

Attentional bias in people with moderate-to-severe cannabis use disorder

Marianna Quinones-Valera, Gary Chan, Madeleine Fraser, Andrew Jones, Tom P. Freeman, Chandni Hindocha, Hannah Thomson, Eugene McTavish, Hannah Sehl, Adam Clemente, Janna Cousijn, Izelle Labuschagne, Peter Rendell, Gill Terrett, Lisa-Marie Greenwood, Govinda Poudel, Chao Suo, Victoria Manning, Valentina Lorenzetti

PII: S0010-440X(25)00086-0

DOI: <https://doi.org/10.1016/j.comppsych.2025.152658>

Reference: YCOMP 152658

To appear in: *Comprehensive Psychiatry*

Received date: 26 February 2025

Revised date: 27 November 2025

Accepted date: 22 December 2025

Please cite this article as: M. Quinones-Valera, G. Chan, M. Fraser, et al., Attentional bias in people with moderate-to-severe cannabis use disorder, *Comprehensive Psychiatry* (2025), <https://doi.org/10.1016/j.comppsych.2025.152658>

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Inc.

Attentional Bias in People with Moderate-To-Severe Cannabis Use Disorder

Marianna Quinones-Valera, M.A.¹, Gary Chan, Ph.D², Madeleine Fraser, Ph.D³, Andrew Jones, Ph.D⁴, Tom P Freeman, Ph.D^{5,6}, Chandni Hindocha, Ph.D⁵, Hannah Thomson, Ph.D¹, Eugene McTavish, PhD¹, Hannah Sehl, Ph.D¹, Adam Clemente, Ph.D, M.A³, Janna Cousijn, Ph.D⁷, Izelle Labuschagne, Ph.D^{3,8}, Peter Rendell, Ph.D^{3,8}, Gill Terrett, Ph.D³, Lisa-Marie Greenwood, Ph.D⁹, Govinda Poudel, Ph.D^{10,11}, Chao Suo, Ph.D^{1,12}, Victoria Manning, Ph.D^{13*}, Valentina Lorenzetti, Ph.D^{1*}

¹Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia

²National Centre for Youth Substance Use Research, The University of Queensland, Queensland, Australia

³School of Behavioural & Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia

⁴Liverpool John Moores University, Liverpool, UK.

⁵Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB London, UK.

⁶Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK

⁷Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands

⁸School of Psychology, University of Queensland, Brisbane, Queensland, Australia

⁹School of Medicine and Psychology, Australian National University College of Health and Medicine, The Australian National University, Canberra, Australia

¹⁰Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia

¹¹Braincast Neurotechnologies, Melbourne, Victoria, Australia

¹²Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia

¹³Turning Point, Eastern Health, Monash University, Melbourne, VIC, Australia

*Authors contributed equally to the manuscript

Corresponding author:

Prof Valentina Lorenzetti, PhD

Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University

Address: Level 5 Daniel Mannix Building, 115 Victoria Parade, Fitzroy VIC 3065, Australia

Email: valentina.lorenzetti@acu.edu.au

Phone number: +61 03 9230 808

Acknowledgments: We thank all participants for contributing their data and time to the project. We acknowledge Ms Natalie DeBono, Dr Leonie Duehlmeyer and Dr Penny Hartman for contributing to the management of the setting up of the project. We acknowledge Dr Alessandra Gaillard, Ms Emillie Beyer, Ms Stephanie Antopolous, Ms Claire Chua, Dr Leonie Duehlmeyer, Mr Lachlan Grant, Ms Kirsty Kearney, Dr Magdalena Kowalczyk, Ms Emily Robinson, Ms Elizabeth Sharp, Ms Danielle Tichelaar, and Ms Diny Thomson for their contribution to data collection. We acknowledge Professor Shanlin Fu and the team at the

Drugs and Toxicology Group, Centre for Forensic Science, University of Technology Sydney, for conducting urine toxicology analyses.

Funding

Valentina Lorenzetti was supported by an Al and Val Rosenstrauss Research Fellowship (2022-2026), and by a National Health & Medical Research Council (NHMRC) Investigator Grant (2023-2027, ID 2016833) and an Australian Catholic University competitive scheme. The work within the Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre was supported via an ACU competitive scheme. This research was supported by an Australian Government Research Training Program (RTP) Scholarship doi.org/10.82133/C42F-K220 (Hannah Sehl, Hannah Thomson and Marianna Quinones-Valera). Gary Chan was supported by a National Health and Medical Research Council (NHMRC) Investigator Grant (GNT1176137). Victoria Manning has received funding from the National Health and Medical Research Council (NHMRC), VicHealth, the Department of Health Victoria, the Victorian Responsible Gambling Foundation, the National Centre for Clinical Research on Emerging Drugs (NCCRED), HCF, and philanthropic organisations.

Declaration of conflict of interest

Dr. Adam Clemente reports no financial relationships with commercial interests.

Dr. Andrew Jones has received (as a co-investigator) on a grant funded by CAMARUS pharmaceuticals (~£90k) to examine predictors of buprenorphine prescribing for opioid use disorder.

Dr. Chandni Hindocha joined GW/Jazz pharmaceuticals after the major contribution to this paper. She has since left GW/Jazz pharmaceuticals.

Dr. Chao Suo reports no financial relationships with commercial interests.

Dr. Eugene McTavish reports no financial relationships with commercial interests.

Dr. Gary Chan reports no financial relationships with commercial interests.

Dr. Gill Terrett reports no financial relationships with commercial interests.

Dr. Govinda Poudel is the founder, director and CTO of BrainCast Pty Ltd, which has developed novel brain imaging markers for monitoring brain injury.

Dr. Hannah Sehl reports no financial relationships with commercial interests.

Dr. Hannah Thomson works as a contractor for Syneos Health Learning Solutions, with the Insights and Evidence Generation Team in Patient Insights and Assessment Research (Implementation Science).

Dr. Izelle Labuschagne is the founder and director of Complete Thesis Support, which provides development programs for research students.

Dr. Janna Cousijn reports no financial relationships with commercial interests.

Dr. Lisa-Marie Greenwood reports no financial relationships with commercial interests.

Ms. Marianna Quinones-Valera reports no financial relationships with commercial interests.

Dr. Peter Rendell reports no financial relationships with commercial interests.

Dr. Tom P Freeman reports no financial relationships with commercial interests.

Dr. Valentina Lorenzetti reports no financial relationships with commercial interests.

Dr. Victoria Manning, between March 2021 and August 2023, was the Founder, CEO, Director and a shareholder of Cognitive Training Solutions Pty Ltd, which commercialised the SWiPE app, which delivers Cognitive Bias Modification to reduce alcohol use.

Authors contributions

- All authors edited the manuscript.
- AC managed all the operations of the study and edited the manuscript.
- AJ provided high-level input on statistical analysis.
- CH supported the design of the experimental task and provided methodological feedback.
- CS provided high-level and ongoing input on all aspects of the study with a focus on statistical analysis and data visualization.
- EM led the statistical analysis of an earlier version of the manuscript, provided input on theoretical aspects and edited the manuscript.
- GP provided high-level and ongoing input on the design and conduct of the study, edited the first full draft of the manuscript and subsequent drafts.
- GC provided high-level and ongoing input on statistical analysis.
- HS supported the study setup and data collection.
- HT supported data collection for a substantial portion of the sample.
- IL, PR and GT supported the setup of the study protocol.
- JC consulted on the study design and provided the image rating tasks.
- LG provided high-level and ongoing input on all aspects of the study.
- MF provided input into the theoretical framework, clinical relevance and revisions of the manuscript.
- MQ under the supervision of VL, VM, and MF developed the theoretical framework of the manuscript, conducted quality checks of the data, drove statistical analysis, created the first draft and subsequent revisions.

- TF designed and programmed the experimental task and provided methodological feedback.
- VL designed and led the study as CI, supervised all students and project staff involved, and led all revisions.
- VM provided high-level and ongoing input on the design and conduct of the study and co-led with VL revisions of the first full draft of the manuscript and all subsequent drafts and provided high-level input into the theoretical framework and clinical relevance.

Abstract

Background: Attentional bias to cannabis images is posited to drive loss of control over cannabis use and relapse in cannabis use disorder (CUD), but the literature is mixed and limited by inconsistent measurement of CUD and of confounders, including alcohol and nicotine use. This study examines attentional bias in moderate-to-severe CUD ($n=66$) compared to controls ($n=42$), and its relationship with cannabis/nicotine use, accounting for alcohol use.

Methods: We measured attentional bias using the visual probe task, as the difference in reaction times (RTs) for cannabis *versus* neutral images, in order to account for individual variability. Linear mixed effect models examined how RTs were affected by (i) group (CUD, control), image type (cannabis, neutral), group-by-image type, and group-by-image type-by-Stimulus Onset Asynchrony (SOA, 200/500 milliseconds) in the whole sample; and (ii) by image type, SOA, and moderators in the CUD group only (i.e., Cannabis Use Disorder Identification Test-Revised [CUDIT-R], subjective craving, arousal/valence ratings of the task' cannabis/neutral images, and nicotine). All models were adjusted for alcohol use.

