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ABSTRACT

Modern complex socio-technical systems demand systemic risk analysis approaches that can
holistically address the interdependencies between human, technological, and organizational
components. Traditional models often fall short in capturing the dynamic and emergent nature of
these interactions. This study introduces a novel, integrated risk analysis framework grounded in the
Safety-Il paradigm, which emphasizes understanding how systems succeed under varying conditions
rather than focusing solely on failure. The proposed methodology combines the Functional Resonance
Analysis Method (FRAM) with Bayesian Networks to overcome FRAM’s qualitative limitations and
enable quantitative assessment of performance variability. The framework is further enriched by
integrating complementary techniques, including Monte Carlo Simulation and canonical probabilistic
models. This holistic toolkit enables a rigorous and scalable approach for modelling uncertainty and
systemic variability across complex operational environments. The methodology is demonstrated
through a case study of seaport operations, a representative example of a complex socio-technical
system. The results show that the integrated Safety-ll-informed framework improves the
quantification of systemic risk and enhances the capacity to manage complexity and uncertainty in
real-world settings.

Keywords: Systemic risk, Complex socio-technical system, Safety I, FRAM, Bayesian Network,
Seaport Operations

1. INTRODUCTION

Complex Socio-Technical Systems (CSTS) are defined by tightly interconnected structures,
unpredictable workflows, non-linear operations, and intricate interactions among their
elements. These systems encompass the interplay of human, technological, and
environmental factors within an organizational context (Baxter and Sommerville, 2011;
Bayramova et al., 2023; Jensen and Aven, 2018). Traditional risk analysis methods, such as
fault tree analysis, event tree analysis, and probabilistic safety assessment, are primarily
grounded in the Safety-1 paradigm. These approaches operate on several foundational
assumptions: systems can be decomposed into simpler components; their functioning is
categorized as either successful or failed; risk analysis depends on predefined cause-and-
effect relationships; and event sequences are assumed to be linear. While this methodology
proved effective for purely technological systems and was widely applied in critical
industries such as chemical, nuclear, and aviation during the 20th century, its limitations
became apparent when dealing with CSTS (Aven, 2022; Mohsendokht and Jamshidi, 2021).
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Safety-1 philosophy, rooted in traditional thinking, struggles to accommodate the dynamic,
nonlinear, and emergent nature of modern systems, making its continued application in the
21st century increasingly questionable (Hollnagel et al., 2015). To address these limitations,
a new paradigm known as Safety-1l has emerged. Rather than focusing solely on the
prevention of failures, Safety-II emphasizes ensuring that “as many things as possible go
right.” This approach adopts a proactive stance, recognizing the adaptability of human
operators and underscoring the importance of monitoring everyday performance variability as
a means of sustaining system safety.

Over the past decade, this paradigm has sparked extensive discussion among researchers,
who have both supported and critiqued its underlying philosophy; a detailed exploration of
which lies beyond the scope of this study (Aven, 2022; Cooper, 2022; Hollnagel, 2018;
Martinetti et al., 2019; Provan et al., 2020). However, the research trend indicates that the
Safety-11 concept has gained significant traction, with scholars from various disciplines
incorporating it into their studies. Applications span diverse fields, including maritime
operations (Adhita et al., 2023; Qiao et al., 2021; Wahl et al., 2020), energy systems
(Riemersma et al., 2024), aviation (Yang et al., 2017), chemical industry (Yu et al., 2020),
construction (Martinetti et al., 2019; Martins et al., 2022), transportation (Papadimitriou et
al., 2022; Wang et al., 2020), and nuclear power plants (Ham and Park, 2020; Park et al.,
2018).

Despite the growing conceptual appeal of the Safety-Il concept across domains, efforts to
translate its principles into repeatable, decision-oriented analyses for CSTS remain
fragmented. Existing operationalisations tend to be either qualitative (e.g., mapping work-as-
done, identifying functional dependencies, and general recommendations to improve safety)
or narrowly quantitative (e.g., indicator scoring or isolated simulations), often without a
formal mechanism to represent everyday performance variability, propagate its effects
through interdependent functions, and address uncertainty in a transparent way.

Recent advances over the past years have sought to address this gap by proposing semi-
quantitative and quantitative approaches in which Functional Resonance Analysis Method
(FRAM) serves as the central modelling framework. These efforts include the use of Monte
Carlo sampling and explicit propagation rules to characterise upstream-downstream
variability within FRAM models (Kim and Yoon, 2021; Patriarca et al., 2017), as well as the
integration of FRAM with BNs or dynamic BNs (Peng et al., 2023; Zarei et al., 2022). Such
combinations provide a principled calculus for fusing heterogeneous evidence, updating
beliefs, and supporting diagnostic and prognostic reasoning in interdependent systems.
Collectively, these developments have paved the way toward more rigorous
operationalisation of the Safety-Il concept in CSTS. However, existing studies still have
limitations, in which some concentrate on modelling functional interactions while
overlooking internal and external variabilities within individual functions, whereas others
emphasise these variabilities but fail to capture the dynamic interplay between functions.

To address these gaps, this paper proposes an integrated framework for systemic risk analysis
within the context of CSTS, aligning with the principles of the Safety-11 concept. The novel
methodology integrates FRAM and BN with advanced analytical tools, including Monte
Carlo Simulation (MCS), canonical probabilistic methods, Dempster-Shafer theory, and
criticality matrix. The key contributions of this study can be summarized as follows:
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1) Comprehensive analysis of CSTS elements: Each element of the CSTS, including
technological, human, and organizational functions, is analysed to assess their internal
and external performance variabilities. These variabilities account for factors such as
operational uncertainties, environmental conditions, and human performance
fluctuations.

2) Interaction between functions: The interactions among related functions are
systematically examined to identify and track their upstream-downstream
performance variability. This includes assessing their potential impacts, either
negative, damping, or even positive on the entire system. Such an analysis helps to
highlight critical dependencies and emergent behaviours within the system.

3) Retrospective and prospective risk analysis: The proposed framework enables both
retrospective and prospective evaluations of the performance variability. This dual
perspective equips decision-makers with actionable insights to address risks
effectively.

4) Support for risk-based decision-making: By quantifying and visualizing variabilities
across the CSTS, the framework empowers decision-makers to prioritize interventions
and implement targeted measures to manage identified risks.

The remainder of this paper is structured as follows: Section 2 provides a concise literature
review on CSTS, the application of the Safety-Il concept, outlining the methodologies
currently applied in CSTS and highlighting the identified research gaps. Section 3 presents a
detailed discussion of the adopted methodology, with an in-depth explanation of the various
techniques employed. Section 4 demonstrates the application of the proposed methodology to
seaport operations and includes a discussion of the results and their interpretation. Finally,
Section 5 summarizes the key insights derived from this study and formulates the
conclusions.

2. LITERATURE REVIEW
2.1. Systemic risk analysis of complex socio-technical systems

As previously noted, CSTS are networked configurations of individuals, technologies, rules,
and environments whose behaviour emerges from numerous non-linear interactions rather
than from any single component. Within such systems, accidents frequently originate from
mismatches, tight couplings, and feedback across organisational, human, and technical layers,
rather than solely from component failure or human error. Systemic risk analysis perspectives
emphasise that safety performance depends on how constraints are specified, implemented,
and monitored throughout the entire system structure, and that adverse outcomes may arise
from otherwise normal local variability when influenced by goal conflicts and resource
pressures (Leveson, 2004).

This inherent complexity underscores the relevance of the Safety-11 perspective, which
focuses on understanding how work typically succeeds despite performance variability.
Safety-11 recognises that the same adaptations that enable successful outcomes can, under
certain circumstances, interact to produce failure. By shifting the analytical focus toward
everyday performance, operational trade-offs, and resilience capacities, Safety-Il provides a
more robust foundation for systemic risk analysis and for designing systems that remain
tolerant and adaptive in the face of variability (Provan et al., 2020).
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In this regard, efforts have been made to introduce techniques for systemic risk analysis,
including the Function Analysis System Technique (FAST), the Structured Analysis and
Design Technique (SADT), the Systematic Human Error Reduction and Prediction Approach
(SHERPA), the Accident Causation Analysis and Taxonomy (ACAT), the Systems Theoretic
Accident Model and Processes (STAMP), and the FRAM. Table 1 presents a concise
comparative analysis of these methods, highlighting their respective strengths and limitations
in the context of CSTS risk analysis.

Table 1. Comparative Overview of Systemic Risk Analysis Methods.

Method Analytical Focus / Advantages Limitations Key
Application Domain References

FAST | Employed primarily in Promotes Outcomes are | (Bytheway,
engineering design and function- highly dependent on | 2007)
value analysis to map oriented rather facilitator expertise.
functional logic than component- Provides only static
(“how” and “why”) baS(_ad_ thinking. rfepresentationg;
between system Facilitates limited capacity to
elements stakeholder model temporal or

' engagement and emergent
creative behaviours.
exploration .~ of
alternatives.

SADT | Utilized for Offers a Inflexible in | (Ahmed et
hierarchical standardized, dynamic or rapidly | al., 2014)
decomposition of formalized evolving
system functions, framework  for environments.
specifying inputs, system Lacks constructs for
outputs, controls, and modelling _ and sequencing or
mechanisms m documentation. Qynamlp
structured diagrams Enhance_s _ interactions; models

' communication may become
among complex and
interdisciplinary unwieldy.
teams.

SHERPA | Designed to identify Systematic Requires (Stanton,
and classify potential prediction of comprehensive task | 2004)
human errors based on error modes with decomposition in (Catelani et
task analysis within direct links to advance. | gl 2021)
complex systems. remedial actions. Resource-intensive

Supports and time-consuming
targeted  safety to implement at
interventions scale.

and human

factors

engineering

ACAT | Focused on classifying Provides a Primarily (Lietal.,
and analysing causal comprehensive retrospective in 2017)
factors in past taxonomy  for nature; limited use
accidents across multi- for prospective risk
technical, human, dimensional assessment.
managerial, and accidept Reqqi_res domai_n-
environmental analysis. specific adaptation.
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domains. - Enables
systematic
tracing of failure
paths
STAMP | Conceptualizes - Capturesunsafe | - Requires substantial | (Ceylan et
accidents as results of interactions and conceptual al., 2021)
inadequate control and emergent risks in understanding and | (Sun et al.,
feedback within socio- complex modelling effort. 2022)
technical systems, adaptive - Pred_om_inantly
grounded in systems systems. qualltgtl\{e;
theory. - Supports hlg_h- quantlt_atlve _
level modelling extensions remain
of safety limited
constraints and
control
structures
FRAM | Models complex | - Well-aligned with | - Model development is | (Erik, 2017)
socio-technical the Safety-Il | resource-intensive and (Yuetal.,
systems by examining | paradigm; captures | requires deep system 2024)
how functional | both successful and | understanding.
performance adverse outcomes. o
variability propagates - - Quantitative
and interacts  over | - Expll_C|tIy models appllgatlons are
time. interactions among | evolving but not yet
human,  technical, | standardized.
and organizational
elemenits.
- Enables dynamic
assessment of
functional resonance
and emergent risks.

2.2. FRAM application

Among the above-mentioned techniques, the FRAM has gained significant popularity for
systemic risk analysis in CSTS due to several compelling advantages. Unlike traditional
methods, FRAM avoids decomposing systems into individual components and operates
independently of cause-effect analysis, aligning seamlessly with the principles of the Safety-
Il paradigm. Furthermore, it identifies the various elements of a CSTS (Human,
technological, and organizational factors) and addresses them holistically while accounting
for their interactions and interdependencies. Additionally, FRAM enables detailed monitoring
and analysis of the performance variability of each function, its influence on downstream
functions, and its overall impact on the entire system. FRAM models CSTS by focusing on
the functions that describe what the system does, rather than its physical components or
organisational structure. Each function is depicted as a hexagon with six aspects, including
Input, Output, Preconditions, Resources, Control, and Time that define its behaviour and
interaction with other functions. Couplings between functions are represented by arrows,
indicating how the output of one function can influence the input, control, or resource
requirements of another. Variability emerging in any function may propagate through these
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couplings, and this functional interaction structure forms the basis for analysing the
performance variability.

The four main principles of FRAM can be summarized as follows (Erik, 2017): First, the
nature of success and failure is equivalent; in other words, everyday work variability
determines whether outcomes are positive or negative. Second, individuals and organizations
must make ongoing, often approximate, adjustments to adapt to changing conditions. Third,
outcomes both positive and negative of a CSTS emerge from interactions among multiple
system functions rather than from individual components alone, meaning outcomes cannot be
traced directly to isolated causes. Fourth, functional resonance refers to the amplification of
normal function variability due to unexpected interactions. It emphasizes the importance of
identifying areas where such resonances may occur, as they can lead to significant system-
wide consequences.

