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A B S T R A C T 

We present GalactiKit, a data-driven methodology for estimating the lookback infall time, stellar mass, halo mass, and mass ratio 

of the disrupted progenitors of Milky Way-like galaxies at the time of infall. GalactiKit uses simulation-based inference to extract 
the information on galaxy formation processes encoded in the Auriga cosmological magnetohydrodynamic (MHD) simulations 
of Milky Way-mass haloes to create a model that relates the properties of mergers to those of the corresponding merger debris 
at z = 0. We investigate how well GalactiKit can reconstruct the merger properties given the dynamical, chemical, and the 
combined chemodynamical information of debris. For this purpose, three models were implemented considering the following 

properties of merger debris: (a) total energy and angular momentum, (b) iron-to-hydrogen and alpha-to-iron abundance ratios, 
and (c) a combination of all of these. We find that the kinematics of the debris can be used to trace the lookback time at which 

the progenitor was first accreted into the main halo. However, chemical information is necessary for inferring the stellar and 

halo masses of the progenitors. In both models (b) and (c), the stellar masses are predicted more accurately than the halo masses, 
which could be related to the scatter in the stellar mass–halo mass relation. Model (c) provides the most accurate predictions 
for the merger parameters, which suggests that combining chemical and dynamical data of debris can significantly improve the 
reconstruction of the Milky Way’s assembly history. 

Key words: software: machine learning – software: simulations – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: 
stellar content. 
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 I N T RO D U C T I O N  

n the standard cosmological model, galaxies form hierarchically
y merging with smaller satellite systems over time (White & Rees
978 ). A natural consequence of this ‘bottom-up’ formation scenario
s the assembly of a stellar component in the outer region of galaxies,
he stellar halo, dominated by tidally stripped stars once orbiting
he cannibalized systems (Searle & Zinn 1978 ). Based on the idea
hat stellar populations preserve information on the history of the
nvironment since they formed (Eggen, Lynden-Bell & Sandage
962 ; Searle & Zinn 1978 ), stellar haloes have become objects of
tudy as a bridge between the present and past of a galaxy’s evolution.

At the first stages of accretion, tidal debris tend to follow the
rbit of the merging progenitor as spatially coherent structures,
alled streams. As the progenitor gradually sinks in the gravitational
otential of the host, stellar streams lose their coherence blending
ith the stars formed in situ (Knebe et al. 2005 ). Because galaxies can
e regarded, even when merging, as collisionless systems (Binney &
remaine 2008 ), the probability density of the distribution function
f stars around a point in phase-space is conserved over time
Liouville’s theorem). Exploiting this property, Helmi & White
 E-mail: A.Sante@2022.ljmu.ac.uk 

e  

d  

C  

Published by Oxford University Press on behalf of Royal Astronomical Societ
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), whi
 1999 ) devised a methodology to separate phase-mixed structures
elonging to different progenitors as overdensities in a new physical
pace described by the integrals of motion , quantities which are
onstant in time. 

A further method for inferring the assembly history of a galaxy
rom its present-day stellar content is by ‘chemical tagging’ (Freeman
 Bland-Hawthorn 2002 ). Satellite galaxies have an independent

hemical evolution history that imprints a unique signature on the
hemical composition of forming stars; hence, the abundances of
hemical elements can be used to ‘tag’ stars with a similar formation
ite and time. 

While earlier ‘archaeological’ investigations focused on the stellar
alo of the Milky Way (see reviews of Helmi 2020 ; Deason &
elokurov 2024 ; Bonaca & Price-Whelan 2025 ), where longer time-

cales for phase-mixing enable the retention of information about
he mergers, more recent studies have extended the search for debris
nto the disc and inner regions of the Galaxy, as more data have
ecome available (Arentsen et al. 2020 ; Kawata et al. 2024 ). The
rst hints to the assembly history of the Galaxy were detected with

he Sagittarius (Ibata, Gilmore & Irwin 1994 ) and Helmi (Helmi et al.
999 ) streams, which led to the discovery of examples of late and
arly accretion events; however, it was only with the first and second
ata release of the European Space Agency’s Gaia mission (Gaia
ollaboration 2016 , 2018 ) that a more detailed picture of the past
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f the Milky Way came into view. The measurements of accurate 
strometry and photometry for over a billion stars significantly 
nhanced the discovery of streams and kinematic substructures 
ssociated to merging events. Moreover, the complementary data 
n radial velocities and chemical abundances for tens of millions 
f stars obtained with ground-based spectroscopic surveys – such 
s the Apache Point Observatory Galactic Evolution Experiment 
APOGEE; Majewski et al. 2017 ), the Galactic Archaeology with 
ERMES (GALAH; Buder et al. 2021 ), and the Large sky Area
ulti-Object fiber Spectroscopic Telescope (LAMOST; Cui et al. 

012 ), to mention a few – pushed further back our gaze into the first
tages of the Milky Way evolution (Kruijssen et al. 2019b ; Horta
t al. 2021 ; Belokurov & Kravtsov 2022 ; Malhan & Rix 2024 ). 

The general consensus is that the assembly history of the Milky
ay was dominated by a radial, massive accretion event which 

ccurred ∼10 billion years ago, named Gaia Sausage/Enceladus 
GS/E; Chiba & Beers 2000 ; Brook et al. 2003 ; Meza et al. 2005 ;
elokurov et al. 2018 ; Helmi et al. 2018 ). This merger is thought to
ave had a dramatic effect on the proto-Milky Way by dynamically 
eating the stars in the disc and bringing in a significant amount
f gas which led to a burst in star formation (Bignone, Helmi
 Tissera 2019 ; Grand et al. 2020 ; Ciucă et al. 2024 ). Although

iscoveries of a plethora of minor mergers have been claimed 
rom the identification of stellar streams (Malhan, Ibata & Martin 
018 ) and chemodynamical studies in the inner halo (Naidu et al.
020 ; Dodd et al. 2023 ; Horta et al. 2023 ), the GS/E is believed
o be the last significant merger, making the assembly history of
he Galaxy unusually quiet (Hammer et al. 2007 ). Currently, the 
hronology of the merger events describing the Milky Way assembly 
istory is inferred through the ages of the associated globular cluster 
nd stellar populations. The former are derived empirically from 

he age–metallicity relation (Massari, Koppelman & Helmi 2019 ; 
ruijssen et al. 2019b ), while the latter can be measured directly
ith asteroseismology techniques (Miglio et al. 2017 ; Montalbán 

t al. 2021 ), or inferred by comparing photometric and spectroscopic 
bservations to stellar evolution models via isochrone (Queiroz et al. 
018 ; Sanders & Das 2018 ) and colour–magnitude diagram fitting 
Gallart et al. 2024 ). Similarly, methods for estimating the mass of
he disrupted progenitors of the Milky Way involve using empirical 
elations such as the mass–metallicity relation (Harmsen et al. 2017 ; 
aidu et al. 2022 ), or fitting the density profile of debris (Mackereth
 Bovy 2020 ; Lane, Bovy & Mackereth 2023 ). 
In this study, we introduce GalactiKit: a data-driven methodology 

o infer the properties of the disrupted progenitors of the Milky Way.
n particular, we focus on retrieving the infall time, stellar mass, halo
ass. and the halo–mass ratio with the host of mergers at the time

f infall. These are determined by performing a Bayesian inference 
nalysis assuming that the progenitor properties are parameters of 
n undefined model that produces the chemodynamical distribution 
f the merger debris at z = 0. Despite the model being unknown,
here are multiple examples of mergers and phase-space evolution of 
ebris within cosmological simulations; hence, a mapping between 
he debris and mergers properties can be learned using simulation- 
ased inference (SBI; Cranmer, Brehmer & Louppe 2020 ). Using 
he information contained in the simulations, SBI techniques are 
esigned to perform Bayesian inference on models which are not 
nalytically defined, or which have intractable likelihood distribution 
unctions. Hence, SBI methods can be used to relate observations to 
he most likely set of parameters that generated them, independently 
f the degree of knowledge of the underlying model. Under the 
ssumption that observations can be simulated for a given set 
f parameters, SBI methods rely on artificial neural networks to 
pproximate the posterior (or likelihood) distributions from the joint 
istribution of data and parameters. Once either of these quantities 
re defined, the parameters associated with a given observation can 
e determined probabilistically within the usual Bayesian formalism 