Results: There were no significant group differences in attentional bias. In the CUD group, image type-by-CUDIT-R subgroups differed on RTs ($\beta=-.748, p=.014$), whereby the high-CUDIT-R versus lower CUDIT-R subgroups had significantly faster RTs to cannabis versus neutral images ($p = .034, d =-0.10$), but this did not survive Bonferroni correction for multiple comparisons. No other results were significant.

Conclusion: Attentional bias might not be a robust feature of CUD, though this notion requires validation in a larger sample using more sensitive measures of attentional bias.

Keywords: cannabis, marijuana, cannabis use disorder, cognitive bias, visual probe task, cannabis cues.

1. Introduction

Cannabis use disorder (CUD) affects over 20 million people worldwide, and the number of people meeting the criteria for a CUD has increased by 32% over the past three decades [1, 2]. People with a CUD can use cannabis compulsively despite the experience of negative consequences [3], such as risk-taking behaviours (e.g., operating heavy machinery while intoxicated), the experience of elevated cannabis cue-induced cravings [4, 5], and poorer mental health (e.g., depression, anxiety and psychotic symptoms) [6-9].

Prominent theories of addiction suggest that attentional bias plays a critical role in the escalation and maintenance of substance use [10-13]. According to these theories, cannabis and related stimuli are highly salient, having greater attention-grabbing properties compared to non-substance-related stimuli [10-13], which leads to the orientation of attention towards substance-related cues and difficulties disengaging from them [14]. These automatic cognitive processes can drive substance-seeking and consumption behaviours and undermine attempts to cut down or quit substance use [11]. Therefore, understanding the association between attentional bias to cannabis cues and CUD may have implications for informing therapies targeting attentional bias to help individuals reduce, manage or eliminate their cannabis use.

The evidence to date on the presence of attentional bias in people who use cannabis is mixed [15]. Specifically, some studies demonstrate that people who use cannabis, compared to controls, have an attentional bias towards cannabis versus neutral stimuli [16-21], while other studies suggest that this difference may only be present in cannabis users who endorse a CUD [16, 22]. In contrast, other studies have failed to detect any evidence of attentional bias [20, 21, 23]. The inconsistent findings might be due to methodological issues in the existing literature. First, no study of attentional bias to date has examined if participants endorsed a CUD using the most recent diagnostic systems, with one exception in treatment seekers [23].

There is no evidence examining non-treatment seeking individuals with a CUD – which comprise the majority of people who use cannabis [24] – as confirmed via the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [3] and measurement tools to confirm the presence and severity of CUD, such as the Structured Clinical Interview for DSM-5 Research Version (SCID-5-RV) [25]. Indeed, the literature to date has measured cannabis dependence based on currently outdated diagnostic systems, including the Diagnostic Statistical Manual of Mental Disorders, 4th edition (DSM-IV) [15, 26]. As the DSM-5 is the current diagnostic system and does not directly overlap with the DSM-IV (e.g., different symptoms and severity thresholding), it is essential to fill an existing gap in non-treatment seeking individuals with moderate-to-severe CUD.

Second, the literature has inconsistently measured the level of cannabis consumption (e.g., quantity in grams, number of joints; frequency in days/per week, days/per month) and metrics of cannabis use-related problems (e.g., Severity of Dependence Scale [27], Cannabis Use Disorder Identification Test-Revised scores [CUDIT-R]) [28]. Therefore, it is unclear if attentional bias is exacerbated in individuals with greater severity of cannabis use and related problems. Third, the role of alcohol and nicotine use, which are entrenched with CUD [29], has been poorly examined. Importantly, these variables can affect attentional bias independently and through interactions with cannabis use [30]. Therefore, whether attentional bias is specific to cannabis or comorbid substance use remains unresolved. Fourth, some variables may moderate attentional bias performance in people who use cannabis. For example, participants' subjective ratings of the valence and arousal of the images used in the attentional bias tasks have rarely been measured, and, when assessed, inconsistent metrics have been used (e.g., implicit association test, valence ratings). Thus, it is unclear if participants' subjective perception of the images used in the task plays a role in attentional bias performance in CUD, as previously theorised [11].

Fifth, most studies have not accounted for parameters within the attentional bias task, including the timing of onset of cannabis and neutral images (i.e., stimuli onset asynchrony [SOA]; [31]. Of note, different durations of SOA tap into different cognitive aspects of attentional bias; whereby longer stimuli exposures (e.g., ≥ 500 milliseconds) measure sustained attention, while shorter exposures measure automatic attention (e.g., ≤ 200 milliseconds). As a consequence, the role of automatic versus sustained processes on attentional bias remains unclear [31]. Lastly, different methods to compute attentional bias have been used, with the most common approach involving subtracting the average reaction time (RT) to cannabis images from the average RT to neutral images [16, 18, 19, 23, 32]. Of relevance, these methods can remove important intra-individual variability in RTs, which can contribute to attentional bias performance at an individual level and when comparing cannabis and control groups.

Overall, emerging evidence on attentional biases in CUD, combined with the high rates of CUD, and the increased liberalisation, advertisement, access, and availability of cannabis products globally [33], highlight an urgent need to understand if attentional bias is affected in CUD, particularly in more severe presentations. Such findings could inform if attentional bias is an important target for harm reduction, preventative interventions and treatment, and inform public health policies such as the regulation of cannabis advertisements.

We aimed to compare for the first time how attentional bias towards cannabis-related images versus neutral images differs between non-treatment seeking participants who endorsed moderate-to-severe CUD and controls. This was achieved by adjusting for image exposure time (i.e., 200 and 500 milliseconds) and alcohol consumption (i.e., number of standard drinks in the past month). Based on neuroscientific theories of addiction [10] and

emerging evidence [15, 16], we hypothesised that attentional bias toward cannabis *versus* neutral images would be stronger in the CUD group than in controls.

As a secondary aim, within the CUD group, we explored whether the strength of attentional bias was associated with cannabis quantity, subjective cannabis craving, cannabis use-related problems (i.e., CUDIT-R scores), valence/arousal ratings, and number of cigarettes in the past month, adjusting for number of alcohol standard drinks in the past month.

2. Methods

This study was nested within a larger project and received ethics approval from the Australian Catholic University Human Research Ethics Committee (HREC ID: 2019-71H), the methodology of which was pre-registered. A detailed description of the study methodology, eligibility criteria and metrics is included in the larger project's pre-registration (www.isrctn.com/ISRCTN76056942).

2.1. Recruitment

One hundred and eleven participants were recruited from the Melbourne metropolitan area via flyers in the general community, university campuses and online platforms (e.g., Facebook, Gumtree, TikTok, and others). The advertisement included general information about the study, eligibility criteria and a QR code and web link to the study's online screening survey screened against the study's eligibility criteria, followed by a detailed phone call to confirm study inclusion. Details of the recruitment procedure and final sample are included in Supplementary Methods 1.1.2.

2.2. Study eligibility criteria

Inclusion criteria for *all participants* were: (i) age 18 to 55 years; (ii) normal-to-corrected vision; and (iii) fluent in English. Inclusion criteria for the CUD group were: (i) daily/almost daily cannabis use for >12 months prior to testing; (ii) meeting diagnostic

criteria for a moderate-to-severe CUD determined via the Structured Clinical Interview for DSM-5 Research Version (SCID-5-RV) [25] and iii) ≥ 1 attempt to reduce or quit cannabis use in the last 24 months.

Exclusion criteria for *all participants* were: (i) diagnosis of psychiatric disorders, other than severe depression/anxiety due to their high comorbidity with CUD [34], assessed by the Mini International Neuropsychiatric Interview (MINI) [35]; (ii) current prescribed medication affecting the central nervous system (e.g., antipsychotics), except for anti-depressants due to high prevalence of depression in people with a CUD [34]; (iii) history of neurological disorders or significant medical conditions (e.g., multiple sclerosis); (iv) history of traumatic brain injury or unconsciousness for > 5 minutes; (v) any use of substances other than nicotine within 12 hours before testing, confirmed by self-report; (vi) any use of substances - except for cannabis in the CUD group - in the last 30 days before testing, confirmed by the timeline-follow back (TLFB) [36]; (vii) any significant use of substances - other than alcohol and nicotine for both groups, plus cannabis in the CUD group (i.e., >50-lifetime episodes of use and/or weekly use over a 3-month period); (viii) pregnancy or breastfeeding; (x) MRI contraindications (e.g., surgical clips), and (xi) IQ < 80 assessed by the Weschler Abbreviated Standardised Intelligence-II (WASI-II) [37]. We also excluded participants with invalid data in the visual probe task, such as those with a substantial amount of RT data (i.e., 15%, 40% or more) reflecting outliers or incorrect trials (i.e., 98% incorrect data). *Controls* were required to: (i) not have used cannabis in the last 12 months; (iii) never have used cannabis fortnightly or less; and (iii) not have used cannabis more than 50 occasions over a lifetime.