Despite its many advantages, the FRAM remains primarily a qualitative approach, lacking the
capability to provide quantitative measurements for interpreting performance variability. This
limitation is widely recognized as a significant drawback. To address this issue, researchers
have investigated various approaches to enhancing FRAM by incorporating standardized and
quantitative techniques. One of the earliest efforts in this direction was undertaken by Rosa et
al. (Rosa et al., 2015), who combined FRAM with the Analytical Hierarchy Process (AHP) to
generate numerical rankings. Patriarca et al. (Patriarca et al., 2017) introduced an innovative
semi-quantitative FRAM-based approach by integrating it with MCS, enabling the
representation of performance variability as discrete probability distributions. The integration
of fuzzy logic theory with FRAM has also been proposed in multiple studies, offering another
pathway to quantification (Hirose and Sawaragi, 2020, 2019; Slim and Nadeau, 2020). In
their work, Lee and Chung (Lee and Chung, 2018) developed a method to quantify Human-
System Interaction (HSI) variability and assess criticality using a semi-quantitative FRAM
process.

More advanced techniques have emerged in recent years, including the integration of
machine learning and data-driven approaches with FRAM, which have been applied across
various domains. BNs have also been explored as a powerful probabilistic tool for
quantifying FRAM. For instance, Zarei et al. (Zarei et al., 2022) developed a causation model
based on FRAM, which they incorporated into a dynamic BN to analyse internal and external
performance variability, referred to as uncoupled variability, within the petrochemical
industry. In maritime operations, Guo et al. (Guo et al., 2023) proposed a similar approach,
further enhariced by embedding a Markov model to analyse the evolution of collision risk
during ship pilotage. These advancements demonstrate the growing efforts to integrate
qualitative and quantitative analyses in FRAM applications (Wang et al., 2025; X. Yang et
al., 2025; Zhao et al., 2025).

2.3. Research gaps

Following a comprehensive review of the current literature, a recurring critique highlights the
lack of a systematic framework for improving safety performance that effectively integrates
both qualitative and quantitative approaches. Qualitative approaches, while valuable for
conceptual exploration, frequently lack systematic and quantifiable measures. These
approaches often focus on describing the contrast between work-as-imagined and work-as-
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done, mapping functional dependencies, and providing general recommendations for
improvement, but rarely progress toward measurable, evidence-based interventions.

Quantitative approaches, on the other hand, also exhibit notable limitations. Some studies
prioritise modelling functional interactions but neglect internal and external variabilities
within individual functions. Others emphasise characterising such variabilities yet fail to
adequately capture the dynamic interdependencies among functions. In the first case,
functions are frequently treated as nodes with fixed or weakly varying parameters, under-
representing internal variability (e.g., workload, expertise drift, equipment degradation) and
external variability (e.g., demand surges, environmental conditions, regulatory or
organisational changes). As a result, resonance pathways are computed over unrealistically
stable functions, with uncertainty addressed through ad hoc sensitivity ranges rather than
systematic propagation techniques. In the second case, although intra-function variability is
richly characterised, functional couplings are simplified or omitted. Outputs are often
aggregated into single indices, temporal dynamics are suppressed, and dependencies are
assumed independent. This prevents the transmission of cross-scale feedback, buffering
effects, and transient accumulations through the functional network. Additionally, the use of
static or scenario-specific parameterisation and limited evidence fusion or validation further
restricts robust prospective “what-if” analysis.

A more holistic methodology is therefore required which could retain FRAM’s functional
topology, embeds stochastic and state-dependent models for each function, and employs a
probabilistic propagation engine to fully operationalise the principles of Safety-Il in CSTS.
The methodology proposed in this study seeks to address these gaps, as detailed in the
following sections.

3. METHODOLOGY

This section proposes a novel systemic risk analysis methodology based on a hybrid approach
combining FRAM and BN, representing three key elements of CSTS: technological, human,
and organizational functions. FRAM is utilized to describe the complex interrelationships
among various functions, while BN enables the quantitative analysis of this complexity.
Figure 1 illustrates the overall methodology, structured into four consecutive phases.

e Phase 1: Based on Hierarchical Task Analysis (HTA) and the principles of FRAM,
the functions, associated variabilities, and couplings between functions are identified,
leading to the construction of the final FRAM model.

e Phase 2: Each function is represented as either a technological, human, or
organizational function. The internal variability within each function is modelled
using a BN, in which the interrelationships among its internal contributing factors are
defined both qualitatively and quantitatively.

e Phase 3: The FRAM, serving as the primary model, is integrated with the BN to
represent variability, incorporating prior probabilities, conditional probability tables,
and model validation.

e Phase 4. The model is interpreted by identifying resonances, whether negative or
damping, recognizing critical functions through monitoring interactions between
them, detecting resonant patterns, and ultimately extracting insights and implications.
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Phase 1: FRAM modeling Phase 2: Internal variability quantification
Hierarchical FRAM Model Function J Internal Variability
Task Analysis Development Categorization Determination
o . . BN Structure
Critical Task Couplings {iaiins
Identification T Identifications il
Organizational Technological
RIF identification RIF identification
Phase 3: FRAM & BN Integration - Structural NP
- Resources - Safety oriented
] [ - Management - Material integrity
Mapping Obtaining the - Cultural - Operational context
FRAM to BN Prior Probabilities | - External factors
: ‘ Human reliability through CREAM methodology

- Definition of common performance conditions and variables

Noisy-Max et
i s Model Validation - Rules etablishment for connecting CPCs to CCMs

Based CPT - Assigning beliefdegrees to CCMs based on CPCs influence
- BN inferenee process and validation
Phase 4: Model Interpretation
Negative/Damping Resonance Identification y Critical Functions [dentification
Recommendations & Feedback o Insights & Implications

Figure 1: The Conceptual structure of the developed methodology.

3.1. FRAM modeiling

In the first phase, an HTA is developed to better understand the activities within the process
under study and to provide a general overview of its tasks. The hierarchical structure of HTA
enables detailed analysis of specific tasks and helps clarify the relationships among them.
HTA has been extensively described in prior research (Salmon et al., 2010; Stanton, 2006).
Once the HTA is developed, key functions are identified and selected for further analysis
through FRAM modelling. FRAM is employed to qualitatively analyse the effective
operation of a CSTS.

Based on the principles of FRAM discussed earlier, the model can be constructed by the
following steps outlined below:

1) Identification of functions: The results from the HTA inform the FRAM
construction. Activities that significantly contribute to the overall process are
identified as candidate functions.

2) Definition of aspects: Each function is characterized by six aspects: input,
output, resource, pre-condition, control, and time.

8
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3) Determination of couplings: By understanding the flow of information or
resources within the system, links between different aspects of various
functions are identified, allowing for visualization of interdependencies among
functions.

4) ldentification of variabilities: Function variability refers to deviations in a
function’s output caused by factors from internal, external, or upstream
functions.

Once the FRAM structure is constructed, each function can be characterized by potential
performance variabilities. In FRAM modelling, three types of variability are considered: (1)
Internal variability: which originates from factors within the function itself, such as staff
training levels and equipment maintenance schedules; (2) External variability: which is
driven by external factors like weather conditions, geopolitical events, market demands, and
security issues; (3) Upstream Variability Index (UVI), which captures the effects of
interdependencies with upstream functions that affect downstream functions, such as the
impact of container unloading efficiency and speed on the subsequent transport accuracy and
timing to yard storage in a seaport. In this paper, the first two variabilities are referred to as
Self-contained Variability Index (SVI), which pertains to performance fluctuations caused by
internal and external factors that do not arise from interactions between system functions.

These variabilities, interpreted as abnormal daily fiuctuations, manifest in different ways,
known as phenotypes, according to Erik (2017). Phenotypes may include aspects such as
timing, precision, speed, distance, force, duration, and direction. Depending on the nature of
the analysis, a suitable combination of these phenotypes is chosen for FRAM analysis. In this
paper, timing and precision are selected to represent the performance variability of the
functions. Timing represents the punctuality of activities being conducted. The output of a
function may occur too early, on time, late, or in the worst case, missed which means it
arrives too late to be useful for its intended purpose or is not produced at all (Kaya et al.,
2021). Regarding precision, an output can be accurate, satisfactory, inaccurate, or, in the
worst case, faulty. From a systemic perspective, performance variability arises from local
adjustments made to _meet performance demands and ensure the functioning of a CSTS. To
conduct a meaningful analysis, it is essential to evaluate the potential variability of each
function. Therefore, a unified representation of performance variability is needed, enabling an
aggregated view across different types of functions. To this end, integrating these two
phenotypes not only provides a unified language for describing performance variability
among functions but also facilitates the interpretation of interactions between these functions
(Grabbe et al., 2022; Slim and Nadeau, 2020; Zinetullina et al., 2021). Table 2 presents the
results of this integration using four qualitative scales: stable (ST), low variable (LV),
moderately variable (MV), and highly variable (HV).

Table 2. Unification of performance variability based on time and precision phenotypes.

Time
Early Timely Delayed Missed
Accurate ST ST LV HV
Precision Satisfactory LV LV MV HV
Inaccurate MV MV HV HV
Faulty HV HV HV HV
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In this context, "ST" performance is achieved when activities are both timely and accurate,
indicating no variability and reliable outcomes. It is the only case where "work as imagined"
corresponds exactly to "work as done". "LV" describes situations where performance may
show slight deviations but remains satisfactory, being either timely or accurate. "MV" occurs
when inaccuracies or delays begin to affect performance, though it remains functional. "HV"
represents significant deviation, with outputs frequently delayed, missed, or faulty, leading to
unreliability and potential system disruption.

3.2. BN modelling

For a quantitative analysis of FRAM, using BN to represent qualitative performance
variability scales in a numerical form is highly effective. This approach offers two primary
advantages. First, since performance variability has four defined states, BN can seamlessly
manage these multi-state conditions, accommodating the complexity introduced by numerous
interacting functions within a system. Second, performance variability can be expressed as
probability percentages, a task well-suited to BN's strength in handling probabilistic analysis
and uncertainty. Thus, integrating BN with FRAM enables a robust approach to systemic risk
analysis in CSTS, leveraging probabilistic reasoning to capture the nuanced variability and
interdependencies inherent in these environments. To begin, it is essential to differentiate
functions based on their inherent characteristics, categorizirg them into three primary types:
technological functions, human functions, and. organizational functions. Each category
represents a distinct aspect of the system with unique dependencies, behaviours, and potential
risks. Separate BN models are developed for each of these categories to capture the specific
interactions, uncertainties, and causal relationships within each function type, a concept
referred to as SVI.

In this respect, a structured pipeline was used to identify and justify priority nodes and states
for each function: (i) literature-based scoping to enumerate candidate nodes and state options;
(i1) expert review to apply ‘inclusion/exclusion criteria and finalise observable, non-
overlapping states; and (iil) validity checks via a BN-level sensitivity screening.

In the first step, candidates were compiled from a comprehensive review of published
sources, retaining variables with plausible causal relevance to the target node. In the next
step, a multidisciplinary domain expert panel merged or removed overlapping items,
confirmed state labels, and standardised state counts to 2-3 for BN tractability.
Inclusion/exclusion criteria are set as follows: operationalisability (observable in this context
and discretisable into mutually exclusive, collectively exhaustive states), non-redundancy (no
conceptual duplication), and interpretability (states understandable to practitioners). In the
last step, the BN sensitivity screen fixed each parent to each of its states, recalculated the
child’s probability, computed the parent swing (max-min change), and verified monotonicity
(worsening states increased risk); nodes with negligible or non-monotone effects were
revised or omitted.

3.2.1. Organizational functions

Organizational factors play a crucial role in system safety, either enhancing or impairing the
safety performance of a CSTS. Within an organization, numerous interactions occur among
various components, including staff, operators, management, structure, and culture, among

10
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others (Li et al., 2012; Pence and Mohaghegh, 2020). To explicitly account for the impact of
organizational factors on system performance variability and to capture the collective nature
of its constituent elements, it is essential to consider all relevant aspects across multiple
dimensions. These dimensions include social factors (e.g., safety culture, level of training),
structural factors (e.g., authority gradients), resources (e.g., financial), management (e.g.,
leadership quality), and even external factors (e.g., geopolitical influences). Furthermore, the
interactions among these dimensions must also be thoroughly examined (Mohaghegh et al.,
2009). Table 3 outlines the contributing factors of organizational functions, along with their
sub-factors and corresponding descriptions, within the context of BN development. In this
respect, efforts are made to define the states of each node to ensure an appropriate depth of
causality in the model, while accounting for the objectives of systemic risk analysis and the
multidimensional nature of organizational factors.

Table 3: The identified contributing factors to the performance variability of organizational functions.

External factors

unfavourable

factors and dynamics that impact
the supply and demand for goods
and services within a specific
market. Unfavourable market
conditions  can  significantly
influence an  organization’s
operational decisions, strategic
planning, and overall
performance.

Categories Nodes States Descriptions Reference
Regulation and Strict, Refers to the laws, regulations, | (Donelson et al,
enforcement moderate, standards, and oversight | 2023)

lax mechanisms . established by
governmental or regulatory bodies
that an organization is required to
follow. Stricter rules generally
lead to improved organizational
performance in the relevant
functions.

