commonly employed in
strongly coupled FSI simulations. The coupling procedure begins by enforcing continuity
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of displacement or velocity (Equations (13) and (14)), also known as the Dirichlet boundary
condition, followed by continuity of traction forces (Equation (15)), corresponding to the
Neumann boundary condition.

U f ,i = Us,i =
dus,i

dt
(13)

u f ,i = us,i (14)

niσf ,i = niσs,i (15)

In the segregated FSI algorithm, where the fluid and solid domains are solved using
separate solvers, a residual arises between the predicted solid displacement, based on fluid
traction from the previous time step, and the current fluid mesh displacement at the FSI
interface. This difference defines the FSI residual, r, as expressed in Equation (16).

rk
i = uk

s,i − uk
f ,i (16)

where the subscript i denotes vertices at the FSI interface.
As illustrated in Figure 1, within each FSI coupling loop, the fluid mesh displacement

at the interface is estimated. The fluid solver is then executed, and the resulting traction
forces at the FSI interface are interpolated onto the solid surface. The FSI residual (defined
in Equation (16)) is calculated and checked against convergence criteria, which include
both tolerance (Tol-FSI) and a limit on the number of FSI iterations (nOuterCorr). Once
these criteria are satisfied, the simulation advances to the next time step. Non-conformal
mesh interfaces between the fluid and solid domains are managed using the Generalised
Grid Interface (GGI) interpolation method [39].

Predict fluid traction to 
solid at FSI interface

Solve solid 
equationFSI iteration

k = k + 1

Solve mesh motion

Solve fluid 
equations

Calculate fluid traction to 
solid at FSI interface

Solve solid 
equation

Vertex 
interpolation

FSI residual, 
r = uS-uF

Time,
t = t + 1

FSI loop

Time step loop

N
 ≤

 n
C

or
r

N=3

PISO
loop

ux,uy, uz 
coupling

loop

ux,uy, uz 
coupling

loop N
 ≤

 n
C

or
r

Yes

No

Face 
interpolation

Vertex 
interpolation

Face 
interpolation

Estimate uF
using IQN-ILS

Convergence 
criteria

r  < Tol-FSI, ε0
k > nOuterCorr

Figure 1. Overview of FSI coupling algorithm.
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To prevent numerical instabilities associated with numerical added mass effect and
to maintain simulation continuity without divergence, particularly when resuming the
simulation during interruption, as reported in other partitioned FSI studies [23,41], a very
low relaxation factor of 0.05 is applied to the displacement of fluid mesh vertices during
initial FSI iterations. This is followed by the application of an FSI coupling acceleration
method, such as the interface quasi-Newton method with inverse least-squares approx-
imation (IQN-ILS) to accelerate the convergence of the FSI residual [42]. The IQN-ILS
method constructs update matrices using the solid displacement and interface residuals
from previous FSI iterations and time steps. However, due to the high-frequency structural
response driven by turbulent buffeting, only data from the most recent time step is retained
to ensure numerical stability. Using data from multiple prior time steps was found to
reduce overall simulation robustness.

3. Empirical Model by Païdoussis (1966)
An empirical model to predict the vibration amplitude in axial FIV was presented by

Païdoussis through systematic trial and error, incorporating physical insights from experi-
mental data provided by Burgreen et al. [43], Quinn [44], Société Grenobloise d’Applications
Hydrauliques (SOGREAH) [45], and Roström and Andersson [46]. He proposed an empiri-
cal expression to predict the amplitude of small-amplitude random vibrations of a single
rod or rod bundle in axial flow, supported at both ends, as expressed in Equation (17).

ymax

dro
= α−4

1

[
Ũ1.6ϵ1.8Re0.25

ann

1 + Ũ2

][(
dh
dro

)0.4
][

βmass
2/3

1 + 4βmass

][
5 × 10−4K

]
(17)

ymax, dro, dh and Reann represent, respectively, the maximum amplitude of vibrations,
the rod’s diameter, the hydraulic diameter of the annulus, and the annulus Reynolds
number. The dimensionless variables Ũ, α1, ϵL, βmass, and K are defined as follows:

1. Dimensionless flow velocity, Ũ, is defined based on the geometrical (cross-sectional
area, Arod, length, Lrod, and second moment of area, Irod) and material (Young’s
modulus, E) properties of the vibrating rod, as given in Equation (18). The bracketed
term in Equation (18) corresponds to the FSI-modified Cauchy number.

Ũ =
ArodL2

rod
Irod

(
ρ f U2

ann

E

)2

(18)

2. Departure from ideal fixture, α1 or also known as the first mode of eigenvalue of the
system [47], in which, for rods with simply hinged on both ends, α1 = π, and for
rods fixed at both ends, α1 = 4.71. For other boundary conditions, α1 is defined based
on the rod’s material and geometric properties, as well as the angular frequency of
oscillation, ω, and is given by the following expression (Equation (19)):

α2
1 =

[
(ρ f Arod + ṁrod)L4

rod
EI

]1/2

ω (19)

3. Length-to-diameter ratio, ϵL, is given as ratio of rod’s length over its diameter, Lrod/dro.
4. Added mass ratio, βmass, is defined as the ratio of the mass of fluid displaced by

the immersed rod (ṁadd) to the combined mass of the rod and the displaced fluid,
ṁadd/(ṁadd + ṁrod).

