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ABSTRACT

We present GalactiKit, a data-driven methodology for estimating the lookback infall time, stellar mass, halo mass, and mass ratio
of the disrupted progenitors of Milky Way-like galaxies at the time of infall. GalactiKit uses simulation-based inference to extract
the information on galaxy formation processes encoded in the Auriga cosmological magnetohydrodynamic (MHD) simulations
of Milky Way-mass haloes to create a model that relates the properties of mergers to those of the corresponding merger debris
at z = 0. We investigate how well GalactiKit can reconstruct the merger properties given the dynamical, chemical, and the
combined chemodynamical information of debris. For this purpose, three models were implemented considering the following
properties of merger debris: (a) total energy and angular momentum, (b) iron-to-hydrogen and alpha-to-iron abundance ratios,
and (c) a combination of all of these. We find that the kinematics of the debris can be used to trace the lookback time at which
the progenitor was first accreted into the main halo. However, chemical information is necessary for inferring the stellar and
halo masses of the progenitors. In both models (b) and (c), the stellar masses are predicted more accurately than the halo masses,
which could be related to the scatter in the stellar mass—halo mass relation. Model (c) provides the most accurate predictions
for the merger parameters, which suggests that combining chemical and dynamical data of debris can significantly improve the
reconstruction of the Milky Way’s assembly history.
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stellar content.

1 INTRODUCTION

In the standard cosmological model, galaxies form hierarchically
by merging with smaller satellite systems over time (White & Rees
1978). A natural consequence of this ‘bottom-up’ formation scenario
is the assembly of a stellar component in the outer region of galaxies,
the stellar halo, dominated by tidally stripped stars once orbiting
the cannibalized systems (Searle & Zinn 1978). Based on the idea
that stellar populations preserve information on the history of the
environment since they formed (Eggen, Lynden-Bell & Sandage
1962; Searle & Zinn 1978), stellar haloes have become objects of
study as a bridge between the present and past of a galaxy’s evolution.

At the first stages of accretion, tidal debris tend to follow the
orbit of the merging progenitor as spatially coherent structures,
called streams. As the progenitor gradually sinks in the gravitational
potential of the host, stellar streams lose their coherence blending
with the stars formed in sifu (Knebe et al. 2005). Because galaxies can
be regarded, even when merging, as collisionless systems (Binney &
Tremaine 2008), the probability density of the distribution function
of stars around a point in phase-space is conserved over time
(Liouville’s theorem). Exploiting this property, Helmi & White
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(1999) devised a methodology to separate phase-mixed structures
belonging to different progenitors as overdensities in a new physical
space described by the integrals of motion, quantities which are
constant in time.

A further method for inferring the assembly history of a galaxy
from its present-day stellar content is by ‘chemical tagging’ (Freeman
& Bland-Hawthorn 2002). Satellite galaxies have an independent
chemical evolution history that imprints a unique signature on the
chemical composition of forming stars; hence, the abundances of
chemical elements can be used to ‘tag’ stars with a similar formation
site and time.

While earlier ‘archaeological’ investigations focused on the stellar
halo of the Milky Way (see reviews of Helmi 2020; Deason &
Belokurov 2024; Bonaca & Price-Whelan 2025), where longer time-
scales for phase-mixing enable the retention of information about
the mergers, more recent studies have extended the search for debris
into the disc and inner regions of the Galaxy, as more data have
become available (Arentsen et al. 2020; Kawata et al. 2024). The
first hints to the assembly history of the Galaxy were detected with
the Sagittarius (Ibata, Gilmore & Irwin 1994) and Helmi (Helmi et al.
1999) streams, which led to the discovery of examples of late and
early accretion events; however, it was only with the first and second
data release of the European Space Agency’s Gaia mission (Gaia
Collaboration 2016, 2018) that a more detailed picture of the past
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of the Milky Way came into view. The measurements of accurate
astrometry and photometry for over a billion stars significantly
enhanced the discovery of streams and kinematic substructures
associated to merging events. Moreover, the complementary data
on radial velocities and chemical abundances for tens of millions
of stars obtained with ground-based spectroscopic surveys — such
as the Apache Point Observatory Galactic Evolution Experiment
(APOGEE; Majewski et al. 2017), the Galactic Archaeology with
HERMES (GALAH; Buder et al. 2021), and the Large sky Area
Multi-Object fiber Spectroscopic Telescope (LAMOST; Cui et al.
2012), to mention a few — pushed further back our gaze into the first
stages of the Milky Way evolution (Kruijssen et al. 2019b; Horta
et al. 2021; Belokurov & Kravtsov 2022; Malhan & Rix 2024).

The general consensus is that the assembly history of the Milky
Way was dominated by a radial, massive accretion event which
occurred ~10 billion years ago, named Gaia Sausage/Enceladus
(GS/E; Chiba & Beers 2000; Brook et al. 2003; Meza et al. 2005;
Belokurov et al. 2018; Helmi et al. 2018). This merger is thought to
have had a dramatic effect on the proto-Milky Way by dynamically
heating the stars in the disc and bringing in a significant amount
of gas which led to a burst in star formation (Bignone, Helmi
& Tissera 2019; Grand et al. 2020; Ciucd et al. 2024). Although
discoveries of a plethora of minor mergers have been claimed
from the identification of stellar streams (Malhan, Ibata & Martin
2018) and chemodynamical studies in the inner halo (Naidu et al.
2020; Dodd et al. 2023; Horta et al. 2023), the GS/E is believed
to be the last significant merger, making the assembly history of
the Galaxy unusually quiet (Hammer et al. 2007). Currently, the
chronology of the merger events describing the Milky Way assembly
history is inferred through the ages of the associated globular cluster
and stellar populations. The former are derived empirically from
the age—metallicity relation (Massari, Koppelman & Helmi 2019;
Kruijssen et al. 2019b), while the latter can be measured directly
with asteroseismology techniques (Miglio et al. 2017; Montalban
etal. 2021), or inferred by comparing photometric and spectroscopic
observations to stellar evolution models via isochrone (Queiroz et al.
2018; Sanders & Das 2018) and colour—-magnitude diagram fitting
(Gallart et al. 2024). Similarly, methods for estimating the mass of
the disrupted progenitors of the Milky Way involve using empirical
relations such as the mass—metallicity relation (Harmsen et al. 2017;
Naidu et al. 2022), or fitting the density profile of debris (Mackereth
& Bovy 2020; Lane, Bovy & Mackereth 2023).

In this study, we introduce GalactiKit: a data-driven methodology
to infer the properties of the disrupted progenitors of the Milky Way.
In particular, we focus on retrieving the infall time, stellar mass, halo
mass. and the halo—mass ratio with the host of mergers at the time
of infall. These are determined by performing a Bayesian inference
analysis assuming that the progenitor properties are parameters of
an undefined model that produces the chemodynamical distribution
of the merger debris at z = 0. Despite the model being unknown,
there are multiple examples of mergers and phase-space evolution of
debris within cosmological simulations; hence, a mapping between
the debris and mergers properties can be learned using simulation-
based inference (SBI; Cranmer, Brehmer & Louppe 2020). Using
the information contained in the simulations, SBI techniques are
designed to perform Bayesian inference on models which are not
analytically defined, or which have intractable likelihood distribution
functions. Hence, SBI methods can be used to relate observations to
the most likely set of parameters that generated them, independently
of the degree of knowledge of the underlying model. Under the
assumption that observations can be simulated for a given set
of parameters, SBI methods rely on artificial neural networks to
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approximate the posterior (or likelihood) distributions from the joint
distribution of data and parameters. Once either of these quantities
are defined, the parameters associated with a given observation can
be determined probabilistically within the usual Bayesian formalism
by sampling the posterior distribution.