2.3. Assessment procedure

Face-to-face testing was completed at the Monash Biomedical Imaging Centre in Clayton, Victoria, Australia. Participants provided written informed consent before

commencing testing during the face-to-face assessment. Testing included a series of questionnaires, all of which were administered via Qualtrics Version XM (www.qualtrics.com); semi-structured interviews for CUD and lifetime substance use characterisation; as well as the visual probe task. Assessments were conducted by researchers and students, who underwent extensive and standardised training for accurate and consistent administration of all measures. The testing session lasted approximately 4-to-6 hours as part of a larger study, with select measures being utilised for addressing the current study aims. After completing the assessment, participants were reimbursed with grocery store vouchers, specifically \$100 for controls and \$150 for participants in the CUD group due to the completion of additional testing outside the scope of this study.

2.4. Measures

2.4.1. Sociodemographic data and IQ

A detailed socio-demographic and medical questionnaire was administered to collect data on participants' age, sex, and total number of full-time years of education completed. An estimate of IQ was measured via the vocabulary and matrix reasoning subtests of the WASI-II [37].

2.4.2. Mental health

The *State-Trait Anxiety Index – Y Form* is a 20-item questionnaire administered to measure state anxiety (STAI-Y) [39]. Total scores are interpreted within three levels of severity, which range from “no or low anxiety” (20-37), “moderate anxiety” (38-44) and “high anxiety” (45+). Stress was measured via the *Perceived Stress Scale - 10 item version* (PSS) [40], rated on a 5-point Likert scale with higher scores indicating greater stress. The *Community Assessment of Psychic Experiences* is a 42-item questionnaire administered to measure frequency and distress levels of psychotic experiences, including positive and negative psychotic symptoms and depressive symptoms (CAPE) [41]. Items are rated on a

Likert scale for frequency (i.e., “never” to “nearly always”) and distress scales (i.e., “not distressed” to “very distressed”).

2.4.3. Substance use and related problems

2.4.3.1. Presence and severity of CUD

The *Structured Clinical Interview for DSM-5 Diagnoses - Research Version* was administered to confirm the presence of a moderate-to-severe CUD (4+ symptoms) and the total number of CUD symptoms endorsed (i.e., severity determined via the SCID-5-RV) [25]. Items include criteria such as failed attempts to cut down/quit, experience of craving and withdrawal symptoms, among others. The level of cannabis use-related problems was measured via the CUDIT-R [28], an 8-item self-report questionnaire. Items include questions on patterns of use, dependence symptoms (e.g., difficulty controlling use), and related impairment (e.g., using cannabis even when hazardous). Scores range from 1 to 32, with a clinical cut-off of ≥ 13 indicating the likelihood of a CUD.

A *Visual Analogue Scale (VAS)* [43] was administered pre- and post the visual probe task assessing attentional bias to cannabis cues, to measure subjective craving with the item “How much do you feel like smoking cannabis right now?”. The item was rated on a 10-point scale whereby “0” indicated “Not at all” and 10 “Extremely”. The *Marijuana Craving Questionnaire (MCQ)* was also included to characterise the sample’s levels of craving [44]. The MCQ comprises 45 items rated on a 7-point Likert scale (i.e., “strongly disagree” to “strongly agree”) to measure four different factors: compulsion, emotionality, expectancy and purposefulness. Scores range from 40 to 280. The *Cannabis Withdrawal Scale (CWS)* was administered to measure the intensity of withdrawal symptoms over the last 24 hours [45]. The 19 items of the CWS are rated on a 10-point scale (i.e., “not at all” to “extremely”). Scores range from 0 to 190, with higher total scores reflecting more severe withdrawal symptoms.

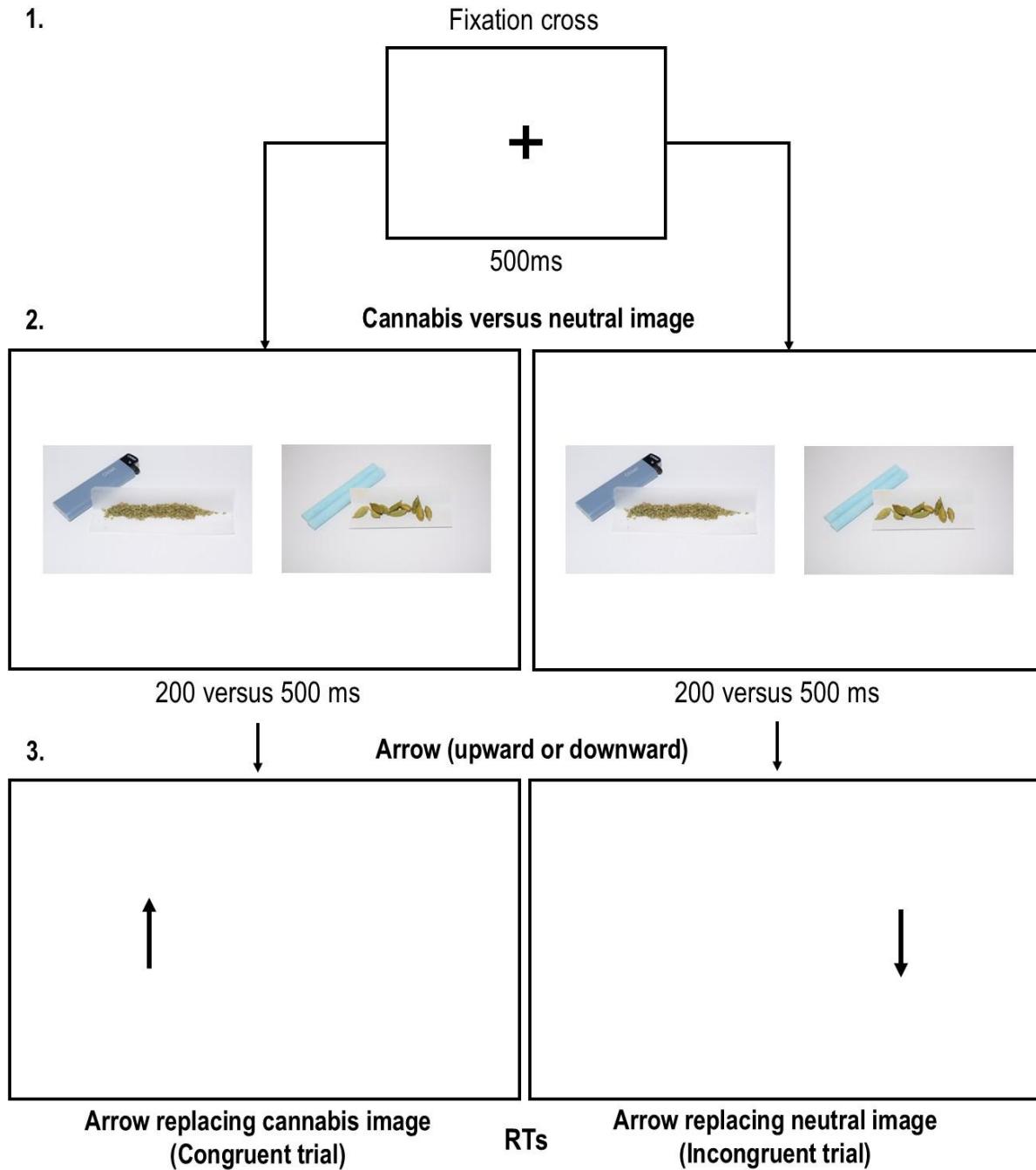
2.4.3.2. Motivation to change cannabis use

The *Contemplation Ladder* is an adaptation of two original versions [46-48], administered to examine participants' motivation to change their cannabis use. It comprises two items, one confirming regular cannabis use. The second item includes statements indicating different stages of change, from "0", indicating pre-contemplation (i.e., enjoying cannabis use and not having interest in changing their use) to "9", meaning action (i.e., having changed their cannabis use, although worrying about slipping back).

2.4.3.3. Additional metrics of substance use

The *Alcohol Use Identification Test* was administered to ascertain the level of problematic alcohol consumption (AUDIT) [49]. The AUDIT is a 10-item scale that provides a clinical cutoff to identify likely alcohol dependence (i.e., scores ≥ 19). Similarly, the level of problems with nicotine use was measured by the *Fagerström Test for Nicotine Dependence* (FNTD) [50]; a six-item questionnaire with items scored from 0 to 3, and total scores ranging from 0 to 10. Items include difficulty in refraining from smoking in forbidden places and smoking even when ill, among other items. Scores ≥ 3 indicate potential nicotine dependence.