Market conditions | Favourable, | Refers to the various economic | (Germain et al., 2008)

External
stakeholder
relationships

Strong,
average,
weak

A strong relationship  with
external stakeholders can enhance
organizational performance by

fostering trust, facilitating
resource access, and enabling
smoother collaboration.

Conversely, a weak relationship
may lead to communication gaps,
reduced support, and potential
conflicts, leading to an increased
performance variability.

(Hillman and Keim,
2001)

Geopolitical
factors

Stable, tense

Intense geopolitical factors, such
as international conflicts, trade
policies, tariffs, and economic
sanctions, can negatively impact
organizational performance, as
managing these external pressures
requires complex and challenging
decision-making. In stable
conditions, however, the
organization is relieved from such
difficulties.

(Kuai and

2025)

Wang,

Environmental
factors

Favourable,
unfavourable

Environmental factors, such as
climate change and natural
disasters, can disrupt operations,
increase  costs, and require

(Busch, 2011)

11
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investment in sustainable
practices. Failure to respond,
adapt, and recover effectively

from these factors can damage the
organization’s reputation, hinder
compliance, and  negatively
impact overall performance.

Security factors

Secure,
insecure

Security factors, including data
breaches, cyber threats, and
physical security risks, can
compromise sensitive
information,  disrupt  business
continuity, and increase the
organizational performance
variability.

(Hasan et al., 2021)

Organizational
Structure

Span of control

Wide,
balanced,
narrow

Refers to the horizontal aspect of
management, i.e., how many
employees are directly under the
supervision of a single manager.
A wider span of control means
fewer managers = are needed,
leading to a flatter organizational
structure. A narrower span of
control requires more managers,
leading to a talier structure. A
balanced span of control indicates
of the appropriate number of
managers.

(Remenova et al.,
2018)

Communication
paths

Adequate,
inadequate

Communication paths refer to the
adequacy and  quality  of
communication between different
levels of an organization. When
communication is sufficient and
effective, the  organization’s
performance variability becomes
more stable.

(Musheke and Phiri,
2021)

Authority gradient

Steep,
balanced,
shallow

An authority gradient describes
the hierarchy of power within an
organization, influencing how
freely subordinates can challenge
superiors. A steep gradient
discourages lower-ranking
individuals from speaking up,
while a balanced gradient
promotes open dialogue across
levels. Conversely, a shallow
gradient can lead to a chaotic
environment.

(Luva and Naweed,
2024)

Organizational
resources

Equipment
resources

Adequate,
inadequate

An  adequate  amount  of
equipment resources is essential
for stable organizational
performance.

(Ozdemir et al., 2023)

Human resources

Adequate,
inadequate

An adequate number of personnel
is essential for stable
organizational performance.

(Natsir et al., 2024)

Financial
resources

Adequate,
inadequate

An adequate number of financial
resources is essential for stable
organizational performance.

(Carmeli and Tishler,
2004)

Information
resources

Adequate,
inadequate

An  adequate  amount  of
information resources is essential
for stable organizational
performance.

(Pashutan et al.,
2022)

Time resources

Adequate,
inadequate

An adequate amount of time
resources is critical for meeting
deadlines, maintaining

productivity, and ensuring

(Aeon et al., 2021)
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efficient workflow.

Resource Efficient, Refers to the organized efforts (Wang et al., 2022)
management moderately and procedures an organization
efficient, implements to allocate existing
inefficient resources effectively and
efficiently.
Leadership quality Strong, Refers to the effectiveness and | (Nasim et al., 2023)
i moderate, characteristics of leaders within
Organizational weak an organization. Strong and high-
management quality leadership is crucial for

setting the direction, inspiring
employees, and ensuring the
achievement of organizational

goals.
Communication Adequate, Refers to the quality of | (Noor Arzahan et al.,
effectiveness inadequate | communication within an | 2022)

organization and its impact on
achieving stable performance. It
encompasses the clarity, accuracy,
and timeliness of information
shared among team members.
Clear communication promotes
collaboration, minimizes
misunderstandings, and aligns
everyone with the organization's
objectives,  ultimately ensuring
consistent performance.

Rules & Compliant, | Refers to the effectiveness with | (Pedrosa et al., 2025)
regulations partially which an organization enforces
implementation compliant, and adheres to internal policies,
incompliant standards, and external
regulations governing its

operations. Greater compliance
with these rules and regulations

leads to more stable
organizational performance
variability.
Emergency Strong, Refers to the organized efforts | (Mees et al., 2016)
management moderate, and procedures  that  an
weak organization establishes strategies

to handle emergencies by
planning ahead, managing
responses, and facilitating
recovery efforts, including natural
disasters, technological incidents,
security  threats, and other
unexpected events that may
disrupt normal operations. The

stronger the emergency
management, the more stable the
organization’s performance
variability.

Education/training Adequate, | An adequate level of education | (RAHAMAN et al.,
inadequate and training among personnel | 2023)

contributes to a  vibrant
organizational culture.

Information Adequate, Refers to the process of | (Diem Leetal., 2023)
. sharing inadequate exchanging relevant information
Organizational including  data, knowledge,
culture insights, and updates among

individuals, teams, departments,
or organizations. Adequate level
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of information sharing is crucial

for overall organizational
efficiency.
Safety culture Rich, Refers to shared mindset, outlook, | (Noor Arzahan et al.,
moderate, and priorities of employees | 2022)
poor concerning safety practices and

standards within an organization.
It encompasses how safety is
prioritized, communicated, and
practiced at all levels, from
management to front-line
workers. A rich safety culture
fosters a proactive approach to
managing risks.

Organizational High, It reflects how well employees | (Grossman et al.,
cohesion moderate, work together toward common | 2022)
low goals, the strength of relationships

within the organization, and the
overall sense of belonging and
loyalty that employees feel. An
organization with-high level of
cohesion typically experiences
higher levels of productivity, and
performance stability.

Employee Inclusive, Encompasses initiatives aimed at | (Chinenye Gbemisola
inclusivity moderately | fostering ~ an inclusive and | Okattaetal., 2024)
inclusive, supportive workplace where every

exclusive employee feels respected,
appreciated, and encouraged to
actively participate. A high level
of  inclusivity  within  an
organization fosters a rich
organizational culture.

3.2.2. Technological functions

Technological functions are primarily driven by machinery, equipment, or software and
represent automated processes or technical operations within CSTS. These functions rely on
the technical features of the system to perform specific tasks. Technological functions are
typically characterized by precision, consistency, and a predictable range of variability,
usually governed by design specifications, technical capabilities, or programmed protocols.
To determine the SVI of this function, the contributing factors to its performance variability
must first be identified. Performance variability states, designated as the child node of the
BN, include ST, LV, MV, and HV. The parent nodes, representing primary influences on
performance variability, can be categorized into three main groups: safety-oriented factors,
material integrity factors, and operational context factors. Safety-oriented factors encompass
the protocols, practices, and resources dedicated to ensuring operational safety, reliability,
and performance stability. These factors reflect the effectiveness of safety management
within the system and play a crucial role in building resilience to variability and failure. Key
contributors include maintenance activities, inspection policies, and reliability indices.
Material integrity factors represent the physical condition and degradation of materials over
time, accounting for natural wear, corrosion, and age-related issues. Material integrity is
essential in determining a system’s ability to withstand ongoing use and environmental
exposure. Key factors include equipment aging, structural degradation, wear and tear, and
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corrosion. Operational conditions are another key factor influencing the performance
variability of technological functions. These include external conditions, such as

environmental factors, that impact system operation. Stable environments offer predictability,
while harsh conditions such as extreme temperatures or high humidity pose challenges that
can compromise equipment functionality and increase variability. Table 4 presents the nodes,
their respective states, and detailed descriptions.

Table 4: The identified contributing factors to the performance variability of technological functions.

Categories Nodes States Descriptions Reference
Maintenance Preventive- | A preventive-oriented maintenance (West et al., 2024)
strategy oriented, strategy ~ emphasizes  proactive
balanced, measures to prevent potential
o | failures, significantly  boosting
C?):rigﬁtt:ije reliability but at a higher cost. In
contrast, a  corrective-oriented
strategy addresses failures only
Safety- after they occur. A balanced
oriented strategy combines both approaches,
factors optimizing reliability while
distributing the budget more evenly.
Maintenance Optimal, Maintenance quality evaluates the (Lu and Zhou, 2019)
quality acceptable, | thoroughness and technical
poor precision ~of maintenance tasks.
Optimal maintenance  quality
reflects skilled execution, accuracy,
attention to detail, and adherence to
best practices and standards, while
poor quality indicates a lack of
these attributes.
Inspection Intensive, Sporadic or inadequate inspections (Ferreira et al., 2009)
practice moderate, raise the risk of undetected
sporadic degradation, whereas an intensive
inspection regimen enhances the
detection of potential degradation.
Maintenance High, Maintenance effectiveness refers to | (Costa and Cavalcante,
effectiveness moderate, how  successfully  maintenance | 2022)
low activities prevent or mitigate
failures and ensure reliable
operation of system components. It
encompasses the impact of
maintenance strategies, inspection
frequency, and the quality of
maintenance activities on
equipment performance.
Reliability High, Reliability indicates the system's (Birolini, 2017)
moderate, likelihood to perform its function
low without failure, under a specified
condition, and over a specified
period of time.
Redundancy Adequate, Redundancy adds a layer of (Peiravi et al., 2022)
inadequate resilience; adequate redundancy
reduces the likelihood of high
variability in performance.
MTTR Short, long | Mean Time To Repair affects (Birolini, 2017)
downtime; longer repair times
increase the risk of performance
interruptions.
Availability High, Auvailability measures how often the (Birolini, 2017)
moderate, system can perform its intended
low function, impacted by reliability,

redundancy, and MTTR.
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Equipment New, old Equipment aging is the gradual (Clarotti et al., 2004)
aging decline in  performance and
Material reliability due to the natural
integrity Iifegycle of components. w_ith older
factors equipment, it is more likely to
exhibit variability in performance
due to accumulated wear, reduced
flexibility, and potentially outdated
technology.
Structural Low, Structural degradation captures the (Wu et al., 2024)
degradation moderate, overall deterioration of components
high or subsystems due to a combination
of internal stresses, environmental
conditions, and aging. High levels
of structural degradation pose
significant risks to the system,
leading to more  frequent
breakdowns, reduced load-bearing
capacities, and increased variability
in performance.
Wear and tear Minimal, Mechanical wear and tear describe | (Moulahi and Zdiri, 2025)
condition moderate, the progressive degradation of parts
severe caused by continuous usage and
friction over time. it affects
performance and longevity, with
severe wear leading to higher
failure rates.

Corrosion Low, Corrosion impacts the integrity of (Melchers, 2005)
moderate, materials, particularly metals and

high surfaces  exposed to  harsh
environments. High corrosion rates
significantly compromise structural
strength, increase the likelihood of
unexpected failures, and lead to
reduced performance reliability.
Operational Environmental Stable, A stable environment features (Duan et al., 2023)

context conditions variable, predictable and consistent

factors harsh conditions, with minimal
fluctuations in  factors like
temperature, humidity, and air
quality. In contrast, a harsh
environment is marked by extreme
or persistent stressors such as high
temperatures, corrosive substances,
heavy vibrations, high humidity, or
dust. A variable environment
exhibits moderate fluctuations in
external conditions.

3.2.3. Human functions

Human functions, within the framework of the Safety-11 concept, play a pivotal role as they
offer the most flexibility to adapt to variability and mitigate its adverse effects on the overall
system. Consequently, modelling human performance becomes a crucial component of
systemic risk analysis in a CSTS. Numerous Human Reliability Analysis (HRA) methods
have been developed in the literature to address this challenge (Patriarca et al., 2020).
Among these, the Cognitive Reliability and Error Analysis Method (CREAM) stands out as
the most suitable for this study due to the following reasons:
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I.  Systemic perspective: CREAM is aligned with modern systemic approaches, such as
the Safety-11 concept, by examining both successful and erroneous human actions,
rather than focusing solely on failures (Hollnagel, 1998).

Il.  Versatility and applicability: CREAM is adaptable across various industries and
contexts. It evaluates the interactions between human, technological, and
organizational factors, making it an ideal tool for analysing CSTS (Pei et al., 2024).

I1l.  Context-sensitive analysis: The methodology integrates the impact of context on
human performance using Common Performance Conditions (CPCs), enabling a
detailed and situational understanding of reliability (Sun et al., 2012).

IV. Focus on cognitive processes: Unlike traditional HRA methods that emphasize
physical tasks, CREAM prioritizes cognitive functions such as decision-making and
problem-solving, which are crucial in today's complex systems (Huang et al., 2025).

V.  Output compatibility with performance variability: CREAM's output, represented by
Contextual Control Modes (CCMs), aligns seamlessly with the four types of
performance variability outlined in this study: ST, LV, MV, and HV (Kannally et al.,
2025; Shi et al., 2023).