Previous applications of SBI in Astrophysics include constraining
cosmological parameters from galaxy cluster properties (Hahn et al.
2023; Herndndez-Martinez et al. 2025) and weak lensing maps
(Jeffrey, Alsing & Lanusse 2021), spectral energy distribution (SED)
fitting of galaxies (Hahn & Melchior 2022) and estimating compact
objects parameters from gravitational-wave data (Green, Simpson &
Gair 2020). In the context of estimating the properties of merging
galaxies, SBI has recently been used by Widmark & Johnston (2025)
to develop a framework for inferring the mass density and orbital
parameters of tidally perturbed dwarf galaxies based on the observed
position and line-of-sight velocity field.

More closely related to the scope of this work, Viterbo & Buck
(2024) have developed the Chemical Abundance Simulation Based
Inference (CASBI) model, which uses the SBI formalism to predict
the stellar mass and infall time of the disrupted components of the
stellar halo of Milky Way-mass galaxies based on the oxygen and
iron abundances of the debris. Following the idea proposed by Cun-
ningham et al. (2022) that the chemical abundance ratio distributions
(CARDs) of stellar haloes can be interpreted as the combination of the
CARDs of the progenitor galaxies, CASBI was trained and tested on a
data set of artificial haloes made up from a catalogue of dwarf galaxies
from the Numerical Investigation of a Hundred Astronomical Objects
(NIHAO) suite of cosmological simulations (Wang et al. 2015; Buck
2020). CASBI achieves remarkable accuracy in estimating the stellar
masses of the dwarf galaxy components in artificial haloes. However,
it is less clear what its performance is in estimating their times of
infall.

Here, we consider a different approach by developing an SBI
pipeline directly on the merger histories of galaxies within the Auriga
suite of cosmological simulations (Grand et al. 2017, 2024). We also
investigate the implications of using the dynamical and/or chemical
properties of the debris to inform the inference.

An overview of the Auriga simulations, as well as a description
of the procedure to extract and characterize the merger events in the
suite, is given in Section 2. A general description of SBI and details
about its implementation in the GalactiKit models are included in
Section 3. The results of the analysis are presented in Section 4,
while potential applications of the models are proposed in Section 5.
We summarize our conclusions in Section 6.

2 THE AURIGA SIMULATIONS

The data we use to train Galactikit are taken from the Auriga suite
of simulations (Grand et al. 2017, 2024). These are cosmological
magnetohydrodynamical (MHD) zoom-in simulations of (relatively
isolated) Milky Way-mass haloes run with the AREPO moving mesh
code (Springel 2010).

The haloes were selected from the L100N1504 EAGLE dark matter
only simulation (Schaye et al. 2015), which was run in a periodic
cube of comoving side length of 100 cMpc, with a dark matter
particle resolution of 1.15 x 10’ M. The simulation adopts a A
cold dark matter (ACDM) cosmology with model parameters taken
from Planck Collaboration XVI (2014).

The initial conditions for the re-simulation of a given Auriga halo
are prepared at z = 127. The high-resolution region is defined in the
Lagrangian region around the halo, outside of which the resolution
drops off with increasing distance. Baryons are added by splitting
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each dark matter particle into a dark matter particle—gas cell pair
with masses given by the cosmological abundance of baryons. The
Auriga suite comprises haloes simulated primarily at two resolution
levels, which are typically referred to as ‘level 4’ and ‘level 3’. In
this work, we consider the ‘level 4’ simulations, which comprise 39
Milky Way analogues in the high (30, 1 < Mzoo/[lo12 Mgl <2)
and low (9, 0.5 < My /[10"? M@] < 1) end of the estimated virial
mass range for the Milky Way (Wang, Hammer & Yang 2022). The
typical particle mass resolution is ~ 3 x 10°> and ~ 5 x 10* Mg, for
dark and baryonic matter, respectively.

The Auriga physics model is described in Grand et al. (2017)
and briefly summarized herein. Magnetic fields are seeded at the
beginning of the simulations in a single direction and with a
comoving strength of 10714 G. Re-ionization is modelled with a
spatially uniform, time-dependent ultraviolet background radiation
field (Faucher-Giguere et al. 2009) that completes at z = 6. Primor-
dial and metal-line cooling of gas with self-shielding corrections
are also implemented. As gas collapses to densities larger than 0.11
particles per cubic centimetre it enters a sub-grid model for star
formation: such gas is modelled as a two-phase interstellar medium,
comprised of a cold and hot phase, with an effective equation of state
(see Springel & Hernquist 2003, for a detailed description). Star
particles are then created stochastically following a time-dependent,
exponential probability function. Each particle represents a single
stellar population, with a defined age and metallicity. A Chabrier
(2003) initial mass function is assumed for the stellar evolution
of the particle. The chemical enrichment of surrounding gas cells
comes from asymptotic giant stars, Type II supernovae, and Type Ia
supernovae. Once haloes surpass amass of 5 x 10'* M, black holes
are seeded with a mass of 5 x 10° Mg at the gravitational potential
minimum of the halo, and proceed to grow from gas accretion and
merger processes following the prescription in Springel, Di Matteo
& Hernquist (2005a). Energetic feedback is modelled phenomeno-
logically as supernovae-driven galactic winds, as well as radiative
and thermal energy injection from active galactic nuclei radio and
quasar modes.

The Auriga galaxies have rotationally supported discs, flat rotation
curves and are consistent with the expected stellar mass—halo mass,
mass-metallicity and star formation rate relations (Grand et al.
2017). Moreover, the Auriga galaxies were directly compared to
the observational counterparts from the GHOSTS (Galaxy Halos,
Outer disks, Substructure, Thick disks, and Star clusters) survey
(Radburn-Smith et al. 2011; Monachesi et al. 2016) by Monachesi
et al. (2019), who showed the stellar haloes in Auriga reproduce the
scatter in stellar mass, surface brightness, and metallicity profiles of
Milky Way-mass galaxies. However, the Auriga galaxies were also
found to have more massive stellar haloes due to an extended in situ
component, which is discarded in this analysis.

2.1 Extracting mergers information

The z = 0 stellar composition of the Auriga galaxies is the result of
in situ star formation and merger accretion. For each simulation, the
evolutionary histories of all galaxies in the box are encoded in the
merger trees, which were computed in post-processing following the
LHaloTree algorithm (Springel et al. 2005b). At first, the SUBFIND
group finding algorithm (Springel et al. 2001) is used to identify
haloes and sub-haloes in all simulation outputs (snapshots). Then,
each halo (progenitor) is matched to all the ones having common
particles at the subsequent snapshot; a unique descendant is chosen
by selecting the halo with the highest number of particles in common
weighted by their binding energy. A merger occurs when two or more
progenitors point to the same descendant.
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From the merger trees, we can infer the stellar masses well and
structural properties of galaxies at any given time. As part of the
public data release of the Auriga Project (Grand et al. 2024), the
accretion history of the star particles within Ro' of the main haloes,
as computed by the merger trees, is reported in the ‘Accreted particle
lists” catalogues.

