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ABSTRACT 

Modern complex socio-technical systems demand systemic risk analysis approaches that can 

holistically address the interdependencies between human, technological, and organizational 

components. Traditional models often fall short in capturing the dynamic and emergent nature of 

these interactions. This study introduces a novel, integrated risk analysis framework grounded in the 

Safety-II paradigm, which emphasizes understanding how systems succeed under varying conditions 

rather than focusing solely on failure. The proposed methodology combines the Functional Resonance 

Analysis Method (FRAM) with Bayesian Networks to overcome FRAM’s qualitative limitations and 

enable quantitative assessment of performance variability. The framework is further enriched by 

integrating complementary techniques, including Monte Carlo Simulation and canonical probabilistic 

models. This holistic toolkit enables a rigorous and scalable approach for modelling uncertainty and 

systemic variability across complex operational environments. The methodology is demonstrated 

through a case study of seaport operations, a representative example of a complex socio-technical 

system. The results show that the integrated Safety-II-informed framework improves the 

quantification of systemic risk and enhances the capacity to manage complexity and uncertainty in 

real-world settings.  

Keywords: Systemic risk, Complex socio-technical system, Safety II, FRAM, Bayesian Network, 

Seaport Operations 

1. INTRODUCTION 

Complex Socio-Technical Systems (CSTS) are defined by tightly interconnected structures, 

unpredictable workflows, non-linear operations, and intricate interactions among their 

elements. These systems encompass the interplay of human, technological, and 

environmental factors within an organizational context (Baxter and Sommerville, 2011; 

Bayramova et al., 2023; Jensen and Aven, 2018). Traditional risk analysis methods, such as 

fault tree analysis, event tree analysis, and probabilistic safety assessment, are primarily 

grounded in the Safety-I paradigm. These approaches operate on several foundational 

assumptions: systems can be decomposed into simpler components; their functioning is 

categorized as either successful or failed; risk analysis depends on predefined cause-and-

effect relationships; and event sequences are assumed to be linear. While this methodology 

proved effective for purely technological systems and was widely applied in critical 

industries such as chemical, nuclear, and aviation during the 20th century, its limitations 

became apparent when dealing with CSTS (Aven, 2022; Mohsendokht and Jamshidi, 2021). 
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Safety-I philosophy, rooted in traditional thinking, struggles to accommodate the dynamic, 

nonlinear, and emergent nature of modern systems, making its continued application in the 

21st century increasingly questionable (Hollnagel et al., 2015). To address these limitations, 

a new paradigm known as Safety-II has emerged. Rather than focusing solely on the 

prevention of failures, Safety-II emphasizes ensuring that “as many things as possible go 

right.” This approach adopts a proactive stance, recognizing the adaptability of human 

operators and underscoring the importance of monitoring everyday performance variability as 

a means of sustaining system safety. 

Over the past decade, this paradigm has sparked extensive discussion among researchers, 

who have both supported and critiqued its underlying philosophy; a detailed exploration of 

which lies beyond the scope of this study (Aven, 2022; Cooper, 2022; Hollnagel, 2018; 

Martinetti et al., 2019; Provan et al., 2020). However, the research trend indicates that the 

Safety-II concept has gained significant traction, with scholars from various disciplines 

incorporating it into their studies. Applications span diverse fields, including maritime 

operations (Adhita et al., 2023; Qiao et al., 2021; Wahl et al., 2020), energy systems 

(Riemersma et al., 2024), aviation (Yang et al., 2017), chemical industry (Yu et al., 2020), 

construction (Martinetti et al., 2019; Martins et al., 2022), transportation (Papadimitriou et 

al., 2022; Wang et al., 2020), and nuclear power plants (Ham and Park, 2020; Park et al., 

2018).  

Despite the growing conceptual appeal of the Safety-II concept across domains, efforts to 

translate its principles into repeatable, decision-oriented analyses for CSTS remain 

fragmented. Existing operationalisations tend to be either qualitative (e.g., mapping work-as-

done, identifying functional dependencies, and general recommendations to improve safety) 

or narrowly quantitative (e.g., indicator scoring or isolated simulations), often without a 

formal mechanism to represent everyday performance variability, propagate its effects 

through interdependent functions, and address uncertainty in a transparent way.  

Recent advances over the past years have sought to address this gap by proposing semi-

quantitative and quantitative approaches in which Functional Resonance Analysis Method 

(FRAM) serves as the central modelling framework. These efforts include the use of Monte 

Carlo sampling and explicit propagation rules to characterise upstream-downstream 

variability within FRAM models (Kim and Yoon, 2021; Patriarca et al., 2017), as well as the 

integration of FRAM with BNs  or dynamic BNs (Peng et al., 2023; Zarei et al., 2022). Such 

combinations provide a principled calculus for fusing heterogeneous evidence, updating 

beliefs, and supporting diagnostic and prognostic reasoning in interdependent systems. 

Collectively, these developments have paved the way toward more rigorous 

operationalisation of the Safety-II concept in CSTS. However, existing studies still have 

limitations, in which some concentrate on modelling functional interactions while 

overlooking internal and external variabilities within individual functions, whereas others 

emphasise these variabilities but fail to capture the dynamic interplay between functions. 

To address these gaps, this paper proposes an integrated framework for systemic risk analysis 

within the context of CSTS, aligning with the principles of the Safety-II concept. The novel 

methodology integrates FRAM and BN with advanced analytical tools, including Monte 

Carlo Simulation (MCS), canonical probabilistic methods, Dempster-Shafer theory, and 

criticality matrix. The key contributions of this study can be summarized as follows: 
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1) Comprehensive analysis of CSTS elements: Each element of the CSTS, including 

technological, human, and organizational functions, is analysed to assess their internal 

and external performance variabilities. These variabilities account for factors such as 

operational uncertainties, environmental conditions, and human performance 

fluctuations. 

2) Interaction between functions: The interactions among related functions are 

systematically examined to identify and track their upstream-downstream 

performance variability. This includes assessing their potential impacts, either 

negative, damping, or even positive on the entire system. Such an analysis helps to 

highlight critical dependencies and emergent behaviours within the system. 

3) Retrospective and prospective risk analysis: The proposed framework enables both 

retrospective and prospective evaluations of the performance variability. This dual 

perspective equips decision-makers with actionable insights to address risks 

effectively. 

4) Support for risk-based decision-making: By quantifying and visualizing variabilities 

across the CSTS, the framework empowers decision-makers to prioritize interventions 

and implement targeted measures to manage identified risks. 

The remainder of this paper is structured as follows: Section 2 provides a concise literature 

review on CSTS, the application of the Safety-II concept, outlining the methodologies 

currently applied in CSTS and highlighting the identified research gaps. Section 3 presents a 

detailed discussion of the adopted methodology, with an in-depth explanation of the various 

techniques employed. Section 4 demonstrates the application of the proposed methodology to 

seaport operations and includes a discussion of the results and their interpretation. Finally, 

Section 5 summarizes the key insights derived from this study and formulates the 

conclusions. 

2. LITERATURE REVIEW 

2.1. Systemic risk analysis of complex socio-technical systems  

As previously noted, CSTS are networked configurations of individuals, technologies, rules, 

and environments whose behaviour emerges from numerous non-linear interactions rather 

than from any single component. Within such systems, accidents frequently originate from 

mismatches, tight couplings, and feedback across organisational, human, and technical layers, 

rather than solely from component failure or human error. Systemic risk analysis perspectives 

emphasise that safety performance depends on how constraints are specified, implemented, 

and monitored throughout the entire system structure, and that adverse outcomes may arise 

from otherwise normal local variability when influenced by goal conflicts and resource 

pressures (Leveson, 2004). 