Building on the aforementioned reasons and drawing inspiration from the work of Yang et al.
(Yang et al., 2013), this study applies a modified CREAM miethodology to assess the SVI of
human functions through a five-step sequence.

In the first step, various CPCs are described, along with their potential states and how they
influence human performance reliability. The original CPCs are divided into nine categories
(Hollnagel, 1998). In this study, a minor modification is introduced which replaces the "time
of day" CPC with "circadian rhythm and stress.” This change highlights the significant
impact that sleep deprivation or misalignment with natural circadian cycles can have on
performance. Unlike the "time of day" classification, which is based on fixed time intervals
like day and night, the circadian rhythm considers biological phases that influence cognitive
performance and alertness. This approach provides a more accurate reflection of how these
factors affect human performance reliability. Table 5 presents the CPCs along with the
associated details (Xi et al., 2017; Zhou et al., 2018).

Table 5: CPCs description, their states, and effects.

CPC CPC states Effects

1) Training and Inadequate (Sy ;) Negative
competence Adequate with limited experience (Sy,,) Neutral
(TAC) Adequate with high experience (S;3) Positive

2) Human-machine Inappropriate (S;1) Negative
interface and Tolerable (S,,) Neutral
operational Adequate (S;3) Neutral
support (HMI) Supportive (S,.4) Positive

3) Availability of Inappropriate (Sz1) Negative
procedures and Acceptable (S3,) Neutral
plans (APP) Appropriate (S33) Positive

4) Conditions of Incompatible (S41) Negative
working (COW) Compatible (S4,) Neutral
Advantageous (S;3) Positive

5) Number of goals More than actual capacity (Ss 1) Negative
and conflict Matching current capacity (Ss,) Neutral
resolution (NGC) Fewer than actual capacity (Ss3) Positive
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6) Awvailable time Continuously inadequate (Ss.1) Negative
and time pressure Temporarily inadequate (Sg>) Neutral
(ATT) Adequate (Sg3) Positive

7) Circadian rhythm High (S71) Negative
and stress (CRS) Moderate (S7>) Neutral

Low (S73) Positive

8) Team Deficient (Sg ) Negative
collaboration Inefficient (Sg ) Neutral
quality (TCQ) Efficient (Sg3) Neutral

Very efficient (Sg4) Positive

9) Quality and Deficient (Sg 1) Negative
support of the Inefficient (Sg ) Negative
organization Efficient (Sg.3) Neutral
(QSO) Very efficient (Sq4) Positive

In step 2, the relationships between CPCs and CCMs are established by defining specific
rules. These rules determine how various combinations of CPCs, along with their
corresponding effects, influence the assigned values of the CCMs. The CCM, which
represents the context of human cognition and action, is characterized by four distinct states:
“strategic,” “tactical,” “opportunistic,” and “scrambled.” These relationships are formulated
as if-then rules, where the "if" component specifies different CPC combinations and their
effects, and the "then™ component maps these combinations to the appropriate CCM
characteristics.

In step 3, belief degrees are assigned to the consequences, or the "THEN" components of the
rules, to account for uncertainty and ensure that minor variations in the "IF" components are
accurately reflected in the "THEN" outcomes. To achieve this, a systematic approach is
employed to determine the belief degrees by leveraging the basic control mode diagram of
CREAM and a weighting system. The AHP is used to calculate the relative weights of all
CPCs based on their importance. Subsequently, the conditional belief degrees, denoted as B*
and B, are derived using the diagram shown in Figure 2. These degrees correspond to the
positive or negative effects of various CPC states (Konstandinidou et al., 2006). To clarify
the approach, an illustrative example is presented in Appendix A.

D Stable (Stritegic )

Low Var, (Tacucal)

o - Moderate Var. (Opportunistic)

High Var, (Scrambled)

Posstive effects

0 I 2 3 4 $ 0 7 8 9
Negative effects

Figure 2: Basic Diagram of CREAM for different CCMs.

18



Journal Pre-proof

Step 4 involves constructing a BN to model the dependencies between CPCs. While CPCs
share similarities with Performance Shaping Factors (PSFs) in other HRA methods, they are
not the same. Their interdependencies are based on their influence on human performance
reliability. Furthermore, CPCs may be calibrated based on the states of other CPCs. For
instance, if a CPC initially exhibits a neutral effect but depends on other CPCs, its primary
effect may shift toward either a positive or negative influence depending on the states of the
CPCs it relies on. Table 6 illustrates the dependencies among various CPCs. The CPCs listed
in the left-hand column are influenced by those defined in the top row. For instance,
examining the third column reveals that “COW,” “NGC,” and “ATT” depend on “HMI.”
This implies that if the human-machine interface and operational support improve, working
conditions and the availability of time are expected to improve, as indicated by the letter “P,”
representing a positive influence. Conversely, the number of goals and conflict resolution
tasks required of the operator are expected to decrease, as denoted by the letter “N,”
signifying a negative influence. The remaining cells in the table, marked with “-,”” indicate no
dependencies between the respective CPCs.

Table 6: Dependencies among CPCs.

TAC HMI APP COW | NGC | ATT CRS TCQ QSO
TAC - - - - - y - -

HMI - -

APP -
COW P
NGC -
ATT -
CRS
TCQ P - - - - -
QSO - - - - - - - -

1
1
1 |TO| 0| O|TO|W]m

o|Z| o
Ol 2 |y
o2

|TO)| oy | 7O

1
1
1 0|

Considering these dependencies and the dynamic adjustability of CPCs based on the status of
other related CPCs, a BN is well-suited for modelling these variabilities and interactive
relationships. In this framework, the child node of the BN represents CCMs, which include
the four defined states: strategic, tactical, opportunistic, and scrambled. These states align
closely with the four performance variability levels commonly applied in both technological
and organizational functions: ST, LV, MV, and HV, respectively. The parent nodes,
representing the CPCs with their multiple states, are outlined in Table 5. To account for the
dependencies shown in Table 6, four additional nodes, referred to as calibrated nodes, were
introduced. These nodes capture the interactive relationships among CPCs and reflect their
updated status based on changes in related CPCs. The four calibrated nodes are labelled as
“calibrated COW?”, “calibrated TCQ”, “calibrated NGC”, and “calibrated ATT”.

In the final step, the BN inference and validation process is carried out. This process includes
determining the posterior probabilities of the target variables in the network and verifying the
outcomes to confirm the precision and dependability of the suggested approach. First,
observations are analysed to derive the prior probabilities for each CPC in terms of numerical
variables that correspond to CPC states and their effects. Next, during the inference process,
belief degrees are converted into rules, which serve as the conditional probabilities for the
constructed BN. Using these transformed rules and the prior probabilities, the marginal
probabilities of the leaf node states are then computed accordingly.
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3.2.4. Prior probabilities extraction

Due to the complexity of CSTS and the diverse nature of their elements, various data sources
with different origins are required to inform the developed models. For technical functions,
several data types are particularly useful. Measurements from equipment sensors, operational
conditions, and processes provide valuable empirical data. Operational logs detailing
equipment performance and failures are essential, as are records of preventive and corrective
maintenance activities, which help evaluate maintenance effectiveness. Additionally,
manufacturer specifications, including reliability data such as Mean Time to Failure (MTTF),
Mean Time to Repair (MTTR), and other relevant metrics, are integral to reliability
assessment.

When it comes to organizational functions, obtaining realistic data can be challenging.
Managers are often reluctant to critique their management practices, organizational structure,
or operational efficiency due to concerns about reputation and prestige (Liu, 2021; LUScher
and Lewis, 2008). Nevertheless, for the organizational functions, valuable information can be
gathered from various sources, including compliance and incident data from internal audits,
human resource databases (e.g., staff turnover rates, training schedules, and role-specific
records), and regulatory databases containing compliance reports or industry-level
performance benchmarks. Additionally, input from independent expert elicitation can be
incorporated for several nodes of the developed BN. In relation to the structure of
organizational performance, organizational resources, and external factors, the data are
primarily obtained from documented evidence and available empirical sources. However,
obtaining objective data on organizational management and culture remains inherently
challenging, as such aspects are often subjective and difficult to quantify even across other
industrial sectors. For instance, safety culture is a latent and intangible construct that cannot
be measured directly. It is typically assessed through a combination of subjective (survey-
based) and objective (performance-based) indicators. Although no purely objective measure
of safety culture exists, triangulating multiple data sources, such as surveys, audits, and
performance indicators, enhances validity and reduces bias. Accordingly, for the
organizational functions, both empirical and subjective data sources are employed to capture
the multifaceted nature of organizational performance.

Assessing human performance variability requires the use of expert judgment, as databases in
this area are often insufficient to meet expectations. To this end, the Dempster-Shafer
evidence theory (DSET) is employed for several purposes:

a) Systematically combining diverse expert opinions to produce a unified final
judgment.

b) Accounting for both epistemic and aleatory uncertainties, thanks to its unique
features, such as representing and propagating degrees of belief.

c) Providing a structured framework for reasoning under uncertainty, allowing for the
integration of incomplete or conflicting evidence.

This approach enhances the reliability of expert-based assessments by managing variability
and uncertainty in a more systematic and robust manner. DSET is frequently characterized as
an advanced form of probability theory or an expanded interpretation of Bayesian inference.
It has been widely used to extract subjective expert judgments and resolve disparities
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between differing viewpoints to produce an aggregated output. In this context, DSET is
referred to as a theory of evidence because it focuses on the weight of evidence. Before
combining information, the foundational principles of DSET must be introduced. A
comprehensive explanation of DSET can be found in the literature (Gros, 1997; Tang et al.,
2023), while a brief introduction is provided in Appendix B.

3.3. Quantitative analysis of system performance variability

Once the FRAM model is developed and the internal variabilities across all function
categories are obtained, the next step is to map the FRAM model into a BN to conduct a
quantitative analysis of system performance variability. As previously discussed, various
types of variabilities are integral to an FRAM model, including SVI and UVI. Aggregating
these variabilities across different functions is essential to gain a comprehensive
understanding of performance variability within a CSTS. This aggregation represents the
unified interactions between functions that are interconnected in a sequential manner within
the FRAM model.

3.3.1. FRAM and BN integration

The process begins by converting various aspects of a function into discrete probability
distributions, categorized into states such as ST, LV, MV, and HV. This approach enhances
the representation of functional variability and serves as a common framework, simplifying
the interpretation of interactions between functions (Patriarca et al., 2017). Furthermore, the
internal variability identified for each function can be regarded as an additional dimension,
reflecting the influence of the operational environment and current performance conditions
during the function’s execution (Slim and Nadeau, 2020). The mapping process begins with
the output from background functions, establishing the initial performance variability
distribution for downstream functions. This variability can be determined either through
empirical data, if available, or expert elicitation when data is limited. To represent this as
discrete probability distributions, the frequency of event occurrences may be used when
empirical data is applied. For each function, all available and defined aspects are set as parent
nodes in the BN model, with the output serving as the child node. This configuration enables
a quantitative calculation of the interactions among different aspects of each function,
resulting in an integrated performance variability distribution with consistent state
definitions. Figure 3 demonstrates a simplified mechanism for mapping the FRAM model
onto a BN, providing clearer insight into the process.

Figure 3: The simplified process of mapping FRAM into a BN model.
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A key advantage of BN is its flexibility in integrating a variety of nodes with multiple states,
accommodating both discrete and continuous forms. Given this flexibility and recognizing
performance variability across four distinct states defined by a discrete probability
distribution, as well as the independence of different functional aspects and their separate
impacts on the output, the CPT can be calculated using canonical probabilistic models like
noisy OR, noisy MAX, noisy MIN, noisy AND, and noisy Adder gates (Diez and Druzdzel,
2006). The Noisy-OR model, introduced by Pearl (1988), initially addressed probabilistic
dependencies among binary variables. (Henrion, 1989) extended this concept, adapting the
model to include binary leaky Noisy-OR gates, which account for additional uncertainty in
influence pathways. Further developments came when (Diez, 1993) and Srinivas (1993)
independently proposed generalizations of the model to accommodate multi-valued variables,
leading to the creation of multi-valued Noisy-OR gates. These foundational works eventually
paved the way for the Noisy-MAX model, which expanded the framework to capture more
complex probabilistic relationships across diverse variable states. In this study, the
complexity of the problem, characterized by multi-state parent nodes, a multi-state child
node, and the independent influence of each parent on the child makes the Noisy-MAX
technique particularly suitable. This approach not only streamlines the construction of the
CPT but also effectively captures the non-linear relationships between parent and child
nodes, enabling a more accurate representation of these dependencies (Cantelmi et al., 2025;
Xie et al., 2024; Xue et al., 2025).

3.3.2. Noisy-MAX structure-based BN modelling

Using the Noisy-MAX technique, the conditional probability between a child node C and its
parent node R can be represented by incorporating a set of n auxiliary variables
{A:...,An}(Diez and Druzdzel, 2006). As illustrated in Figure 4, this formulation allows the
conditional probability to be expressed as:

P(C/R) = ZA: P(C/A).P(A/R) )
.(E\.
ONEENC

Figure 4: Simplified BN structure for noisy-MAX model derivation.