There are two possible approaches for sorting the accreted particles
in their systems of ‘origin’, hence defining the progenitors of the main
halo: (i) using the Root Index list, which associates each particle to
the index in the merger tree of the progenitor halo which was bound
to at formation; and (ii) with the PeakMassIndex list, which
matches a particle to the merger tree index of the progenitor halo
which was bound to at the time the progenitor reached its maximum
stellar mass. We decide to consider the second definition because
we are interested in retrieving the properties of a progenitor when
it first interacts with the main halo, hereby considered as when it
first crossed Ry, which often coincides or shortly follows the time
the progenitor undergoes a quenching in star formation (Kawata &
Mulchaey 2008; Simpson et al. 2018; Font et al. 2022).

We restricted our investigation to the most significant progenitors
in the assembly history of each galaxy by selecting only those
contributing with at least 100 star particles. This corresponds to
a minimum stellar mass cut-off of ~ 10® M, for the satellites at the
time of accretion, with most simulations having between 10 and 30
merger events meeting this criterion. In the whole suite, a total of 928
progenitors were identified, of which 792 are taken from the merger
trees of the high-mass Auriga simulations (1 < M,n/[10? Mpl <
2) and 136 from the low mass ones (0.5 < Mo /[10>Mg] < 1).
The majority of them (648) are completely disrupted at z = 0, and
appear as accreted stars; the rest of the stars are from existing
satellites (280) orbiting within Rygg.

An example of the separation of accreted star particles into the
progenitor galaxies in which they formed is reported in Fig. 1, which
shows — for the Au2l simulation — the z = 0O distribution of the
accreted star particles within Rygo in the integrals-of-motion (top)
and the alpha-iron (bottom) planes. The former is described by the
total energy and the z-component (perpendicular to the plane of the
disc) of angular momentum of particles, while the latter is defined
by the iron-to-hydrogen, [Fe/H], and alpha-to-iron, [« /Fe], chemical
abundance ratios. In the leftmost column, plots show star particles
colour-coded by the progenitor galaxy in which they formed based
on their PeakMassIndex label. In the middle column, the star
particles are coloured depending on whether their system of origin is
disrupted (grey) or appears as an existing satellite (black) at z = 0.
In the rightmost column, the star particles are coloured based on the
lookback infall time at which their progenitor of origin (as defined by
the associated PeakMassIndex) first crossed Ryop. Although 30
progenitor galaxies were identified for Au21, the majority of accreted
stars come from only a few systems, as can be visually distinguished
in the plots on the leftmost column. Particles from early accretion
events tend to have higher abundance of «-elements and are more
dispersed in the lower region of the integrals-of-motion plane than
their later accreted counterparts.

3 SIMULATION-BASED INFERENCE

The underlying idea of the GalactiKit methodology is that some
properties of a merging galaxy — such as the time of infall or the halo
mass — shape the present-day chemodynamical distribution of the

! Galactocentric radius enclosing a mass density 200 times higher than the
critical density of the universe, often taken as a proxy of the virial radius.
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Figure 1. Accreted star particles located within Rygo in the Au21 simulation at z = 0. The top row shows the integrals-of-motion distribution of the particles,
while the [Fe/H] — [« /Fe] plane is reported in the bottom. For the plots on the left, the same colour is given to particles coming from each of the 30 progenitor
galaxies contributing with at least 100 star particles. Only the PeakMassIndex of two progenitor galaxies is explicitly shown in the figure, while ellipsis
are reported for the colours corresponding to the remaining progenitors. In the plots in the middle column, star particles are colour-coded differently if their
progenitors are disrupted in the main halo (black) or are orbiting sub-haloes within Ry (grey). In the rightmost column, the plots show the distribution of star
particles colour-coded based on the lookback time at which their associated progenitor galaxy crossed Rxgp for the first time.

corresponding debris. Hence, we assume there is an undefined model
M which, given the vector of properties of a satellite at accretion
0, predicts the stellar properties x of the corresponding debris at
z = 0. An analytical definition of M is practically challenging as
it should account for complex, coupled physical processes such as
the chemical evolution and mass assembly of the host and satellite
galaxies in a cosmological context and the phase-space mixing of
the accreted debris through dynamical friction within the evolving
gravitational potential of the host. However, most of the relevant
galaxy formation processes are currently described in the Auriga
cosmological simulations at a level of detail that allows for direct
comparison between simulated galaxies and their observational
counterparts (Monachesi et al. 2019). Therefore, simulations can
be thought to already encode a realistic representation of M. In
order to extract the information encoded in the simulations and make
predictions on the properties of a galaxy at infall from the z =0
properties of its debris, GalactiKit adopts the SBI framework, which
provides a Bayesian description of M.

In the SBI formalism, given a set of parameters # and observations
x from an undefined model or with an intractable likelihood function,
if the data generation process can be simulated, the posterior
distribution p(@ | x) can be evaluated by either:

(i) iteratively comparing the observed data with simulations of
the model run with different parameters until a similarity threshold

is met. This technique is called approximate Bayesian computation
(ABC; Rubin 1984); and

(ii) approximating the likelihood or posterior distributions with
density estimation techniques.

Once the posterior distribution is known, inference on the model
parameters for a given observation is performed by sampling the
posterior distribution and computing summary statistics.

Because ABC requires simulations to be run at arbitrary points
in the @-parameter space and the sample of merger events {x, 6}
in the Auriga simulations is limited by the assembly history of
the simulated haloes, we adopt approach (ii) and implement SBI
by developing a deep learning model to approximate the posterior
distribution p(@ | x).

In this analysis, we focus on the following properties 6 of the
progenitor galaxies:

(i) infall time (t), defined as the lookback time at which the
satellite first crossed Rygo;

(ii) stellar mass and halo mass (M, and M, respectively) at infall;
and

(iii) the merger mass ratio (MMR), defined as the ratio between
the halo mass of the satellite and that of the main galaxy at
infall.

MNRAS 542, 1776-1790 (2025)
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To ensure a strong correlation between x and @, we consider the
properties of the debris that are known to be physically related to the
merger variables:

(i) total energy (E), which is related to the infall time through the
infall time—binding energy relation of sub-haloes and debris (Rocha,
Peter & Bullock 2012; Garcia-Bethencourt et al. 2023);

(ii) total specific angular momentum (L) which, like the total
energy or the radial action, is an integral of motion for a star in
a spherical potential; and

(iii) [Fe/H], which, as a proxy of metallicity, is correlated to the
mass of a galaxy through the mass—metallicity relation (Harmsen
et al. 2017).

(iv) [«e/Fe], which relates to the infall time of the progenitor as
stars from early accreted galaxies have, in general, higher abundance
of a-elements compared to stars from late mergers (Font et al. 2006).

The posterior estimation is performed with the masked autoregres-
sive flow (MAF; Papamakarios, Pavlakou & Murray 2017) technique.
Briefly, MAFs are generative models that approximate complex
probability distributions defined by the training data. By drawing
a random number from a normal distribution, MAFs generate a new
data point through a series of parametrized bijective transformations;
this is equivalent to sampling from the approximated probability
distribution of the training data. The models are trained by tuning
the parameters of the transformations such that the negative log-
probability of the training data is minimized.

A more detailed mathematical description of the SBI framework
and MAFs is reported in Section 3.1, while details on the imple-
mentation and training of the model are presented in Section 3.2.
The reader who is not interested in the detailed methodology can
skip these sections and refer directly to the results of the analysis in
Section 4.