5. Noise factor, K, where K = 1 represents quiet laboratory conditions and K = 5 repre-
sents typical industrial conditions.
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Although originally developed for rods supported at both ends, the empirical model
was fitted to a blunt-end cantilever and showed good agreement with both experimental
measurements and URANS-FSI simulations [21], particularly within the small-amplitude
random vibration regime (see Figure 2). Two assumptions were made in applying
Equation (17): firstly, the maximum displacement was taken to be equal to the RMS ampli-
tude (ymax = Arms) and secondly, the noise factor was assumed to correspond to a quiet
laboratory environment (K = 1).

Predicted ymax/dro

M
ea

su
re

d 
y m

ax
/d

ro

UoM experiment

Simulation (RSM LRR)

Simulation (EVM k-w SST)

Burgreen et al. (1958)

Quinn (1962)

Sogreah (1962)

Rostrom & Andersson (1964)

Paidoussis & Sharp (1967)

Figure 2. Comparison between experimental data and URANS simulation results for the blunt-end
free–fixed configuration [21] and predictions from the empirical model by Païdoussis [47]. The figure
also includes data from other relevant experiments on small-amplitude vibrations in axial FIV,
as compiled by Païdoussis [48]; Burgreen et al. [43], Quinn [44], SOGREAH [45], Rostrom and
Andersson [46], and Païdoussis and Sharp [49].

4. Damping in Axial FIV
4.1. Fixed–Roller Case at Vattenfall

This case uses a simplified geometry, a square beam within a square duct to validate
damping ratio for simulating vibrations in a high-stiffness solid domain under axial water
flow. The simulation results are compared against experimental data from Vattenfall AB,
as reported in [16].

The experimental setup and schematic are shown in Figure 3. It consists of a long
rectangular steel beam submerged in a square flow duct, with water entering from the
bottom and exiting at the top. The beam is clamped at the upstream end, while its mo-
tion in the xy-plane is constrained by a downstream roller. At the midpoint (point B),
a string is attached to apply an initial transverse displacement of 0.01 m in the y-direction.
The string is then released, and the resulting displacement response is measured to assess
the vibration. The material and geometrical properties of the solid and fluid domains are
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listed in Tables 1 and 2, respectively. The bulk Reynolds number is computed based on the
hydraulic diameter dh, defined along the axis of the initial displacement.

Inlet

LZ

Outlet

Lxy,duct

Vibrating
steel beam

Lx,beam

Lxy,duct

(XY-plane)

Clamped end

XY-roller 
supported end

B

Z

Ly,beam

Pump 
(DN80)

Flow meter

Flow 
direction

Laser distance 
meter

Pulling 
mechanism

(a) (b)

Figure 3. (a) Experimental setup [16] and (b) simulation domain for the Vattenfall vibration in the
axial flow case.

Table 1. Material and geometrical properties for the Vattenfall fixed–roller supported rod, based on
the experimental setup reported in [16].

Properties Values

Materials Density, ρs [kg/m3] 8000
Young’s Modulus, E [N/m2] 193 × 109

Poisson’s ratio, νs 0.3

Geometrical Width, Lx (beam) [m] 0.02
Height, Ly (beam) [m] 0.008
Length, Lz [m] 1.5

Table 2. Fluid and geometrical properties of the Vattenfall flow channel.

Properties Values

Fluid Density, ρ f [kg/m3] 1000
Kinematic viscosity, ν [m2/s] 1.0
Dynamic viscosity, µ [kg/(m·s)] 0.001
Bulk flow velocities, Uz [m/s] 1.0, 3.0
Bulk Reynolds number, Reb 36 k, 108 k

Geometrical Width, Lx,duct [mm] 0.08
Height, Ly,duct [mm] 0.08
Length, Lz [m] 1.5

Frequency In vacuum [Hz] 12.4
In quiescent water [Hz] 11.7

4.2. Mesh and FSI Coupling Sensitivity

To establish a reliable numerical setup, a preliminary mesh and time-step indepen-
dence study was performed on the solid domain in isolation. A free vibration test was
conducted to validate the natural frequency and to verify that no damping occurred,
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as expected in a vacuum environment, where any observed damping would result from
numerical artefacts rather than physical effects. In parallel, the convergence criteria for the
solid solver were carefully tuned to ensure both accuracy and computational efficiency.
Description of the solid domain is given in Table 3.

Table 3. Description of time-step size, solid mesh, solid solvers, and FSI coupling for the Vatten-
fall case.

Properties Values

Time-step size, ∆t [s] 10−4

Solid mesh
Width intervals, Nx [Intervals] 3
Height intervals, Ny [Intervals] 6
Longitudinal intervals, Nz [Intervals] 640

Solid solver
Linear solver tolerance 10−9

Inter-component coupling tolerance, Tol-s 10−7

Inter-component coupling limit number of iterations, nCorr [Iterations] 1000

FSI coupling
FSI coupling algorithm Gauss Seidel/

IQN-ILS
FSI relaxation 0.05
FSI convergence tolerance, Tol-FSI 10−6

Limit number of FSI iterations, nOuterCorr [Iterations] 30
Number of time steps reusing coupling information 0

To ensure mesh independence, a sensitivity study was conducted for axial flow at a
bulk Reynolds number of 36 k using the EVM k-ω SST model [29]. The mesh was first
refined in the longitudinal direction, followed by additional refinement in the xy-plane for
both Reynolds numbers of 36 k and 108 k.