This inherent complexity underscores the relevance of the Safety-II perspective, which 

focuses on understanding how work typically succeeds despite performance variability. 

Safety-II recognises that the same adaptations that enable successful outcomes can, under 

certain circumstances, interact to produce failure. By shifting the analytical focus toward 

everyday performance, operational trade-offs, and resilience capacities, Safety-II provides a 

more robust foundation for systemic risk analysis and for designing systems that remain 

tolerant and adaptive in the face of variability (Provan et al., 2020). 
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In this regard, efforts have been made to introduce techniques for systemic risk analysis, 

including the Function Analysis System Technique (FAST), the Structured Analysis and 

Design Technique (SADT), the Systematic Human Error Reduction and Prediction Approach 

(SHERPA), the Accident Causation Analysis and Taxonomy (ACAT), the Systems Theoretic 

Accident Model and Processes (STAMP), and the FRAM. Table 1 presents a concise 

comparative analysis of these methods, highlighting their respective strengths and limitations 

in the context of CSTS risk analysis. 

Table 1. Comparative Overview of Systemic Risk Analysis Methods. 

Method Analytical Focus / 

Application Domain 

Advantages Limitations Key 

References 

FAST Employed primarily in 

engineering design and 

value analysis to map 

functional logic 

(“how” and “why”) 

between system 

elements. 

- Promotes 

function-

oriented rather 

than component-

based thinking. 

- Facilitates 

stakeholder 

engagement and 

creative 

exploration of 

alternatives. 

- Outcomes are 

highly dependent on 

facilitator expertise. 

- Provides only static 

representations; 

limited capacity to 

model temporal or 

emergent 

behaviours. 

(Bytheway, 

2007) 

SADT Utilized for 

hierarchical 

decomposition of 

system functions, 

specifying inputs, 

outputs, controls, and 

mechanisms in 

structured diagrams. 

- Offers a 

standardized, 

formalized 

framework for 

system 

modelling and 

documentation. 

-  Enhances 

communication 

among 

interdisciplinary 

teams. 

- Inflexible in 

dynamic or rapidly 

evolving 

environments. 

- Lacks constructs for 

sequencing or 

dynamic 

interactions; models 

may become 

complex and 

unwieldy. 

(Ahmed et 

al., 2014) 

SHERPA Designed to identify 

and classify potential 

human errors based on 

task analysis within 

complex systems. 

- Systematic 

prediction of 

error modes with 

direct links to 

remedial actions. 

- Supports 

targeted safety 

interventions 

and human 

factors 

engineering 

- Requires 

comprehensive task 

decomposition in 

advance. 

-  Resource-intensive 

and time-consuming 

to implement at 

scale. 

(Stanton, 

2004) 

(Catelani et 

al., 2021) 

ACAT Focused on classifying 

and analysing causal 

factors in past 

accidents across 

technical, human, 

managerial, and 

environmental 

- Provides a 

comprehensive 

taxonomy for 

multi-

dimensional 

accident 

analysis. 

- Primarily 

retrospective in 

nature; limited use 

for prospective risk 

assessment. 

- Requires domain-

specific adaptation. 

(Li et al., 

2017) 
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domains. -  Enables 

systematic 

tracing of failure 

paths 

STAMP Conceptualizes 

accidents as results of 

inadequate control and 

feedback within socio-

technical systems, 

grounded in systems 

theory. 

- Captures unsafe 

interactions and 

emergent risks in 

complex 

adaptive 

systems. 

- Supports high-

level modelling 

of safety 

constraints and 

control 

structures 

- Requires substantial 

conceptual 

understanding and 

modelling effort. 

- Predominantly 

qualitative; 

quantitative 

extensions remain 

limited 

(Ceylan et 

al., 2021) 

(Sun et al., 

2022) 

FRAM Models complex 

socio-technical 

systems by examining 

how functional 

performance 

variability propagates 

and interacts over 

time. 

- Well-aligned with 

the Safety-II 

paradigm; captures 

both successful and 

adverse outcomes. 

- Explicitly models 

interactions among 

human, technical, 

and organizational 

elements. 

- Enables dynamic 

assessment of 

functional resonance 

and emergent risks. 

- Model development is 

resource-intensive and 

requires deep system 

understanding. 

- Quantitative 

applications are 

evolving but not yet 

standardized. 

(Erik, 2017) 

(Yu et al., 

2024) 

2.2. FRAM application 

Among the above-mentioned techniques, the FRAM has gained significant popularity for 

systemic risk analysis in CSTS due to several compelling advantages. Unlike traditional 

methods, FRAM avoids decomposing systems into individual components and operates 

independently of cause-effect analysis, aligning seamlessly with the principles of the Safety-

II paradigm. Furthermore, it identifies the various elements of a CSTS (Human, 

technological, and organizational factors) and addresses them holistically while accounting 

for their interactions and interdependencies. Additionally, FRAM enables detailed monitoring 

and analysis of the performance variability of each function, its influence on downstream 

functions, and its overall impact on the entire system. FRAM models CSTS by focusing on 

the functions that describe what the system does, rather than its physical components or 

organisational structure. Each function is depicted as a hexagon with six aspects, including 

Input, Output, Preconditions, Resources, Control, and Time that define its behaviour and 

interaction with other functions. Couplings between functions are represented by arrows, 

indicating how the output of one function can influence the input, control, or resource 

requirements of another. Variability emerging in any function may propagate through these 
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couplings, and this functional interaction structure forms the basis for analysing the 

performance variability. 

The four main principles of FRAM can be summarized as follows (Erik, 2017): First, the 

nature of success and failure is equivalent; in other words, everyday work variability 

determines whether outcomes are positive or negative. Second, individuals and organizations 

must make ongoing, often approximate, adjustments to adapt to changing conditions. Third, 

outcomes both positive and negative of a CSTS emerge from interactions among multiple 

system functions rather than from individual components alone, meaning outcomes cannot be 

traced directly to isolated causes. Fourth, functional resonance refers to the amplification of 

normal function variability due to unexpected interactions. It emphasizes the importance of 

identifying areas where such resonances may occur, as they can lead to significant system-

wide consequences. 

Despite its many advantages, the FRAM remains primarily a qualitative approach, lacking the 

capability to provide quantitative measurements for interpreting performance variability. This 

limitation is widely recognized as a significant drawback. To address this issue, researchers 

have investigated various approaches to enhancing FRAM by incorporating standardized and 

quantitative techniques. One of the earliest efforts in this direction was undertaken by Rosa et 

al. (Rosa et al., 2015), who combined FRAM with the Analytical Hierarchy Process (AHP) to 

generate numerical rankings. Patriarca et al. (Patriarca et al., 2017) introduced an innovative 

semi-quantitative FRAM-based approach by integrating it with MCS, enabling the 

representation of performance variability as discrete probability distributions. The integration 

of fuzzy logic theory with FRAM has also been proposed in multiple studies, offering another 

pathway to quantification (Hirose and Sawaragi, 2020, 2019; Slim and Nadeau, 2020). In 

their work, Lee and Chung (Lee and Chung, 2018) developed a method to quantify Human-

System Interaction (HSI) variability and assess criticality using a semi-quantitative FRAM 

process.  

More advanced techniques have emerged in recent years, including the integration of 

machine learning and data-driven approaches with FRAM, which have been applied across 

various domains. BNs have also been explored as a powerful probabilistic tool for 

quantifying FRAM. For instance, Zarei et al. (Zarei et al., 2022) developed a causation model 

based on FRAM, which they incorporated into a dynamic BN to analyse internal and external 

performance variability, referred to as uncoupled variability, within the petrochemical 

industry. In maritime operations, Guo et al. (Guo et al., 2023) proposed a similar approach, 

further enhanced by embedding a Markov model to analyse the evolution of collision risk 

during ship pilotage. These advancements demonstrate the growing efforts to integrate 

qualitative and quantitative analyses in FRAM applications (Wang et al., 2025; X. Yang et 

al., 2025; Zhao et al., 2025). 