An overview of the GalactiKit methodology is shown in Fig. 2.
Initially, the Auriga simulations were separated into a training set,
used to train MAF models that estimate p(f|x), and a test set,
used for validation. For simulations in both sets, the information
from the merger tree was used to define a set of merger—debris
pairs {x, @} by grouping the accreted stars orbiting within Ry of
the main halo at z = 0 into the corresponding progenitor galaxies
as defined in Section 2.1. The resulting training and test datasets
were then processed (see Section 3.2) to become valid inputs for the
MAF models. The data used to train the model comprised a variable
number of samples of 100 stars drawn randomly from each progenitor
in the training simulations. The number of samples was calculated
considering the total number of stars belonging to each progenitor,
such that the debris distribution of larger mergers is sampled more
times. Similarly, the test data consisted of samples of 100 stars drawn
randomly from the progenitors in the test galaxy. However, only one
sample was drawn per merger to avoid results being biased toward
major mergers. After training, the quality of the estimation of p(# | x)
was determined by comparing the actual properties of the mergers in
the test galaxy with the ones inferred by sampling the MAF models.
To obtain a statistical representation, 1000 #-samples per merger
were generated using the debris data as input to the models. To assess
how the model performs on unseen data, we performed a leave-one-
out cross-validation, where each of the 39 haloes was excluded one
at a time from the training set and used for testing. Hence, for each
iteration of the cross-validation procedure, the model was trained on
the merger—debris pairs of the 38 simulated galaxies in the training
set and tested on the merger events of the galaxy left out in the test
set. This ensures that the model was tested on unseen data, while its
evaluation still accounts for all the mergers in the simulations.

MNRAS 542, 1776-1790 (2025)

3.1 Density estimation with masked autoregressive flows

Consider the model M that relates the properties of a satellite galaxy
at the time of infall (@) with the chemodynamical properties at z = 0
of the corresponding debris (x). Applying Bayes’ theorem, the degree
of belief that a certain @ leads to a realization x of the model can be
measured by evaluating the posterior probability

_ px|0) p@®)
p(0|x)—7fp(x|0)d9,

where p(0) is the prior, encoding the data-independent information
on the possible merger parameters, and p(x | @) is the likelihood,
measuring the probability of observing a certain configuration of the
merger debris distribution given certain merger parameters. Hence,
for an observed distribution of merger debris xops, the most likely set
of properties of the corresponding progenitor galaxy @ can be inferred
by sampling the posterior probability p(# | x.s). However, as the
likelihood is unknown, the posterior cannot be evaluated explicitly.
This problem can be overcome adopting the SBI framework, where
simulations of the model M are used to obtain an approximation of
the posterior distribution. In particular, the posterior distribution is
modelled as a distribution function whose parameter values depends
on the vector of debris properties x,,s used for conditioning the
posterior, i.e.

€]

PO | Xobs) = P¢(0 [ Xobs), 2

where ¢ = h(xops) is the vector of parameters of the variational
distribution pg, and the function / represents the mapping between
the observations of the model x and the ¢ parameters. Because only
the internal parameters change depending on the conditioning input,
D¢ is the same distribution function for any value of x,ps; hence, the
posterior distribution is amortized, i.e. once the mapping between
distribution parameters and data is defined, inference on the merger
properties @ can be performed for any value of the debris properties
x.

In order to implement the posterior approximation described in
equation (2), we use MAF, a neural network technique which is
based on the idea that generating data with an autoregressive model
is equivalent to a normalizing flow (Kingma et al. 2016). A brief
description of the mathematical formalism of MAF applied to the
inference of merger parameters is presented below; we refer to
Papamakarios et al. (2017) for details on the algorithm.

Autoregressive models (Uria et al. 2016) are artificial neural
networks used for density estimation, and are based on the idea
that any distribution in D dimensions can be represented using
the probability product rule as a combination of the conditional
probabilities in the single dimensions. Hence, the posterior distri-
bution p(@ | x) of a merger defined by a galaxy whose properties are
0 = (v, M,, M, MMR) and debris with a certain vector of properties
x at z = 0, can be defined as:

D=4

p@1x) =[] pal0-4. %) 3)
d=1

where 0., = (6, ..., 0,4—1) is a vector whose components are the first

d — 1 components of the four-dimensional merger parameter vector
0.

In MAF, the conditional probabilities are modelled as single Gaus-
sians whose parameters are computed using Masked Autoencoders
for Distribution Estimation (MADE; Germain et al. 2015) models:

p(gd | 0<ds x) ~ P¢d(9d |9<ds x) = N (0(1 | Md, (expatl)z) s (4)
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Figure 2. Overview of the GalactiKit methodology. The Auriga simulations were first split into a training and test sets. For both cases, the accreted stars within
R00 of the main halo were associated to the corresponding progenitor galaxy creating a set of merger—debris pairs {x, }; this was then pre-processed to be
used as input to the MAF models approximating p(6 | x). The quality of the estimation was assessed through summary statistics comparing the inferred values
to the actual ones for the properties of mergers in the test. To ensure robust performance assessment, the procedure was repeated while systematically leaving
out one Auriga simulation for testing at a time. The images of the Auriga galaxies are taken from Grand et al. (2017).

with g = h,, (04, x) and oy = he, (04, x), where h,, and hg,
represent the MADE outputs as the mean and log-standard devi-
ation of the dth conditional probability. Hence, the p(6, |60 -4, x)
conditionals are approximated by Gaussian variational distributions
whose parameters, ¢, = {itq4, oy}, are computed from an artificial
neural network which takes as input the d — 1 previous components
of 6 and the conditions x. In this framework, sampling is equivalent
to generating a new point in the @-parameter space by explicitly
computing each dimension as

Gd = Uq EXPp Oy + Md, (5)

where uy ~ N(0, 1). Hence, equivalently to a normalizing flow
(Papamakarios et al. 2021), the model is mapping a point u =
(uy, ..., ug) in the base distribution to the merger parameter space
through an invertible and differentiable transformation: 8 = f(u).
Hence, the variational distribution approximating the posterior can
be expressed in terms of the base distribution p,, as

a -1
Pe(01x) = p.(f'(6)) HT , (©6)

-1 . . .
where ’% is the determinant of the Jacobian matrix of f~!,

—1
which for the transformation defined in equation (5) is ‘%‘ =
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exp (— 25=4 Old). Considering the model as a normalizing flow, it
is possible to increase the expressivity of MAF by stacking multiple
instances as a sequence of transformations. Thus, a sample of merger
parameters generated by a MAF model with N transformations is
computed as

0 = F(u), with F = fi0...0 fy and u ~ N(0, D), )

where I is the identity matrix and each f represents a single transfor-
mation, which includes an ensemble of Gaussian conditionals and the
MADE model, which take the vector of debris properties x and the
relevant components of @ as inputs and return the corresponding mean
and log-standard deviation. Because a combinations of invertible
functions is also invertible and the overall Jacobian determinant is the
product of the Jacobian determinants of the single transformations,
equation (6) can be adapted to the case of an arbitrary number of
transformation defined in equation (7), and written in log-form as

af!
06,

N
log py(8 | x) =log p.(u) + Z log

i=1

, ®

where 0; = f; o...o fi(u) is an intermediate state of the flow F
relating the base distribution to the one of the merger properties 6.
During the training routine, the internal parameters of the MADE
models, which are used to compute the vectors u; and o; defining
each transformation f;, are updated in order to maximize the total log
likelihood ), log pg(8, | x,) of the training data, where x,,, 6, ~
p(@, x), which is the joint probability distribution of merger and
debris properties defined by the progenitor galaxies in the Auriga
simulations.