As shown in Figure 4a, the coarse longitudinal mesh predicts a slightly higher vibration
frequency and greater damping than the experiment. Increasing the number of longitudinal
intervals reduces these differences and brings the solution closer to the experimental
measurement. The first displacement peak occurs at t ≈ 0.095 s, with time difference
remaining below 3% for all refined meshes. The peak-amplitude error also decreases
steadily with refinement, and by 1280 intervals, the error fall within 10% of the experimental
value. This mesh was therefore chosen for the remaining simulations, offering a 62.4%
reduction in computational time compared with the 2560 intervals. Following the ASME
V&V 20-2009 standard [50], a three-mesh grid convergence index (GCI) analysis of the
axial refinement gives numerical uncertainties of 0.13% for the peak-time and 2.22% for the
peak-amplitude response, confirming that discretisation effects in the longitudinal direction
have only a limited influence on the predicted response.

Figure 4b,c shows that mesh refinement in the xy-plane produces only minor changes
in the displacement response for both flow speeds. The time difference of the first peak
remains below 3% to the experimental value, and the peak-amplitude differences across all
transverse meshes remained within 10%. A corresponding GCI estimate for the transverse
refinement gives uncertainties below 0.2% for both timing and amplitude, indicating that
numerical uncertainty in the xy-plane. Overall, these results indicate that the vibration
response is only weakly affected by the transverse resolution, and that the coarse xy-plane
mesh is sufficient to achieve mesh independence.
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Figure 4. Displacement time series of vibration in axial flow at a bulk Reynolds number of 36 k.
Panel (a) shows the sensitivity to longitudinal mesh resolution (Nz) ranging from 80 to 2560. Panels
(b,c) show the effect of mesh refinement in the XY-plane—coarse (15 × 15), ×2 refinement (30 × 30),
and ×4 refinement (60 × 60)—at bulk Reynolds numbers of 36k and 108k, respectively, for the
Vattenfall case.

A comparison was conducted between the current IQN-ILS coupling algorithm and
the Gauss-Seidel algorithm with Aitken relaxation. Both FSI coupling strategies yielded
nearly identical predictions of vibration frequency and amplitude when compared with
the experimental data. However, the IQN-ILS algorithm reduced the number of iterations
to reach convergence as shown in Figure 5 and achieved faster computation time than the
Gauss–Seidel with Aitken approach. This finding is consistent with previous studies [42,51],
which demonstrated the superior efficiency of IQN-ILS in simulating axial FIV of flexible
rods across a range of solid-to-fluid density ratios.
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During initial traction
During vibration

(a) (b)

Figure 5. Comparison of the number of FSI coupling iterations required to reach convergence
(nOuterCorr) for the Vattenfall case at a bulk Reynolds number of 36k in axial flow. Panel (a) shows
results using the IQN-ILS algorithm, while panel (b) presents results using the Gauss–Seidel method
with Aitken relaxation. Each bar shows the percentage of time steps requiring a given number of
iterations to reach convergence during the initial traction phase (blue) and during vibration (red).

4.3. Comparing URANS Models

Simulations were repeated for axial flows at bulk Reynolds numbers of 36 k and 108 k
using three fluid models: the commonly used EVM k-ϵ model [37], the baseline EVM k-ω
SST model [29], and a laminar flow model previously employed [25,26]. Although the
laminar model is not physically representative at these Reynolds numbers, earlier studies
showed that it can still predict vibration damping with reasonable accuracy. Including it
here therefore allows direct comparison with previous validation work and highlights the
improvement gained by applying URANS models to this case for the first time.

A similar study on vibration damping in axial flow was performed at a similar flow
velocity, with the fluid viscosity varied to set the annulus Reynolds number to 1000 for
the laminar case and 80,000 for the turbulent case. They observed weaker damping in
turbulent case compared with the laminar case, attributing this to enhanced surface pressure
fluctuations driven by vorticity [7]. In the present study, larger cell sizes failed to resolve
near-wall vorticity accurately, resulting in overestimated damping due to dominant laminar
flow components, not accounted for by the turbulent eddies. Finer meshes, however,
captured pressure fluctuations more accurately and produced damping values consistent
with experimental results.

Figure 6 compares the displacement time series for the damping of vibration in axial
flow at a bulk Reynolds number of 36 k. All three models show good agreement with the
experimental results, with the laminar model standing out for its computational efficiency,
running approximately three times faster than the URANS models. The first displacement
peak occurs at t ≈ 0.095 s for all models, with timing differences below 2%. The normalised
peak amplitudes differ by less than 8% between the models and the experiment, indicating
only minor sensitivity of the predicted response to the choice of flow model.
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Figure 6. Displacement time series of vibration for different flow models for Vattenfall vibration in
bulk Reynolds number of 36k axial flow.

To investigate the mechanisms behind vibration damping, contour plots of dimen-
sionless velocity (U/Uin) and pressure coefficient (Cp) were analysed for both laminar and
URANS k-ω SST models in the xy- and yz-planes.

Figure 7a shows the velocity contours in the xy-plane. Both models exhibit similar
internal flow structures, with high velocity gradients near the walls. However, the laminar
model shows slightly higher velocity along the vibration axis (y-axis), while the URANS
model produces a more uniform distribution due to turbulence mixing.

In Figure 7b, pressure contours reveal that the laminar model exhibits high pressure on
one side of the beam, with a sharp transition as the beam reverses direction between 0.06 s
and 0.07 s. In contrast, the URANS model shows a more gradual pressure redistribution,
consistent with more realistic flow physics near oscillating surfaces.