2.3. Research gaps 

Following a comprehensive review of the current literature, a recurring critique highlights the 

lack of a systematic framework for improving safety performance that effectively integrates 

both qualitative and quantitative approaches. Qualitative approaches, while valuable for 

conceptual exploration, frequently lack systematic and quantifiable measures. These 

approaches often focus on describing the contrast between work-as-imagined and work-as-
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done, mapping functional dependencies, and providing general recommendations for 

improvement, but rarely progress toward measurable, evidence-based interventions. 

Quantitative approaches, on the other hand, also exhibit notable limitations. Some studies 

prioritise modelling functional interactions but neglect internal and external variabilities 

within individual functions. Others emphasise characterising such variabilities yet fail to 

adequately capture the dynamic interdependencies among functions. In the first case, 

functions are frequently treated as nodes with fixed or weakly varying parameters, under-

representing internal variability (e.g., workload, expertise drift, equipment degradation) and 

external variability (e.g., demand surges, environmental conditions, regulatory or 

organisational changes). As a result, resonance pathways are computed over unrealistically 

stable functions, with uncertainty addressed through ad hoc sensitivity ranges rather than 

systematic propagation techniques. In the second case, although intra-function variability is 

richly characterised, functional couplings are simplified or omitted. Outputs are often 

aggregated into single indices, temporal dynamics are suppressed, and dependencies are 

assumed independent. This prevents the transmission of cross-scale feedback, buffering 

effects, and transient accumulations through the functional network. Additionally, the use of 

static or scenario-specific parameterisation and limited evidence fusion or validation further 

restricts robust prospective “what-if” analysis. 

A more holistic methodology is therefore required which could retain FRAM’s functional 

topology, embeds stochastic and state-dependent models for each function, and employs a 

probabilistic propagation engine to fully operationalise the principles of Safety-II in CSTS. 

The methodology proposed in this study seeks to address these gaps, as detailed in the 

following sections. 

3. METHODOLOGY 

This section proposes a novel systemic risk analysis methodology based on a hybrid approach 

combining FRAM and BN, representing three key elements of CSTS: technological, human, 

and organizational functions. FRAM is utilized to describe the complex interrelationships 

among various functions, while BN enables the quantitative analysis of this complexity. 

Figure 1 illustrates the overall methodology, structured into four consecutive phases. 

 Phase 1: Based on Hierarchical Task Analysis (HTA) and the principles of FRAM, 

the functions, associated variabilities, and couplings between functions are identified, 

leading to the construction of the final FRAM model. 

 Phase 2: Each function is represented as either a technological, human, or 

organizational function. The internal variability within each function is modelled 

using a BN, in which the interrelationships among its internal contributing factors are 

defined both qualitatively and quantitatively. 

 Phase 3: The FRAM, serving as the primary model, is integrated with the BN to 

represent variability, incorporating prior probabilities, conditional probability tables, 

and model validation. 

 Phase 4: The model is interpreted by identifying resonances, whether negative or 

damping, recognizing critical functions through monitoring interactions between 

them, detecting resonant patterns, and ultimately extracting insights and implications. 
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Figure 1: The Conceptual structure of the developed methodology. 

3.1.  FRAM modelling 

In the first phase, an HTA is developed to better understand the activities within the process 

under study and to provide a general overview of its tasks. The hierarchical structure of HTA 

enables detailed analysis of specific tasks and helps clarify the relationships among them. 

HTA has been extensively described in prior research (Salmon et al., 2010; Stanton, 2006). 

Once the HTA is developed, key functions are identified and selected for further analysis 

through FRAM modelling. FRAM is employed to qualitatively analyse the effective 

operation of a CSTS.  

Based on the principles of FRAM discussed earlier, the model can be constructed by the 

following steps outlined below: 

1) Identification of functions: The results from the HTA inform the FRAM 

construction. Activities that significantly contribute to the overall process are 

identified as candidate functions. 

2) Definition of aspects: Each function is characterized by six aspects: input, 

output, resource, pre-condition, control, and time. 
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3) Determination of couplings: By understanding the flow of information or 

resources within the system, links between different aspects of various 

functions are identified, allowing for visualization of interdependencies among 

functions. 

4) Identification of variabilities: Function variability refers to deviations in a 

function’s output caused by factors from internal, external, or upstream 

functions. 

Once the FRAM structure is constructed, each function can be characterized by potential 

performance variabilities. In FRAM modelling, three types of variability are considered: (1) 

Internal variability: which originates from factors within the function itself, such as staff 

training levels and equipment maintenance schedules; (2) External variability: which is 

driven by external factors like weather conditions, geopolitical events, market demands, and 

security issues; (3) Upstream Variability Index (UVI), which captures the effects of 

interdependencies with upstream functions that affect downstream functions, such as the 

impact of container unloading efficiency and speed on the subsequent transport accuracy and 

timing to yard storage in a seaport. In this paper, the first two variabilities are referred to as 

Self-contained Variability Index (SVI), which pertains to performance fluctuations caused by 

internal and external factors that do not arise from interactions between system functions. 

These variabilities, interpreted as abnormal daily fluctuations, manifest in different ways, 

known as phenotypes, according to Erik (2017). Phenotypes may include aspects such as 

timing, precision, speed, distance, force, duration, and direction. Depending on the nature of 

the analysis, a suitable combination of these phenotypes is chosen for FRAM analysis. In this 

paper, timing and precision are selected to represent the performance variability of the 

functions. Timing represents the punctuality of activities being conducted. The output of a 

function may occur too early, on time, late, or in the worst case, missed which means it 

arrives too late to be useful for its intended purpose or is not produced at all (Kaya et al., 

2021). Regarding precision, an output can be accurate, satisfactory, inaccurate, or, in the 

worst case, faulty. From a systemic perspective, performance variability arises from local 

adjustments made to meet performance demands and ensure the functioning of a CSTS. To 

conduct a meaningful analysis, it is essential to evaluate the potential variability of each 

function. Therefore, a unified representation of performance variability is needed, enabling an 

aggregated view across different types of functions. To this end, integrating these two 

phenotypes not only provides a unified language for describing performance variability 

among functions but also facilitates the interpretation of interactions between these functions 

(Grabbe et al., 2022; Slim and Nadeau, 2020; Zinetullina et al., 2021). Table 2 presents the 

results of this integration using four qualitative scales: stable (ST), low variable (LV), 

moderately variable (MV), and highly variable (HV). 

Table 2. Unification of performance variability based on time and precision phenotypes. 

 Time 

Early Timely Delayed Missed 

Precision 

Accurate ST ST LV HV 

Satisfactory LV LV MV HV 

Inaccurate MV MV HV HV 

Faulty HV HV HV HV 
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In this context, "ST" performance is achieved when activities are both timely and accurate, 

indicating no variability and reliable outcomes. It is the only case where "work as imagined" 

corresponds exactly to "work as done". "LV" describes situations where performance may 

show slight deviations but remains satisfactory, being either timely or accurate. "MV" occurs 

when inaccuracies or delays begin to affect performance, though it remains functional. "HV" 

represents significant deviation, with outputs frequently delayed, missed, or faulty, leading to 

unreliability and potential system disruption. 