Once the model has been trained, a new sample of the posterior
distribution of the progenitor parameters given a certain observation
of debris properties at z = 0 can be obtained by drawing a random
number from a Gaussian distribution and applying the series of
data-dependent transformations specified by the MADE models as
described in equation (7).

3.2 Data pre-processing and training implementation

Before being used to train the MAF model, the progenitors # and
merger debris x properties were processed as follows:

(i) The distributions of the debris in E and L were transformed
by taking the square root of the corresponding absolute values,
to compensate for the skewness of the original distributions. We
also considered scaling the distributions of the debris based on
the structural, present-day properties of the galaxies; namely, the
maximum rotational velocity, scale radius, Rago and Mygy. However,
we find that this leads to little or no improvements in the posterior
estimation.

(ii) Outliers from the interquartile (i.e. 25th and 75th percentile)
ranges of the debris distributions in E, L, [Fe/H], and [«r/Fe] were
detected and discarded. This is performed in preparation of the next
step, as particles whose properties lie at the margin of the distributions
might skew the training data while not representing the majority of
the debris from a given merger. After this procedure, all merger
events that fell below the 100 star threshold were also removed from
the analysis. To ensure all inputs of the models are on the same scale,
the resulting distributions were standardized by subtracting the mean
and dividing by the standard deviation in each dimension.

(iii) Because the number of particles representing the merger
debris depends on the progenitor mass, while MAF requires an input
of fixed dimensionality, N samples of 100 stars were drawn randomly
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from each debris distribution, allowing for stars to potentially be
included in multiple samples. In order to account for the intrinsic
variability in x when sampling large progenitors, the number of
samples for a given merger was calculated in terms of the number of
associated accreted stars S, as N = min(10, |.S/100]).

(iv) To provide a balanced representation of all mergers in the
training set, the debris distributions of mergers with uncommon
parameters were oversampled. For this purpose, a k-means model
was applied to the #-parameter space to form 20 groups with similar
properties. Then, the number of samples from mergers in each group
was counted. By imposing that each group has to contribute the same
number of samples, a balanced data set was achieved by drawing
more samples from the debris of the mergers from underrepresented
groups, with each contributing with an equal number of extra
samples.

The above process returns a data set composed of merger—
debris pairs which more uniformly covers the @-parameter space,
is normally distributed in x, and has homogeneous samples (i.e. all
sharing the same dimensionality D x 100, where D is the number
of stellar properties considered).

The posterior distribution p(@ | x) was modelled with an ensemble
of three MAFs to avoid overfitting, which is more likely to affect a
single density estimator. All the MAF models share the same initial
configuration (i.e. number of transformations, number of neurons
in the hidden layers, etc.), but are trained separately; because the
optimization of the internal parameters of an artificial neural network
is a stochastic process, the resulting three MAFs are effectively three
different models of the posterior distribution. The implementation of
the SBI framework was performed using the Learning the Universe
Implicit Likelihood Inference (LtU-ILI) pipeline (Ho et al. 2024)
with the sbi backend. The number of transformations in each
MAEF, the length of the hidden layers in the MADE models, and
the training parameters (batch size and learning rate) were derived
using the Optuna hyperparameter optimization framework (Akiba
et al. 2019) setting the log-likelihood of a fixed validation data set as
objective function. The resulting MAF models used in the analysis
comprised 22 MADE layers with 463 neurons per hidden layer and
were trained on batches of 2569 examples with a learning rate of
0.001.

4 RESULTS

Three implementation of GalactiKit were developed to esti-
mate the posterior distribution of the model M described
in Section 3 for different combinations of debris prop-
erties x, namely: (a) E, L; (b) [Fe/H], [@/Fe]; and (c)
E, L, [Fe/H], [«/Fe]. The target merger parameters were fixed to
0 = (z, log(M, /M), log(M /M@), log(MMR)) for all cases. The
aim was to investigate to what extent the properties of a merger can
be reconstructed when different degrees of debris information are
available. For each combination of x, the results of the leave-one-
out cross-validation procedure are reported in Fig. 3 as the inferred
against the actual parameters for the mergers in the test galaxies. In
this paper, ‘true’ indicates the parameter values as directly measured
in the Auriga simulations, while ‘predicted’ refers to the values
inferred from the estimated posterior distributions. Results from each
model are shown in separate rows with estimates from model (a), (b),
and (c) reported in the top, middle, and bottom rows, respectively.
In the top plots of each row, the points represent the median of the
1000 samples drawn from the inferred posterior distribution of the
merger parameters, whereas the 34th—68th percentile ranges (oy) are
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Figure 3. Merger parameters inferred by SBI models trained on different combinations of z = 0 debris properties: (a) E, L (top), (b) [Fe/H], [er/Fe] (middle),
and (c) E, L, [Fe/H] and [«/Fe] (bottom). Each point represents the median value of the parameter samples, while the error bar shows the extent of the 34th—68th
percentile range of the distribution. A unique colour is associated to merger events associated to a specific galaxy, for which case the SBI models used for

inference were trained on the mergers from the remaining galaxies in the suite.

shown as error bars. The dotted line indicates perfect prediction of the
merger parameters. Different colours are associated to mergers from
different test galaxies included in the cross-validation procedure.
The distribution of the fractional deviations between the predicted
and true parameters compared to oy is reported as a sub-panel in each
plot. A deviation of 1 oy from the true parameter is highlighted as a
green-shaded region, while the median distribution of the deviations
is show as black continuous line. By visually inspecting Fig. 3, it
can be noticed that the colour distribution is uniform in all the plots,

suggesting that the model performances are similar and do not depend
on the assembly history of the test galaxy.

As intuitively expected from the infall time—binding energy rela-
tion of sub-haloes (Rocha et al. 2012) and conservation principles,
the energy and angular momentum distributions of debris appear to
contain information on the accretion time of the associated progen-
itor, while being unrelated to the mass of the system. The energy
distribution of debris is strongly dependent on the gravitational
potential of the main galaxy; debris from early mergers have had
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Figure 4. Same as Fig. 3(c), but mergers are colour-coded by the median value of the total energy (a, upper panel) and total angular momentum (b, bottom

panel) of the corresponding debris distribution.

the time to complete a few orbits around the galaxy and sink into the
bottom of the gravitational potential, hence having a higher binding
energy (i.e. lower total energy) than debris from later mergers.
Moreover, as the host halo accretes more mass, the gravitational
potential increases overtime contributing to shifting early-accreted
stars at lower energies. This is shown in Fig. 4(a), which replicates
the plots in Fig. 3(c) colour-coding the mergers by the median total
energy of the associated debris at z = 0.

A drop in the performance of model (a) can be noticed for mergers
more recent than five billion years ago; rather than being physically
motivated, this limitation is likely caused by a lack of training
examples in that region as the infall time merger distribution, shown
in the relevant sub-panels, is denser at high v values. A potential
solution could be complementing the current data set with merger
events from other cosmological simulations. Alternatively, a machine
learning model could be trained as a surrogate of the simulation
process (see e.g. Viterbo & Buck 2024) to generate an arbitrary
number of training examples in any region of the #-parameter space.