Figure 8 presents flow contours in the yz-plane at various axial positions. Velocity
distributions are broadly similar near the fixed and roller-supported ends. At the beam’s
mid-span, however, the URANS model shows peak velocities near the beam’s wider
clearance, while the laminar model’s peak appears mid-gap. Pressure profiles are generally
consistent between the two models, but the laminar model displays unrealistic pressure
variation along the beam, suggesting numerical artefacts in the absence of turbulence
modelling. The URANS model, by contrast, captures a peak pressure near the mid-span
where flow constriction occurs, consistent with expected physical behaviour.

Despite the laminar model’s neglect of turbulence, it still captures vibration damping
reasonably well, primarily due to its heightened sensitivity to flow disturbances and
pressure asymmetries. In contrast, the URANS model dampens vibration through turbulent
mixing, vortex shedding, and enhanced kinetic energy near the beam surface, resulting in
damping behaviour that aligns more closely with experimental observations.

In summary, while the laminar model underpredicts flow detail and generates some
unrealistic pressure behaviour, it provides a fast and reasonably accurate prediction of
vibration damping. The URANS model offers improved physical realism at higher com-
putational cost, making it preferable for capturing detailed flow–structure interactions in
axial FIV.
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Figure 7. Comparison of the (a) velocity and (b) pressure contour plots at the axial midpoint in the
xy-plane for different fluid models: laminar (top) and URANS k-ω SST (bottom), at various times
(referred to Figure 6), for the Vattenfall vibration in bulk Reynolds number of 36 k axial flow case.
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Figure 8. Comparison of the contour plots at midpoint axially in the yz-plane with different fluid
models; URANS k-ω SST and laminar, during a vibration peak (referred to 0.09 s in Figure 6) for the
Vattenfall vibration in bulk Reynolds number of 36 k axial flow case.

5. Root-Mean-Square Amplitude in Axial FIV
5.1. Cantilever Rod Case at University of Manchester (UoM)

The RMS vibration amplitude is validated against experimental data from an axial-FIV
setup involving a cantilevered rod in an annular flow channel. Figure 9a presents the
schematic of the test section, while the flow domain parameters are provided in Table 4.
Figure 9b shows the cantilever rod, with its dimensions detailed in Table 5.

Table 4. Fluid and geometrical properties of the UoM case.

Properties Values

Fluid
Density, ρ f [kg/m3] 997.84
Kinematic viscosity, ν [m2/s] 9.659 × 10−4

Dynamic viscosity, µ [kg/(m·s)] 9.68 × 10−7

Inlet conditions
Annulus Reynolds number, Reann 16.4 k 26.5 k 35.1 k 43.1 k 51.3 k 61.7 k
Average annular velocity, Uann [m/s] 1.32 2.27 3.09 3.46 4.11 4.94
Average inlet velocity, Uin [m/s] 1.02 1.71 2.39 2.67 3.17 3.82

Geometrical
Tube diameter, dti [mm] 21.0
Hydraulic diameter, dh [mm] 11.0
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Figure 9. Schematic of (a) the test piece section and (b) details of cantilevered rod for the UoM experiment.

Table 5. Material and geometrical properties for the UoM cantilever rod, based on the experimental
specifications reported in [19,21].

Properties Values

Materials
Young’s modulus, Esteel [GPa] 193
Rod density, ρsteel [kg/m3] 7990
Rod (lead-filled) linear mass density, ṁrod [kg/m] 0.588
Lead density, ρlead [kg/m3] 11,340
Lead filling density, ρfill [kg/m3] 9.6
Cap density, ρalu [kg/m3] 2740
Cap mass, malu [g] 2.1

Geometrical
Rod outer diameter, dro [mm] 10.01
Rod inner diameter, di [mm] 8.83
Rod length, Lrod [mm] 1060
Lead shot diameter, dshot [mm] 0.3–1.6
Cap inner length, Lci [mm] 10.0
Cap outer length, Lco [mm] 2.0

The fluid domain in Figure 10 is first validated by comparing velocity profiles at the
inlet and near the free end with PIV measurements [21]. A mesh independence study was
conducted for both the fluid and solid domains. In the fluid domain, radial refinement
at the annulus wall (Nr-ann) was applied to better resolve curvature, while increasing
circumferential intervals (Nc) helped reduce aspect ratios and enhance numerical stability.
Additionally, the axial mesh near the free end (dz-free) was refined over a length of one
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tube diameter (dti) from the tip, as this region is critical for capturing flow-induced forces
and vibration response [11].

0
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Figure 10. Fluid mesh view of the flow channel definition in (a) xy-plane and (b) yz-plane for the
UoM case.

For the solid domain in Figure 11, mesh independence was assessed through a free
vibration test using an empty tube rod. Circumferential (Nc), radial (Nr), and axial (Nz)
mesh intervals were fine-tuned by comparing the undamped vibration response against
analytical results from Euler–Bernoulli beam theory. The lead-filled rod was modelled as a
hollow structure with equivalent linear mass density by concentrating mass in the cladding,
significantly improving computational efficiency over the solid model [32].
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dzcap
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Figure 11. Solid mesh view in (a) xy-plane and (b) yz-plane for the UoM case.
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As summarised in Figure 12, the validation process for the self-excited axial-FIV
simulations began with simplified geometry cases, including the Vattenfall vibration in the
axial flow case, to assess and refine solver settings prior to full two-way FSI coupling.