The *Timeline Follow-Back* (TLFB) [36] is a semi-structured interview using a calendar-based format to map participants' key dates in the last month as "anchors" (e.g., payday, birthdays) to remember substance use in the past month. The TLFB was administered to measure substance exposure in the last 30 days before testing, including the number of days of use and dosage in the past month (e.g. cannabis grams [gold standard measure to quantify cannabis use in the field [51]], alcoholic standard drinks, and number of cigarettes). We also measured the number of hours since last cannabis use and the methods of cannabis consumption (e.g. joints, bongs). Additionally, a *semi-structured interview* [52, 53] was administered to extract age of onset, duration of regular use defined as the total number of


years since at least monthly use, and the estimated cumulative number of cannabis grams consumed over the last year and over participants' lifetime.

2.4.4. *The visual probe task to measure attentional bias*

A visual probe task was used to measure attentional bias, with the task structure overviewed in Figure 1 [54]. The task consisted of 164 trials, including four buffer trials, 83 cannabis trials and 77 neutral trials. The task lasted approximately 15 minutes. For each trial, a fixation cross appeared at the centre of a white screen for 500 milliseconds. Then, two images, one cannabis-related and one neutral, appeared on opposite sides of the screen. A total of ten pairs of cannabis and neutral images, validated in previous studies of cannabis attentional bias and cue reactivity [55, 56] were presented 16 times across the task. Cannabis images included photos of cannabis (e.g., grass, hashish), people using cannabis, and cannabis paraphernalia (e.g., rolling paper, bongs). Control images were non-cannabis related and included people and objects matched on composition, complexity, brightness and colour (when possible) to the cannabis counterpart to minimise the effect of confounding factors [57]. The image pairs were presented for either 200 or 500 milliseconds (SOA) to measure automatic orienting and controlled attention processes, respectively. Last, a probe (i.e., a black arrow pointing upwards or downwards) replaced either the cannabis-related image (i.e., congruent trial) or the neutral image (i.e., incongruent trial). The probe remained on the screen until participants indicated the orientation of the probe using the up or down response key.

Participants were instructed to respond as promptly and accurately as possible. RTs to respond to the probe were the key outcome variable. Additional details regarding the visual probe task and instructions are included in Supplementary Methods 1.1.1. The probe position, image type, target position and SOA were counterbalanced. The task was programmed with Experiment Builder (SR Research, Kanata, ON, Canada) and administered via two testing

laptops with identical specs. Log files were saved in a central location and were entered into a spreadsheet for data quality checks and pre-processing.

Figure 1. Example of a cannabis trial (on the left) and neutral trial (on the right), with a pair of matched images (a cannabis image on the left and a neutral image on the right). Adapted from Hindocha and colleagues [54]. Ms = milliseconds. SOA = stimulus onset asynchrony.

2.4.4.1. Reliability of the visual probe task

Cronbach's alpha coefficients were calculated for RTs to assess the internal consistency of the visual probe task. RTs were averaged within each pair of images across the different task parameters relevant to the main analysis (i.e., cannabis *versus* neutral, 200 *versus* 500 SOA). For comparability purposes, Cronbach's alpha coefficients were calculated for AB scores, as well as split-half reliability for both RTs and attentional bias scores. Further details regarding the reliability analyses and results are outlined in Supplementary Methods 1.1.3. and 1.1.4 and Supplementary Results 2.1.

2.4.4.2. Subjective ratings of images from the attentional bias task: valence and arousal

Participants completed a 'picture rating task' via Qualtrics XM, to rate the affective valence and arousal they experienced in relation to each of the cannabis-related and neutral images that they were administered in the visual probe task. Image ratings were obtained for one image presented at a time. The valence and arousal of each image were assessed by VAS scales from 1 to 9. Affective valence was measured by the item "*Below you see mannequins ranging from 'very unpleasant' to 'very pleasant'. Click on the mannequin that reflects how pleasant you think the above picture is*". The answers ranged from 1 for "unpleasant" to 9 for "pleasant", with 5 signifying "neutral". Arousal was measured by the item "*Below you see mannequins ranging from 'calm' to 'excited'. Click on the mannequin that reflects your feeling when looking at the above picture*", with answers ranging from 1 for "calm" to 9 for "excited".

2.4.4.3. Measuring attentional bias

RTs to cannabis and neutral images were used as outcome variables of the experiment to capture individual variability, whereby the presence of an attentional bias was indicated by a significant effect of group-by-image type on RTs.

Additionally, to permit comparison with previously published work measuring attentional bias using distinct methods that do not account for individual variability [16, 18, 19, 23, 32], individual attentional bias scores were also computed using a previously published traditional method [21] by subtracting – within each participant - their average RTs to all cannabis images from their average RTs to all neutral images, where positive values indicate an attentional bias to cannabis versus neutral images. This calculation resulted in a single attentional bias score per participant, which we compared between groups.

3. Statistical analyses

3.1. Normality checks and outliers

All variables were inspected for normality using the Kolmogorov-Smirnov test. Outliers, identified by the Tukey's method (data points 1.5 interquartile range below Q1 and above Q3), were excluded from the analysis for the primary and secondary aims. In addition, for RTs, only correct trials (i.e., where participants entered the right response key) were included in the analysis. We excluded individual RTs <200 and >2000 and then if they were more than 3 SDs above the mean at a trial level (see Supplementary Methods 1.1.5 for details about outliers removed).

3.2. Descriptives

Groups were compared using Chi-squared tests for categorical variables (i.e., sex), t-tests for normally distributed data (i.e., IQ, completed education years, stress), and Mann-Whitney U tests for the remaining non-normally distributed variables. Wilcoxon signed-rank tests were used to examine differences between mean valence and arousal ratings and RTs in relation to cannabis and neutral images within the CUD and control groups, respectively.

3.3. Aim 1: group differences in attentional bias

To address the primary aim, we ran a linear mixed-effect model using subject as a random intercept. Predictors included: group (i.e., CUD, controls); image type (i.e., cannabis

or neutral image); SOA (i.e., 200, 500 milliseconds); group-by-image type to measure attentional bias differences between groups (i.e., group comparison of RTs for cannabis *versus* neutral images); group-by-image type-by-SOA to measure attentional bias differences between groups as a function of SOA. The dependent variable was RTs. Alcohol standard drinks/past month was used as a covariate. A likelihood ratio test was conducted to examine the significance of the variation across participants.

3.4. Aim 2: association between level of attentional bias and cannabis use levels

To address the secondary exploratory aim, we performed a series of eight mixed-effect models, each one including an additional moderator as a predictor (i.e., cannabis grams past/month, CUDIT-R scores, VAS subjective craving, arousal and valence; and cigarettes past/month). All analyses for aim 2 adjusted for alcohol standard drinks/past month as a covariate. Other predictors in all models were: image type (i.e., arrow behind cannabis or neutral image), SOA (i.e., 200, 500 milliseconds), as well as the interaction terms between each moderating variable and image type. The outcome variable was RTs in response to cannabis and neutral images.

The nature of any significant interaction and omnibus tests was explored with post-hoc pairwise Mann-Whitney U tests using residualized RTs, which were adjusted for key covariates used in the main model (i.e., SOA, standard drinks/past month). Additionally, the CUD group was split into three groups: low CUDIT-R (i.e., <1 standard deviation from the mean), moderate CUDIT-R (i.e., between 1 SD below and above the mean), and high CUDIT-R (i.e., >1 standard deviation above the mean). Aim 2 analyses underwent Bonferroni correction for multiple comparisons, with significance being set at $p < 0.006$. The Statistical Package for Social Scientists was used to complete all statistical analyses (SPSS version 29; IBM, Chicago, IL, USA). The likelihood ratio test analysis on the analysis for the primary

aim data was run via R version 4.4.1. GraphPad Prism version 10.0 was used for data visualisation.

4. Results

4.1. Sample characteristics

The sample characteristics are summarised in Table 1. The sample consisted of 108 participants (34 females and 74 males), including 66 CUD and 42 controls, with a median age of 28.23 years. Details of the final sample are included in Supplementary Methods 1.1.5. Groups were matched by sex and age. The CUD group, compared to controls, had significantly lower mean IQ and years of education. Groups did not differ in state anxiety and perceived stress, but the CUD group had significantly higher symptoms of depression, positive and negative psychotic-like symptoms. The CUD group, compared to controls, also had significantly higher levels of alcohol/nicotine use and related problems. Eleven participants of the CUD group (15.94%) and one control (0.02%) obtained FTND scores indicating nicotine dependence (i.e., FTND score ≥ 3).

Table 1

Overview of sample descriptives.