y sampling the posterior distribution. 
Previous applications of SBI in Astrophysics include constraining 

osmological parameters from galaxy cluster properties (Hahn et al. 
023 ; Hernández-Martı́nez et al. 2025 ) and weak lensing maps
Jeffrey, Alsing & Lanusse 2021 ), spectral energy distribution (SED) 
tting of galaxies (Hahn & Melchior 2022 ) and estimating compact
bjects parameters from gravitational-wave data (Green, Simpson & 

air 2020 ). In the context of estimating the properties of merging
alaxies, SBI has recently been used by Widmark & Johnston ( 2025 )
o develop a framework for inferring the mass density and orbital
arameters of tidally perturbed dwarf galaxies based on the observed 
osition and line-of-sight velocity field. 
More closely related to the scope of this work, Viterbo & Buck

 2024 ) have developed the Chemical Abundance Simulation Based 
nference (CASBI) model, which uses the SBI formalism to predict 
he stellar mass and infall time of the disrupted components of the
tellar halo of Milky Way-mass galaxies based on the oxygen and
ron abundances of the debris. Following the idea proposed by Cun-
ingham et al. ( 2022 ) that the chemical abundance ratio distributions
CARDs) of stellar haloes can be interpreted as the combination of the 
ARDs of the progenitor galaxies, CASBI was trained and tested on a
ata set of artificial haloes made up from a catalogue of dwarf galaxies 
rom the Numerical Investigation of a Hundred Astronomical Objects 
NIHAO) suite of cosmological simulations (Wang et al. 2015 ; Buck
020 ). CASBI achieves remarkable accuracy in estimating the stellar 
asses of the dwarf galaxy components in artificial haloes. However, 

t is less clear what its performance is in estimating their times of
nfall. 

Here, we consider a different approach by developing an SBI 
ipeline directly on the merger histories of galaxies within the Auriga
uite of cosmological simulations (Grand et al. 2017 , 2024 ). We also
nvestigate the implications of using the dynamical and/or chemical 
roperties of the debris to inform the inference. 
An overview of the Auriga simulations, as well as a description

f the procedure to extract and characterize the merger events in the
uite, is given in Section 2 . A general description of SBI and details
bout its implementation in the GalactiKit models are included in 
ection 3 . The results of the analysis are presented in Section 4 ,
hile potential applications of the models are proposed in Section 5 .
e summarize our conclusions in Section 6 . 

 T H E  AU R I G A  SI MULATI ONS  

he data we use to train Galactikit are taken from the Auriga suite
f simulations (Grand et al. 2017 , 2024 ). These are cosmological
agnetohydrodynamical (MHD) zoom-in simulations of (relatively 

solated) Milky Way-mass haloes run with the AREPO moving mesh 
ode (Springel 2010 ). 

The haloes were selected from the L100N1504 EAGLE dark matter 
nly simulation (Schaye et al. 2015 ), which was run in a periodic
ube of comoving side length of 100 cMpc, with a dark matter
article resolution of 1 . 15 × 107 M�. The simulation adopts a �
old dark matter ( � CDM) cosmology with model parameters taken
rom Planck Collaboration XVI ( 2014 ). 

The initial conditions for the re-simulation of a given Auriga halo
re prepared at z = 127. The high-resolution region is defined in the
agrangian region around the halo, outside of which the resolution 
rops off with increasing distance. Baryons are added by splitting 
MNRAS 542, 1776–1790 (2025)
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ach dark matter particle into a dark matter particle–gas cell pair
ith masses given by the cosmological abundance of baryons. The
uriga suite comprises haloes simulated primarily at two resolution

evels, which are typically referred to as ‘level 4’ and ‘level 3’. In
his work, we consider the ‘level 4’ simulations, which comprise 39

ilky Way analogues in the high (30, 1 < M200 / [1012 M�] < 2)
nd low (9, 0 . 5 < M200 / [1012 M�] < 1) end of the estimated virial
ass range for the Milky Way (Wang, Hammer & Yang 2022 ). The

ypical particle mass resolution is ∼ 3 × 105 and ∼ 5 × 104 M� for
ark and baryonic matter, respectively. 
The Auriga physics model is described in Grand et al. ( 2017 )

nd briefly summarized herein. Magnetic fields are seeded at the
eginning of the simulations in a single direction and with a
omoving strength of 10−14 G. Re-ionization is modelled with a
patially uniform, time-dependent ultraviolet background radiation
eld (Faucher-Giguère et al. 2009 ) that completes at z = 6. Primor-
ial and metal-line cooling of gas with self-shielding corrections
re also implemented. As gas collapses to densities larger than 0.11
articles per cubic centimetre it enters a sub-grid model for star
ormation: such gas is modelled as a two-phase interstellar medium,
omprised of a cold and hot phase, with an effective equation of state
see Springel & Hernquist 2003 , for a detailed description). Star
articles are then created stochastically following a time-dependent,
xponential probability function. Each particle represents a single
tellar population, with a defined age and metallicity. A Chabrier
 2003 ) initial mass function is assumed for the stellar evolution
f the particle. The chemical enrichment of surrounding gas cells
omes from asymptotic giant stars, Type II supernovae, and Type Ia
upernovae. Once haloes surpass a mass of 5 × 1010 M�, black holes
re seeded with a mass of 5 × 105 M� at the gravitational potential
inimum of the halo, and proceed to grow from gas accretion and
erger processes following the prescription in Springel, Di Matteo
 Hernquist ( 2005a ). Energetic feedback is modelled phenomeno-

ogically as supernovae-driven galactic winds, as well as radiative
nd thermal energy injection from active galactic nuclei radio and
uasar modes. 
The Auriga galaxies have rotationally supported discs, flat rotation

urves and are consistent with the expected stellar mass–halo mass,
ass-metallicity and star formation rate relations (Grand et al.

017 ). Moreover, the Auriga galaxies were directly compared to
he observational counterparts from the GHOSTS (Galaxy Halos,
uter disks, Substructure, Thick disks, and Star clusters) survey

Radburn-Smith et al. 2011 ; Monachesi et al. 2016 ) by Monachesi
t al. ( 2019 ), who showed the stellar haloes in Auriga reproduce the
catter in stellar mass, surface brightness, and metallicity profiles of

ilky Way-mass galaxies. However, the Auriga galaxies were also
ound to have more massive stellar haloes due to an extended in situ
omponent, which is discarded in this analysis. 

.1 Extracting mergers information 

he z = 0 stellar composition of the Auriga galaxies is the result of
n situ star formation and merger accretion. For each simulation, the
volutionary histories of all galaxies in the box are encoded in the
erger trees, which were computed in post-processing following the
HaloTree algorithm (Springel et al. 2005b ). At first, the SUBFIND

roup finding algorithm (Springel et al. 2001 ) is used to identify
aloes and sub-haloes in all simulation outputs (snapshots). Then,
ach halo (progenitor) is matched to all the ones having common
articles at the subsequent snapshot; a unique descendant is chosen
y selecting the halo with the highest number of particles in common
eighted by their binding energy. A merger occurs when two or more
rogenitors point to the same descendant. 
NRAS 542, 1776–1790 (2025)
From the merger trees, we can infer the stellar masses well and
tructural properties of galaxies at any given time. As part of the
ublic data release of the Auriga Project (Grand et al. 2024 ), the
ccretion history of the star particles within R200 

1 of the main haloes,
s computed by the merger trees, is reported in the ‘Accreted particle
ists’ catalogues. 