Re-evaluate FSI coupling convergence criteria

Simple geometry
validation cases

University of Manchester
experiments

Solid domain only

Time-step size, Δt

Free vibration test

Validate single
material assumption

Evaluate solid solver
convergence criteria

Self-excited axial-FIV
Vibration in axial
water flow test

Evaluate FSI
coupling algorithm

Re-evaluate solid solver convergence criteria

(Steel beam)

(Steel-water coupling) Re-evaluate FSI interface mesh independence

(Lead-filled steel cladding)

Evaluate solid mesh
independence

Axial flow over blunt-
end cantilever rod

Evaluate convection
schemes
Evaluate URANS models

Two-way FSI

Fluid domain only

Evaluate fluid mesh
independence

Figure 12. Summary of the URANS-FSI validation and fine-tuning strategy for axial-FIV simulation.

To enhance efficiency without compromising accuracy, the solid solver tolerance was
set to 10−7, and the iteration limit (nCorr) was reduced from 1000 (used in the free vibration
case) to 125 for the self-excited axial-FIV simulation, resulting in significant speed-up with
minimal impact on RMS amplitude and vibration frequency. For FSI coupling, initial
validation from the Vattenfall vibration in axial flow case employed a relaxation factor
of 0.05 and a tolerance of 10−6, which was later fine-tuned to 10−4 for the self-excited
axial-FIV case. The maximum number of FSI iteration (nOuterCorr) was reduced from 30
to 20, which was sufficient, as higher values provided no accuracy gains. Mesh sensitivity
tests showed that finer circumferential grading (such as Nc = 48) improved FSI convergence
and computational stability, though at the cost of increased computational time due to mesh
size. To avoid instability, the IQN-ILS algorithm’s reuse of interface data was restricted to a
single previous time step.

Table 6 tabulates the meshes and the fine-tuned convergence criteria for the fluid, solid,
and FSI solvers.

Simulations began with validation against tip displacement under axial water flow at
the mid-range annular Reynolds number of 35.1 k.

Figure 13 compares the displacement time series from the 60 s experiment with
the 5 s simulation. Both URANS models, EVM k-ω SST and RSM LRR, predict small-
amplitude random vibrations about the centreline, consistent with experimental obser-
vations. The RSM LRR model produces a higher RMS amplitude than the EVM k-ω SST
model, attributed to the latter’s stronger turbulence damping, which suppresses flow insta-
bilities and thus underpredicts vibration amplitude. Occasional transient deflections are

https://doi.org/10.3390/jne7010003

https://doi.org/10.3390/jne7010003


J. Nucl. Eng. 2026, 7, 3 20 of 31

observed in both simulation and experiment, though vibrations generally remain centred.
Given the randomness of the vibration, comparing the resultant RMS displacement offers a
clearer assessment, with both models showing acceptable agreement. The RSM LRR model
gives about 25% higher than the experiment, while the EVM k-ω SST model underpredicts
it by roughly 35%. These differences are typical for self-excited, turbulence-driven vibration
and remain within the expected variability reported in axial-FIV studies [23,26]. To support
transparency and reproducibility, the OpenFOAM case files for both models are available
in an online repository [52].

Table 6. Description of time-step size, fluid mesh, solid mesh, solid solver and FSI solver for UoM case.

Properties Values

Time-step size, ∆t [s] 10−4

Fluid mesh
Radial intervals, Nr-ann [Intervals] 8–10
Circumferential intervals, Nc [Intervals] 32–48
Axial intervals, Nz [Intervals] 1218–1470
Axial mesh ratio, dz-ratio 2 or 4

Solid mesh
Radial intervals in cladding, Nr [Intervals] 2
Circumferential intervals, Nc [Intervals] 32–48
Axial mesh ratio, dz-ratio 0.25

Solid solver
Linear solver tolerance 10−9

Inter-component coupling tolerance, Tol-s 10−7

Inter-component coupling iteration limit, nCorr [Iterations] 125

FSI coupling
FSI coupling algorithm IQN-ILS
FSI relaxation 0.05
FSI convergence tolerance, Tol-FSI 10−4

Limit number of FSI iterations, nOuterCorr [Iterations] 20
Number of time steps reusing coupling information 0 or 1

Additionally, for a similar setup with a curved-end geometry, it was reported that only
the RSM LRR model accurately captured the RMS amplitude. In contrast, the EVM k-ω
SST model exhibited sustained small-amplitude vibrations but with RMS values several
orders of magnitude lower than those measured experimentally [24].

Figure 14 presents the cumulative moving average (CMA) of RMS amplitude, with ver-
tical error bars indicating the standard error of the mean (SEM). These error bars decrease
over time, reflecting improved stability in the vibration prediction. The RSM LRR model
shows better agreement with the experimental RMS, as it captures the broader amplitude
variations observed in the measurements. In contrast, the EVM k-ω SST model predicts
more consistent amplitudes but underestimates the experimental variability. Notably,
the CMA for both URANS models converges after two seconds, suggesting that short 2 s
simulations are sufficient to achieve reliable RMS amplitude estimates.
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Figure 13. Displacement time series at an annulus Reynolds number of 35.1k for the UoM case,
comparing the RSM LRR model (left column), the EVM k–ω SST model (middle column), and the
experimental measurements (right column). The top row (a–c) shows the x-direction (Ax/dro),
the middle row (d–f) shows the y-direction (Ay/dro), and the bottom row (g–i) shows the resul-
tant displacement (Ar/dro). RMS-normalised amplitudes ARMS/dro are annotated in each subplot.
The EVM k–ω SST model results show divergence within the 5 s duration.

Figure 14. Cumulative moving average of the normalised resultant displacement (Ar/dro) for the
RSM LRR and the EVM k-ω SST models at an annulus Reynolds number of 35.1k for the UoM case.
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5.2. Varying Reynolds Numbers
5.2.1. Limitations for Upward Flow (Free-Fixed Configuration)

The axial-FIV simulations at varying Reynolds numbers are bounded by two key mesh-
ing limitations: a lower limit related to the correct application of logarithmic wall functions
and an upper limit constrained by computationally feasible mesh refinement strategies.