Variable	CUD		Control		Group differences	
	<i>M</i> (<i>SD</i>)	Range	<i>M</i> (<i>SD</i>)	Range	<i>x^a/t^b/U^c</i>	<i>p</i>
Total [females]	66 [18]	—	42 [16]	—	.73 ^a	.39
Age, years	27.37 (7.70)	18.25-56.67	29.36 (9.91)	18.17-55.33	1306.50 ^c	.49
Education, years	15.48 (2.79)	11-23.00	15.70 (3.74)	6.50-25	0.34 ^b	.07
IQ	107.33 (9.37)	90.00-129	108.72 (13.58)	84-135	0.61 ^b	.020*
State anxiety, STAI-Y	31 (8.95)	20-60	29.70 (7.71)	20-53	1135 ^c	.10
Perceived stress, PSS	15.67 (7.36)	1-33	13.63 (7.07)	1-29	0.62 ^b	.43
CAPE symptoms frequency	Positive psychotic	38.95 (12.27)	20-76	30.47 (9.35)	0-56	785.5 ^c
	Depressive	22.94 (8.84)	8-45	18.51 (7.79)	0-47	964 ^c
	Negative psychotic	40.10 (14.48)	14-82	30.56 (12.53)	0-53	852 ^c
Alcohol	AUDIT	6.90 (4.78)	0-22	3.07 (2.81)	0-13	671.50 ^c
	Days of use past/month	5.97 (6.91)	0-30	3.26 (4.98)	0-25	985.5 ^c
	Drinks past/month	31.55 (48.50)	0-206.80	12.09 (19.51)	0-81.20	950 ^c
Nicotine	FNTD	1.02 (1.68)	0-6	0 (0)	0-0	881.5 ^c
	Days of use past/month	10.19 (13.27)	0-30	0 (0)	0-0	444 ^c
	N cigarettes past/month	63.52 (126.09)	0-600	0 (0)	0-0	4446 ^c

Note. WASI-II = Wechsler Abbreviated Scale of Intelligence, 2nd Edition; STAI-Y = State-Trait Anxiety Inventory; PSS = Perceived Stress

Scale; CAPE = Community Assessment of Psychic Experiences; AUDIT = Alcohol Use Disorder Identification Test; TLFB = Timeline Follow-back; FTND = Fagerström Test for Nicotine Dependence.

p* < .05. *p* < .01. ****p* < .001

4.2. Cannabis use and related problems

Table 2 overviews the level of cannabis consumption and cannabis-related variables in the CUD group. All CUD participants met criteria for a moderate-to-severe CUD and reported consuming about a gram of cannabis almost every day in the past month. The most endorsed method of use was smoking (including joints, bongs and vaping) (i.e., 61.2% of the sample), with other methods including edibles (11.7%). They self-reported abstaining from using cannabis around 17 hours before testing, corroborating their ‘non-intoxicated’ status; and withdrawal symptoms were relatively low. Cannabis VAS craving ratings completed after the visual probe task were also relatively low. Overall, 82.1% of the CUD sample endorsed at least a contemplative stage of changing their cannabis use (50.1% indicated being in a contemplative stage, 24.2% in the preparation stage and 7.81% in the action stage).

In controls, the age of onset of cannabis use was around 20 years, and this was significantly later than CUD participants. 19 out of 43 controls endorsed using cannabis at least once in their lifetime. Over their lifetime, control participants reported using cannabis on a median of 3 occasions (range: 1 – 7 occasions) and 4 grams (range: 3 – 6 grams). Controls reported consuming cannabis for the last time between 1.33 and 8.5 years before testing.

Table 2

Overview of cannabis use and related problems, ratings of arousal and valence and RTs of cannabis and neutral images in CUD and control groups.

Variable	CUD		Controls		Group differences	
	<i>M</i> (<i>SD</i>)	Range (min-max)	<i>M</i> (<i>SD</i>)	Range (min-max)	<i>U</i>	<i>p</i>
CUD symptoms, SCID-5-RV	7 (1.87)	4-11	—	—	—	—
CUDIT-R	15.84 (5.02)	7-30	—	—	—	—
Days of use/past month	25.63 (5.19)	13-30	—	—	—	—
Grams	Past month	26.97 (20.70)	0.9-84	—	—	—
	Past year	325.96 (269.17)	0.48-1247.50	—	—	—
	Lifetime	2,352.65 (3488.52)	56.54-16339.99	—	—	—
Craving	MCQ	35.56 (13.81)	13-75	12.88 (2.33)	12-23	30.5 .001***
	VAS pre-visual probe task	3.57 (2.64)	1-10	1 (0)	1-1	351.5 .001***
	VAS post visual probe task	3.69 (2.70)	1-10	1 (0)	1-1	351.5 .001***
Withdrawal, CWS		32.59 (27.62)	0-118	10.12 (11.72)	0-50	570.5 .001***
Age of onset	First use, years	16.70 (2.82)	12.83-32.08	20.29 (3.80)	14.25-30.50	201 .001***
	At least monthly, years	18.84 (3.53)	14.33-32.08	—	—	—
Duration of at least monthly use, years		7.96 (7.24)	0.88-39.75	—	—	—
THC-COOH in urine, ng/mL		243.55 (254.03)	0-1053	0 (0)	0-0	21.50 .001***
Arousal	Cannabis images	4 (2.22)	1-8.60	1.40 (0.90)	1-4.80	378.50 .001***
	Neutral images	2 (1.34)	1-5.70	1.46 (1.12)	1-5.30	799 .001***
Valence	Cannabis images	6.06 (1.16)	3.90-9	3.98 (1.51)	1-8.40	265.50 .001***
	Neutral images	4.86 (0.61)	2.70-6.30	4.82 (0.66)	1.40-5.40	1298.5 .981
Reaction times	Cannabis images	498.73 (58.81)	387.91-642.20	519.83 (67.58)	411.61-683.43	-6.711 .001***
	Neutral images	499.22 (56.17)	385.13-639.91	519.02 (69.09)	420.34-721.16	-7.541 .001***
AB scores		0.49 (13.47)	-35.23-32.60.62	-.82 (12.78)	-33.90-37.73	-.756 .450

Note. AB = Attentional bias computed as per Field and colleagues [21], subtracting, within each participant, the average RTs to all cannabis images, from the average RTs to all neutral images, resulting in a single attentional bias score per participant. CUD = Cannabis use disorder. SCID-5-RV = Structured Clinical Interview for DSM-5 Diagnoses Research Version; CUDIT-R = The Cannabis Use Disorder Identification Test-Revised; TLFB = Timeline Follow back; MCQ = Marijuana Craving Questionnaire; CWS = Cannabis Withdrawal Scale; VAS = Visual Analogue Scale; THC-COOH = 11-Nor-9-carboxy- Δ 9-tetrahydrocannabinol; ng/mL = Nanograms per millilitre.

* $p < .05$. ** $p < .01$. *** $p < .001$

4.3. Group differences in ratings of arousal, valence, and RTs in relation to cannabis and neutral images and attentional bias scores

Table 2 summarises group differences in the subjective ratings of valence and arousal of the cannabis-related and neutral images that were included in the visual probe task. The CUD group, compared to controls, rated cannabis images to elicit significantly greater levels of arousal and positive valence, with CUD participants indicating that cannabis images were moderately pleasant and controls indicating that cannabis images were moderately unpleasant. The CUD group rated neutral images as significantly more arousing than controls. There were no group differences in the subjective valence ratings of neutral images.

Within the CUD group, cannabis images, compared to neutral images, were rated as eliciting significantly higher levels of subjective arousal ($Z = -6.260, p = <.001, d = 0.78$). In terms of valence, the CUD group rated cannabis images as significantly more pleasant than neutral images, which they rated as slightly neutral ($Z = -6.072, p = <.001, d = 0.82$). Within controls, subjective ratings of arousal did not differ between cannabis and neutral images, though controls rated neutral images as being significantly less unpleasant than cannabis images ($Z = -4.013, p < .001, d = 0.694$).

The CUD group showed significantly faster average RTs to cannabis and neutral images compared to controls. We did not find significant group differences in attentional bias scores computed using traditional methods for descriptive purposes [21] (See Table 2).