There are two possible approaches for sorting the accreted particles
n their systems of ‘origin’, hence defining the progenitors of the main
alo: (i) using the RootIndex list, which associates each particle to
he index in the merger tree of the progenitor halo which was bound
o at formation; and (ii) with the PeakMassIndex list, which
atches a particle to the merger tree index of the progenitor halo
hich was bound to at the time the progenitor reached its maximum

tellar mass. We decide to consider the second definition because
e are interested in retrieving the properties of a progenitor when

t first interacts with the main halo, hereby considered as when it
rst crossed R200 , which often coincides or shortly follows the time

he progenitor undergoes a quenching in star formation (Kawata &
ulchaey 2008 ; Simpson et al. 2018 ; Font et al. 2022 ). 
We restricted our investigation to the most significant progenitors

n the assembly history of each galaxy by selecting only those
ontributing with at least 100 star particles. This corresponds to
 minimum stellar mass cut-off of ∼ 106 M � for the satellites at the
ime of accretion, with most simulations having between 10 and 30
erger events meeting this criterion. In the whole suite, a total of 928

rogenitors were identified, of which 792 are taken from the merger
rees of the high-mass Auriga simulations (1 < M200 / [1012 M�] <
) and 136 from the low mass ones (0 . 5 < M200 / [1012 M�] < 1).
he majority of them (648) are completely disrupted at z = 0, and
ppear as accreted stars; the rest of the stars are from existing
atellites (280) orbiting within R200 . 

An example of the separation of accreted star particles into the
rogenitor galaxies in which they formed is reported in Fig. 1 , which
hows – for the Au21 simulation – the z = 0 distribution of the
ccreted star particles within R200 in the integrals-of-motion (top)
nd the alpha-iron (bottom) planes. The former is described by the
otal energy and the z-component (perpendicular to the plane of the
isc) of angular momentum of particles, while the latter is defined
y the iron-to-hydrogen, [Fe /H ], and alpha-to-iron, [ α/Fe ], chemical
bundance ratios. In the leftmost column, plots show star particles
olour-coded by the progenitor galaxy in which they formed based
n their PeakMassIndex label. In the middle column, the star
articles are coloured depending on whether their system of origin is
isrupted (grey) or appears as an existing satellite (black) at z = 0.
n the rightmost column, the star particles are coloured based on the
ookback infall time at which their progenitor of origin (as defined by
he associated PeakMassIndex ) first crossed R200 . Although 30
rogenitor galaxies were identified for Au21, the majority of accreted
tars come from only a few systems, as can be visually distinguished
n the plots on the leftmost column. Particles from early accretion
vents tend to have higher abundance of α-elements and are more
ispersed in the lower region of the integrals-of-motion plane than
heir later accreted counterparts. 

 SIMULATION-BA SED  I N F E R E N C E  

he underlying idea of the GalactiKit methodology is that some
roperties of a merging galaxy – such as the time of infall or the halo
ass – shape the present-day chemodynamical distribution of the
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Figure 1. Accreted star particles located within R200 in the Au21 simulation at z = 0. The top row shows the integrals-of-motion distribution of the particles, 
while the [Fe /H ] − [ α/Fe ] plane is reported in the bottom. For the plots on the left, the same colour is given to particles coming from each of the 30 progenitor 
galaxies contributing with at least 100 star particles. Only the PeakMassIndex of two progenitor galaxies is explicitly shown in the figure, while ellipsis 
are reported for the colours corresponding to the remaining progenitors. In the plots in the middle column, star particles are colour-coded differently if their 
progenitors are disrupted in the main halo (black) or are orbiting sub-haloes within R200 (grey). In the rightmost column, the plots show the distribution of star 
particles colour-coded based on the lookback time at which their associated progenitor galaxy crossed R200 for the first time. 
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orresponding debris. Hence, we assume there is an undefined model 
 which, given the vector of properties of a satellite at accretion

, predicts the stellar properties x of the corresponding debris at 
 = 0. An analytical definition of M is practically challenging as
t should account for complex, coupled physical processes such as 
he chemical evolution and mass assembly of the host and satellite 
alaxies in a cosmological context and the phase-space mixing of 
he accreted debris through dynamical friction within the evolving 
ravitational potential of the host. However, most of the relevant 
alaxy formation processes are currently described in the Auriga 
osmological simulations at a level of detail that allows for direct 
omparison between simulated galaxies and their observational 
ounterparts (Monachesi et al. 2019 ). Therefore, simulations can 
e thought to already encode a realistic representation of M . In
rder to extract the information encoded in the simulations and make 
redictions on the properties of a galaxy at infall from the z = 0
roperties of its debris, GalactiKit adopts the SBI framework, which 
rovides a Bayesian description of M . 
In the SBI formalism, given a set of parameters θ and observations 

x from an undefined model or with an intractable likelihood function, 
f the data generation process can be simulated, the posterior 
istribution p(θ | x ) can be evaluated by either: 

(i) iteratively comparing the observed data with simulations of 
he model run with different parameters until a similarity threshold 
s met. This technique is called approximate Bayesian computation 
ABC; Rubin 1984 ); and 

(ii) approximating the likelihood or posterior distributions with 
ensity estimation techniques. 

Once the posterior distribution is known, inference on the model 
arameters for a given observation is performed by sampling the 
osterior distribution and computing summary statistics. 
Because ABC requires simulations to be run at arbitrary points 

n the θ -parameter space and the sample of merger events {x , θ} 
n the Auriga simulations is limited by the assembly history of
he simulated haloes, we adopt approach (ii) and implement SBI 
y developing a deep learning model to approximate the posterior 
istribution p(θ | x ). 
In this analysis, we focus on the following properties θ of the 

rogenitor galaxies: 

(i) infall time ( τ ), defined as the lookback time at which the
atellite first crossed R200 ; 

(ii) stellar mass and halo mass ( M∗ and M , respectively) at infall;
nd 

(iii) the merger mass ratio (MMR), defined as the ratio between 
he halo mass of the satellite and that of the main galaxy at
nfall. 
MNRAS 542, 1776–1790 (2025)
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To ensure a strong correlation between x and θ , we consider the
roperties of the debris that are known to be physically related to the
erger variables: 

(i) total energy ( E), which is related to the infall time through the
nfall time–binding energy relation of sub-haloes and debris (Rocha,
eter & Bullock 2012 ; Garcı́a-Bethencourt et al. 2023 ); 
(ii) total specific angular momentum ( L ) which, like the total

nergy or the radial action, is an integral of motion for a star in
 spherical potential; and 

(iii) [Fe /H ], which, as a proxy of metallicity, is correlated to the
ass of a galaxy through the mass–metallicity relation (Harmsen

t al. 2017 ). 
(iv) [ α/Fe ], which relates to the infall time of the progenitor as

tars from early accreted galaxies have, in general, higher abundance
f α-elements compared to stars from late mergers (Font et al. 2006 ).