Note that the variables A; are purely auxiliary elements used to facilitate equation derivation
and are not part of the actual model. Given the graph in Figure 4, there are no interactions
between the causal mechanisms through which R; influences the value of C. In the graph, this
property is represented by the absence of connections Ri—4;j and Ai—4; for all i#j, indicating
that:
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Paa/R) = | [Pea/ro @

With this, combined with Equations 1 and 2, results in:

Pe/R= ) | [Py 3
A/f(A)=C i
In this context, each A; signifies the contribution of R; to the value of C. The combined
outcome generated by each R; is represented as C=fuax(). Consequently, C and A; variables
must operate within the same domain. Each A; reflects the impact of R; elevating C to a
particular level, and the actual value of C is determined as the maximum among the A; values.

Now, to establish the CPT for the Noisy-MAX model, we must calculate P(C=c/A) for every
possible value ¢ and each configuration of R. This is achieved by applying Equation 3 and
recognizing that f max@a=max(As,...,4n). This function implies that f max@)<y, if and only if
Ai<C for each i. Therefore, we have:

rescfr= 3 [[ravro=y ) | [Per = ﬂ(Z P(Ai/Ri)> @

A/fMAX(A)SC i Ai1sc  Apsc i i Ajsc

With consideration of accumulative parameters, the values of the CPT can be obtained as
follows:

P(CSC/R)_P(CSC_l/R) f0r6¢cmin

Ple/R) = {P(C <c/R) forc = cpin )

After calculating the CPTs for all BNs related to each function, using prior probabilities
derived from either empirical data or expert input, the complete set of BN models is analysed
to generate the final output for the last function. This analysis enables us to assess the
performance variability of each function independently, as well as to evaluate its impact on
downstream functions.

3.3.3. FRAM interpretation process

The ultimate goal of FRAM modelling is to understand how disruptions or variations in
upstream functions influence the performance variability of connected functions. In essence,
it examines how resonance, whether positive or negative, affects the variability in
performance across downstream functions. This approach provides a detailed view of how
any disruption in a CSTS can propagate, helping us understand how changes in one part of
the system influence the entire system's behaviour. To this end, a 2-D criticality matrix is
proposed to support the decision-making process (Kaya et al., 2021; Patriarca et al., 2018;
Zarei et al., 2022). The matrix dimensions represent probability and consequence. For the
probability dimension, the mean value of performance variability serves as a numerical
representation of the average variability a function experiences. This considers the likelihood
of being in one of four states: HV, MV, LV, or ST, multiplied by the assigned scores of 4, 3,
2, and 1, respectively. These scores reflect the significance of each state in terms of safety
impact. HV is given the highest score (4) to represent substantial disruption; MV receives a
moderate score (3) for moderate variability; while LV and ST are assigned lower scores (2
and 1) to indicate minimal variability or stability. For the consequence dimension, three
categories are defined: critical (indicating severe consequences), moderate (manageable
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consequences requiring attention), and minor (minimal or tolerable consequences). Functions
are classified into these categories based on their significance to both safety and operational
performance. The magnitude of consequences is highly dependent on the specific domain
under study and the function's role in the system's operation and safety. This classification
can be determined using expert judgment or established criteria. Figure 5 illustrates the
proposed criticality matrix, which categorizes functions into three levels of criticality based
on their variability and consequence severity.

Variability Severity level
level Minor ~ Moderate  Critical
HV B
MV B
LV A B B
ST A A B

Figure 5: The proposed criticality matrix.

Level C, located in the top-right quadrant, represents high variability and critical
consequences. Functions in this category are prime candidates for triggering negative
resonance, as their high variability combined with critical consequences makes them likely to
interact unpredictably with downstream functions, potentially amplifying risks across the
system. Level B, which includes functions with moderate variability, highlights that these
functions can also contribute to negative resocnance. This occurs particularly when their
variability interacts with other moderately variable or interconnected functions, creating
conditions where risks propagate through the system. Such interactions are especially critical
when these functions are linked to others with similar variability characteristics. Level A
encompasses functions that are relatively stable or exhibit low variability. These functions
can play a stabilizing role within the system and be strategically leveraged to design
interventions that dampen variability and mitigate risks. By strengthening the interactions of
these stable functions, they can counteract the effects of high variability in connected
functions. This criticality matrix provides a systematic tool to prioritize functions for
intervention based on their role in system dynamics. It facilitates the detection and mitigation
of resonances in the FRAM model by anticipating how function interactions might lead to
either risk amplification (negative resonance) or system stabilization (damping resonance).

3.4. Verification and validation process

Verification and validation process are the essential component of any methodological
approach, ensuring that developed models are reliable, robust, and sensible. They also builds
confidence in the accuracy of the findings and results. In this study, various techniques and
numerous models have been employed to address the complexity of CSTS, making
comprehensive benchmarking challenging. To address this, we adopted a modular approach
using a range of techniques, allowing us to validate and benchmark different models
independently. Validation of the HTA and FRAM components, as qualitative analysis
methods, primarily depends on the knowledge and proficiency of the analysts conducting the
evaluation. Additionally, the results and findings from these models are compared and
benchmarked against outcomes from similar studies.
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For validating the developed BN models, sensitivity analysis, regarded as one of the most
practical validation methods, is applied. This analysis involves two approaches. The first
approach confirms the model’s robustness by verifying that small adjustments in the prior
probabilities of parent nodes reliably affect the probabilities of child nodes. This principle-
based sensitivity analysis ensures that the model responds predictably to changes in inputs,
enhancing its reliability and accuracy. To achieve this, the analysis follows these principles
(Jones et al., 2010):

e Principle 1: Minor adjustments in the prior probabilities of the parent node should
lead to proportionate changes, either increases or decreases, in the posterior
probability distribution of the child node.

e Principle 2: The combined influence of changes in the probabilities of all evidence
variables should be equal to or greater than the influence produced by modifying any
individual subset of that evidence.

In the second approach, the analysis focuses on how changes in probability parameters
influence the BN’s output. This is done by calculating th¢ derivatives of the posterior
probability distributions, which helps reveal the sensitivity of the model’s target nodes (such
as performance variability) to adjustments in various numerical parameters. This derivative-
based analysis measures the rate at which each target node’s probability shifts as a reaction to
small modifications in the parent nodes’ prior probability values. By examining these
derivatives, the parameters that most strongly influence the network’s outcomes can be
identified. When certain variables show high sensitivity to parameter changes, it indicates
that the model depends significantly on those specific inputs. Recognizing these key
parameters allows for prioritizing data that may require more precise estimates or rigorous
validation, as they play a crucial role in determining the model’s predictions. It is noted that
for ease of reference, all symbols and mathematical notations used in the proposed
methodology are summarised in the Table I in Appendix C.

4. Results, discussion, and implications

Seaports are widely regarded as a CSTS that are highly interconnected and interdependent,
making them vulnerable to a diverse range of risks. Given that reliable and efficient seaport
operations are essential for the maritime transportation sector, any disruptions or fluctuations
in their performance can significantly impact national safety, security, economic stability, and
public health. (Mohsendokht et al., 2025). This underscores the critical need for focused
attention from risk analysts to develop robust approaches to address these challenges. This
section applies the proposed methodology to a typical seaport, illustrating both its practicality
and potential impact.

4.1. FRAM model development

To identify the key functions for FRAM development, an initial HTA is conducted to
represent the workflow of activities typically performed in a seaport. The hierarchical
structure of the HTA provides a comprehensive understanding of the workflow and facilitates
a detailed analysis of specific tasks along with their prerequisite requirements. It is important
to note that seaport operations involve a vast array of tasks and the collaboration of numerous
teams and crews (Carlo et al., 2015; Haas, 2016). To maintain simplicity and align with the
scope of a journal paper, a streamlined version of the HTA focusing on the most critical
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activities is produced. The HTA was developed by synthesizing insights from an extensive
review of the seaport operations literature, the collective research contributions of the author
team, and subsequent verification and approval by a panel of experts whose profiles are
provided in Table Il in Appendix C. It should be noted that this study focuses solely on
operations occurring between the quay area and the yard within the seaport. Figure 6 presents
this simplified HTA, which serves as the foundation for the FRAM model.
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Figure 6: HTA for seaport activities.

Based on the HTA results, nine foreground functions, referred to as main functions, and four
background functions have been selected for the FRAM development. The background
functions define the boundaries of the analysis, providing fixed outputs that feed into and
support the operation of the main functions. Table 7 outlines the functions, their
characteristics, and the connections between them, while Table 8 details the various aspects
of each function.

It is noted that system complexity increases rapidly with size, rendering manual modelling
increasingly challenging for large infrastructures such as seaports. To address this issue, the
FRAM model is organized into interacting modules, such as quayside operations, yard
operations, and intermodal transfer sections, structured across hierarchical levels, namely
Macro, Meso, and Micro, as illustrated in Figure 7.
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Macro-level functions

Micro-level functions

Figure 7: The interacting hierarchical levels in seaport operations.

At the Macro level, the focus is on the seaport as an integrated system, capturing the high-
level interactions between major operational sections and strategic processes, such as overall
cargo throughput, terminal coordination, and resource allocation. The Meso level examines
intermediate-scale processes within individual modules. For example, within the quayside
module, functions such as quay crane operations, vessel berthing, and container handling are
considered, along with their interconnections and resource flows. At the Micro level, the
model focuses on detailed, function-specific activities, including the interactions between
individual equipment, human operators, and tasks. For instance, a micro-level analysis of a
quay side may include the container unlashing process, operator actions, and resource
availability.

Each module is analysed largely independently, with only a limited set of interface variables
connecting it to other modules. This divide-and-compose strategy contains complexity
locally, prevents combinatorial growth as system size increases, and ensures that both high-
level coordination and fine-grained operational variability are effectively represented.

All the identified functions and their interconnections are synthesized and visualized using
the FRAM Model Visualization (FMV) tool (Hollnagel et al., 2023), as shown in Figure 8.

Table 7: Function description, characterization, and links.

Function Description Type Links

F1 Berth  assignment and | Organizational | F1(O)—F2(I)
confirmation

F2 Initial Safety and Security Human F2(0)—F3(I)
Checks

F3 Unlashing of Containers Human F3(0)—F4(1)

F4 Cargo Unloading Organizational | F4(O)—F5(1), F6(I)
Preparation

27




Journal Pre-proof

F5 Quay crane operation Technological | F5(0)—F7(I)
F6 Quay crane operator Human F6(0)—F5(C)
F7 Cargo Transport to Yard Technological | F7(0)—F8(I), Fo(I)
Storage
F8 Yard crane operator Human F8(0)—F9(C)
F9 Yard crane operation Technological | -
BG1 Vessel securely moored Background BG1(0)—F2(P)
function
BG2 Port operations Background BG2(0)—F1(C), F2(C), F3(C), F7(C), F&(C),
management function F9(C)
BG3 Berth assignment Background BG3(0)—-F1(1)
information function
BG4 Resource management Background BG4(0)— FI(R), F2(R), F3(R), F4(R), F5(R),
function F6(R), F7(R), F8(R), FO(R)
Table 8: Functions aspects descriptions.
Function Output Input Pre-condition Control Resource
F1 Confirmation of Berth assignment - Port authority | Communication
berth assignment information protocols systems, Port
staff
F2 Safety and Confirmation of Vessel securely Port security Safety and
security status berth assignment moored regulations security
report equipment,
Personnel
(security
officers)
F3 Unlashed Safety and security - Unlashing Unlashing tools,
containers ready status report protocols, Personnel (dock
for unloading Supervisor workers)
instructions
F4 Instructions for Unlashed containers - Port operations | Communication
crane operators, management, systems
Updated cargo Communication
status from the vessel
F5 Cargo unloaded Updated cargo status - Crane Crane and
to dock operator’s fuel/power
commands, supply,
Crane control Operator
system
F6 Crane operator’s | Instructions for crane - - Communication
commands operators systems
F7 Cargo delivered Cargo unloaded to - AGYV control Transport
to yard storage dock management vehicles (e.g.,
system AGVs, trucks),
Drivers and
handlers
F8 Crane operator’s Cargo delivered to Clear storage - Communication
commands yard storage allocation systems
instructions,
Safety checks
completed
F9 Cargo properly Cargo delivered to - Yard Crane and
placed in yard storage management fuel/power
designated system, supply,
storage areas Operator Operator
commands,
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Figure 8: The FRAM model of typical activities conducted in a seaport.
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4.2. SVI assessment for key functions
4.2.1. Organizational functions

In the context of seaport organizational functions, numerous entities are involved, with
complex interactions among their components. To assess the performance of their internal
variability, a BN for the organizational function is constructed, following the information and
framework described in Section 3.2.1. As shown in Figure 9, the performance variability of
an organizational function is influenced by five intermediate nodes: organizational culture,
organizational management, organizational resources, organizational structure, and external
factors. Each of these intermediate nodes is determined by its respective parent nodes.
Achieving a stable condition with a high probability requires all intermediate nodes to be in
their most favourable states. This includes having a highly efficient organizational structure,
sufficient and well-allocated resources, optimal organizational management practices, a rich
and supportive organizational culture, and minimal impact from external factors. On the other
hand, highly variable organizational performance arises when the intermediate nodes are in
their least favourable states. For instance, an inefficient structure, inadequate resources, poor
management, a weak organizational culture, and significant external pressures collectively
lead to increased variability in performance. This relationship underscores the importance of
maintaining favourable conditions across all intermediate nodes to ensure organizational
stability.
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Figure 9: The BN model for SVI assessment of organizational functions.
4.2.2. Technological functions

In a seaport, various types of machinery, equipment, and their components contribute to the
activities of technological functions. To evaluate their internal variability performance, the
corresponding BN for each technological function is developed based on the information and
structures outlined in Section 3:2.2. Due to space constraints in the journal paper format, only
the BN for quay cranes is presented in Figure 10 to demonstrate the applicability of the
proposed methodology. Quay cranes are widely regarded as the most important, valuable,
costly, and complex components in a seaport. A seaport without them is often considered
paralyzed, as they serve as the critical link between sea and land operations.
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Figure 10: The BN model for SVI assessment of technological functions.