The gravitational potential of the main galaxy is closely related
to its mass density profile, which is not significantly affected by
the accretion of satellites (with the exception of major mergers)
as galaxies tend to grow ‘inside-out’ through smooth accretion
(L’Huillier, Combes & Semelin 2012; Pérez et al. 2013). Hence,
the energy distribution of debris is not an appropriate proxy for the
mass of accreted satellites as shown in Fig. 3(a). The same conclusion
can be drawn from Fig. 4, which shows that both the median values
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of the debris £ and L do not correlate with the mass of the associated
mergers.

Interestingly, despite failing at predicting exact values, the energy
of debris appears to be broadly informative for distinguishing
between massive (MMR > 1/20) and less-massive (MMR < 1/20)
mergers as shown in Fig. 4(a). When limited to this task, model (a) is
able to correctly identify 66 of the 139 massive mergers in the suite,
with a 0.48 purity.

Providing information on the chemical abundances of debris
significantly improves the posterior fitting, as shown by the middle
and bottom panels in Fig. 3. The [Fe/H] and [« /Fe] abundance ratios
are closely related to the star formation history of the progenitor
galaxy, which is affected both by the accretion time, when it stops due
to cold gas being stripped away by the main galaxy, and by the mass
of the system, as more massive satellites form multiple generations of
stars, hence producing debris with higher metallicity values. Fig. 5
shows samples from model (c) trained on the E, L, [Fe/H], and
[ae/Fe] debris information and colour-coded by the median values
of the actual [Fe/H] (Fig. 5a) and [«/Fe] (Fig. 5b) distributions.
The [Fe/H] abundance of debris correlates well with the mass of the
associated progenitor, which is expected from the mass—metallicity
relation, as more massive systems formed multiple generations
of stellar populations which contributed to enrich the interstellar
medium with metals. However, the mass—metallicity relation presents
an intrinsic scatter which depends on galaxy-specific properties such
as the gas fraction, inflow, and outflow, or the star formation rate
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Figure 5. Same as Fig. 3(c), but mergers are colour-coded by the median value of the [Fe/H] (a, upper panel) and [« /Fe] (b, bottom panel) distributions of the

corresponding debris.

(van Loon, Mitchell & Schaye 2021). This could be the cause of the
significant deviation between the mass estimates for some metal-rich
mergers as can be seen comparing the log(M /M) plots in Figs 3(b)
and 5(a).

Fig. 5 suggests that the [« /Fe] ratio appears to correlate better with
the accretion time of mergers than [Fe/H]. This could be explained
in terms of the time-scales involved in the two enrichment channels
and the effect of the gravitational interaction of the host. «-elements
are mostly produced in Type II supernovae on a time-scale of few
million years, whereas Fe atoms are mostly released during Type Ia
supernovae, which require a timescale of ~billion year (McWilliam
1997). When a satellite is accreted, its star formation stops due
to the cold gas being stripped away by the host galaxy. Hence,
satellites accreted at late times would appear at a later stage of their
chemical evolution with stars characterized by a lower abundance
of «-elements compared to stars from early mergers (Font et al.
2006).

The infall time estimates for late mergers (t < 5 Gyr) obtained
from models (b) and (c) trained with [Fe/H] and [« /Fe] are closer to
the actual values than the ones of model (a) trained only on the E, L
debris distributions; however, the model accuracy is still not uniform
across the whole range of the parameter space. This, alongside
with the plateaus at the edges of the predicted log(M/M¢) and
log(MMR) distributions, is probably related to the limited number
of training examples in those ranges. A significant improvement is
also seen when distinguishing massive mergers with models (b) and

(c) identifying 74 and 88 massive mergers reaching purity values of
0.61 and 0.62, respectively.

A comparison of the performance of the GalactiKit models defined
by the three combinations of debris properties can also be performed
quantitatively in terms of the root-mean-squared error (RMSE) and
mean-relative-uncertainty (MRU). The RMSE is measured for a
single merger by directly comparing the inferred values of the
parameters 6 to the actual Oyye as

N

RMSE = , )
where N = 1,000 is the number of i-samples drawn from the
approximated posterior distribution of each merger event. The RMSE
estimates the accuracy of the model by measuring how close the
average prediction of the inferred merger parameters is to the true
value.

The MRU is defined comparing the size of a given confidence
interval, defined by a percentile range Q,(8) — Q,(0), to the extent of
the prior distributions of each dimension of @. Each prior distribution
informs on the probability that a merger property can assume a
certain value, hence excluding the ones that are not physical. In this
study, the four merger parameters that define the properties of the
progenitors at infall are assumed to have uniform prior distributions
such that, for a given merger, the true parameters are known to
have equal probability to lie within any given point of the corre-
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Table 1. Quantitative comparison between the merger parameter estimates inferred through the posterior models trained on
different combinations of debris information. From left to right, the columns report: (i) the inferred merger parameter; (ii) the
root-mean-squared error (RMSE) between the actual and inferred merger parameter; (iii) the fraction of mergers whose actual
parameters are within the 34th—68th percentile range of the samples drawn from the posterior model; (iv) the mean-relative
uncertainty (MRU) for the 34th—68th percentile range; (v) and (vi) are the same as (iii) and (iv) but considering the 5th-95th

percentile range as confidence interval.

% RMSE within 34th—68th MRU(34,68) within 5th-95th MRU(5,95)
E, L
T 3.44 0.28 0.15 0.81 0.56
log(M/M@) 1.25 0.28 0.14 0.88 0.47
log(M /M@) 1.00 0.36 0.14 091 0.51
MMR(log) 0.94 0.39 0.12 0.91 0.48
[Fe/H], [«/Fe]
T 1.92 0.30 0.08 0.88 0.33
log(M+/M@) 0.58 0.39 0.05 0.92 0.24
log(M /M) 0.73 0.41 0.08 0.92 0.38
MMR (log) 0.87 0.38 0.10 0.91 0.46
E. L, [Fe/H], [a/Fe]
T 1.83 0.29 0.08 0.86 0.30
log(M/M@) 0.54 0.35 0.04 0.91 0.22
log(M /M@) 0.69 0.34 0.08 0.90 0.35
MMR(log) 0.81 0.34 0.10 0.89 0.41

sponding ranges, i.e. T /Gyr € {0, 13.5}, log(M,/Mp) € {5, 11},
log(M /M@) € {7, 12}, and log(MMR) € {5, 0}. Thus, the MRU
for the predictions of the properties of a given merger event is
calculated as

Qa(0) — 04(8)

max(otrue) - min(otrue) ’

MRU(a, b) = (10)
where Q,(0) and Q,(@) are the values of @ at the ath and bth
percentile of the predicted posterior distribution, and max(fyyye) —
min(fye) refers to the difference between the maximum and mini-
mum values of @ as defined by the prior ranges. The MRU provides
an estimate of the precision of the predictions, where MRU values
approaching O indicate a model that consistently makes similar
predictions for a given merger (i.e. the model is confident about
the estimated value of @), whereas MRU values close to 1 suggest
that, despite the information of the debris properties, the model is
not able to constrain the merger parameters to a specific region of
the prior space.

The RMSE and MRU were computed for each of the 928 merger
events considering the # samples used for producing Figs 3, 4, and 5.
The average of the RMSE and MRU values are reported in Table 1,
alongside with the average fraction of test examples for which the true
merger parameters fall within the 34th—68th and 5th-95th percentile
ranges of the predicted posterior distributions.