The posterior estimation is performed with the masked autoregres-
ive flow (MAF; Papamakarios, Pavlakou & Murray 2017 ) technique.
riefly, MAFs are generative models that approximate complex
robability distributions defined by the training data. By drawing
 random number from a normal distribution, MAFs generate a new
ata point through a series of parametrized bijective transformations;
his is equivalent to sampling from the approximated probability
istribution of the training data. The models are trained by tuning
he parameters of the transformations such that the negative log-
robability of the training data is minimized. 
A more detailed mathematical description of the SBI framework

nd MAFs is reported in Section 3.1 , while details on the imple-
entation and training of the model are presented in Section 3.2 .
he reader who is not interested in the detailed methodology can
kip these sections and refer directly to the results of the analysis in
ection 4 . 
An overview of the GalactiKit methodology is shown in Fig. 2 .

nitially, the Auriga simulations were separated into a training set,
sed to train MAF models that estimate p(θ | x ), and a test set,
sed for validation. For simulations in both sets, the information
rom the merger tree was used to define a set of merger–debris
airs {x , θ} by grouping the accreted stars orbiting within R200 of
he main halo at z = 0 into the corresponding progenitor galaxies
s defined in Section 2.1 . The resulting training and test datasets
ere then processed (see Section 3.2 ) to become valid inputs for the
AF models. The data used to train the model comprised a variable

umber of samples of 100 stars drawn randomly from each progenitor
n the training simulations. The number of samples was calculated
onsidering the total number of stars belonging to each progenitor,
uch that the debris distribution of larger mergers is sampled more
imes. Similarly, the test data consisted of samples of 100 stars drawn
andomly from the progenitors in the test galaxy. However, only one
ample was drawn per merger to avoid results being biased toward
ajor mergers. After training, the quality of the estimation of p(θ | x )
as determined by comparing the actual properties of the mergers in

he test galaxy with the ones inferred by sampling the MAF models.
o obtain a statistical representation, 1000 θ -samples per merger
ere generated using the debris data as input to the models. To assess
ow the model performs on unseen data, we performed a leave-one-
ut cross-validation, where each of the 39 haloes was excluded one
t a time from the training set and used for testing. Hence, for each
teration of the cross-validation procedure, the model was trained on
he merger–debris pairs of the 38 simulated galaxies in the training
et and tested on the merger events of the galaxy left out in the test
et. This ensures that the model was tested on unseen data, while its
valuation still accounts for all the mergers in the simulations. 
NRAS 542, 1776–1790 (2025)
.1 Density estimation with masked autoregressive flows 

onsider the model M that relates the properties of a satellite galaxy
t the time of infall (θ ) with the chemodynamical properties at z = 0
f the corresponding debris (x ). Applying Bayes’ theorem, the degree
f belief that a certain θ leads to a realization x of the model can be
easured by evaluating the posterior probability 

 (θ | x ) = p (x | θ ) p (θ ) ∫ 
p (x | θ ) dθ

, (1) 

here p(θ) is the prior, encoding the data-independent information
n the possible merger parameters, and p(x | θ ) is the likelihood,
easuring the probability of observing a certain configuration of the
erger debris distribution given certain merger parameters. Hence,

or an observed distribution of merger debris xobs , the most likely set
f properties of the corresponding progenitor galaxy θ can be inferred
y sampling the posterior probability p(θ | xobs ). However, as the
ikelihood is unknown, the posterior cannot be evaluated explicitly.
his problem can be overcome adopting the SBI framework, where
imulations of the model M are used to obtain an approximation of
he posterior distribution. In particular, the posterior distribution is

odelled as a distribution function whose parameter values depends
n the vector of debris properties xobs used for conditioning the
osterior, i.e. 

(θ | xobs ) ≈ pφ(θ | xobs ) , (2) 

here φ = h (xobs ) is the vector of parameters of the variational
istribution pφ , and the function h represents the mapping between
he observations of the model x and the φ parameters. Because only
he internal parameters change depending on the conditioning input,
φ is the same distribution function for any value of xobs ; hence, the
osterior distribution is amortized , i.e. once the mapping between
istribution parameters and data is defined, inference on the merger
roperties θ can be performed for any value of the debris properties

x . 
In order to implement the posterior approximation described in

quation ( 2 ), we use MAF, a neural network technique which is
ased on the idea that generating data with an autoregressive model
s equivalent to a normalizing flow (Kingma et al. 2016 ). A brief
escription of the mathematical formalism of MAF applied to the
nference of merger parameters is presented below; we refer to
apamakarios et al. ( 2017 ) for details on the algorithm. 
Autoregressive models (Uria et al. 2016 ) are artificial neural

etworks used for density estimation, and are based on the idea
hat any distribution in D dimensions can be represented using
he probability product rule as a combination of the conditional
robabilities in the single dimensions. Hence, the posterior distri-
ution p(θ | x ) of a merger defined by a galaxy whose properties are
= ( τ, M∗, M, MMR ) and debris with a certain vector of properties

x at z = 0, can be defined as: 

(θ | x ) =
D= 4 ∏ 

d= 1 

p( θd | θ<d , x ) , (3) 

here θ<d = ( θ1 , ..., θd−1 ) is a vector whose components are the first
 − 1 components of the four-dimensional merger parameter vector
. 
In MAF, the conditional probabilities are modelled as single Gaus-

ians whose parameters are computed using Masked Autoencoders
or Distribution Estimation (MADE; Germain et al. 2015 ) models: 

( θd | θ<d , x ) ≈ pφd 
( θd |θ<d , x ) = N

(
θd | μd , (exp αd )

2 
)
, (4) 



GalactiKit, merger properties with SBI 1781

Figure 2. Overview of the GalactiKit methodology. The Auriga simulations were first split into a training and test sets. For both cases, the accreted stars within 
R200 of the main halo were associated to the corresponding progenitor galaxy creating a set of merger–debris pairs {x , θ} ; this was then pre-processed to be 
used as input to the MAF models approximating p(θ | x ). The quality of the estimation was assessed through summary statistics comparing the inferred values 
to the actual ones for the properties of mergers in the test. To ensure robust performance assessment, the procedure was repeated while systematically leaving 
out one Auriga simulation for testing at a time. The images of the Auriga galaxies are taken from Grand et al. ( 2017 ). 
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ith μd = hμd 
(θ<d , x ) and αd = hαd 

(θ<d , x ), where hμd 
and hαd 

epresent the MADE outputs as the mean and log-standard devi- 
tion of the d th conditional probability. Hence, the p( θd | θ<d , x )
onditionals are approximated by Gaussian variational distributions 
hose parameters, φd = { μd , αd } , are computed from an artificial
eural network which takes as input the d − 1 previous components 
f θ and the conditions x . In this framework, sampling is equivalent 
o generating a new point in the θ -parameter space by explicitly 
omputing each dimension as 

d = ud exp αd + μd , (5) 
here ud ∼ N (0 , 1). Hence, equivalently to a normalizing flow
Papamakarios et al. 2021 ), the model is mapping a point u =
 u1 , ..., ud ) in the base distribution to the merger parameter space
hrough an invertible and differentiable transformation: θ = f (u ). 
ence, the variational distribution approximating the posterior can 
e expressed in terms of the base distribution pu as 

φ(θ | x ) = pu ( f
−1 (θ ))

∣∣∣∣∂ f −1 

∂ θ

∣∣∣∣ , (6) 

here
∣∣∣∂ f −1 

∂ θ

∣∣∣ is the determinant of the Jacobian matrix of f −1 , 

hich for the transformation defined in equation ( 5 ) is
∣∣∣∂ f −1 

∂ θ

∣∣∣ =
MNRAS 542, 1776–1790 (2025)
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xp 
(
−∑ D= 4 

d αd 

)
. Considering the model as a normalizing flow, it

s possible to increase the expressivity of MAF by stacking multiple
nstances as a sequence of transformations. Thus, a sample of merger
arameters generated by a MAF model with N transformations is
omputed as 

= F (u ) , with F = f1 ◦ ... ◦ fN and u ∼ N (0 , I ) , (7) 

here I is the identity matrix and each f represents a single transfor-
ation, which includes an ensemble of Gaussian conditionals and the
ADE model, which take the vector of debris properties x and the

elevant components of θ as inputs and return the corresponding mean
nd log-standard deviation. Because a combinations of invertible
unctions is also invertible and the overall Jacobian determinant is the
roduct of the Jacobian determinants of the single transformations,
quation ( 6 ) can be adapted to the case of an arbitrary number of
ransformation defined in equation ( 7 ), and written in log-form as 

log pφ(θ | x ) = log pu (u ) +
N ∑ 

i= 1 

log 

∣∣∣∣∣∂ f
−1 
i 

∂ θ i 

∣∣∣∣∣ , (8) 

here θ i = fi ◦ ... ◦ f1 (u ) is an intermediate state of the flow F 

elating the base distribution to the one of the merger properties θ .
uring the training routine, the internal parameters of the MADE
odels, which are used to compute the vectors μi and αi defining

ach transformation fi , are updated in order to maximize the total log
ikelihood

∑ 

n log pφ(θn | x n ) of the training data, where x n , θn ∼
(θ, x ), which is the joint probability distribution of merger and
ebris properties defined by the progenitor galaxies in the Auriga
imulations. 