For the lower limit, the fluid mesh was tailored to achieve a target near-wall non-
dimensional distance (y*) of 30, ensuring compatibility with the logarithmic wall functions
across varying Reynolds numbers. At the lowest annular Reynolds number tested (16.4 k),
the reduced flow velocity would result in a lower y* if the same mesh used at Reynolds
number of 35.1 k were applied. To address this, the near-wall cell size was increased,
and two mesh variants were tested: a coarser mesh within the recommended y* range and
a finer mesh below it, as shown in Figure 15a. As illustrated in Figure 15b, both meshes
captured the unsteady flow near the free end, with the finer mesh showing sharper gradi-
ents. Nonetheless, the mechanical responses, RMS amplitude and first-mode frequency,
remained within acceptable accuracy for both meshes.

Tube wall

Rod’s 
upstream 
surface

Y

Z

X

Y

Reann=16.4k

28.0 46.6 23.0 50.7

29.5 16.240.4 25.0

y*min< 30y*min> 30

U/Uin

y*min< 30y*min> 30
(b)(a)

y* y*

y*y*

y*min< 30y*min> 30

Figure 15. Contour plots of (a) instantaneous near-wall distance from the rod (y*) and (b) velocity
(U/U∞) at an annulus Reynolds number of 16.4 k using the RSM LRR model for the UoM case.
For (a), the blue colour in the legend represents the minimum y*.

Figure 16 shows a clear increase in RMS vibration amplitude with rising annulus
Reynolds number for both URANS models applied to the blunt end and only for the RSM
LRR model applied to the curved end. The predictions align well with experimental data,
remaining within the reported uncertainty range. The EVM k-ω SST model, however,
demonstrated reduced numerical robustness, with repeated divergence across all tested
Reynolds numbers, which increased its overall computational cost to roughly twice that of
the RSM LRR model.
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Tol-FSI = 5×10−5y+ < 30 mesh

y+ ≈ 30 mesh (default)

Tol-FSI = 1×10−4

(default)

Figure 16. Normalised resultant RMS amplitude of vibration at varying annulus Reynolds numbers
for the free-fixed configuration using the RSM LRR, the EVM k-ω SST models, and experiment
measurements for the blunt end [21] and curved end [24] for the UoM case.

The simulations for the blunt end identified the onset of instability, marked by a sig-
nificant jump in RMS amplitude, at 61.7 k, slightly earlier than the experimental threshold
of 65–75 k. Applying a tighter FSI coupling tolerance at 61.7 k improved accuracy and kept
the response within the small-amplitude random-vibration regime. Simulations at higher
Reynolds numbers (>61.7 k) were not performed with either the baseline or the tighter FSI
tolerance, as these cases require substantially greater computational resources. At such
conditions, the increased wall shear stress raises the local y+ for the same physical mesh
spacing, hence resolving turbulence more accurately would require additional near-wall
refinement, which lies beyond the scope of the present study.

At annulus Reynolds number of 61.7 k, the simulation diverged when the displace-
ment reached approximately 0.07dro, suggesting that large mesh deformations at high
Reynolds numbers can destabilise the simulation, even with minor increases in mesh
non-orthogonality. After divergence, the case was restarted from a statistically stable state.
The rod then oscillated around a displaced equilibrium position (Figure 17b). Attempts
to rerun the simulation from the beginning with lower solver relaxation factors failed
due to divergence at large amplitudes. However, tightening the FSI coupling tolerance
from 10−4 to 5 × 10−5 enabled the simulation to proceed beyond 0.068dro, with divergence
occurring only at the next vibration peak (Figure 17d). Restarting from a stable point a few
hundred time steps earlier, the vibration resumed around the centreline until it reached
computational limits.

For comparison, using the tighter FSI tolerance at a lower Reynolds number (51.3 k)
did not significantly change the RMS amplitude (Figure 17a,c), indicating that the impact of
FSI convergence criteria becomes more critical at higher Reynolds numbers. As such, the an-
nulus Reynolds number of 61.7 k is identified as the upper simulation limit, beyond which
tighter coupling tolerances are essential for stability and accuracy.
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Figure 17. Displacement time series from simulations restarted at a stable point after initial divergence,
using the RSM LRR model for the free–fixed configuration UoM case. Panels (a,b) show results with
a default FSI tolerance of 1 × 10−4, while panels (c,d) use a tighter tolerance of 5 × 10−5. For both
cases, the annulus Reynolds number is 51.3 k on the left (a,c) and 61.7 k on the right (b,d). The first
and second simulation runs are indicated, with divergence and computation limits annotated.

5.2.2. Limitations for Downward Flow (Fixed–Free Configuration)

The URANS-FSI methodology was tested for downward flow (fixed–free configura-
tion). Only the RSM LRR model successfully captured self-excited vibrations, while the
EVM k-ω SST model produced small, non-physical deflections.

As shown in Figure 18, the RSM LRR model predicted acceptable RMS amplitude
for the curved end. The simulation suggests an earlier onset of large-amplitude motion,
with the transition occurring at 28.4 k compared with the experimental estimate of around
40 k. As this is based on only a few simulated points near the transition, the onset is
taken as an approximate indication. For the blunt end, the model underpredicted vibration
amplitude by two orders of magnitude. Experimental results show that end shape strongly
influences the onset of instability: the curved end transitioned to flutter-like motion at
lower Reynolds numbers, while the blunt end remained in small-amplitude vibration up to
annulus Reynolds number of 90 k. These findings highlight a limitation of the URANS-FSI
approach: its accuracy depends on end-shape stability, performing better for geometries
that transition to instability motion at lower Reynolds numbers.