3.2.  BN modelling 

For a quantitative analysis of FRAM, using BN to represent qualitative performance 

variability scales in a numerical form is highly effective. This approach offers two primary 

advantages. First, since performance variability has four defined states, BN can seamlessly 

manage these multi-state conditions, accommodating the complexity introduced by numerous 

interacting functions within a system. Second, performance variability can be expressed as 

probability percentages, a task well-suited to BN's strength in handling probabilistic analysis 

and uncertainty. Thus, integrating BN with FRAM enables a robust approach to systemic risk 

analysis in CSTS, leveraging probabilistic reasoning to capture the nuanced variability and 

interdependencies inherent in these environments. To begin, it is essential to differentiate 

functions based on their inherent characteristics, categorizing them into three primary types: 

technological functions, human functions, and organizational functions. Each category 

represents a distinct aspect of the system with unique dependencies, behaviours, and potential 

risks. Separate BN models are developed for each of these categories to capture the specific 

interactions, uncertainties, and causal relationships within each function type, a concept 

referred to as SVI.  

In this respect, a structured pipeline was used to identify and justify priority nodes and states 

for each function: (i) literature-based scoping to enumerate candidate nodes and state options; 

(ii) expert review to apply inclusion/exclusion criteria and finalise observable, non-

overlapping states; and (iii) validity checks via a BN-level sensitivity screening. 

In the first step, candidates were compiled from a comprehensive review of published 

sources, retaining variables with plausible causal relevance to the target node. In the next 

step, a multidisciplinary domain expert panel merged or removed overlapping items, 

confirmed state labels, and standardised state counts to 2-3 for BN tractability. 

Inclusion/exclusion criteria are set as follows: operationalisability (observable in this context 

and discretisable into mutually exclusive, collectively exhaustive states), non-redundancy (no 

conceptual duplication), and interpretability (states understandable to practitioners). In the 

last step, the BN sensitivity screen fixed each parent to each of its states, recalculated the 

child’s probability, computed the parent swing (max-min change), and verified monotonicity 

(worsening states increased risk); nodes with negligible or non-monotone effects were 

revised or omitted. 

3.2.1. Organizational functions 

Organizational factors play a crucial role in system safety, either enhancing or impairing the 

safety performance of a CSTS. Within an organization, numerous interactions occur among 

various components, including staff, operators, management, structure, and culture, among 
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others (Li et al., 2012; Pence and Mohaghegh, 2020). To explicitly account for the impact of 

organizational factors on system performance variability and to capture the collective nature 

of its constituent elements, it is essential to consider all relevant aspects across multiple 

dimensions. These dimensions include social factors (e.g., safety culture, level of training), 

structural factors (e.g., authority gradients), resources (e.g., financial), management (e.g., 

leadership quality), and even external factors (e.g., geopolitical influences). Furthermore, the 

interactions among these dimensions must also be thoroughly examined (Mohaghegh et al., 

2009). Table 3 outlines the contributing factors of organizational functions, along with their 

sub-factors and corresponding descriptions, within the context of BN development. In this 

respect, efforts are made to define the states of each node to ensure an appropriate depth of 

causality in the model, while accounting for the objectives of systemic risk analysis and the 

multidimensional nature of organizational factors. 

Table 3: The identified contributing factors to the performance variability of organizational functions. 

Categories Nodes States Descriptions Reference 

External factors 

Regulation and 

enforcement 

Strict, 

moderate, 

lax 

Refers to the laws, regulations, 

standards, and oversight 

mechanisms established by 

governmental or regulatory bodies 

that an organization is required to 

follow. Stricter rules generally 

lead to improved organizational 

performance in the relevant 

functions. 

(Donelson et al., 

2023) 

Market conditions Favourable, 

unfavourable  

Refers to the various economic 

factors and dynamics that impact 

the supply and demand for goods 

and services within a specific 

market. Unfavourable market 

conditions can significantly 

influence an organization’s 

operational decisions, strategic 

planning, and overall 

performance. 

(Germain et al., 2008) 

External 

stakeholder 

relationships 

Strong, 

average, 

weak 

A strong relationship with 

external stakeholders can enhance 

organizational performance by 

fostering trust, facilitating 

resource access, and enabling 

smoother collaboration. 

Conversely, a weak relationship 

may lead to communication gaps, 

reduced support, and potential 

conflicts, leading to an increased 

performance variability. 

(Hillman and Keim, 

2001)  

Geopolitical 

factors 

Stable, tense Intense geopolitical factors, such 

as international conflicts, trade 

policies, tariffs, and economic 

sanctions, can negatively impact 

organizational performance, as 

managing these external pressures 

requires complex and challenging 

decision-making. In stable 

conditions, however, the 

organization is relieved from such 

difficulties. 

(Kuai and Wang, 

2025) 

Environmental 

factors 

Favourable, 

unfavourable 

Environmental factors, such as 

climate change and natural 

disasters, can disrupt operations, 

increase costs, and require 

(Busch, 2011) 
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investment in sustainable 

practices. Failure to respond, 

adapt, and recover effectively 

from these factors can damage the 

organization’s reputation, hinder 

compliance, and negatively 

impact overall performance. 

Security factors Secure, 

insecure 

Security factors, including data 

breaches, cyber threats, and 

physical security risks, can 

compromise sensitive 

information, disrupt business 

continuity, and increase the 

organizational performance 

variability. 

(Hasan et al., 2021) 

 

 

 

Organizational 

Structure 

Span of control Wide, 

balanced, 

narrow 

Refers to the horizontal aspect of 

management, i.e., how many 

employees are directly under the 

supervision of a single manager. 

A wider span of control means 

fewer managers are needed, 

leading to a flatter organizational 

structure. A narrower span of 

control requires more managers, 

leading to a taller structure. A 

balanced span of control indicates 

of the appropriate number of 

managers. 

(Remenova et al., 

2018) 

Communication 

paths 

Adequate, 

inadequate 

Communication paths refer to the 

adequacy and quality of 

communication between different 

levels of an organization. When 

communication is sufficient and 

effective, the organization’s 

performance variability becomes 

more stable. 

(Musheke and Phiri, 

2021) 

Authority gradient Steep, 

balanced, 

shallow 

An authority gradient describes 

the hierarchy of power within an 

organization, influencing how 

freely subordinates can challenge 

superiors. A steep gradient 

discourages lower-ranking 

individuals from speaking up, 

while a balanced gradient 

promotes open dialogue across 

levels. Conversely, a shallow 

gradient can lead to a chaotic 

environment. 

(Luva and Naweed, 

2024) 

 

 

 

 

Organizational 

resources 

Equipment 

resources 

Adequate, 

inadequate 

An adequate amount of 

equipment resources is essential 

for stable organizational 

performance. 

(Ozdemir et al., 2023) 

Human resources Adequate, 

inadequate 

An adequate number of personnel 

is essential for stable 

organizational performance. 

(Natsir et al., 2024) 

Financial 

resources 

Adequate, 

inadequate 

An adequate number of financial 

resources is essential for stable 

organizational performance. 

(Carmeli and Tishler, 

2004) 

Information 

resources 

Adequate, 

inadequate 

An adequate amount of 

information resources is essential 

for stable organizational 

performance. 

(Pashutan et al., 

2022) 

Time resources Adequate, 

inadequate 

An adequate amount of time 

resources is critical for meeting 

deadlines, maintaining 

productivity, and ensuring 

(Aeon et al., 2021) 
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efficient workflow. 

 

 

 

 

 

 

 

Organizational 

management 

Resource 

management 

Efficient, 

moderately 

efficient, 

inefficient  

Refers to the organized efforts 

and procedures an organization 

implements to allocate existing 

resources effectively and 

efficiently. 

 

(Wang et al., 2022) 

Leadership quality Strong, 

moderate, 

weak 

Refers to the effectiveness and 

characteristics of leaders within 

an organization. Strong and high-

quality leadership is crucial for 

setting the direction, inspiring 

employees, and ensuring the 

achievement of organizational 

goals. 