Once the model has been trained, a new sample of the posterior
istribution of the progenitor parameters given a certain observation
f debris properties at z = 0 can be obtained by drawing a random
umber from a Gaussian distribution and applying the series of
ata-dependent transformations specified by the MADE models as
escribed in equation ( 7 ). 

.2 Data pre-processing and training implementation 

efore being used to train the MAF model, the progenitors θ and
erger debris x properties were processed as follows: 

(i) The distributions of the debris in E and L were transformed
y taking the square root of the corresponding absolute values,
o compensate for the skewness of the original distributions. We
lso considered scaling the distributions of the debris based on
he structural, present-day properties of the galaxies; namely, the

aximum rotational velocity, scale radius, R200 and M200 . However,
e find that this leads to little or no improvements in the posterior

stimation. 
(ii) Outliers from the interquartile (i.e. 25th and 75th percentile)

anges of the debris distributions in E, L , [Fe /H ], and [ α/Fe ] were
etected and discarded. This is performed in preparation of the next
tep, as particles whose properties lie at the margin of the distributions
ight skew the training data while not representing the majority of

he debris from a given merger. After this procedure, all merger
vents that fell below the 100 star threshold were also removed from
he analysis. To ensure all inputs of the models are on the same scale,
he resulting distributions were standardized by subtracting the mean
nd dividing by the standard deviation in each dimension. 

(iii) Because the number of particles representing the merger
ebris depends on the progenitor mass, while MAF requires an input
f fixed dimensionality, N samples of 100 stars were drawn randomly
NRAS 542, 1776–1790 (2025)
rom each debris distribution, allowing for stars to potentially be
ncluded in multiple samples. In order to account for the intrinsic
ariability in x when sampling large progenitors, the number of
amples for a given merger was calculated in terms of the number of
ssociated accreted stars S, as N = min (10 , � S/ 100 � ). 

(iv) To provide a balanced representation of all mergers in the
raining set, the debris distributions of mergers with uncommon
arameters were oversampled. For this purpose, a k-means model
as applied to the θ -parameter space to form 20 groups with similar
roperties. Then, the number of samples from mergers in each group
as counted. By imposing that each group has to contribute the same
umber of samples, a balanced data set was achieved by drawing
ore samples from the debris of the mergers from underrepresented

roups, with each contributing with an equal number of extra
amples. 

The above process returns a data set composed of merger–
ebris pairs which more uniformly covers the θ -parameter space,
s normally distributed in x , and has homogeneous samples (i.e. all
haring the same dimensionality D × 100, where D is the number
f stellar properties considered). 
The posterior distribution p(θ | x ) was modelled with an ensemble

f three MAFs to avoid overfitting, which is more likely to affect a
ingle density estimator. All the MAF models share the same initial
onfiguration (i.e. number of transformations, number of neurons
n the hidden layers, etc.), but are trained separately; because the
ptimization of the internal parameters of an artificial neural network
s a stochastic process, the resulting three MAFs are effectively three
ifferent models of the posterior distribution. The implementation of
he SBI framework was performed using the Learning the Universe
mplicit Likelihood Inference (LtU-ILI) pipeline (Ho et al. 2024 )
ith the sbi backend. The number of transformations in each
AF, the length of the hidden layers in the MADE models, and

he training parameters (batch size and learning rate) were derived
sing the Optuna hyperparameter optimization framework (Akiba
t al. 2019 ) setting the log-likelihood of a fixed validation data set as
bjective function. The resulting MAF models used in the analysis
omprised 22 MADE layers with 463 neurons per hidden layer and
ere trained on batches of 2569 examples with a learning rate of
.001. 

 RESULTS  

hree implementation of GalactiKit were developed to esti-
ate the posterior distribution of the model M described

n Section 3 for different combinations of debris prop-
rties x , namely: (a) E, L ; (b) [Fe /H ] , [ α/Fe ]; and (c)
, L, [Fe /H ] , [ α/Fe ]. The target merger parameters were fixed to
= ( τ, log ( M∗/ M�) , log ( M/ M�) , log (MMR )) for all cases. The

im was to investigate to what extent the properties of a merger can
e reconstructed when different degrees of debris information are
vailable. For each combination of x , the results of the leave-one-
ut cross-validation procedure are reported in Fig. 3 as the inferred
gainst the actual parameters for the mergers in the test galaxies. In
his paper, ‘true’ indicates the parameter values as directly measured
n the Auriga simulations, while ‘predicted’ refers to the values
nferred from the estimated posterior distributions. Results from each
odel are shown in separate rows with estimates from model (a), (b),

nd (c) reported in the top, middle, and bottom rows, respectively.
n the top plots of each row, the points represent the median of the
000 samples drawn from the inferred posterior distribution of the
erger parameters, whereas the 34th–68th percentile ranges ( σθ ) are
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Figure 3. Merger parameters inferred by SBI models trained on different combinations of z = 0 debris properties: (a) E, L (top), (b) [Fe / H], [ α/Fe ] (middle), 
and (c) E, L , [Fe / H] and [ α/Fe ] (bottom). Each point represents the median value of the parameter samples, while the error bar shows the extent of the 34th–68th 
percentile range of the distribution. A unique colour is associated to merger events associated to a specific galaxy, for which case the SBI models used for 
inference were trained on the mergers from the remaining galaxies in the suite. 
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hown as error bars. The dotted line indicates perfect prediction of the
erger parameters. Different colours are associated to mergers from 

ifferent test galaxies included in the cross-validation procedure. 
he distribution of the fractional deviations between the predicted 
nd true parameters compared to σθ is reported as a sub-panel in each
lot. A deviation of 1 σθ from the true parameter is highlighted as a
reen-shaded region, while the median distribution of the deviations 
s show as black continuous line. By visually inspecting Fig. 3 , it
an be noticed that the colour distribution is uniform in all the plots,
uggesting that the model performances are similar and do not depend 
n the assembly history of the test galaxy. 
As intuitively expected from the infall time–binding energy rela- 

ion of sub-haloes (Rocha et al. 2012 ) and conservation principles,
he energy and angular momentum distributions of debris appear to 
ontain information on the accretion time of the associated progen- 
tor, while being unrelated to the mass of the system. The energy
istribution of debris is strongly dependent on the gravitational 
otential of the main galaxy; debris from early mergers have had
MNRAS 542, 1776–1790 (2025)
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M

Figure 4. Same as Fig. 3 (c), but mergers are colour-coded by the median value of the total energy (a, upper panel) and total angular momentum (b, bottom 

panel) of the corresponding debris distribution. 
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he time to complete a few orbits around the galaxy and sink into the
ottom of the gravitational potential, hence having a higher binding
nergy (i.e. lower total energy) than debris from later mergers.
oreover, as the host halo accretes more mass, the gravitational

otential increases overtime contributing to shifting early-accreted
tars at lower energies. This is shown in Fig. 4 (a), which replicates
he plots in Fig. 3 (c) colour-coding the mergers by the median total
nergy of the associated debris at z = 0. 