Furthermore, as observed in the free–fixed configuration, experimental measurements
in the fixed–free configuration for both end shapes show a consistent increasing trend in
RMS amplitude with Reynolds number, aligning with the empirical model. The curved end
consistently overpredicts the empirical values by about a factor of two, while the blunt end
shows closer agreement, although experimental values fall slightly below the empirical
prediction as Reynolds number increases.
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Figure 18. Normalised resultant RMS amplitude of vibration at varying annulus Reynolds numbers
for the fixed-free configuration using the RSM LRR model and the experiment measurements for the
blunt end [21] and curved end [24] for the UoM case.

6. Best-Practice Recommendations
Key recommendations are provided to enhance computational efficiency without

compromising accuracy. In nuclear FIV analysis, accuracy is assessed using three primary
parameters: first-mode frequency, damping ratio, and RMS amplitude, all extracted from
the displacement time series. To ensure reliable prediction with minimal computational
cost, distinct discretisation schemes, mesh strategies, and convergence criteria are proposed
for each parameter, applicable to both RSM LRR and EVM k-ω SST models. Damping
in axial flow is validated against the Vattenfall experiment, RMS amplitude from the
self-excited axial-FIV University of Manchester experiment, while frequency is based on
insights from both validation cases. A summary of the recommended best practices is
presented in Table 7.

Table 7. Recommended numerical schemes, mesh requirement and convergence criteria for different
FIV parameters.

Parameters Numerical Schemes * Mesh Requirement Convergence Criteria

Momentum Turbulent
Variables Solid Fluid Solid x-, y-,

z-Coupling
FSI

Coupling

Frequency FOUS FOUS Coarse Loose Loose

Damping CDS FOUS Fine mesh near
fixed end Fine mesh axially Tight Tight

RMS amplitude CDS FOUS Fine mesh near free end Moderate Moderate

* Convection scheme for momentum and turbulence transport equations. Abbreviations: FOUS (first-order
upwind scheme) and CDS (central differencing scheme).

To improve accuracy against experimental results, consider the following:

1. Where possible, avoid upwind schemes (both first and second order) for convec-
tion terms in the momentum equations, particularly in predicting damping and
RMS amplitude.
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2. Do not use first-order schemes or those with limiters that revert to first-order accuracy,
such as TVD (OpenFOAM syntax “limitedLinear”) or gradient limiters (OpenFOAM
syntax “cellLimited” and “faceLimited”).

3. Use second-order schemes for time discretisation, such as second-order Euler (Open-
FOAM syntax “backward”) or Crank–Nicolson (OpenFOAM syntax “CrankNicol-
son”), to better resolve unsteady behaviour near the free end.

4. Avoid the PIMPLE algorithm, which combines both PISO [34] and SIMPLE [53]
algorithms, for pressure–velocity coupling, as it tends to smooth out transient flow
features critical near the free end.

5. Refine the solid mesh near the fixed end to improve predictions of all frequency,
damping ratio, and RMS amplitude.

6. Refine the fluid mesh near the free end to accurately resolve RMS amplitude of vibration.
7. For simulations involving curved ends, the RSM LRR model is recommended, as it

consistently captures sufficient unsteadiness in the flow and therefore predicts the
RMS amplitude more accurately than the EVM k-ω SST model.

To improve numerical stability and allow continuous simulation without divergence,
consider the following:

1. Avoid higher-order convective schemes for turbulence equations, particularly with
the EVM k-ω SST model, which may diverge due to large specific dissipation
rate (ω) fluctuations.

2. Use a blended Crank–Nicolson scheme for time discretisation, gradually increasing
the blending factor to reduce numerical dissipation without causing divergence.

3. For the EVM k-ω SST model, avoid using previous time-step information to minimise
instability and divergence.

4. Maintain conformal circumferential mesh (Nc) at the FSI interface.
5. Ensure good mesh quality in the fluid domain by minimising non-orthogonality,

skewness, and aspect ratio.
6. Use a finer axial mesh near the free end (dz-free) of the fluid domain to enable smooth

restarts during interrupted simulations.
7. Avoid non-conformal meshes at the blunt-end rod’s bottom surface to prevent insta-

bility at the FSI interface.
8. Tighten FSI coupling convergence criteria to avoid divergence, ensure smooth con-

tinuation after interrupted simulations, and prevent premature transition to flutter-
like vibrations.

To enhance computational efficiency, which is critical for extending the displacement
time series and improving result accuracy, consider the following:

1. Reduce the number of cells in the solid mesh by modelling the rod as hollow and
concentrating mass in the cladding.

2. Increase axial mesh size away from the free end (dz-free), as pressure fluctuations
near the fixed end have minimal influence on vibration.

3. Relax convergence criteria for the inter-component solid solver and FSI coupling where
appropriate, as long as the validation parameters remain within acceptable accuracy.

4. If possible, use the RSM LRR model, as it is more stable in two-way FSI simulations
and therefore more computationally efficient than the EVM k-ω SST model.

5. If the EVM k-ω SST model is required due to software limitations or integration with
other physics, it can still provide reliable RMS amplitude predictions, especially when
simulations are repeated to ensure consistency after interruptions.
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7. Conclusions and Future Works
This study presents a validated URANS-FSI methodology for predicting key param-

eters of axial flow-induced vibration (axial FIV), which are frequencies, damping ratios,
and RMS vibration amplitudes, with a focus on nuclear applications.