4.4. Reliability of the visual probe task

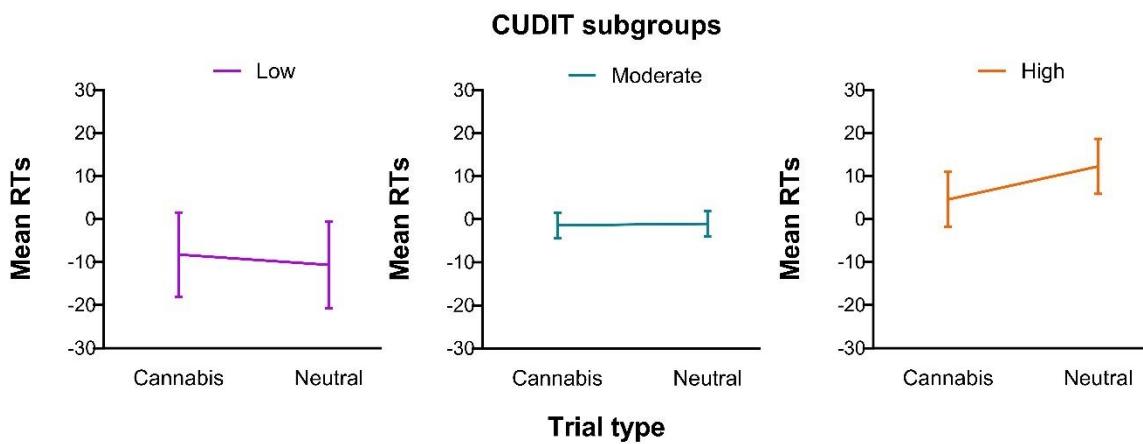
A reliability analysis of the visual probe task was conducted by estimating the internal consistency of the RTs, measured by Cronbach's alpha, which was excellent at $\alpha > 0.90$ across cannabis versus neutral, 200 versus 500 SOA separately and together. Supplementary Methods 1.1.3 and Supplementary Results 2.1.1 detail these results and additional

information on reliability. Internal consistency of the traditional attentional bias scores used for descriptive purposes and based on Field and colleagues [21] was also calculated, resulting in a poor Cronbach's alpha at $\alpha < .295$ (Supplementary Methods 1.1.4 and Results 2.1.2). Lastly, split-half reliability was calculated following similar procedures as those described previously for internal consistency (See Supplementary Methods 1.1.3 and Supplementary Results 2.1.3 and 2.1.4).

4.5. Main and interaction effects of group, image type and SOA on RTs, adjusting for standard drinks/past month

The CUD group showed significantly faster mean RTs to both cannabis and neutral images compared to controls. We found a significant random effect of subjects on RTs, indicating significant variation in RTs across participants ($X^2(1) = 8039.5, p < .001$). There was no significant effect of group, image type (i.e., cannabis *versus* neutral image) or standard drinks past/month on RTs. We found a significant effect of SOA, with faster RTs at 500 than 200 milliseconds ($p < .001$).

There were no significant effects of group-by-image type and of group-by-image type-by SOA on RTs, indicating no statistical differences in attentional bias between CUD and controls, and this was regardless of SOA.


4.6. Associations between levels of cannabis use and related problems on reaction times as a function of image type (i.e., cannabis image, neutral image)

Regarding associations between RTs and CUDIT-R scores, there was a significant main effect of image type, meaning faster RTs to cannabis than neutral images, and a significant main effect of SOA, with faster RTs at 500 than 200 milliseconds. We also found a significant main effect of image type and SOA on RTs, and a significant image type-by-CUDIT-R scores interaction effect on RTs, showing higher CUDIT-R scores predict slower

RTs ($F = 6.039$, $SE = 0.305$, $t(9164.052) = 2.457$, $p = .014$, $d = 0.49$). However, the finding did not survive Bonferroni correction for multiple comparisons ($p > .006$).

There were no significant effects of image-type-by-cannabis grams/past month, craving, or image type-by-craving on RTs ($F = 3.591$, $SE = 3.30$, $t(60.01) = 0.409$, $p = .058$). We did not find other significant effects of number of cigarettes/past month, of image arousal/valence ratings, or their interaction with image type and SOA on RTs.

Exploratory post-hoc analyses of the image type-by-CUDIT-R interaction (Figure 2) showed participants in the high-CUDIT-R group showed significantly faster RTs to cannabis images compared to neutral images, with a small effect size ($Z = -2.117$, $p = .034$, $d = -0.10$); however, this effect did not survive Bonferroni correction for multiple comparisons. In contrast, the low and moderate-CUDIT-R subgroups showed similar RTs to cannabis and neutral images. Lastly, both the low and moderate-CUDIT-R subgroups had significantly faster RTs to neutral versus cannabis images compared to the high-CUDIT-R subgroup ($p < .01$), which again did not survive Bonferroni corrections for multiple comparisons.

Figure 2. Visualisation of the emerging effect of image type-by-CUDIT-R on residualised reaction times (RTs, y-axis) with mean and confidence interval (vertical bars), for image type-by-CUDIT-R subgroups shown in distinct plots (low CUDIT-R in purple, moderate CUDIT-R in blue and high CUDIT-R in orange).

5. Discussion

This is the first study to examine attentional bias towards cannabis images in individuals with a moderate-to-severe CUD who are not currently in treatment. In contrast to our hypothesis, we did not find significant group differences in attentional bias based on RTs to cannabis versus neutral images, accounting for alcohol use; or on pair-wise comparisons of traditionally computed attentional bias scores. Additionally, we found a significant image type-by-CUDIT-R severity effect on RTs, whereby individuals with the highest CUDIT-R scores reacted significantly faster to cannabis versus neutral images compared to the low and moderate-CUDIT-R subgroups; however, this effect did not survive Bonferroni correction for multiple comparisons. We did not find any other significant association between RTs towards cannabis and neutral images and cannabis dosage, craving, cigarettes/past month, arousal/valence ratings of cannabis and neutral images; or standard drinks/per month.

The lack of an attentional bias in CUD versus controls, evidenced by a lack of group-by-image type interaction on RTs, also contrasts with current evidence on cannabis users [16, 19] and with prominent neuroscientific theories of addiction, which postulate higher attentional bias and salience towards drug versus non-drug related stimuli in people with substance use disorders [11]. Interestingly, the CUD group rated cannabis images as significantly more pleasant and arousing than neutral images, a pattern of rating that was not observed in the control group, which suggests that cannabis images were more indeed salient for the CUD group than controls. However, the CUD levels of craving pre and post the visual probe task were relatively low (i.e., 3.57 and 3.69 means respectively, range 1-10) and did not differ significantly from each other ($p = .340$). The positive association between craving and attentional bias has been previously theorised [11] and confirmed by emerging evidence [16, 21]. Our study failed to find evidence of an association between craving and attentional bias (i.e., based on RTs towards cannabis and neutral images). It is possible that despite their

salience, our cannabis images were not sufficiently craving-inducing to elicit attentional bias in a moderate-to-severe CUD sample with prolonged cannabis use.

We obtained a similar lack of group differences when comparing attentional bias scores computed as per previous methodologies [21]. Despite the CUD group showing a modest positive value (i.e., suggestive of cannabis attentional bias) and the control group a small negative value (i.e., indicative of an absence of attentional bias), the groups' mean attentional bias scores did not differ significantly. The non-significant group differences in attentional bias, and the concurrent lack of significant changes in subjective craving pre-to-post the task ($p = .340$) support the notion that the cannabis images used in our study did not elicit the necessary level of craving and, therefore, attentional bias. Alternatively, since other studies have failed to find evidence of attentional bias in people with CUD, it may not be a robust feature of CUD, or it might be confined to participants who are undergoing treatment. However, we observed high individual variability of RTs to cannabis and neutral images, which we statistically adjusted for by including subjects as a random effect. Thus, these differences between our negative findings and significant results from previous work may (in part) be explained by inconsistent approaches regarding individual-level variation.

It is also possible that the absence of attentional bias is due to the specific characteristics of the sample examined (e.g., moderate-to-severe CUD, with past quit attempts, at a contemplative stage yet non-treatment seeking) and therefore, they may not generalise to a broader sample with CUD. Additionally, our sample's age of onset of regular use appears to be later than the ones reported by other studies where attentional bias was evidenced [16, 19, 58]. As younger age of onset has been associated with negative outcomes (e.g., neuropsychological deficits, psychosis) [59-61], later onset for our sample might have functioned as a protective factor.

Our secondary analyses demonstrated that within the CUD group, there was an association between attentional bias towards cannabis versus neutral images as a function of the CUDIT-R severity. Indeed, the cannabis users having the highest CUDIT-R scores (i.e., score of 20.84+) showed faster RTs to cannabis versus neutral images compared to participants with lower CUDIT-R scores (i.e., scores <20.84). Previous work has shown associations between attentional bias in CUD and the severity of cannabis use-related problems (e.g., CUDIT-R scores of +15) [16, 19]. This highlights a potential role of CUDIT-R severity in attentional bias, suggesting heightened salience of cannabis cues in those with greater dependence. However, this interaction did not survive Bonferroni corrections for multiple comparisons. Additionally, in our sample, attentional bias still did not differ between the highest CUDIT-R sub-group and controls ($p = .088$), which throws into question the role of CUDIT-R scores in attentional bias.