A drop in the performance of model (a) can be noticed for mergers
ore recent than five billion years ago; rather than being physically
otivated, this limitation is likely caused by a lack of training

xamples in that region as the infall time merger distribution, shown
n the relevant sub-panels, is denser at high τ values. A potential
olution could be complementing the current data set with merger
vents from other cosmological simulations. Alternatively, a machine
earning model could be trained as a surrogate of the simulation
rocess (see e.g. Viterbo & Buck 2024 ) to generate an arbitrary
umber of training examples in any region of the θ -parameter space.
The gravitational potential of the main galaxy is closely related

o its mass density profile, which is not significantly affected by
he accretion of satellites (with the exception of major mergers)
s galaxies tend to grow ‘inside-out’ through smooth accretion
L’Huillier, Combes & Semelin 2012 ; Pérez et al. 2013 ). Hence,
he energy distribution of debris is not an appropriate proxy for the

ass of accreted satellites as shown in Fig. 3 (a). The same conclusion
an be drawn from Fig. 4 , which shows that both the median values
NRAS 542, 1776–1790 (2025)
f the debris E and L do not correlate with the mass of the associated
ergers. 
Interestingly, despite failing at predicting exact values, the energy

f debris appears to be broadly informative for distinguishing
etween massive (MMR > 1 / 20) and less-massive (MMR < 1 / 20)
ergers as shown in Fig. 4 (a). When limited to this task, model (a) is

ble to correctly identify 66 of the 139 massive mergers in the suite,
ith a 0.48 purity. 
Providing information on the chemical abundances of debris

ignificantly improves the posterior fitting, as shown by the middle
nd bottom panels in Fig. 3 . The [Fe / H] and [ α/Fe ] abundance ratios
re closely related to the star formation history of the progenitor
alaxy, which is affected both by the accretion time, when it stops due
o cold gas being stripped away by the main galaxy, and by the mass
f the system, as more massive satellites form multiple generations of
tars, hence producing debris with higher metallicity values. Fig. 5
hows samples from model (c) trained on the E, L , [Fe / H], and
 α/Fe ] debris information and colour-coded by the median values
f the actual [Fe / H] (Fig. 5 a) and [ α/Fe ] (Fig. 5 b) distributions.
he [Fe / H] abundance of debris correlates well with the mass of the
ssociated progenitor, which is expected from the mass–metallicity
elation, as more massive systems formed multiple generations
f stellar populations which contributed to enrich the interstellar
edium with metals. However, the mass–metallicity relation presents

n intrinsic scatter which depends on galaxy-specific properties such
s the gas fraction, inflow, and outflow, or the star formation rate
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Figure 5. Same as Fig. 3 (c), but mergers are colour-coded by the median value of the [Fe /H ] (a, upper panel) and [ α/Fe ] (b, bottom panel) distributions of the 
corresponding debris. 
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van Loon, Mitchell & Schaye 2021 ). This could be the cause of the
ignificant deviation between the mass estimates for some metal-rich 
ergers as can be seen comparing the log ( M/ M�) plots in Figs 3 (b)

nd 5 (a). 
Fig. 5 suggests that the [ α/Fe ] ratio appears to correlate better with

he accretion time of mergers than [Fe / H]. This could be explained
n terms of the time-scales involved in the two enrichment channels 
nd the effect of the gravitational interaction of the host. α-elements 
re mostly produced in Type II supernovae on a time-scale of few
illion years, whereas Fe atoms are mostly released during Type Ia 

upernovae, which require a timescale of ∼billion year (McWilliam 

997 ). When a satellite is accreted, its star formation stops due
o the cold gas being stripped away by the host galaxy. Hence,
atellites accreted at late times would appear at a later stage of their
hemical evolution with stars characterized by a lower abundance 
f α-elements compared to stars from early mergers (Font et al. 
006 ). 
The infall time estimates for late mergers ( τ < 5 Gyr ) obtained 

rom models (b) and (c) trained with [Fe / H] and [ α/Fe ] are closer to
he actual values than the ones of model (a) trained only on the E, L

ebris distributions; however, the model accuracy is still not uniform 

cross the whole range of the parameter space. This, alongside 
ith the plateaus at the edges of the predicted log ( M/ M�) and

og (MMR ) distributions, is probably related to the limited number 
f training examples in those ranges. A significant improvement is 
lso seen when distinguishing massive mergers with models (b) and 
c) identifying 74 and 88 massive mergers reaching purity values of
.61 and 0.62, respectively. 
A comparison of the performance of the GalactiKit models defined 

y the three combinations of debris properties can also be performed
uantitatively in terms of the root-mean-squared error (RMSE) and 
ean-relative-uncertainty (MRU). The RMSE is measured for a 

ingle merger by directly comparing the inferred values of the 
arameters θ to the actual θtrue as 

MSE =
√ ∑ N 

i= 1 (θi − θtrue )2 

N 

, (9) 

here N = 1 , 000 is the number of i-samples drawn from the
pproximated posterior distribution of each merger event. The RMSE 

stimates the accuracy of the model by measuring how close the
verage prediction of the inferred merger parameters is to the true
alue. 

The MRU is defined comparing the size of a given confidence 
nterval, defined by a percentile range Qa (θ ) − Qb (θ ), to the extent of
he prior distributions of each dimension of θ . Each prior distribution 
nforms on the probability that a merger property can assume a
ertain value, hence excluding the ones that are not physical. In this
tudy, the four merger parameters that define the properties of the
rogenitors at infall are assumed to have uniform prior distributions 
uch that, for a given merger, the true parameters are known to
ave equal probability to lie within any given point of the corre-
MNRAS 542, 1776–1790 (2025)
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Table 1. Quantitative comparison between the merger parameter estimates inferred through the posterior models trained on 
different combinations of debris information. From left to right, the columns report: (i) the inferred merger parameter; (ii) the 
root-mean-squared error (RMSE) between the actual and inferred merger parameter; (iii) the fraction of mergers whose actual 
parameters are within the 34th–68th percentile range of the samples drawn from the posterior model; (iv) the mean-relative 
uncertainty (MRU) for the 34th–68th percentile range; (v) and (vi) are the same as (iii) and (iv) but considering the 5th–95th 
percentile range as confidence interval. 

θ RMSE within 34th–68th MRU(34,68) within 5th–95th MRU(5,95) 

E, L 

τ 3.44 0.28 0.15 0.81 0.56 
log ( M∗/ M�) 1.25 0.28 0.14 0.88 0.47 
log ( M/ M�) 1.00 0.36 0.14 0.91 0.51 
MMR (log ) 0.94 0.39 0.12 0.91 0.48 

[Fe / H], [ α/Fe ] 

τ 1.92 0.30 0.08 0.88 0.33 
log ( M∗/ M�) 0.58 0.39 0.05 0.92 0.24 
log ( M/ M�) 0.73 0.41 0.08 0.92 0.38 
MMR (log ) 0.87 0.38 0.10 0.91 0.46 

E, L , [Fe / H], [ α/Fe ] 

τ 1.83 0.29 0.08 0.86 0.30 
log ( M∗/ M�) 0.54 0.35 0.04 0.91 0.22 
log ( M/ M�) 0.69 0.34 0.08 0.90 0.35 
MMR (log ) 0.81 0.34 0.10 0.89 0.41 
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ponding ranges, i.e. τ / Gyr ∈ { 0 , 13 . 5 } , log ( M∗/ M�) ∈ { 5 , 11 } ,
og ( M/ M�) ∈ { 7 , 12 } , and log (MMR ) ∈ {−5 , 0 } . Thus, the MRU
or the predictions of the properties of a given merger event is
alculated as 

RU ( a, b) =
∣∣∣∣ Qa (θ ) − Qb (θ ) 

max (θtrue ) − min (θtrue ) 

∣∣∣∣ , (10) 

here Qa (θ ) and Qb (θ ) are the values of θ at the a th and b th
ercentile of the predicted posterior distribution, and max (θtrue ) −
in (θtrue ) refers to the difference between the maximum and mini-
um values of θ as defined by the prior ranges. The MRU provides

n estimate of the precision of the predictions, where MRU values
pproaching 0 indicate a model that consistently makes similar
redictions for a given merger (i.e. the model is confident about
he estimated value of θ ), whereas MRU values close to 1 suggest
hat, despite the information of the debris properties, the model is
ot able to constrain the merger parameters to a specific region of
he prior space. 