In the developed BN, maintenance effectiveness and material integrity are identified as the
two key factors directly influencing equipment reliability. Greater levels of material integrity
and maintenance effectiveness correspond to higher reliability. It is noteworthy that the
operation of complex systems such as quay cranes often involves dynamic processes that
impact their structure and the reliability of their components over time. Given the critical
importance of ensuring both safety and operational effectiveness, a shift from a two-state to a
multistate approach in reliability analysis is warranted. This approach facilitates a more
accurate assessment of their dependability and operational effectiveness. It also helps identify
critical reliability thresholds, where exceeding these limits may fail to ensure the required
level of operational effectiveness (Kotowrocki and Soszynska-Budny, 2011). Therefore, the
reliability is categorized into three states: high, moderate, and low, defined according to the
specific characteristics of the component in question. For quay cranes, high reliability
corresponds to a reliability level between 95% and 100%, moderate reliability falls between
85% and 95%, and low reliability is defined as below 85% (Deng, 2000; Jo and Kim, 2019).
Availability is determined by three key factors: reliability, MTTR, and redundancy. Higher
reliability and redundancy contribute to increased availability, while a shorter MTTR
enhances availability by reducing equipment downtime. Technological performance
variability depends on three factors: reliability, availability, and environmental conditions.
The SVI is likely to remain stable with high probability if environmental conditions are stable
and both reliability and availability are high. Other SVI states are assigned proportional
values based on the probabilities of their parent states.

To illustrate the applicability of the methodology, prior probabilities were derived from
historical records of the seaport under study, representing its current status. As depicted in
Figure 10, the stable state of the technological function is assigned a probability of 68.8%,
while the remaining probabilities are distributed as follows: 22.7% for the LV state, 6.7% for
the MV state, and 1.8% for the HV state. These values reflect the system's realistic behaviour,
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highlighting the influence of various factors that create discrepancies between "work as
imagined"” and "work as done."

4.2.3. Human functions

To determine the SVI for human functions, the modified CREAM methodology outlined in
Section 3.2.3 is employed. The process begins with developing the BN structure by
identifying the main CPCs, their interdependencies, and incorporating calibrated CPCs. The
leaf node in the network is represented as the CCM, which reflects human action status. The
four well-known modes (strategic, tactical, opportunistic, and scrambled) are interpreted as
ST, LV, MV, and HV, respectively. Figure 11 illustrates the resulting BN for human
functions.
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Figure 11: The BN model for SVI assessment of quay crane operator.

Next, the rules governing the BN are organized using a belief structure that accounts for all
possible combinations of CPC states. These rules form the CPT for the developed BN. It is
important to note that not all CPCs equally influence human performance variability. To
address this, the AHP method is applied to determine appropriate weights for each CPC,
tailored to the nature of tasks performed by humans in a seaport environment (Yang et al.,
2013). Table 9 presents a pairwise comparison matrix showing the weights for all nine CPCs.
The consistency ratio, calculated as 6.7E-3, confirms that the derived weights are logically
consistent and represent a well-justified hierarchy of importance.

Table 9: Deriving CPC weights using AHP method.

CPC TAC HMI APP COwW NGC ATT CRS TCQ QSO Weight
TAC 1.00 5.00 2.00 4.00 1.50 1.50 5.00 5.00 5.00 0.25
HMI 0.20 1.00 0.33 1.00 0.25 0.25 1.00 1.00 1.00 0.05
APP 0.50 3.00 1.00 2.00 0.67 0.67 3.00 3.00 3.00 0.13
COW 0.25 1.00 0.50 1.00 0.33 0.33 0.50 1.50 1.50 0.06
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NGC 4.00 4.00 1.50 3.00 1.00 1.00 4.00 4.00 4.00 0.18
ATT 0.67 4.00 1.50 3.00 1.00 1.00 4.00 4.00 4.00 0.18
CRS 0.20 1.00 0.33 2.00 0.25 0.25 1.00 1.00 1.00 0.05
TCQ 0.20 1.00 0.33 0.67 0.25 0.25 1.00 1.00 1.00 0.05
QSO 0.20 1.00 0.33 0.67 0.25 0.25 1.00 1.00 1.00 0.05

After determining the weights, the rules with their corresponding belief degrees are
established following the instructions in Section 3.2.3. To illustrate the process, Rule 23326
is used as an example. This rule is defined by the set (S1.2, S22, S33, Sa.3, S5.3, S63, S7.3, Sg 4
So.2), Which corresponds to the effects (neutral, neutral, positive, positive, positive, positive,
positive, positive, negative) based on the guidance in Table 5. Using Figure 2, the following
values are subsequently calculated:

"+ ={(0.75, ST), (0.25, LV), (0, MV), (0, HV)}
£ ={(0.38, ST), (0.62, LV), (0, MV), (0, HV)}

Using the corresponding weights of CPCs with positive effects from Table 9, their sum, W* is
calculated as 0.83 (=0.13+0.06+0.18+0.18+0.05+0.05). Conversely, W~ showing the
weights of negatively influencing CPCs, is 0.05, since QSO is the only CPC with negative
effect in the given set. Having obtained the normalized values of W™ and W™, along with the
corresponding A" and 4 values using the evidential reasoning algorithm implemented in IDS
software (Xu and Yang, 2005), the final results for this combination of CPCs are determined
as follows:

B ={(0.745, ST), (0.255, LV), (0, MV), (0, HV)}

In this manner, all the rules and their corresponding values are determined. Table 10 provides
an example by showcasing nine of these rules, including the first three rows, three from the
middle, and the last three rows.

Table 10: Rule-based CPT development for human function BN.

Rules CPC combinations (IF part) CCM belief degrees (THEN part)
1 S11, So1, Ssi Saay S5, S, Sz, Sss Sou {(0.000, ST),( 0.000, LV),(0.000, MV),( 1.000, HV)}
2 S1.2, So1, Sa1s Suti Ss1, Se1, S74, Ssts S {(0.000, ST),( 0.000, LV),(0.500, MV),( 0.500, HV)}
3 S13, S04, Ss1, Sty S5y Se1, S7.4, Ssts S {(0.000, ST),( 0.030, LV),(0.561, MV),( 0.409, HV)}

23326 S1,2! SZ,Z! 83,3! S4,3| 85,31 86,31 S7,31 88,41 89,2 {(0745! ST)!( 0255! LV)!( 0000! MV)!( OOOO! HV)}
23327 S1,2! 82,2! 83,3! S4,3| 85,31 86,31 S7,31 88,41 89,3 {(0750! ST)!( 0250! LV)!( 0000! MV)!( OOOO! HV)}
23328 81,2! 82,2! 83,3! S4,3| 85,31 86,31 S7,31 88,41 S9,4 {(1000! ST)!( 0000! LV)!( 0000! MV)!( OOOO! HV)}

46654 81,31 S2,4! 83,3! S4,3| 85,31 86,31 S7,31 58,41 59,2 {(0998! ST)!( 00021 LV)!( OOOO! MV)!( OOOO! HV)}
46655 81,31 S2,4! 83,3! S4,3| 85,31 86,31 S7,31 88,41 59,3 {(1000! ST)!( 00001 LV)!( OOOO! MV)!( OOOO! HV)}
46656 S1,31 S2,4! 83,3! S4,3| 85,31 86,31 S7,3| 88,41 89,4 {(1000! ST)!( 00001 LV)!( OOOO! MV)!( OOOO! HV)}

In the subsequent step, prior probabilities for various CPC states are determined based on
expert judgment. Three seasoned experts were asked to assess the performance variability of
quay crane operators during a typical yet busy day at a seaport, taking into account potential
disruptive scenarios. The experts with extensive experience in seaport operations are
interviewed to provide their probabilistic assessments, assigning values between 0% and
100% to different states. These individual judgments are then aggregated using DSET,
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yielding consolidated probabilities for each CPC state, as shown in Table 11l in Appendix C.
These probability-based insights are incorporated into the BN as prior probabilities, while the
rules and corresponding values in Table 10 serve as the CPT. To demonstrate the process, a
sample calculation is provided as follows:

3 4

P(CCM) = Z Z ZB: 23: 23: 23: Zg: 24: iP(CCM/S”)P(S”) (14)

i=1,j=11i=2,j=11i=3,j=1i=4,j=11i=5,j=1i=6,j=1i=7,j=11i=8,j=1i=9,j=1

Where P(CCM) represents the probability of performance variability in each of the four
possible states, P(CCM/S;;) denotes the conditional probability of CCM given S;;, and P(S;;)
signifies the probability of specific states of a given CPC. Depending on the aggregated
probabilities and their potential impact on performance variability, proportional rules are
extracted from Table 10. In this case, referring to the states of each CPC and their
corresponding values, 576 rules are derived, representing various combinations of these
states. By applying these rules and the values obtained from the aggregated expert judgments
to the developed BN, the probabilities for the CCM states are calculated as follows:
ST=0.005, LV=0.536, MV=0.459, and HV=0.000. These values suggest that, in the specified
situation, the performance variability of the quay crane operator is more inclined toward low
and moderate levels of variability.

4.3. FRAM to BN mapping results

After determining the SVI values for each function in the previous sections, the next step is to
adopt a holistic perspective on the variabilities within the entire model. To achieve this, the
output of each upstream function Is integrated as the input or other related aspects for
downstream functions. For illustration, Figure 12 highlights the output of Function 2. As
shown, the input to Function 2 is derived from the output of Function 1, while other aspects
of Function 2, along with its SVI, are represented as independent parent nodes in the
developed BN. In this context, the noisy-max technique is utilized to calculate the CPT
values for inter-functional relationships in the BN, as outlined in Section 3.3.2. The output
performance variability of Function 2 results from the interaction of several factors: the input
from Function 1, the SVI associated with Function 2, and the contributions of background
functions BG1, BG2, and BG4, which serve as the precondition, control, and resources,
respectively.
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Figure 12: BN model for UVI calculation in function 2.
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The values for background functions, which define the boundaries of the developed FRAM
model, are derived using various methods discussed in this paper. For BG,, representing the
performance variability of mooring operations in a seaport, these values are determined from
empirical data collected over several years. The ST state corresponds to all mooring
operations that were conducted successfully and safely, adhering to the plan without any
disruptions or noticeable variabilities. This state reflects the baseline performance where the
operation proceeds as expected. The LV state includes scenarios where minor disruptions
occurred, such as slight delays or minor deviations in precision. While these variabilities are
noticeable, they do not significantly affect the overall operation or system performance. The
MV state reflects situations where variabilities begin to impact the system more substantially.
Examples include delays significant enough to disrupt schedules or minor incidents that
require corrective actions but do not escalate into major issues. The HV state represents
conditions where variabilities cause critical disruptions to the operation. This includes severe
delays, major accidents, or incidents that significantly compromise the safety, efficiency, or
overall integrity of the mooring process. These states are attributed proportionally to the
observed data, reflecting their frequency and impact on the system.

BG, is an organizational function that encompasses a wide range of port management
operations. Its role varies depending on the specific activities and requirements of the seaport,
but it fundamentally oversees the overall management of the port by ensuring that operations
are controlled, monitored, and efficiently coordinated. This function is critical for
maintaining seamless day-to-day operations and adapting to the dynamic challenges of port
environments. The variability in the performarnce of BG; is analysed by modelling its
behaviour using a BN framework. This modeliing approach, as described in Section 3.2.1,
provides insights into how different organizational factors and conditions influence the
effectiveness of BG,, thereby supporting decision-making and performance optimization in
seaport management.