Building upon previous success in frequency prediction, this work emphasises on
damping and RMS amplitude accuracy. Using the Vattenfall case, the methodology suc-
cessfully captured damping in axial FIV. While the laminar model was able to predict
damping even at high Reynolds numbers, it produced unphysical flow behaviour, whereas
the URANS models provided more physically realistic solutions. Accurate damping pre-
diction was found to require finer mesh resolution, particularly along the flow direction.
Additionally, the IQN-ILS coupling algorithm outperformed the Gauss–Seidel method with
Aitken relaxation in terms of convergence speed and computational efficiency.

Validation against the University of Manchester’s self-excited axial-FIV experiments
demonstrated that the URANS-FSI approach could accurately predict RMS amplitude
across a range of Reynolds numbers, end shapes, and flow configurations.

As summarised in Table 8, the RSM LRR model proved to be the most reliable for
capturing RMS amplitude, especially for curved-end rods in both free-fixed and fixed-free
configurations and also for the blunt-end in the free-fixed case. In contrast, the EVM k-ω
SST model only succeeded in the blunt-end free–fixed configuration and required longer
simulation times with reduced stability.

Table 8. Capability of the URANS-FSI methodology in capturing RMS vibration amplitude for
different flow configurations and end shapes in the self-excited axial-FIV simulations (UoM case).

Flow Configurations End Shape RSM LRR EVM k-ω SST

Free–fixed Blunt Yes Yes
Curved Yes Several-order lower

Fixed–free Blunt Several-order lower No self-sustain oscillation
Curved Yes No self-sustain oscillation

For the fixed–free configuration, the URANS-FSI methodology was found to be sensi-
tive to end-shape geometry: blunt ends suppressed the self-excited vibration amplitude by
several orders of magnitude, while curved ends allowed accurate RMS amplitude predic-
tion with the RSM LRR model but also exhibited large-amplitude flutter-like behaviour
at lower Reynolds numbers. Furthermore, the empirical model proposed by Païdous-
sis [47] showed good agreement with both simulation and experimental results within the
small-amplitude vibration region.

Limitations of the URANS-FSI method were observed at both ends of the Reynolds
number spectrum. At lower Reynolds numbers, wall functions became invalid, though pre-
dictions of RMS amplitude remained accurate, suggesting that near-wall modelling may not
be critical to predict the RMS amplitude. At higher Reynolds numbers, mesh deformation
due to large vibration amplitudes affected simulation stability, particularly with ALE-based
mesh strategies. This highlights the need to explore other meshing strategies such as multi-
layer mesh techniques for improved mesh quality preservation. Moreover, the sensitivity
to geometry implies that future work should investigate higher-order convection schemes
to enhance the unsteady flow resolution required for accurate RMS predictions in two-way
coupled FSI simulations.

Future work could extend this methodology by including simulations with heated
water to better reflect reactor conditions. The influence of free-end geometry on axial FIV
could also be examined, together with the effect of spacer-grid features such as springs,
dimples, and mixing vanes on the inner tube wall. Multi-rod simulations with varied
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pitch-to-diameter ratios could capture hydrodynamic coupling and vortex interactions,
especially when combined with spacer-grid features.

In summary, this work provides a set of best-practice recommendations for predicting
frequency, damping, and RMS amplitude in axial FIV using URANS-FSI. The methodology
is computationally efficient and can be scaled to larger configurations, including full
fuel-assembly and core-scale simulations. At these scales, it can help improve thermal-
hydraulic performance while maintaining safe margins against large-amplitude instabilities.
It provides a practical framework for predicting FIV and assessing the risk of fretting wear
in reactor cores. The approach is also applicable to other nuclear components with similar
slender tabular geometries, such as control rod guide tubes, steam generator tubes, and in-
core instrumentation thimbles, and to other FIV scenarios involving high-stiffness structures
in turbulent flows, such as those found in marine and aerospace systems.
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Abbreviations
The following abbreviations are used in this manuscript:

CDS Central difference scheme
CFD Computational fluid dynamics
CMA Cumulative moving average
dz-fixed Axial mesh size near fixed end
dz-free Axial mesh size near free end
dz-ratio dz-fixed/dz-free
EVM Eddy viscosity model
FIV Flow-induced vibration
FSI Fluid–structure interaction
GCI Grid convergence index
IQN-ILS Interface Quasi-Newton with Inverse Least Square approximation of Jacobian

https://doi.org/10.3390/jne7010003

https://doi.org/10.3390/jne7010003


J. Nucl. Eng. 2026, 7, 3 29 of 31

LES Large-eddy simulation
Nc Number of intervals around the circumference
nCorr Maximum number of correctors for solid inter-component coupling
nOuterCorr Maximum number of iterations for the FSI coupling
NPP Nuclear power plant
Nr-ann Number of intervals in the annulus gap
PISO Pressure-Implicit with Splitting of Operators pressure–velocity coupling
PWR Pressurised Water Reactor
reuseCoupling Number of time step information used for FSI coupling
RMS Root-mean square
RSM Reynolds stresses model
Sol-FSI Convergence tolerance for the FSI coupling
Sol-S Convergence tolerance for the solid solver
UoM The University of Manchester, United Kingdom
URANS Unsteady Reynolds-Averaged Navier–Stokes equations
URANS-FSI A numerical framework combining URANS modelling and two-way FSI coupling
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