(Nasim et al., 2023) 

Communication 

effectiveness 

Adequate, 

inadequate 

Refers to the quality of 

communication within an 

organization and its impact on 

achieving stable performance. It 

encompasses the clarity, accuracy, 

and timeliness of information 

shared among team members. 

Clear communication promotes 

collaboration, minimizes 

misunderstandings, and aligns 

everyone with the organization's 

objectives, ultimately ensuring 

consistent performance. 

(Noor Arzahan et al., 

2022) 

Rules & 

regulations 

implementation 

Compliant, 

partially 

compliant, 

incompliant 

Refers to the effectiveness with 

which an organization enforces 

and adheres to internal policies, 

standards, and external 

regulations governing its 

operations. Greater compliance 

with these rules and regulations 

leads to more stable 

organizational performance 

variability. 

(Pedrosa et al., 2025) 

Emergency 

management 

Strong, 

moderate, 

weak 

Refers to the organized efforts 

and procedures that an 

organization establishes strategies 

to handle emergencies by 

planning ahead, managing 

responses, and facilitating 

recovery efforts, including natural 

disasters, technological incidents, 

security threats, and other 

unexpected events that may 

disrupt normal operations. The 

stronger the emergency 

management, the more stable the 

organization’s performance 

variability. 

(Mees et al., 2016) 

 

 

 

 

 

Organizational 

culture 

Education/training Adequate, 

inadequate 

An adequate level of education 

and training among personnel 

contributes to a vibrant 

organizational culture. 

(RAHAMAN et al., 

2023) 

Information 

sharing 

Adequate, 

inadequate 

Refers to the process of 

exchanging relevant information 

including data, knowledge, 

insights, and updates among 

individuals, teams, departments, 

or organizations. Adequate level 

(Diem Le et al., 2023) 
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of information sharing is crucial 

for overall organizational 

efficiency. 

Safety culture Rich, 

moderate, 

poor 

Refers to shared mindset, outlook, 

and priorities of employees 

concerning safety practices and 

standards within an organization. 

It encompasses how safety is 

prioritized, communicated, and 

practiced at all levels, from 

management to front-line 

workers. A rich safety culture 

fosters a proactive approach to 

managing risks. 

(Noor Arzahan et al., 

2022) 

Organizational 

cohesion 

High, 

moderate, 

low 

It reflects how well employees 

work together toward common 

goals, the strength of relationships 

within the organization, and the 

overall sense of belonging and 

loyalty that employees feel. An 

organization with high level of 

cohesion typically experiences 

higher levels of productivity, and 

performance stability. 

(Grossman et al., 

2022) 

Employee 

inclusivity 

Inclusive, 

moderately 

inclusive, 

exclusive 

Encompasses initiatives aimed at 

fostering an inclusive and 

supportive workplace where every 

employee feels respected, 

appreciated, and encouraged to 

actively participate. A high level 

of inclusivity within an 

organization fosters a rich 

organizational culture. 

(Chinenye Gbemisola 

Okatta et al., 2024) 

 

3.2.2. Technological functions 

Technological functions are primarily driven by machinery, equipment, or software and 

represent automated processes or technical operations within CSTS. These functions rely on 

the technical features of the system to perform specific tasks. Technological functions are 

typically characterized by precision, consistency, and a predictable range of variability, 

usually governed by design specifications, technical capabilities, or programmed protocols. 

To determine the SVI of this function, the contributing factors to its performance variability 

must first be identified. Performance variability states, designated as the child node of the 

BN, include ST, LV, MV, and HV. The parent nodes, representing primary influences on 

performance variability, can be categorized into three main groups: safety-oriented factors, 

material integrity factors, and operational context factors. Safety-oriented factors encompass 

the protocols, practices, and resources dedicated to ensuring operational safety, reliability, 

and performance stability. These factors reflect the effectiveness of safety management 

within the system and play a crucial role in building resilience to variability and failure. Key 

contributors include maintenance activities, inspection policies, and reliability indices. 

Material integrity factors represent the physical condition and degradation of materials over 

time, accounting for natural wear, corrosion, and age-related issues. Material integrity is 

essential in determining a system’s ability to withstand ongoing use and environmental 

exposure. Key factors include equipment aging, structural degradation, wear and tear, and 

                  



15 

 

corrosion. Operational conditions are another key factor influencing the performance 

variability of technological functions. These include external conditions, such as 

environmental factors, that impact system operation. Stable environments offer predictability, 

while harsh conditions such as extreme temperatures or high humidity pose challenges that 

can compromise equipment functionality and increase variability. Table 4 presents the nodes, 

their respective states, and detailed descriptions. 

Table 4: The identified contributing factors to the performance variability of technological functions. 

Categories  Nodes States Descriptions Reference 
 

 

 

 

 

 

Safety-

oriented 

factors 

Maintenance 

strategy 

Preventive-

oriented, 

balanced, 

corrective-

oriented 

A preventive-oriented maintenance 

strategy emphasizes proactive 

measures to prevent potential 

failures, significantly boosting 

reliability but at a higher cost. In 

contrast, a corrective-oriented 

strategy addresses failures only 

after they occur. A balanced 

strategy combines both approaches, 

optimizing reliability while 

distributing the budget more evenly. 

 

(West et al., 2024) 

Maintenance 

quality 

Optimal, 

acceptable, 

poor 

Maintenance quality evaluates the 

thoroughness and technical 

precision of maintenance tasks. 

Optimal maintenance quality 

reflects skilled execution, accuracy, 

attention to detail, and adherence to 

best practices and standards, while 

poor quality indicates a lack of 

these attributes. 

(Lu and Zhou, 2019) 

Inspection 

practice 

Intensive, 

moderate, 

sporadic 

Sporadic or inadequate inspections 

raise the risk of undetected 

degradation, whereas an intensive 

inspection regimen enhances the 

detection of potential degradation. 

(Ferreira et al., 2009) 

Maintenance 

effectiveness 

High, 

moderate, 

low 

Maintenance effectiveness refers to 

how successfully maintenance 

activities prevent or mitigate 

failures and ensure reliable 

operation of system components. It 

encompasses the impact of 

maintenance strategies, inspection 

frequency, and the quality of 

maintenance activities on 

equipment performance. 

(Costa and Cavalcante, 

2022) 

Reliability High, 

moderate, 

low 

Reliability indicates the system's 

likelihood to perform its function 

without failure, under a specified 

condition, and over a specified 

period of time.  

(Birolini, 2017) 

Redundancy Adequate, 

inadequate 

Redundancy adds a layer of 

resilience; adequate redundancy 

reduces the likelihood of high 

variability in performance. 

(Peiravi et al., 2022) 

MTTR Short, long Mean Time To Repair affects 

downtime; longer repair times 

increase the risk of performance 

interruptions. 

(Birolini, 2017) 

Availability High, 

moderate, 

low 

Availability measures how often the 

system can perform its intended 

function, impacted by reliability, 

redundancy, and MTTR. 

(Birolini, 2017) 
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Material 

integrity 

factors 

Equipment 

aging 

New, old Equipment aging is the gradual 

decline in performance and 

reliability due to the natural 

lifecycle of components. with older 

equipment, it is more likely to 

exhibit variability in performance 

due to accumulated wear, reduced 

flexibility, and potentially outdated 

technology. 

(Clarotti et al., 2004) 

Structural 

degradation 

Low, 

moderate, 

high 

Structural degradation captures the 

overall deterioration of components 

or subsystems due to a combination 

of internal stresses, environmental 

conditions, and aging. High levels 

of structural degradation pose 

significant risks to the system, 

leading to more frequent 

breakdowns, reduced load-bearing 

capacities, and increased variability 

in performance. 