This was the first study to examine associations between arousal and valence and attentional bias, which is key due to their theorised role in incentive-salience [13]. Whilst our findings in relation to mean valence and arousal scores were in line with our hypothesis/expectations, suggesting cannabis images compared to neutral images elicited stronger responses for CUD than controls, we did not find significant effects of arousal and valence on RTs to either cannabis or neutral images.

6.1. Limitations and Future Directions

The results from this study must be interpreted in the context of several methodological limitations. Firstly, considerations around the poor *reliability* of the visual probe task [62] highlight the importance of incorporating more sensitive measures of AB, such as the dual probe task [63]. Our task showed excellent internal consistency; however, more direct measures, such as eye tracking, could increase its validity and accuracy in capturing the dynamic nature of attentional bias [19, 64].

Secondly, the *ecological validity* of the visual probe task might have been limited by the testing environment, whereby attentional biases present in the real world may be less prominent when at a testing facility (e.g., neuroimaging lab) [65]. Future studies on people who use cannabis should consider testing in naturalistic settings (e.g., locations where participants consume cannabis). Further, the use of personalised images could be considered, as these may be more likely to elicit attentional bias [22].

Lastly, the eligibility criteria used in this study excluded comorbidities, such as major psychiatric disorders other than severe depression and anxiety (e.g., psychosis, trauma-related disorders) as well as substance use disorders (SUD) for substances other than cannabis and nicotine. This might have resulted in a curated sample to detect cannabis-specific effects. However, our results might not be generalisable to the wider population who endorse a CUD, who present with high comorbidity, including other SUD and psychiatric disorders [66]. Future studies are required to confirm the generalisability of the results reported herein in other populations with higher comorbidity [67].

In conclusion, this study has filled an important gap in the field, as no studies to date have examined attentional bias in community samples of individuals with moderate-to-severe CUD who are thinking about changing their cannabis use despite not being actively in treatment. Our findings challenge the notion of attentional bias as a key feature of CUD, at least among populations akin to those represented in this study and warrant replication in future studies using more sensitive measures.

Glossary

AUDIT: Alcohol Use Identification Test

CAPE: Community Assessment of Psychic Experiences

CUD: Cannabis Use Disorder

CUDIT-R: Cannabis Use Disorder Identification Test - Revised

CWS: Cannabis Withdrawal Scale

DSM-IV: Diagnostic and statistical manual of mental disorders (4th ed.)

DSM-5: Diagnostic and statistical manual of mental disorders (5th ed.)

FTND: Fagerström Test for Nicotine Dependence

IQ: Intelligence Quotient

MCQ: Marijuana Craving Questionnaire

MINI: Mini International Neuropsychiatric Interview

MRI: Magnetic Resonance Imaging

ng/mL: Nanograms per millilitre

PSS: Perceived Stress Scale

RTs: Reaction Times

SCID-5-RV: Structured Clinical Interview for DSM-5 Research Version

SOA: Stimulus Onset Asynchrony

STAI-Y: State-Trait Anxiety Index – Y Form

THC-COOH: 11-Nor-9-carboxy- Δ 9-tetrahydrocannabinol

TLFB: Timeline Follow-Back

VAS: Visual Analogue Scale

WASI-II: Weschler Abbreviated Standardised Intelligence-II

References

[1] United Nations Office on Drugs and Crime. World Drug Report 2023 [Internet]. Vienna: United Nations Office on Drugs and Crime; 2023 [cited 2025 02 25]. Available from: <https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html>

[2] Shao H, Du H, Gan Q, Ye D, Chen Z, Zhu Y, et al. Trends of the Global Burden of Disease Attributable to Cannabis Use Disorder in 204 Countries and Territories, 1990-2019: Results from the Disease Burden Study 2019. *Int J Ment Health Addict.* 2023;1-23.

[3] American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. 2013.

[4] Sehl H, Terrett G, Greenwood LM, Kowalczyk M, Thomson H, Poudel G, et al. Patterns of brain function associated with cannabis cue-reactivity in regular cannabis users: a systematic review of fMRI studies. *Psychopharmacology (Berl).* 2021;238(10):2709-28.

[5] Norberg MM, Kavanagh DJ, Olivier J, Lyras S. Craving cannabis: a meta-analysis of self-report and psychophysiological cue-reactivity studies. *Addiction.* 2016;111(11):1923-34.

[6] Broyd SJ, van Hell HH, Beale C, Yucel M, Solowij N. Acute and Chronic Effects of Cannabinoids on Human Cognition-A Systematic Review. *Biol Psychiatry.* 2016;79(7):557-67.

[7] Connor JP, Stjepanovic D, Le Foll B, Hoch E, Budney AJ, Hall WD. Cannabis use and cannabis use disorder. *Nat Rev Dis Primers.* 2021;7(1):16.

[8] Di Forti M, Quattrone D, Freeman TP, Tripoli G, Gayer-Anderson C, Quigley H, et al. The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): a multicentre case-control study. *Lancet Psychiatry.* 2019;6(5):427-36.

[9] Kedzior KK, Laeber LT. A positive association between anxiety disorders and cannabis use or cannabis use disorders in the general population--a meta-analysis of 31 studies. *BMC Psychiatry.* 2014;14:136.

[10] Volkow ND, Michaelides M, Baler R. The Neuroscience of Drug Reward and Addiction. *Physiol Rev.* 2019;99(4):2115-40.

[11] Field M, Cox WM. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. *Drug Alcohol Depend.* 2008;97(1-2):1-20.

[12] Keil A, Bradley, M. M., Hauk, O., Rockstroh, B., Elbert, T., & Lang, P. J. Large-scale neural correlates of affective picture processing. . *Psychophysiology.* 2002;39(5):641-9.

[13] Robinson T, Berridge K. The neural basis of drug craving: an incentive-sensitization theory of addiction. *Brain Res Rev* 1993;18:247-91.

[14] Tiffany ST. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. *Psychol Rev.* 1990;97(2):147-68.

[15] O'Neill A, Bachi B, Bhattacharyya S. Attentional bias towards cannabis cues in cannabis users: A systematic review and meta-analysis. *Drug Alcohol Depend.* 2020;206:107719.

[16] Kroon E, Kuhns L, Dunkerbeck A, Cousijn J. The who and how of attentional bias in cannabis users: associations with use severity, craving and interference control. *Addiction.* 2023;118(2):307-16.

[17] Asmaro D, Carolan PL, Liotti M. Electrophysiological evidence of early attentional bias to drug-related pictures in chronic cannabis users. *Addict Behav.* 2014;39(1):114-21.

[18] Vujanovic AA, Wardle MC, Liu S, Dias NR, Lane SD. Attentional bias in adults with cannabis use disorders. *J Addict Dis.* 2016;35(2):144-53.

[19] Cousijn J, Watson P, Koenders L, Vingerhoets WA, Goudriaan AE, Wiers RW. Cannabis dependence, cognitive control and attentional bias for cannabis words. *Addict Behav.* 2013;38(12):2825-32.

[20] Field M, Eastwood B, Bradley BP, Mogg K. Selective processing of cannabis cues in regular cannabis users. *Drug Alcohol Depend.* 2006;85(1):75-82.

[21] Field M, Mogg K, Bradley BP. Cognitive bias and drug craving in recreational cannabis users. *Drug Alcohol Depend.* 2004;74(1):105-11.

[22] Yoon JH, San Miguel GG, Vincent JN, Suchting R, Haliwa I, Weaver MF, et al. Assessing attentional bias and inhibitory control in cannabis use disorder using an eye-tracking paradigm with personalized stimuli. *Exp Clin Psychopharmacol.* 2019;27(6):578-87.

[23] Van Kampen AD, Cousijn J, Engel C, Rinck M, Dijkstra BAG. Attentional bias, craving and cannabis use in an inpatient sample of adolescents and young adults diagnosed with cannabis use disorder: The moderating role of cognitive control. *Addict Behav.* 2020;100:106126.

[24] Hasin DS, Kerridge BT, Saha TD, Huang B, Pickering R, Smith SM, et al. Prevalence and Correlates of DSM-5 Cannabis Use Disorder, 2012-2013: Findings from the National Epidemiologic Survey on Alcohol and Related Conditions-III. *Am J Psychiatry.* 2016;173(6):588-99.

[25] First M, Williams, J., Karg, R., & Spitzer, R. Structured Clinical Interview for DSM-5 - Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV). American Psychiatric Association2015.

[26] American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. 2000.

[27] Swift W, Copeland J, Hall W. Choosing a diagnostic cut-off for cannabis dependence. *Addiction.* 1998;93(11):1681-92.

[28] Adamson SJ, Kay-Lambkin FJ, Baker AL, Lewin TJ, Thornton L, Kelly BJ, et al. An improved brief measure of cannabis misuse: the Cannabis Use Disorders Identification Test-Revised (CUDIT-R). *Drug Alcohol Depend.* 2010;110(1-2):137-43.