The RMSE and MRU were computed for each of the 928 merger
vents considering the θ samples used for producing Figs 3 , 4 , and 5 .
he average of the RMSE and MRU values are reported in Table 1 ,
longside with the average fraction of test examples for which the true
erger parameters fall within the 34th–68th and 5th–95th percentile

anges of the predicted posterior distributions. 
Compared to model (a) informed only through dynamical data, the

alactiKit models (b) and (c) trained including [Fe / H] and [ α/Fe ]
rovide the most accurate predictions of the merger parameters with
n average decrease in RMSE of about 45, 55, 29, and 12 per cent
or the estimates of τ, log ( M∗/ M�) , log ( M/ M�) , and log (MMR ),
espectively. As previously discussed, the time estimates of all
odels are considerably more accurate for merger events occurred

arlier than five billion years ago with average RMSE values of
.30, 1.75, and 1.64 Gyr compared to 4.45, 3.12, and 3.09 Gyr for
ate mergers as predicted by models (a), (b) and (c), respectively.
his would be less problematic for Galactic archaeology studies as
ignificant satellites of the Milky Way with τ < 5 Gyr are expected
o be either still orbiting the Galaxy or traceable from stellar streams.
NRAS 542, 1776–1790 (2025)
Estimates for the stellar and halo masses of mergers are also more
ccurate when provided by the models (b) and (c). In both cases,
he stellar mass is better predicted than the halo mass because of
he intrinsic scatter in the stellar mass–halo mass relation (SMHR),
hich could be due, for instance, to haloes of same total mass
ut different concentration forming a different number of stars as
ore concentrated haloes are associated to earlier formation times

Matthee et al. 2017 ). The scatter in the SMHR is found to be
arger at smaller halo masses, which could also be the cause to
he decrease in accuracy for the halo mass estimates of mergers with
og ( M/ M�) < 9. 

Table 1 indicates that all models predict less than half of the merger
arameters within the 34th–68th percentile range; as the RMSE are
easonably low, this is a sign of overconfidence probably associated
o both the reduced variety of merging events in the training set
nd the repetition of samples from the same progenitors. The small
ize of the confidence interval compared to the parameter space, as
eported by the MRU values, points towards the same conclusion.

ore conservative estimates of the merging parameters could be
btained taking into account a larger confidence interval, as shown
n the last two columns of Table 1 ; however, there is the risk of
btaining an uninformative analysis as the size of the considered
ercentile range approaches the extent of the prior ranges of the
arameters. 
Overall, model (b) trained exclusively on [Fe / H] and [ α/Fe ]

as a very similar performance compared to model (c) trained
ncluding E and L . Thus, the information contained in the chemical
bundance ratios of debris appears to be enough for inferring the
nfall time and mass of the associated merger. The extra information
rovided by the dynamical quantities seems to contribute to the
verconfidence of the model as the decrease in MRU values comes
ith a slight decrease in the fraction of parameters correctly inferred

or both the 34th-68th and 5th-95th percentile ranges. However, the
nformation on the E and L distributions of debris also appears to
elp constraining the mass predictions of metal-rich, but relatively
ow-mass progenitor galaxies, as can be noticed comparing the
og ( M∗/ M�), log ( M/ M�), and log (MMR ) plots in Figs 3 (b), (c),
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nd 5 (a). This is also reflected with a difference in RMSE (0.54 and
.58; 0.69 and 0.73; 0.81 and 0.87 dex) between model (c) and (b) as
hown in Table 1 . Hence, the combination of chemical and dynamical
ebris properties appears to be preferred for the development of 
odels of the merger parameters, if the observed overconfidence is 

ddressed through changes in the data, e.g. increasing the variety of
raining examples, or methodology, e.g. changing the technique for 
he posterior estimation. 

 DISCUSSION  

alactiKit provides a quantitative description of the assembly his- 
ory of Milky Way-like galaxies by returning predictions within 
onfidence intervals of the infall time, stellar mass, halo mass, 
nd mass ratio with the host of their progenitors. The precision of
he prediction depends on the amount of information available on 
he distribution of the merger debris z = 0, with models trained
n chemical abundances significantly outperforming those based 
nly on dynamical data. Complementing chemical with dynamical 
nformation seems to mostly contribute to reducing the scatter in the 

ass estimates of metal-rich mergers, while maintaining a similar 
erformance to the models relying on chemical abundances only in 
he rest of cases. 

Hence, there appears to be a strong link between the properties 
f a galaxy at infall and the chemical abundance distribution of its
ebris at z = 0. This can be motivated by known physical phenomena
uch as the observed relation between mass and metallicity of 
alaxies (Harmsen et al. 2017 ) and the expected difference in α-
lement abundances expected in late and early accreted satellites 
Font et al. 2006 ; Grimozzi, Font & De Rossi 2024 ). However, the
alactiKit models leverage the knowledge of these galaxy formation 
rocesses encoded in the Auriga chemical evolution model, which 
s limited by theoretical uncertainties in stellar evolution such as the 
ucleosynthetic yields of the different enrichment channels or the 
haracteristics of the intermediate mass function. Therefore, potential 
rops in the predictive ability of the models could be observed if
pplied to a cosmological context where the chemical evolution 
f galaxies significantly differs from the one described in Auriga. 
esting on a suite of simulations with different chemical evolution 
rescription could offer a framework to evaluate the potential drop 
n performance before the application to observations. For instance, 
t would be interesting to investigate the impact of a galaxy’s cosmo-
ogical environment on the predictive performance of GalactiKit. The 
aloes in the Auriga simulations have been selected to be relatively 
isolated’ at redshift zero; however, the Milky Way is thought to 
e orbiting within a Local Group (LG) of galaxies including a 
ompanion with similar mass (M31) and other hundreds of dwarf 
alaxies (McConnachie 2012 ). The High-resolutions Environmental 
imulations of The Immediate Area (HESTIA; Libeskind et al. 
020 ), which are designed to reproduce the properties of the galaxy
opulation in the LG, would represent an interesting testbed for 
nvestigating the GalactiKit predictive capacity on environmentally 
onstrained assembly histories. However, we leave this investigation 
or further studies, as GalactiKit is primarily aimed at inferring the 
roperties of accreted satellites in the Milky Way, which Auriga 
aloes have been shown to reproduce both in terms of morphology 
nd assembly history (Fattahi et al. 2019 ; Monachesi et al. 2019 ). 

Another limitation of the GalactiKit methodology is the assump- 
ion that accreted stars can be grouped into their progenitors of origin
ven in galaxies whose merger tree information is not accessible. 
ased on the idea that stars which formed in the same system

hare similar orbital and chemical properties, several methods have 
een developed to identify accreted sub-structures in the Milky Way 
ith clustering algorithms (e.g. Koppelman et al. 2019 ; Naidu et al.
020 ; Dodd et al. 2023 ). However, the purity of the resulting merger
ebris groups is unknown and can be affected by the significant
ontamination of in situ stars (Thomas et al. 2025 ). Although there are
ethods to mitigate the presence of the in situ population (Sante et al.

024 ), it remains to be investigated how well the GalactiKit models
an infer the properties of disrupted progenitors based on incomplete 
r contaminated distributions of merger debris. Similarly, incom- 
leteness could represent an issue if the samples of merger debris are
imited to certain parts of their actual chemodynamical distribution. 
herefore, we caution against the application of these models on 
bservational data sets in which: (i) there is little confidence in the
egion of the chemodynamical space in which the merger debris are
ocated; (ii) the overall chemodynamical distribution of stars from 

he progenitor is believed to not be effectively represented by the
onsidered debris sample; and (iii) there are significant uncertainties 
n the measurements of the stellar parameters, as they are not taken
nto account by GalactiKit during the posterior density estimation. 