(Wu et al., 2024) 

Wear and tear 

condition 

Minimal, 

moderate, 

severe 

Mechanical wear and tear describe 

the progressive degradation of parts 

caused by continuous usage and 

friction over time. it affects 

performance and longevity, with 

severe wear leading to higher 

failure rates. 

(Moulahi and Zdiri, 2025) 

Corrosion Low, 

moderate, 

high 

Corrosion impacts the integrity of 

materials, particularly metals and 

surfaces exposed to harsh 

environments. High corrosion rates 

significantly compromise structural 

strength, increase the likelihood of 

unexpected failures, and lead to 

reduced performance reliability. 

(Melchers, 2005) 

Operational 

context 

factors 

Environmental 

conditions 
Stable, 

variable, 

harsh 

A stable environment features 

predictable and consistent 

conditions, with minimal 

fluctuations in factors like 

temperature, humidity, and air 

quality. In contrast, a harsh 

environment is marked by extreme 

or persistent stressors such as high 

temperatures, corrosive substances, 

heavy vibrations, high humidity, or 

dust. A variable environment 

exhibits moderate fluctuations in 

external conditions. 

(Duan et al., 2023) 

 

3.2.3. Human functions 

Human functions, within the framework of the Safety-II concept, play a pivotal role as they 

offer the most flexibility to adapt to variability and mitigate its adverse effects on the overall 

system. Consequently, modelling human performance becomes a crucial component of 

systemic risk analysis in a CSTS. Numerous Human Reliability Analysis (HRA) methods 

have been developed in the literature to address this challenge (Patriarca et al., 2020). 

Among these, the Cognitive Reliability and Error Analysis Method (CREAM) stands out as 

the most suitable for this study due to the following reasons: 
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I. Systemic perspective: CREAM is aligned with modern systemic approaches, such as 

the Safety-II concept, by examining both successful and erroneous human actions, 

rather than focusing solely on failures (Hollnagel, 1998). 

II. Versatility and applicability: CREAM is adaptable across various industries and 

contexts. It evaluates the interactions between human, technological, and 

organizational factors, making it an ideal tool for analysing CSTS (Pei et al., 2024). 

III. Context-sensitive analysis: The methodology integrates the impact of context on 

human performance using Common Performance Conditions (CPCs), enabling a 

detailed and situational understanding of reliability (Sun et al., 2012). 

IV. Focus on cognitive processes: Unlike traditional HRA methods that emphasize 

physical tasks, CREAM prioritizes cognitive functions such as decision-making and 

problem-solving, which are crucial in today's complex systems (Huang et al., 2025). 

V. Output compatibility with performance variability: CREAM's output, represented by 

Contextual Control Modes (CCMs), aligns seamlessly with the four types of 

performance variability outlined in this study: ST, LV, MV, and HV (Kannally et al., 

2025; Shi et al., 2023). 

Building on the aforementioned reasons and drawing inspiration from the work of Yang et al. 

(Yang et al., 2013), this study applies a modified CREAM methodology to assess the SVI of 

human functions through a five-step sequence. 

In the first step, various CPCs are described, along with their potential states and how they 

influence human performance reliability. The original CPCs are divided into nine categories 

(Hollnagel, 1998). In this study, a minor modification is introduced which replaces the "time 

of day" CPC with "circadian rhythm and stress." This change highlights the significant 

impact that sleep deprivation or misalignment with natural circadian cycles can have on 

performance. Unlike the "time of day" classification, which is based on fixed time intervals 

like day and night, the circadian rhythm considers biological phases that influence cognitive 

performance and alertness. This approach provides a more accurate reflection of how these 

factors affect human performance reliability. Table 5 presents the CPCs along with the 

associated details (Xi et al., 2017; Zhou et al., 2018). 

Table 5: CPCs description, their states, and effects. 

CPC CPC states Effects 
1) Training and 

competence 

(TAC) 

Inadequate (S1,1) Negative 

Adequate with limited experience (S1,2) Neutral 

Adequate with high experience (S1,3) Positive 

2) Human-machine 

interface and 

operational 

support (HMI) 

Inappropriate (S2,1) Negative 

Tolerable (S2,2) Neutral 

Adequate (S2,3) Neutral 

Supportive (S2,4) Positive 

3) Availability of 

procedures and 

plans (APP) 

Inappropriate (S3,1) Negative 

Acceptable (S3,2) Neutral 

Appropriate (S3,3) Positive 

4) Conditions of 

working (COW) 

Incompatible (S4,1) Negative 

Compatible (S4,2) Neutral 

Advantageous (S4,3) Positive 

5) Number of goals 

and conflict 

resolution (NGC) 

More than actual capacity (S5,1) Negative 

Matching current capacity (S5,2) Neutral 

Fewer than actual capacity (S5,3) Positive 
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6) Available time 

and time pressure 

(ATT) 

Continuously inadequate (S6,1) Negative 

Temporarily inadequate (S6,2) Neutral 

Adequate (S6,3) Positive 

7) Circadian rhythm 

and stress (CRS) 

High (S7,1) Negative 

Moderate (S7,2) Neutral 

Low (S7,3) Positive 

8) Team 

collaboration 

quality (TCQ) 

Deficient (S8,1) Negative 

Inefficient (S8,2) Neutral 

Efficient (S8,3) Neutral 

Very efficient (S8,4) Positive 

9) Quality and 

support of the 

organization 

(QSO) 

Deficient (S9,1) Negative 

Inefficient (S9,2) Negative 

Efficient (S9,3) Neutral 

Very efficient (S9,4) Positive 

 

In step 2, the relationships between CPCs and CCMs are established by defining specific 

rules. These rules determine how various combinations of CPCs, along with their 

corresponding effects, influence the assigned values of the CCMs. The CCM, which 

represents the context of human cognition and action, is characterized by four distinct states: 

“strategic,” “tactical,” “opportunistic,” and “scrambled.” These relationships are formulated 

as if-then rules, where the "if" component specifies different CPC combinations and their 

effects, and the "then" component maps these combinations to the appropriate CCM 

characteristics.  

In step 3, belief degrees are assigned to the consequences, or the "THEN" components of the 

rules, to account for uncertainty and ensure that minor variations in the "IF" components are 

accurately reflected in the "THEN" outcomes. To achieve this, a systematic approach is 

employed to determine the belief degrees by leveraging the basic control mode diagram of 

CREAM and a weighting system. The AHP is used to calculate the relative weights of all 

CPCs based on their importance. Subsequently, the conditional belief degrees, denoted as β
+
 

and β
-
, are derived using the diagram shown in Figure 2. These degrees correspond to the 

positive or negative effects of various CPC states (Konstandinidou et al., 2006). To clarify 

the approach, an illustrative example is presented in Appendix A.  

 

Figure 2: Basic Diagram of CREAM for different CCMs. 
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Step 4 involves constructing a BN to model the dependencies between CPCs. While CPCs 

share similarities with Performance Shaping Factors (PSFs) in other HRA methods, they are 

not the same. Their interdependencies are based on their influence on human performance 

reliability. Furthermore, CPCs may be calibrated based on the states of other CPCs. For 

instance, if a CPC initially exhibits a neutral effect but depends on other CPCs, its primary 

effect may shift toward either a positive or negative influence depending on the states of the 

CPCs it relies on. Table 6 illustrates the dependencies among various CPCs. The CPCs listed 

in the left-hand column are influenced by those defined in the top row. For instance, 

examining the third column reveals that “COW,” “NGC,” and “ATT” depend on “HMI.” 