BG, represents the logistics management and resource allocation capabilities of a seaport,
encompassing its ability to supply and distribute necessary resources to various operational
activities. This function is pivotal in ensuring that each section of the seaport operates
efficiently. However, resource allocation is not uniform across all activities and depends on
factors such as the level of investment, the priorities of stakeholders, and the criticality of
specific operations to the overall performance of the seaport. In a technical context, resource
prioritization is particularly important for high-stakes operations. For instance, logistics
support for critical assets like quay cranes should be robust and well-structured. Quay cranes
are integral to loading and unloading cargo, and any disruption in their operation can lead to
significant delays, increased costs, and ripple effects throughout the supply chain. In contrast,
yard-side operations, while essential, may not require the same level of resource intensity or
redundancy because their disruptions, although impactful, are generally less immediate in
their consequences. As a result, the output value of BG, is expected to vary across different
functions, reflecting the unique logistical demands and resource priorities associated with
each operation. However, for simplicity in this research, the UVI for all BG4 elements is
assigned the same value. After determining the performance variabilities of all background
functions, which serve as inputs to the main model, and obtaining the SVI values for the
foreground functions through the outlined approaches, the main model can now be computed.
This allows for analysing and monitoring the impact of upstream variabilities on downstream
functions. It is important to note that a comprehensive dataset, encompassing both objective
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and subjective information, was collected from a specific seaport. However, due to
confidentiality agreements, the name of this seaport cannot be disclosed.

Figures 13, and 14 illustrate the performance variability values for all functions, including the
SVIand UVI.
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Figure 13: The SVI values.
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Figure 14: The UVI values.

4.4. Criticality matrix development

Once the performance variability for each function is quantified, the next step is to identify
critical functions and evaluate the system's overall weaknesses from a systemic perspective.
To achieve this, the UVI values are assigned appropriate scores, as outlined in Section 3.3.3,
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to derive a unique representative value for each function. This process involves calculating
the mean, standard deviation, and the lower and upper bounds of the variability.

To represent the variability probabilistically, it is assumed that these aggregate scores follow
a normal distribution. This assumption is common in probabilistic modelling, as the normal
distribution effectively captures central tendencies (mean) and variability (standard deviation)
(Mitrani, 2008). Table 11 provides the representative output values for each function,
reflecting the variability and its implications for the system. It is to be noted that the lower
and upper bounds are determined at a 95% confidence level through MCSs, utilizing 100,000
iterations for precision.

Table 11: The functions representative output values for resonance analysis.

Function | Mean value Standard deviation Lower bound Upper bound Severity level
F1 1.930 0.570 0.812 3.048 Moderate
F2 1.930 0.515 0.921 2.939 Critical
F3 2.100 0.520 1.082 3.118 Moderate
F4 2.030 0.538 0.976 3.084 Moderate
F5 2.140 0.601 0.963 3.317 Critical
F6 2.300 0.574 1.174 3.426 Critical
F7 1.940 0.562 0.838 3.042 Moderate
F8 2.050 0.517 1.036 3.064 Moderate
F9 1.880 0.520 0.861 2.899 Moderate

BG1 1.935 0.644 0.673 3.197 Critical
BG2 1.970 0.513 0.965 2.975 Critical
BG3 1.614 0.565 0.507 2.721 Moderate
BG4 2.308 0.779 0.781 3.835 Critical

To assess the magnitude of variability in critical functions, their severity levels are also
determined. However, accurately quantifying the magnitude of variability and its impact in
terms of severity requires an independent study, as this step is crucial for understanding the
consequential effects of disruptions in various elements of a CSTS. Given the scope of this
study, we have relied on expert judgment to classify each function into three categories of
severity: minor, moderate, and critical, as presented in Table 11.

Figure 15 illustrates the criticality matrix, which maps functions to their appropriate positions
within the matrix. In this framework, the vertical axis reflects performance variability, with
evenly distributed boundaries defined by the nature of each function in the seaport context.
The proposed matrix offers flexibility for adaptation based on user-specific requirements,
enabling its application to diverse systems of interest.

Variability Severity level
level Minor Moderate Cntical
HV (x=35)
MV (25<x<33)
LV (1.35<X<25) Fi, F3, Fo_F7, F2, Fs, Fe, F7,
Fs, Fe, BG3 BG1, BG2, BG4
ST (X<1.3)

Figure 15: The criticality matrix for identifying critical functions in resonance analysis.
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The criticality analysis reveals that all functions fall into level B, indicating minor levels of
variability. While these variabilities are relatively low, they still have the potential to
contribute to negative resonance, especially when interacting with moderately variable or
interconnected functions. Such interactions can propagate risks throughout the system.

According to Safety-1l principle, variability at level B can be viewed as an asset, as it arises
from the adaptive adjustments necessary for everyday operations. However, the criticality
matrix utilizes mean values derived from variability distributions to categorize variability into
three levels. To incorporate uncertainty into risk-based decision-making, the upper and lower
bounds of variability scores can provide a more nuanced understanding of the confidence in
the mean score's placement within the matrix. For instance, if the upper bound is considered
and indicates higher criticality, it could flag functions for further investigation even when the
mean suggests a lower criticality level. Using this approach, functions such as F;, Fs, Fg, F7,
BG;, BG,, and BG4 would move to level C when upper bounds are applied. This shift
indicates that these functions exceed acceptable thresholds and signal a need for immediate
attention to mitigate the risk of negative resonance. As a practical example, if F; (Cargo
transport to yard storage) were to fall within the red zone of the criticality matrix, this would
signal the need for immediate intervention by terminal logistics teams. In such a situation,
additional trucks would be deployed to avoid delays in container movement to the yard.
Without timely action, performance variability in this function could propagate upstream to
the quayside, increase variability in quay crane operations, and ultimately elevate the
probability of terminal-wide disruption. By allocating redundant trucking capacity and
addressing the issue at its source, variability can be contained, localized, and eliminated
before it cascades into broader system instability. All in all, this approach rigorously
prioritizes functions for safety countermeasures, emphasizing the need to reduce variability in
their outputs. Addressing these criticalities pre-emptively can prevent negative resonance and
ensure system stability, particularly in downstream processes.

4.5. Model validation process

As outlined in Section 3.4, multiple approaches are employed to validate the proposed model
and its findings. For the HTA and FRAM, the validation process involved consultation with
seven experts, each possessing at least 15 years of experience in seaport operations. These
experts, with minor revisions, confirmed that the activities represented in the HTA and
subsequently modelled in the FRAM, along with their structures and interconnections,
accurately reflect the most significant and realistic activities observed in practice.
Additionally, the results were partially benchmarked against other studies (Cho et al., 2018;
Darbra and Casal, 2004; John et al., 2014; Majumdar et al., 2022; Mitra et al., 2024; Yin et
al., 2024). However, identifying and aligning with similar studies for comparison proved
challenging due to the limited availability of directly comparable research and the complexity
of matching findings.

In addition to the previously mentioned methods, sensitivity analysis was performed to
validate the BN models. This process involved two sequential steps. First, the developed BNs
for SVI evaluation were analysed as a partial validation of the overall model. Second, the
FRAM-based BN models, which map the relationships between functions, were validated
through sensitivity analysis. Using GeNle software, a derivative-based sensitivity analysis
was conducted, allowing the quantification of how changes in the BN’s parameters influence
the target nodes by calculating their derivatives. In this approach, the software uses
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mathematical and numerical techniques to compute the derivative of the posterior probability
distribution of each target node with respect to each parameter. For instance, if P(C/A)

represents the probability of a child node C given a parent node A, the derivative value is
obtained as Zﬁ—g, which quantifies how P(C) changes when P(A) is adjusted. Larger
derivatives signify that even minor changes in a parameter have a substantial impact on the
target node. By comparing derivatives across various parameters, the most influential ones

can be identified.

As shown in Table 12, the three highest derivatives were selected along with their associated
nodes as examples. It is important to note that these selections are based on the ST state of
the target node. In other words, by setting the target node’s state to ST, the most sensitive
parameters were identified. Additionally, the variation range of the leaf node’s ST state is
reported, illustrating the span of possible values. For instance, within the technological
function, setting environmental conditions to stable, MTTR to short, and ensuring an
adequate level of redundancy is expected to contribute to the stability of performance
variability. The interval values are centred around the original ST state values of the target
node, fulfilling Principle 1 of sensitivity analysis.

To address Principle 2, the top three nodes, along with their relevant states, were subjected to
a 10% increase in their values to observe the combiried effect on the target node. For human
functions, since the initial values for these three top nodes were at their maximum (100%), a
10% decrease was applied instead.

The results indicate that the posterior probabilities of the target node for technological,
organizational, and F, functions shifted favourably toward the ST state, resulting in a
corresponding reduction in performance variability as the ST values increased. In contrast,
for human functions, the posterior probabilities leaned toward greater performance
variability, with an increase in the MV values. This demonstrates that the collective impact of
changes in the selected nodes on the target node’s probabilities is consistently more
significant than the impact of individual changes in each node, thereby validating Principle 2.

Table 12: The sensitivity analysis results.

Function Node State Interval Derivative | Prior prob. Posterior Performance
prob. variability
Authority Balanced | [0.258-0.419] 0.160 ST=0.38 ST=0.43 PV,=1.74
gradient LVv=0.52 LV=0.49 PV,=1.66

Organizational | Span of control | Balanced | [0.258-0.419] 0.160 MV=0.08 | MV=0.07 AP=-5%
Communication | Adequate | [0.255-0.410] 0.155 HV=0.02 | HV=0.01

effectiveness
Environmental Stable [0.483-0.820] 0.337 ST=0.69 ST=0.75 PV;=1.39

Technological condition LV=0.23 LV=0.20 PV,=1.30
MTTR Short [0.582-0.729] 0.148 MV=0.07 MV=0.05 AP=-7%
Redundancy Adequate | [0.575-0.722] 0.146 HV=0.01 HV=0.00
QSO So4 [0.353-0.540] 0.192 ST=0.00 ST=0.00 PV,=2.46
Human APP Sa3 [0.378-0.540] 0.181 LV=0.54 LV=0.45 PV,=2.55
TAC Si3 [0.404-0.540] 0.167 MV=0.46 | MV=0.55 AP=+4%
HV=0.00 HV=0.00
Internal ST [0.165-0.173] 0.174 ST=0.17 ST=0.22 PV,=1.93
F, BG; ST [0.164-0.172] 0.173 LV=0.73 LV=0.70 PV,=1.86
Fi ST [0.162-0.171] 0.172 MV=0.10 | MV=0.08 AP=-4%

HV=0.00 HV=0.00
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4.6. Implications

Based on the obtained results and the associated discussion, several implications can be
drawn to support various seaport stakeholders, each benefiting from these insights from
different operational and strategic perspectives, as outlined below:

1) Immediate control through the prioritisation of “level C” functions.

When the upper confidence bounds of the UVI distributions are considered, seven elements,
including F2 (Initial Safety and Security Checks), F5 (Quay crane operation), F6 (Quay crane
operator), F7 (Cargo Transport to Yard Storage), BG1 (Vessel securely moored), BG2 (Port
operations management) and BG4 (Resource management) migrate from a minor variability
“B” zone to the critical “C” zone of the matrix. This shows that apparently “well-behaved”
functions can become risk amplifiers once uncertainty is acknowledged, so early safeguards
must focus on these nodes before local variation resonates through the wider seaport system.

2) Operational stakeholders (pilots, berth masters, equipment maintainers).

F2 (cargo-handling coordination) and F5/F6 (quay-crane and yard operations) emerge as
volatility hot-spots; actions such as dynamic berth planning and predictive maintenance will
give the biggest risk-reduction pay-off.

3) Strategic management (port authority & terminal operators).

BG1 (mooring practice) and BG2 (organisational control) highlight that managerial routines
and safety culture are as variable as front-line work; leadership should institutionalise
continuous monitoring and learning loops.

4) Logistics partners & investors.

BG4’s high variability underlines that resource-allocation policy (e.g., spare-part inventories,
redundancy levels) directly drives systemic stability.

5) Resource-allocation rules derived from sensitivity analysis.

Derivative-based sensitivity reveals that keeping environmental conditions stable, MTTR
short and redundancy adequate produces 5-7% shifts of the posterior toward the ST state for
technological functions, whereas poor attention to these parameters moves human functions
toward the MV state. This quantifies how marginal investment in redundancy or faster repair
capability suppresses resonance potential system wide.

6) Balancing Safety-11 adaptability with resonance prevention.

Although most mean UVIs sit in the “beneficial variability” band (level B), the wide upper
tails caution against complacency; variability is an asset only while resources exist to damp
it. The integrated FRAM-BN model makes that trade-off explicit by letting analysts toggle
between mean, lower- and upper-bound scenarios during what-if simulations.

7) Methodological generalisation to other complex transport systems.