Compared to model (a) informed only through dynamical data, the
GalactiKit models (b) and (c) trained including [Fe/H] and [« /Fe]
provide the most accurate predictions of the merger parameters with
an average decrease in RMSE of about 45, 55, 29, and 12 per cent
for the estimates of 7, log(M./M@), log(M /M), and log(MMR),
respectively. As previously discussed, the time estimates of all
models are considerably more accurate for merger events occurred
earlier than five billion years ago with average RMSE values of
3.30, 1.75, and 1.64 Gyr compared to 4.45, 3.12, and 3.09 Gyr for
late mergers as predicted by models (a), (b) and (c), respectively.
This would be less problematic for Galactic archaeology studies as
significant satellites of the Milky Way with T < 5 Gyr are expected
to be either still orbiting the Galaxy or traceable from stellar streams.
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Estimates for the stellar and halo masses of mergers are also more
accurate when provided by the models (b) and (c). In both cases,
the stellar mass is better predicted than the halo mass because of
the intrinsic scatter in the stellar mass—halo mass relation (SMHR),
which could be due, for instance, to haloes of same total mass
but different concentration forming a different number of stars as
more concentrated haloes are associated to earlier formation times
(Matthee et al. 2017). The scatter in the SMHR is found to be
larger at smaller halo masses, which could also be the cause to
the decrease in accuracy for the halo mass estimates of mergers with
log(M /M@) < 9.

Table 1 indicates that all models predict less than half of the merger
parameters within the 34th—68th percentile range; as the RMSE are
reasonably low, this is a sign of overconfidence probably associated
to both the reduced variety of merging events in the training set
and the repetition of samples from the same progenitors. The small
size of the confidence interval compared to the parameter space, as
reported by the MRU values, points towards the same conclusion.
More conservative estimates of the merging parameters could be
obtained taking into account a larger confidence interval, as shown
in the last two columns of Table 1; however, there is the risk of
obtaining an uninformative analysis as the size of the considered
percentile range approaches the extent of the prior ranges of the
parameters.

Overall, model (b) trained exclusively on [Fe/H] and [«/Fe]
has a very similar performance compared to model (c) trained
including E and L. Thus, the information contained in the chemical
abundance ratios of debris appears to be enough for inferring the
infall time and mass of the associated merger. The extra information
provided by the dynamical quantities seems to contribute to the
overconfidence of the model as the decrease in MRU values comes
with a slight decrease in the fraction of parameters correctly inferred
for both the 34th-68th and 5th-95th percentile ranges. However, the
information on the E and L distributions of debris also appears to
help constraining the mass predictions of metal-rich, but relatively
low-mass progenitor galaxies, as can be noticed comparing the
log(M,./M@), log(M /M), and log(MMR) plots in Figs 3(b), (c),
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and 5(a). This is also reflected with a difference in RMSE (0.54 and
0.58;0.69 and 0.73; 0.81 and 0.87 dex) between model (c) and (b) as
shown in Table 1. Hence, the combination of chemical and dynamical
debris properties appears to be preferred for the development of
models of the merger parameters, if the observed overconfidence is
addressed through changes in the data, e.g. increasing the variety of
training examples, or methodology, e.g. changing the technique for
the posterior estimation.

5 DISCUSSION

GalactiKit provides a quantitative description of the assembly his-
tory of Milky Way-like galaxies by returning predictions within
confidence intervals of the infall time, stellar mass, halo mass,
and mass ratio with the host of their progenitors. The precision of
the prediction depends on the amount of information available on
the distribution of the merger debris z = 0, with models trained
on chemical abundances significantly outperforming those based
only on dynamical data. Complementing chemical with dynamical
information seems to mostly contribute to reducing the scatter in the
mass estimates of metal-rich mergers, while maintaining a similar
performance to the models relying on chemical abundances only in
the rest of cases.

Hence, there appears to be a strong link between the properties
of a galaxy at infall and the chemical abundance distribution of its
debris at z = 0. This can be motivated by known physical phenomena
such as the observed relation between mass and metallicity of
galaxies (Harmsen et al. 2017) and the expected difference in o-
element abundances expected in late and early accreted satellites
(Font et al. 2006; Grimozzi, Font & De Rossi 2024). However, the
GalactiKit models leverage the knowledge of these galaxy formation
processes encoded in the Auriga chemical evolution model, which
is limited by theoretical uncertainties in stellar evolution such as the
nucleosynthetic yields of the different enrichment channels or the
characteristics of the intermediate mass function. Therefore, potential
drops in the predictive ability of the models could be observed if
applied to a cosmological context where the chemical evolution
of galaxies significantly differs from the one described in Auriga.
Testing on a suite of simulations with different chemical evolution
prescription could offer a framework to evaluate the potential drop
in performance before the application to observations. For instance,
it would be interesting to investigate the impact of a galaxy’s cosmo-
logical environment on the predictive performance of GalactiKit. The
haloes in the Auriga simulations have been selected to be relatively
‘isolated’” at redshift zero; however, the Milky Way is thought to
be orbiting within a Local Group (LG) of galaxies including a
companion with similar mass (M31) and other hundreds of dwarf
galaxies (McConnachie 2012). The High-resolutions Environmental
Simulations of The Immediate Area (HESTIA; Libeskind et al.
2020), which are designed to reproduce the properties of the galaxy
population in the LG, would represent an interesting testbed for
investigating the GalactiKit predictive capacity on environmentally
constrained assembly histories. However, we leave this investigation
for further studies, as GalactiKit is primarily aimed at inferring the
properties of accreted satellites in the Milky Way, which Auriga
haloes have been shown to reproduce both in terms of morphology
and assembly history (Fattahi et al. 2019; Monachesi et al. 2019).

Another limitation of the GalactiKit methodology is the assump-
tion that accreted stars can be grouped into their progenitors of origin
even in galaxies whose merger tree information is not accessible.
Based on the idea that stars which formed in the same system
share similar orbital and chemical properties, several methods have

GalactiKit, merger properties with SBI 1787

been developed to identify accreted sub-structures in the Milky Way
with clustering algorithms (e.g. Koppelman et al. 2019; Naidu et al.
2020; Dodd et al. 2023). However, the purity of the resulting merger
debris groups is unknown and can be affected by the significant
contamination of in situ stars (Thomas et al. 2025). Although there are
methods to mitigate the presence of the in sifu population (Sante et al.
2024), it remains to be investigated how well the GalactiKit models
can infer the properties of disrupted progenitors based on incomplete
or contaminated distributions of merger debris. Similarly, incom-
pleteness could represent an issue if the samples of merger debris are
limited to certain parts of their actual chemodynamical distribution.
Therefore, we caution against the application of these models on
observational data sets in which: (i) there is little confidence in the
region of the chemodynamical space in which the merger debris are
located; (ii) the overall chemodynamical distribution of stars from
the progenitor is believed to not be effectively represented by the
considered debris sample; and (iii) there are significant uncertainties
on the measurements of the stellar parameters, as they are not taken
into account by GalactiKit during the posterior density estimation.