This implies that if the human-machine interface and operational support improve, working 

conditions and the availability of time are expected to improve, as indicated by the letter “P,” 

representing a positive influence. Conversely, the number of goals and conflict resolution 

tasks required of the operator are expected to decrease, as denoted by the letter “N,” 

signifying a negative influence. The remaining cells in the table, marked with “-,” indicate no 

dependencies between the respective CPCs.  

Table 6: Dependencies among CPCs. 

 TAC HMI APP COW NGC ATT CRS TCQ QSO 

TAC - - - - - - - - P 

HMI - - - - - - - - P 

APP - - - - - - - - P 

COW P P - - - P P - P 

NGC - N N N - - - - - 

ATT - P P P N - P P - 

CRS - - - - - - - - - 

TCQ P - - - - - - - P 

QSO - - - - - - - - - 

 

Considering these dependencies and the dynamic adjustability of CPCs based on the status of 

other related CPCs, a BN is well-suited for modelling these variabilities and interactive 

relationships. In this framework, the child node of the BN represents CCMs, which include 

the four defined states: strategic, tactical, opportunistic, and scrambled. These states align 

closely with the four performance variability levels commonly applied in both technological 

and organizational functions: ST, LV, MV, and HV, respectively. The parent nodes, 

representing the CPCs with their multiple states, are outlined in Table 5. To account for the 

dependencies shown in Table 6, four additional nodes, referred to as calibrated nodes, were 

introduced. These nodes capture the interactive relationships among CPCs and reflect their 

updated status based on changes in related CPCs. The four calibrated nodes are labelled as 

“calibrated COW”, “calibrated TCQ”, “calibrated NGC”, and “calibrated ATT”. 

In the final step, the BN inference and validation process is carried out. This process includes 

determining the posterior probabilities of the target variables in the network and verifying the 

outcomes to confirm the precision and dependability of the suggested approach. First, 

observations are analysed to derive the prior probabilities for each CPC in terms of numerical 

variables that correspond to CPC states and their effects. Next, during the inference process, 

belief degrees are converted into rules, which serve as the conditional probabilities for the 

constructed BN. Using these transformed rules and the prior probabilities, the marginal 

probabilities of the leaf node states are then computed accordingly.  
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3.2.4. Prior probabilities extraction 

Due to the complexity of CSTS and the diverse nature of their elements, various data sources 

with different origins are required to inform the developed models. For technical functions, 

several data types are particularly useful. Measurements from equipment sensors, operational 

conditions, and processes provide valuable empirical data. Operational logs detailing 

equipment performance and failures are essential, as are records of preventive and corrective 

maintenance activities, which help evaluate maintenance effectiveness. Additionally, 

manufacturer specifications, including reliability data such as Mean Time to Failure (MTTF), 

Mean Time to Repair (MTTR), and other relevant metrics, are integral to reliability 

assessment.  

When it comes to organizational functions, obtaining realistic data can be challenging. 

Managers are often reluctant to critique their management practices, organizational structure, 

or operational efficiency due to concerns about reputation and prestige (Liu, 2021; LÜScher 

and Lewis, 2008). Nevertheless, for the organizational functions, valuable information can be 

gathered from various sources, including compliance and incident data from internal audits, 

human resource databases (e.g., staff turnover rates, training schedules, and role-specific 

records), and regulatory databases containing compliance reports or industry-level 

performance benchmarks. Additionally, input from independent expert elicitation can be 

incorporated for several nodes of the developed BN. In relation to the structure of 

organizational performance, organizational resources, and external factors, the data are 

primarily obtained from documented evidence and available empirical sources. However, 

obtaining objective data on organizational management and culture remains inherently 

challenging, as such aspects are often subjective and difficult to quantify even across other 

industrial sectors. For instance, safety culture is a latent and intangible construct that cannot 

be measured directly. It is typically assessed through a combination of subjective (survey-

based) and objective (performance-based) indicators. Although no purely objective measure 

of safety culture exists, triangulating multiple data sources, such as surveys, audits, and 

performance indicators, enhances validity and reduces bias. Accordingly, for the 

organizational functions, both empirical and subjective data sources are employed to capture 

the multifaceted nature of organizational performance. 

Assessing human performance variability requires the use of expert judgment, as databases in 

this area are often insufficient to meet expectations. To this end, the Dempster-Shafer 

evidence theory (DSET) is employed for several purposes: 

a) Systematically combining diverse expert opinions to produce a unified final 

judgment. 

b) Accounting for both epistemic and aleatory uncertainties, thanks to its unique 

features, such as representing and propagating degrees of belief. 

c) Providing a structured framework for reasoning under uncertainty, allowing for the 

integration of incomplete or conflicting evidence. 

This approach enhances the reliability of expert-based assessments by managing variability 

and uncertainty in a more systematic and robust manner. DSET is frequently characterized as 

an advanced form of probability theory or an expanded interpretation of Bayesian inference. 

It has been widely used to extract subjective expert judgments and resolve disparities 
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between differing viewpoints to produce an aggregated output. In this context, DSET is 

referred to as a theory of evidence because it focuses on the weight of evidence. Before 

combining information, the foundational principles of DSET must be introduced. A 

comprehensive explanation of DSET can be found in the literature (Gros, 1997; Tang et al., 

2023), while a brief introduction is provided in Appendix B. 

3.3. Quantitative analysis of system performance variability 

Once the FRAM model is developed and the internal variabilities across all function 

categories are obtained, the next step is to map the FRAM model into a BN to conduct a 

quantitative analysis of system performance variability. As previously discussed, various 

types of variabilities are integral to an FRAM model, including SVI and UVI. Aggregating 

these variabilities across different functions is essential to gain a comprehensive 

understanding of performance variability within a CSTS. This aggregation represents the 

unified interactions between functions that are interconnected in a sequential manner within 

the FRAM model.  

3.3.1. FRAM and BN integration 

The process begins by converting various aspects of a function into discrete probability 

distributions, categorized into states such as ST, LV, MV, and HV. This approach enhances 

the representation of functional variability and serves as a common framework, simplifying 

the interpretation of interactions between functions (Patriarca et al., 2017). Furthermore, the 

internal variability identified for each function can be regarded as an additional dimension, 

reflecting the influence of the operational environment and current performance conditions 

during the function’s execution (Slim and Nadeau, 2020). The mapping process begins with 

the output from background functions, establishing the initial performance variability 

distribution for downstream functions. This variability can be determined either through 

empirical data, if available, or expert elicitation when data is limited. To represent this as 

discrete probability distributions, the frequency of event occurrences may be used when 

empirical data is applied. For each function, all available and defined aspects are set as parent 

nodes in the BN model, with the output serving as the child node. This configuration enables 

a quantitative calculation of the interactions among different aspects of each function, 

resulting in an integrated performance variability distribution with consistent state 

definitions. Figure 3 demonstrates a simplified mechanism for mapping the FRAM model 

onto a BN, providing clearer insight into the process. 

 

Figure 3: The simplified process of mapping FRAM into a BN model. 
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A key advantage of BN is its flexibility in integrating a variety of nodes with multiple states, 

accommodating both discrete and continuous forms. Given this flexibility and recognizing 

performance variability across four distinct states defined by a discrete probability 

distribution, as well as the independence of different functional aspects and their separate 

impacts on the output, the CPT can be calculated using canonical probabilistic models like 

noisy OR, noisy MAX, noisy MIN, noisy AND, and noisy Adder gates (Diez and Druzdzel, 

2006). The Noisy-OR model, introduced by Pearl (1988), initially addressed probabilistic 

dependencies among binary variables. (Henrion, 1989) extended this concept, adapting the 

model to include binary leaky Noisy-OR gates, which account for additional uncertainty in 

influence pathways. Further developments came when (Díez, 1993) and Srinivas (1993) 

independently proposed generalizations of the model to accommodate multi-valued variables, 

leading to the creation of multi-valued Noisy-OR gates. These foundational works eventually 

paved the way for the Noisy-MAX model, which expanded the framework to capture more 

complex probabilistic relationships across diverse variable states. In this study, the 

complexity of the problem, characterized by multi-state parent nodes, a multi-state child 

node, and the independent influence of each parent on the child makes the Noisy-MAX 

technique particularly suitable. This approach not only streamlines the construction of the 

CPT but also effectively captures the non-linear relationships between parent and child 

nodes, enabling a more accurate representation of these dependencies (Cantelmi et al., 2025; 

Xie et al., 2024; Xue et al., 2025). 