The quantitative FRAM-BN coupling used here aligns with the recent trend in maritime-risk
science toward data-driven Bayesian networks combined with functional models (Guo et al.,
2023; Mohsendokht et al., 2024a, 2024b; Z. Yang et al., 2025).
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It is noted that the proposed framework has been designed to address the inherent complexity
of safety assessment in complex socio-technical systems through a Safety-ll-oriented
perspective. While seaport operations were selected as the primary case study to demonstrate
applicability and practical feasibility, the methodological structure is not domain specific.
Owing to its modular design principles and emphasis on functional variability, the framework
is readily generalisable to other complex sectors, such as aviation, rail, energy, and
healthcare, where multi-actor interactions, dynamic operating environments, and emergent
performance conditions similarly influence system resilience and safety outcomes. With
appropriate contextualisation of system functions and domain-specific variables, these sectors
can likewise adopt the framework to undertake systemic, performance-based Safety-11 risk
assessments. The applicability of this approach can be considered from two perspectives,
reflecting both the commonalities and the sector-specific differences.

From a commonality perspective, these sectors share fundamental characteristics with
maritime operations, including high interdependence among human, technical, and
organizational elements, reliance on continuous coordination between multiple agents, and
the presence of tightly coupled subsystems where small performance variabilities can lead to
potential negative resonances with significant system-wide consequences. In aviation and rail
transport, as in seaports, operational safety depends on synchronized human-machine
interactions, adherence to procedural constraints, and resilience to unexpected disturbances.
Similarly, healthcare systems exhibit comparable socio-technical complexity, where
variability in human performance and resource constraints can critically affect outcomes.
Thus, the framework’s focus on modelling functional variability and emergent behaviour
makes it well suited for analysing these domains.

From a uniqueness perspective, each sector exhibits distinct features that require contextual
adaptation of the framework. For instance, aviation and rail industries often possess richer
operational and safety data through advanced monitoring systems and regulatory reporting,
which can reduce subjective bias in quantification of performance variability and improve the
empirical grounding of probabilistic models. In contrast, healthcare environments are
characterized by higher contextual diversity and limited standardization, meaning that
qualitative judgment and expert elicitation remain essential for capturing functional
dependencies and performance variability. Consequently, appropriate contextualization of
system functions, data availability, and performance indicators will be essential when
adapting the framework to each domain.

In summary, the proposed Safety-ll-based framework provides a flexible foundation for
systemic and performance-based risk assessment across diverse complex socio-technical
sectors. Its modular architecture allows for both cross-domain generalization and domain-
specific customization, ensuring its applicability to different CSTS.

5. CONCLUSION

In this study, a novel systemic risk assessment approach is designed to capture the dynamic
interactions among the various elements of a seaport. Performance variability is
acknowledged as a distinctive framework for expressing and understanding the
interdependencies between diverse functions. The FRAM serves as the foundational
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component of the approach, enabling the visualization of real-world relationships between
activities, referred to as functions, within a seaport context. To enhance FRAM's capability
for quantitative analysis, it is integrated with BN, allowing consideration of both internal and
external factors that may influence individual functions. The proposed methodology builds
upon the principles of the Safety-1l concept, emphasizing a functional safety perspective. The
outcomes of the study and the application of the framework provide deeper insights into
system dynamics and offer more practical, versatile strategies for improving overall system
safety.

Given the obtained results, insights, and implications, this study makes several significant
contributions, as follows:

1) Holistic analysis of CSTS elements: Technological, human, and organizational
functions within the CSTS are analysed to evaluate their internal and external
performance variabilities, considering factors such as operational uncertainties,
environmental conditions, and human performance fluctuations.

2) Function interactions: Interactions between functions are systematically analysed to
track upstream-downstream performance variability, assessing their impacts on the
overall system. This approach highlights critical dependencies and emergent
behaviours.

3) Comprehensive risk analysis: The framework supports both retrospective and
prospective evaluations of performance variability, providing actionable insights for
addressing risks effectively.

4) Enhanced decision-making: By quantifying and visualizing performance variabilities,
the framework enables risk-based decision-making, helping prioritize interventions
and implement targeted risk rmanagement measures.

This integrated approach provides a solid foundation for understanding and mitigating
systemic risks in complex socio-technical system environments. Nevertheless, while the
framework demonstrates strong potential for comprehensive systemic risk assessment,
several limitations and avenues for future enhancement remain.

First, the FRAM model development was based on expert knowledge and focused on key
operational functions. As system size and complexity grow, the number of functions and their
interdependencies may expand significantly, making manual modelling increasingly
demanding and time-consuming. Future research could integrate machine-learning-assisted
techniques, such as those informed by HTA analysis, to support automated function
identification and coupling detection. These techniques would serve as an advisory tool to
assist experts, thereby improving scalability and modelling efficiency while preserving
domain oversight. ~ Second, limited availability of empirical data for human and
organisational functions necessitated reliance on expert judgment. Although expert elicitation
remains a widely accepted practice in complex socio-technical analyses where datasets are
scarce, this reliance may introduce subjectivity and uncertainty. In particular, access to
verifiable performance-related information for organisational functions is often constrained,
as managers and policymakers may be reluctant to critically examine or disclose internal
performance practices. Consequently, unlike technological functions, where structured
monitoring and measurable performance data are routinely available, organisational and
human performance data remain largely qualitative and under-reported. Furthermore, while
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certain industries such as nuclear energy sector have established quantitative data collection
frameworks for human reliability, similar systematic mechanisms are still emerging within
the maritime sector, especially for capturing performance variability rather than traditional
error-based measures. To address these gaps, future works should focus on developing
structured platforms for continuous collection and documentation of operational performance
data, covering both routine and non-routine conditions. Such efforts would reduce reliance on
subjective input, enhance traceability, and enable more robust, data-driven modelling of
human and organisational variability.

APPENDICES
Appendix A

Regarding the application of modified CREAM methodology to assess the SVI of human
functions in step 3 the following example is brought up here to clarify the procedure. Let’s
say, in rule number K, out of the nine CPCs, four have positive effects, three have negative
effects, and two have neutral effects. Referring to the vertical axis of the diagram, which
corresponds to the value four, and examining the shares of the slots associated with different,
it is evident that there is one block for "strategic", five blocks for "tactical”, and none for the
other CCMs. Based on this, B* is estimated as:

B+ ={(0.17,CCMy), (0.73,CCM)), (0, CCMs), (0,CCMy)}

Similarly, using the horizontal axis of the diagram and identifying the value three, two blocks
are observed for "opportunistic”, five blocks for "tactical”, and none for the other CCMs.
Consequently, £ is calculated as:

£ ={(0,CCM,), (0.71,CCMy), (0.29, CCM3), (0,CCM4)}

It should be emphasized that the "neutral” effect does not contribute to the integrated result,
as it has already been accounted for in the uncertainty, and its belief degree is therefore
excluded from the process.

Once the positive and negative belief degrees are determined, and the weights derived using
the AHP approach are incorporated, evidential reasoning is employed to synthesize this
information. This process delivers the final combined belief degree for each CCM.

Appendix B

Regarding the DSET approach, let’s consider a set of n mutually exclusive and exhaustive
propositions, referred to in this context as the BN states, Q={Xy, Xi,..., Xn}. This set Q is
called the frame of discernment.

The power set, denoted 2%, includes all possible subsets of @, including the empty set (2) and
Q itself. For a frame Q2={Xo, X1}, the power set is: 2°={F{Xo} {X1}.{X0.X1}}. In general, for n
elements in Q, 2" subsets are formed.

DSET comprises three vital functions: the Basic Probability Assignment (BPA), the Belief
Function (BEL), and Plausibility Function (PL). BPA, denoted as m(A), assigns a mass of
probability to a subset A of the frame of discernment 2, where A€Q.
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The following rules are applied: The mass of the empty set is always zero: m(@)=0, and the
sum of all masses over 29 is 1, which is illustrated as ¥ 4co m(A4) =1. A is referred to as a
focal element if m(4)>0 and m(A) represents the extent to which the evidence supports the
proposition A.

Continuing, the BEL serves as the lower bound of the probability interval, while the PL acts
as the upper bound. They are defined as follows:

BEL (X) = Z H m;(P) )

PEX 1<isn

PL(X) =1— BEL(X) 2)
where P is the proper subset of the set of interest (X), i is the number of beliefs, and X
signifies the complement of X, indicating that the belief is governed by the principle that the
total basic probability BPA must equal 1.

When multiple pieces of evidence from different sources are presented, the fusion of beliefs
is determined by the combination rule of DSET as follows:

m(A) =m (A)®m2 (A) ..my, (A) — ¥Bncn..z=a™M1 (B)m2(C)..mn(Z) (3)

when 4#0, m(J)=0,
and where,
K = Ygncn.z= M1 (B)my(C)...my(Z) (4)

K represents the level of conflict between the pieces of evidence, with K=0 indicating no
conflict and K=1 signifying complete contradiction between the evidence.

Appendix C
Table I: Symbols and definitions used in the proposed methodology.
Symbol Description
ST Stable conditions, no variability
LV Low variability
MV Moderate variability
HV High variability
CPT Conditional Probability Table
CPC Common Performance Condition
P(C/R) Conditional probability of child node state Cgiven parent node state R
P(CCM) Probability of performance variability in terms of Contextual Control Mode
Sij The state of CPC i and number j
P(Si,) Probability of specific states of a given common performance condition
P(CCM/S;)) Conditional probability of performance variability given a CPC states
9P(C) The derivative value of child node C given a parent node A
dP(4)
MTTF Mean Time To Failure
MTTR Mean Time To Repair
SVI Self-contained Variability Index
uVvi Upstream Variability Index
ﬁ* Belief degrees with positive effect
B Belief degrees with negative effect
S Combinatory belief degrees
w* The corresponding weights of CPCs with positive effects
W~ The corresponding weights of CPCs with negative effects
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F Foreground function number i
BG; Background function number i

Table II: The expert’s profile and their related experience and expertise.

Number Title Educational | Experience | Location Specialization
level (years)
1 General MSc 20 Iran Port master planning; concession/PPP
Manager contract management; stakeholder

engagement; ESG & sustainability;
business continuity & resilience.

2 Operations MSc 15 Iran Berth planning & vessel scheduling;
Manager quay-crane assignment; yard planning
& resource optimization; stowage
coordination with shipping lines.

3 Operations Ph.D 12 Canada Container terminal management;
Manager stevedoring planning; turnaround-time
optimization.
4 HSE Director Ph.D 10 Belgium ISO 45001/14001 systems;

HAZID/HAZOP/JSA risk assessment;
emergency response & oil-spill (ICS)
planning; contractor HSE auditing.

5 Harbour MSc 18 USA VTS & navigational safety; pilotage
Master & towage coordination; mooring/lines
safety; ISPS drills & security
interface; incident investigation &
root-cause analysis.

6 Port Planning MSc 16 UK Berth/yard capacity modelling;
approach-channel design &
navigational risk; asset management
(PIANC/ICE standards).

7 Terminal MSc 14 Australia | TOS configuration; yard optimization
Systems & & equipment dispatching
Automation (ASC/RTG/AGV); EDI/port
Manager community systems; operational

analytics & dashboarding.

Table I11: CPC estimates based on expert elicitation.

CPC | States | Expertl | Expert2 | Expert3 | Aggregated value | Effects on performance variability
Si11 0.00 0.00 0.00 0.0000 Negative
TAC Si2 0.10 0.15 0.10 0.0022 Neutral
Si3 0.90 0.85 0.90 0.9978 Positive
So1 0.00 0.00 0.00 0.0000 Negative
S, 0.10 0.00 0.05 0.0000 Neutral
HMI Sy 0.75 0.80 0.85 0.9941 Neutral
Soa 0.15 0.20 0.10 0.0059 Positive
Ss1 0.00 0.00 0.00 0.0000 Negative
APP Ss2 0.10 0.00 0.05 0.0000 Neutral
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Ss3 0.90 1.00 0.95 1.0000 Positive
S41 0.35 0.25 0.30 0.0714 Negative
COW | S,, 0.65 0.75 0.70 0.9286 Neutral
Sz 0.00 0.00 0.00 0.0000 Positive
Ss1 0.25 0.10 0.20 0.0092 Negative
NGC | S, 0.75 0.90 0.80 0.9908 Neutral
Ss3 0.00 0.00 0.00 0.0000 Positive
Se.1 0.30 0.30 0.20 0.0542 Negative
ATT Se.2 0.70 0.60 0.75 0.9458 Neutral
Se3 0.00 0.10 0.05 0.0000 Positive
S71 0.05 0.05 0.10 0.0007 Negative
CRS S0 0.70 0.75 0.75 0.9806 Neutral
S73 0.25 0.20 0.15 0.0187 Positive
Ss1 0.00 0.00 0.00 0.0000 Negative
TCQ Ss.2 0.15 0.10 0.10 0.0030 Neutral
Ss3 0.80 0.75 0.85 0.9963 Neutral
Ss.4 0.05 0.15 0.05 0.0007 Positive
So1 0.05 0.00 0.05 0.0000 Negative
QSO So.2 0.25 0.30 0.35 0.0819 Negative
So3 0.70 0.70 0.60 0.9181 Neutral
So4 0.00 0.00 0.00 0.0000 Positive
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