The accuracy of posterior distributions in multidimensional SBI 
odels, i.e. how similar the approximated distributions are to the 

eal ones, can be assessed using the ‘Tests of Accuracy with Random
oints’ (TARP) coverage testing method (Lemos et al. 2023 ). The

est involves comparing the expected coverage probabilities of the 
osterior to the corresponding credibility levels at which they are 
valuated. However, the effectiveness of the TARP test relies on 
aving a large number of test simulations, as more granular regions of
he posterior space can be probed. In this study, due to the leave-one-
ut cross-validation, each test set contains only the merger events 
elative to one galaxy. Therefore, a meaningful evaluation of the 
osterior coverage probabilities could not be performed using the 
ARP test for the three models, which is an important validation step
hat must be conducted before the model can be confidently applied
o real data. 

In spite of the limitations mentioned above, the GalactiKit 
ethodology is promising for future applications to the Milky Way. 
ombined with the information on the merger debris distribution 
f the accreted substructures already discovered in the Milky Way, 
alactiKit can be used to provide a quantitative picture of the

ormation history of the Galaxy by estimating the mass and infall time
f the various accretion events. A similar endeavour was attempted 
y Kruijssen et al. ( 2019b ), who used the statistical correlations
etween globular cluster and galaxy properties in the E-MOSAICS 

imulations (Kruijssen et al. 2019a ) to reconstruct the merger tree
f the Milky Way from the observed globular cluster population. 
alactiKit provides a framework to extend this analysis from the 
lobular cluster population to the millions of single stars observed 
y Gaia and to the present and upcoming spectroscopic surveys, 
ence depicting a more complete picture of the assembly history of
he Milky Way. 

A detailed reconstruction of the turbulent past of the Galaxy could
e useful for a better understanding of the evolution of the Milky
ay in a cosmological context. The Galaxy is considered to have

ndergone an unusually quiet accretion history within the � CDM 

osmology framework (Hammer et al. 2007 ; Evans et al. 2020 ).
heoretical predictions from the dark matter mass function (Tinker 
t al. 2008 ) and the stellar-to-halo mass relation (Brook et al. 2014 )
uggest that the majority of merger events for a Milky Way-mass
alaxy consists of the accretion of low-mass dark haloes (Purcell, 
ullock & Zentner 2007 ), with the majority of stars in the stellar
alo coming from only ∼three major (mass ratio > 1 / 3), luminous
atellites (Fakhouri, Ma & Boylan-Kolchin 2010 ). In the case of the
MNRAS 542, 1776–1790 (2025)
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alaxy, merging events in this mass range correspond to the accretion
f the GS/E dwarf galaxy and the Large Magellanic Cloud, which
re more than 10 billion years apart. Adding further complexity,
ammer et al. ( 2024 ) showed that the accretion time of the GS/E
warf galaxy, as measured using the age–metallicity relation (AMR)
f the globular cluster population identified by Kruijssen et al.
 2019b ), would have had to be shifted at even earlier times to be
onsistent with the satellite population of the Milky Way under the
nfall time–binding energy relation (Rocha et al. 2012 ). Thus, the
pplication of GalactiKit models could provide a clearer perspective
y estimating the accretion times of all the disrupted satellites of
he Galaxy, including those without an associated globular cluster
opulation. 
Studying the properties of the progenitors of the Milky Way can

lso be useful outside the Galactic archaeology context. Limberg
 2024 ) suggested that the evidence for an intermediate mass black
ole (IMBH) in ωCentauri (Häberle et al. 2024 ), arguably the old
uclear star cluster of the GS/E galaxy (Limberg et al. 2022 ), could
xtend the central black hole mass–host stellar mass relation (Greene,
trader & Ho 2020 ) to the dwarf galaxies regime. Hence, more
MBHs could potentially be located within the proximity of debris
rom disrupted progenitors of the Milky Way. Therefore, GalactiKit
ould be used to estimate the mass of the disrupted progenitors of the
ilky Way directly from the distributions of the merger debris, hence

nforming on the potential presence of undetected IMBHs among
he accreted stars. Moreover, if a black hole is detected and linked
o the debris of an accretion event, such as the case of the IMBH in
Centauri, GalactiKit could be used to infer the stellar mass of the
rogenitor galaxy, which could in turn be used to indirectly infer the
lack hole mass from the black hole mass–host stellar mass relation.

 C O N C L U S I O N S  

alactiKit is a data-driven methodology for determining the look-
ack infall time, stellar mass, halo mass, and mass ratio with the
ost of disrupted satellite galaxies of Milky Way analogues. Using
imulation-based inference to leverage the information on galaxy
ormation encoded in the merger trees of the Milky Way-mass haloes
rom the Auriga cosmological simulations, GalactiKit estimates the
osterior distribution of the merger parameters as conditioned by the
 = 0 distribution of the corresponding debris. 

In order to investigate how accurate is the inference of merger
roperties from various degrees of information on the merger debris,
e developed three GalactiKit models considering the following

hemodynamical properties of the accreted stars: (a) E and L , (b)
Fe /H ] and [ α/Fe ], and (c) E, L, [Fe /H ] and [ α/Fe ]. The results of
ur analysis can be summarized as follows: 

(i) The total energy of accreted stars is a tracer of the accretion time
f progenitor galaxies (Fig. 3 a); this result has already been known
or surviving satellites (Rocha et al. 2012 ) and is extended to phase-
ixed sub-structures here. Moreover, energy and angular momentum

nformation can be used for an approximate identification of massive
ergers; model (a) correctly predicts a median MMR above 1/20 for

7 per cent of the total massive mergers, with a purity of 0.48. 
(ii) Including the chemical information of the debris provides

 significant improvement in the accuracy of the estimates for all
erger parameters, and is a necessary ingredient for the prediction

f the stellar and halo masses of progenitor galaxies at infall (Fig. 3 ).
or both models (b) and (c), stellar masses are better predicted than
alo masses. This is probably related to the intrinsic scatter in the
NRAS 542, 1776–1790 (2025)
tellar mass–halo mass relation which depends on the chemical and
tellar evolution specific to each progenitor galaxy. 

(iii) Model (c), informed by both the chemical and dynamical
roperties of the merger debris, is the most accurate at the estimation
f the merger parameters with an average RMSE of 1 . 83 Gyr ,
 . 54 dex , 0 . 69 dex , and 0 . 81 dex for τ/ [Gyr ], log ( M∗/ M�),
og ( M/ M�), and log (MMR ), respectively. Interestingly, as shown
n Table 1 , predictions of similar accuracy can be achieved with
odel (b) trained exclusively on the chemical abundance ratios

istribution of debris, which is also found to provide slightly more
onservative estimates. However, as can be seen comparing the
og ( M∗/ M�), log ( M/ M�), and log (MMR ) plots in Figs 3 (b), (c),
nd 5 (a), model (b) tends to overestimate the mass of high metallicity
nd relatively low-mass progenitor galaxies, which is moderated in
odel (c) by the addition of dynamical information. 
(iv) All models show a large scatter in the parameter estimates

or mergers that are not well represented in the training set. This
s due to the limited number of merger events in the simulations
hich was not successfully addressed in the data pre-processing

tep. Potential solutions involve combining data from multiple
osmological simulations or implementing a surrogate model for data
eneration. A significant difference in accuracy is observed between
he infall time predictions of early ( τ > 5 Gyr ) and late ( τ < 5 Gyr )
ergers as more accurate predictions are made for the former. 

In conclusion, we have shown that GalactiKit is an efficient
ethod in studying the assembly history of Milky Way-like systems.
his methodology can be efficiently applied to the analysis of the
hemodynamical data of millions of stars observed by current and
pcoming surveys in the Milky Way, to better constrain the infall
imes and the masses of disrupted progenitors. 
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