[29] Yurasek AM, Aston ER, Metrik J. Co-use of Alcohol and Cannabis: A Review. *Curr Addict Rep.* 2017;4(2):184-93.

[30] Kroon E, Kuhns L, Cousijn J. The short-term and long-term effects of cannabis on cognition: recent advances in the field. *Curr Opin Psychol*. 2021;38:49-55.

[31] Zhang MWB, Ying J, Wing T, Song G, Fung DSS, Smith HE. Cognitive Biases in Cannabis, Opioid, and Stimulant Disorders: A Systematic Review. *Front Psychiatry*. 2018;9:376.

[32] van Hemel-Ruiter ME, Wiers RW, Brook FG, de Jong PJ. Attentional bias and executive control in treatment-seeking substance-dependent adolescents: A cross-sectional and follow-up study. *Drug Alcohol Depend*. 2016;159:133-41.

[33] Cerdá M, Mauro C, Hamilton A, Levy NS, Santaella-Tenorio J, Hasin D, et al. Association Between Recreational Marijuana Legalization in the United States and Changes in Marijuana Use and Cannabis Use Disorder From 2008 to 2016. *JAMA Psychiatry*. 2020;77(2):165-71.

[34] Lev-Ran S, Roerecke M, Le Foll B, George TP, McKenzie K, Rehm J. The association between cannabis use and depression: a systematic review and meta-analysis of longitudinal studies. *Psychol Med*. 2014;44(4):797-810.

[35] Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. *J Clin Psychiatry*. 1998;59:34-57.

[36] Sobell L, Sobell M. Timeline Follow-Back: A technique for assessing self-reported alcohol consumption. *Measuring Alcohol Consumption*: Humana Press; 1992.

[37] Wechsler D. *Wechsler Abbreviated Scale of Intelligence-Second Edition*: APA PsycTests; 2011.

[38] Beck AT, Steer RA, Brown G. *Beck Depression Inventory-II (BDI-II)*. *Psychological Assessment* 1996.

[39] Spielberger CD, Gorsuch R, Lushene R, Vagg P, Jacobs G. Manual for the state-trait anxiety scale: Consulting Psychologists; 1983.

[40] Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. *Journal of Health and Social Behavior*. 1983;24(4):385-96.

[41] Stefanis NC, Hanssen M, Smirnis NK, Avramopoulos DA, Evdokimidis IK, Stefanis CN, et al. Evidence that three dimensions of psychosis have a distribution in the general population. *Psychol Med*. 2002;32(2):347-58.

[42] Cyders MA, Littlefield AK, Coffey S, Karyadi KA. Examination of a short English version of the UPPS-P Impulsive Behavior Scale. *Addict Behav*. 2014;39(9):1372-6.

[43] Aitken RC. Measurement of feelings using visual analogue scales. *Proc R Soc Med*. 1969;62(10):989-93.

[44] Heishman SS, E. Assessment of Cannabis Craving Using the Marijuana Craving Questionnaire. In: Onaivi E, editor. *Marijuana and Cannabinoid Research: Methods and Protocols*. Humana Press Inc; 2009. p. 209-15.

[45] Allsop DJ, Norberg MM, Copeland J, Fu S, Budney AJ. The Cannabis Withdrawal Scale development: patterns and predictors of cannabis withdrawal and distress. *Drug Alcohol Depend*. 2011;119(1-2):123-9.

[46] The Government of the Hong Kong Special Administrative Region of the People's Republic of China. Beat Drugs Fund Evaluation Question Sets (Commonly Used Evaluation Question Sets) [updated 26 June 2024, cited 2025 Feb 26]. 2013. Available from: https://www.nd.gov.hk/en/beat_questions_2010R2.html.

[47] Slavet JD, Stein LA, Colby SM, Barnett NP, Monti PM, Golembeske C, Jr., et al. The Marijuana Ladder: measuring motivation to change marijuana use in incarcerated adolescents. *Drug Alcohol Depend*. 2006;83(1):42-8.

[48] Biener L, Abrams DB. The Contemplation Ladder: validation of a measure of readiness to consider smoking cessation. *Health Psychol.* 1991;10(5):360-5.

[49] Babor T, Higgins-Biddle J, Saunders J, Monteiro M. The Alcohol Use Disorders Identification Test: World Health Organization; 2001.

[50] Fagerstrom K, Russ C, Yu CR, Yunis C, Foulds J. The Fagerstrom Test for Nicotine Dependence as a predictor of smoking abstinence: a pooled analysis of varenicline clinical trial data. *Nicotine Tob Res.* 2012;14(12):1467-73.

[51] Lorenzetti V, Hindocha C, Petrilli K, Griffiths P, Brown J, Castillo-Carniglia A, et al. The International Cannabis Toolkit (iCannToolkit): a multidisciplinary expert consensus on minimum standards for measuring cannabis use. *Addiction.* 2022;117(6):1510-7.

[52] Lorenzetti V, Solowij N, Whittle S, Fornito A, Lubman DI, Pantelis C, et al. Gross morphological brain changes with chronic, heavy cannabis use. *Br J Psychiatry.* 2015;206(1):77-8.

[53] Solowij N, Stephens RS, Roffman RA, Babor T, Kadden R, Miller M, et al. Cognitive functioning of long-term heavy cannabis users seeking treatment. *JAMA.* 2002;287(9):1123-31.

[54] Hindocha C, Freeman TP, Grabski M, Stroud JB, Crudginton H, Davies AC, et al. Cannabidiol reverses attentional bias to cigarette cues in a human experimental model of tobacco withdrawal. *Addiction.* 2018;113(9):1696-705.

[55] Kuhns L, Kroon E, Filbey F, Cousijn J. Unraveling the role of cigarette use in neural cannabis cue reactivity in heavy cannabis users. *Addict Biol.* 2021;26(3):e12941.

[56] Oliver D, Englund A, Chesney E, Chester L, Wilson J, Sovi S, et al. Cannabidiol does not attenuate acute delta-9-tetrahydrocannabinol-induced attentional bias in healthy volunteers: A randomised, double-blind, cross-over study. *Addiction.* 2024;119(2):322-33.

[57] Ekhtiari H, Zare-Bidoky M, Sangchooli A, Janes AC, Kaufman MJ, Oliver JA, et al. A methodological checklist for fMRI drug cue reactivity studies: development and expert consensus. *Nat Protoc.* 2022;17(3):567-95.

[58] Campbell DW, Stewart S, Gray CEP, Ryan CL, Fettes P, McLandress AJ, et al. Chronic cannabis use and attentional bias: Extended attentional capture to cannabis cues. *Addict Behav.* 2018;81:17-21.

[59] Meier MH, Caspi A, Ambler A, Harrington H, Houts R, Keefe RS, et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. *Proc Natl Acad Sci U S A.* 2012;109(40):E2657-64.

[60] Hamaoui J, Pocuca N, Ditoma M, Heguy C, Simard C, Aubin R, et al. Age of onset of cannabis use and substance use problems: A systematic review of prospective studies. *Addict Behav.* 2025;163:108259.

[61] Fontes MA, Bolla KI, Cunha PJ, Almeida PP, Jungerman F, Laranjeira RR, et al. Cannabis use before age 15 and subsequent executive functioning. *Br J Psychiatry.* 2011;198(6):442-7.

[62] Ataya AF, Adams S, Mullings E, Cooper RM, Attwood AS, Munafo MR. Internal reliability of measures of substance-related cognitive bias. *Drug Alcohol Depend.* 2012;121(1-2):148-51.

[63] Grafton B, Teng S, MacLeod C. Two probes and better than one: Development of a psychometrically reliable variant of the attentional probe task. *Behav Res Ther.* 2021;138:103805.

[64] Zvielli A, Bernstein A, Koster EHW. Temporal Dynamics of Attentional Bias. *Clinical Psychological Science.* 2014;3(5):772-88.

[65] Wertz JM, Sayette MA. Effects of smoking opportunity on attentional bias in smokers. *Psychology of Addictive Behaviors.* 2001;15(3):268-71.

[66] Kerridge BT, Pickering R, Chou P, Saha TD, Hasin DS. DSM-5 cannabis use disorder in the National Epidemiologic Survey on Alcohol and Related Conditions-III: Gender-specific profiles. *Addict Behav.* 2018;76:52-60.

[67] Rosen AS, Sodos LM, Hirst RB, Vaughn D, Lorkiewicz SA. Cream of the Crop: Clinical Representativeness of Eligible and Ineligible Cannabis Users in Research. *Subst Use Misuse.* 2018;53(12):1937-50.

Attentional Bias in People with Moderate-To-Severe Cannabis Use Disorder**Highlights:**

- No significant differences in attentional bias between the CUD and control groups.
- Faster reaction times to cannabis images in CUD with highest problem severity.
- No effect of dosage, craving, valence, arousal and nicotine on attentional bias.