The accuracy of posterior distributions in multidimensional SBI
models, i.e. how similar the approximated distributions are to the
real ones, can be assessed using the ‘Tests of Accuracy with Random
Points’ (TARP) coverage testing method (Lemos et al. 2023). The
test involves comparing the expected coverage probabilities of the
posterior to the corresponding credibility levels at which they are
evaluated. However, the effectiveness of the TARP test relies on
having a large number of test simulations, as more granular regions of
the posterior space can be probed. In this study, due to the leave-one-
out cross-validation, each test set contains only the merger events
relative to one galaxy. Therefore, a meaningful evaluation of the
posterior coverage probabilities could not be performed using the
TARP test for the three models, which is an important validation step
that must be conducted before the model can be confidently applied
to real data.

In spite of the limitations mentioned above, the GalactiKit
methodology is promising for future applications to the Milky Way.
Combined with the information on the merger debris distribution
of the accreted substructures already discovered in the Milky Way,
GalactiKit can be used to provide a quantitative picture of the
formation history of the Galaxy by estimating the mass and infall time
of the various accretion events. A similar endeavour was attempted
by Kruijssen et al. (2019b), who used the statistical correlations
between globular cluster and galaxy properties in the E-MOSAICS
simulations (Kruijssen et al. 2019a) to reconstruct the merger tree
of the Milky Way from the observed globular cluster population.
GalactiKit provides a framework to extend this analysis from the
globular cluster population to the millions of single stars observed
by Gaia and to the present and upcoming spectroscopic surveys,
hence depicting a more complete picture of the assembly history of
the Milky Way.

A detailed reconstruction of the turbulent past of the Galaxy could
be useful for a better understanding of the evolution of the Milky
Way in a cosmological context. The Galaxy is considered to have
undergone an unusually quiet accretion history within the ACDM
cosmology framework (Hammer et al. 2007; Evans et al. 2020).
Theoretical predictions from the dark matter mass function (Tinker
et al. 2008) and the stellar-to-halo mass relation (Brook et al. 2014)
suggest that the majority of merger events for a Milky Way-mass
galaxy consists of the accretion of low-mass dark haloes (Purcell,
Bullock & Zentner 2007), with the majority of stars in the stellar
halo coming from only ~three major (mass ratio > 1/3), luminous
satellites (Fakhouri, Ma & Boylan-Kolchin 2010). In the case of the

MNRAS 542, 1776-1790 (2025)

920z Asenuepr 9o uo Jasn AjsiaAiun saioopy uyor j0odiaai] Aq €€vYE28/9/ 2 L/S/ZYS/8191e/SeluW/Wwod dno-olwapeoe//:sdny woJj papeojumoq



1788  A. Sante et al.

Galaxy, merging events in this mass range correspond to the accretion
of the GS/E dwarf galaxy and the Large Magellanic Cloud, which
are more than 10 billion years apart. Adding further complexity,
Hammer et al. (2024) showed that the accretion time of the GS/E
dwarf galaxy, as measured using the age—metallicity relation (AMR)
of the globular cluster population identified by Kruijssen et al.
(2019b), would have had to be shifted at even earlier times to be
consistent with the satellite population of the Milky Way under the
infall time-binding energy relation (Rocha et al. 2012). Thus, the
application of GalactiKit models could provide a clearer perspective
by estimating the accretion times of all the disrupted satellites of
the Galaxy, including those without an associated globular cluster
population.

Studying the properties of the progenitors of the Milky Way can
also be useful outside the Galactic archaeology context. Limberg
(2024) suggested that the evidence for an intermediate mass black
hole (IMBH) in wCentauri (Hdberle et al. 2024), arguably the old
nuclear star cluster of the GS/E galaxy (Limberg et al. 2022), could
extend the central black hole mass—host stellar mass relation (Greene,
Strader & Ho 2020) to the dwarf galaxies regime. Hence, more
IMBHs could potentially be located within the proximity of debris
from disrupted progenitors of the Milky Way. Therefore, GalactiKit
could be used to estimate the mass of the disrupted progenitors of the
Milky Way directly from the distributions of the merger debris, hence
informing on the potential presence of undetected IMBHs among
the accreted stars. Moreover, if a black hole is detected and linked
to the debris of an accretion event, such as the case of the IMBH in
wCentauri, GalactiKit could be used to infer the stellar mass of the
progenitor galaxy, which could in turn be used to indirectly infer the
black hole mass from the black hole mass—host stellar mass relation.

6 CONCLUSIONS

GalactiKit is a data-driven methodology for determining the look-
back infall time, stellar mass, halo mass, and mass ratio with the
host of disrupted satellite galaxies of Milky Way analogues. Using
simulation-based inference to leverage the information on galaxy
formation encoded in the merger trees of the Milky Way-mass haloes
from the Auriga cosmological simulations, GalactiKit estimates the
posterior distribution of the merger parameters as conditioned by the
z = 0 distribution of the corresponding debris.

In order to investigate how accurate is the inference of merger
properties from various degrees of information on the merger debris,
we developed three GalactiKit models considering the following
chemodynamical properties of the accreted stars: (a) E and L, (b)
[Fe/H] and [«/Fe], and (c) E, L, [Fe/H] and [e«/Fe]. The results of
our analysis can be summarized as follows:

(i) The total energy of accreted stars is a tracer of the accretion time
of progenitor galaxies (Fig. 3a); this result has already been known
for surviving satellites (Rocha et al. 2012) and is extended to phase-
mixed sub-structures here. Moreover, energy and angular momentum
information can be used for an approximate identification of massive
mergers; model (a) correctly predicts a median MMR above 1/20 for
47 per cent of the total massive mergers, with a purity of 0.48.

(i1) Including the chemical information of the debris provides
a significant improvement in the accuracy of the estimates for all
merger parameters, and is a necessary ingredient for the prediction
of the stellar and halo masses of progenitor galaxies at infall (Fig. 3).
For both models (b) and (c), stellar masses are better predicted than
halo masses. This is probably related to the intrinsic scatter in the
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stellar mass—halo mass relation which depends on the chemical and
stellar evolution specific to each progenitor galaxy.

(iii) Model (c), informed by both the chemical and dynamical
properties of the merger debris, is the most accurate at the estimation
of the merger parameters with an average RMSE of 1.83 Gyr,
0.54dex, 0.69dex, and 0.81dex for t/[Gyr], log(M./Mgp),
log(M /M), and log(MMR), respectively. Interestingly, as shown
in Table 1, predictions of similar accuracy can be achieved with
model (b) trained exclusively on the chemical abundance ratios
distribution of debris, which is also found to provide slightly more
conservative estimates. However, as can be seen comparing the
log(M,/M@), log(M /M), and log(MMR) plots in Figs 3(b), (c),
and 5(a), model (b) tends to overestimate the mass of high metallicity
and relatively low-mass progenitor galaxies, which is moderated in
model (c) by the addition of dynamical information.

(iv) All models show a large scatter in the parameter estimates
for mergers that are not well represented in the training set. This
is due to the limited number of merger events in the simulations
which was not successfully addressed in the data pre-processing
step. Potential solutions involve combining data from multiple
cosmological simulations or implementing a surrogate model for data
generation. A significant difference in accuracy is observed between
the infall time predictions of early (r > 5 Gyr) and late (r < 5 Gyr)
mergers as more accurate predictions are made for the former.

In conclusion, we have shown that GalactiKit is an efficient
method in studying the assembly history of Milky Way-like systems.
This methodology can be efficiently applied to the analysis of the
chemodynamical data of millions of stars observed by current and
upcoming surveys in the Milky Way, to better constrain the infall
times and the masses of disrupted progenitors.
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