3.3.2. Noisy-MAX structure-based BN modelling 

Using the Noisy-MAX technique, the conditional probability between a child node C and its 

parent node R can be represented by incorporating a set of n auxiliary variables 

{A1,…,An}(Diez and Druzdzel, 2006). As illustrated in Figure 4, this formulation allows the 

conditional probability to be expressed as: 

 (  ⁄ )  ∑ (  ⁄ )  (  ⁄ )                                        ( )

 

 

 

Figure 4: Simplified BN structure for noisy-MAX model derivation. 

Note that the variables Ai are purely auxiliary elements used to facilitate equation derivation 

and are not part of the actual model. Given the graph in Figure 4, there are no interactions 

between the causal mechanisms through which Ri influences the value of C. In the graph, this 

property is represented by the absence of connections Ri→Aj and Ai→Aj for all i≠j, indicating 

that: 
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 (  ⁄ )  ∏ (    ⁄ )                                                ( )

 

 

With this, combined with Equations 1 and 2, results in: 

 (  ⁄ )  ∑ ∏ (    ⁄ )   

   ( )  ⁄

                            ( ) 

In this context, each Ai signifies the contribution of Ri to the value of C. The combined 

outcome generated by each Ri is represented as C=fMAX(A). Consequently, C and Ai variables 

must operate within the same domain. Each Ai reflects the impact of Ri elevating C to a 

particular level, and the actual value of C is determined as the maximum among the Ai values.  

Now, to establish the CPT for the Noisy-MAX model, we must calculate P(C=c∣A) for every 

possible value c and each configuration of R. This is achieved by applying Equation 3 and 

recognizing that f MAX(A)=max(A1,…,An). This function implies that f MAX(A)≤y, if and only if 

Ai≤C for each i. Therefore, we have: 
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                ( )  ⁄
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With consideration of accumulative parameters, the values of the CPT can be obtained as 

follows: 

 (  ⁄ )  {
 (    ⁄ )   (      ⁄ )                 
 (    ⁄ )                                                     

                     ( ) 

After calculating the CPTs for all BNs related to each function, using prior probabilities 

derived from either empirical data or expert input, the complete set of BN models is analysed 

to generate the final output for the last function. This analysis enables us to assess the 

performance variability of each function independently, as well as to evaluate its impact on 

downstream functions.  

3.3.3. FRAM interpretation process 

The ultimate goal of FRAM modelling is to understand how disruptions or variations in 

upstream functions influence the performance variability of connected functions. In essence, 

it examines how resonance, whether positive or negative, affects the variability in 

performance across downstream functions. This approach provides a detailed view of how 

any disruption in a CSTS can propagate, helping us understand how changes in one part of 

the system influence the entire system's behaviour. To this end, a 2-D criticality matrix is 

proposed to support the decision-making process (Kaya et al., 2021; Patriarca et al., 2018; 

Zarei et al., 2022). The matrix dimensions represent probability and consequence. For the 

probability dimension, the mean value of performance variability serves as a numerical 

representation of the average variability a function experiences. This considers the likelihood 

of being in one of four states: HV, MV, LV, or ST, multiplied by the assigned scores of 4, 3, 

2, and 1, respectively. These scores reflect the significance of each state in terms of safety 

impact. HV is given the highest score (4) to represent substantial disruption; MV receives a 

moderate score (3) for moderate variability; while LV and ST are assigned lower scores (2 

and 1) to indicate minimal variability or stability. For the consequence dimension, three 

categories are defined: critical (indicating severe consequences), moderate (manageable 
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consequences requiring attention), and minor (minimal or tolerable consequences). Functions 

are classified into these categories based on their significance to both safety and operational 

performance. The magnitude of consequences is highly dependent on the specific domain 

under study and the function's role in the system's operation and safety. This classification 

can be determined using expert judgment or established criteria. Figure 5 illustrates the 

proposed criticality matrix, which categorizes functions into three levels of criticality based 

on their variability and consequence severity. 

 

Figure 5: The proposed criticality matrix. 

Level C, located in the top-right quadrant, represents high variability and critical 

consequences. Functions in this category are prime candidates for triggering negative 

resonance, as their high variability combined with critical consequences makes them likely to 

interact unpredictably with downstream functions, potentially amplifying risks across the 

system. Level B, which includes functions with moderate variability, highlights that these 

functions can also contribute to negative resonance. This occurs particularly when their 

variability interacts with other moderately variable or interconnected functions, creating 

conditions where risks propagate through the system. Such interactions are especially critical 

when these functions are linked to others with similar variability characteristics. Level A 

encompasses functions that are relatively stable or exhibit low variability. These functions 

can play a stabilizing role within the system and be strategically leveraged to design 

interventions that dampen variability and mitigate risks. By strengthening the interactions of 

these stable functions, they can counteract the effects of high variability in connected 

functions. This criticality matrix provides a systematic tool to prioritize functions for 

intervention based on their role in system dynamics. It facilitates the detection and mitigation 

of resonances in the FRAM model by anticipating how function interactions might lead to 

either risk amplification (negative resonance) or system stabilization (damping resonance). 

3.4.  Verification and validation process 

Verification and validation process are the essential component of any methodological 

approach, ensuring that developed models are reliable, robust, and sensible. They also builds 

confidence in the accuracy of the findings and results. In this study, various techniques and 

numerous models have been employed to address the complexity of CSTS, making 

comprehensive benchmarking challenging. To address this, we adopted a modular approach 

using a range of techniques, allowing us to validate and benchmark different models 

independently. Validation of the HTA and FRAM components, as qualitative analysis 

methods, primarily depends on the knowledge and proficiency of the analysts conducting the 

evaluation. Additionally, the results and findings from these models are compared and 

benchmarked against outcomes from similar studies. 
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For validating the developed BN models, sensitivity analysis, regarded as one of the most 

practical validation methods, is applied. This analysis involves two approaches. The first 

approach confirms the model’s robustness by verifying that small adjustments in the prior 

probabilities of parent nodes reliably affect the probabilities of child nodes. This principle-

based sensitivity analysis ensures that the model responds predictably to changes in inputs, 

enhancing its reliability and accuracy. To achieve this, the analysis follows these principles 

(Jones et al., 2010): 

 Principle 1: Minor adjustments in the prior probabilities of the parent node should 

lead to proportionate changes, either increases or decreases, in the posterior 

probability distribution of the child node. 

 Principle 2: The combined influence of changes in the probabilities of all evidence 

variables should be equal to or greater than the influence produced by modifying any 

individual subset of that evidence. 

In the second approach, the analysis focuses on how changes in probability parameters 

influence the BN’s output. This is done by calculating the derivatives of the posterior 

probability distributions, which helps reveal the sensitivity of the model’s target nodes (such 

as performance variability) to adjustments in various numerical parameters. This derivative-

based analysis measures the rate at which each target node’s probability shifts as a reaction to 

small modifications in the parent nodes’ prior probability values. By examining these 

derivatives, the parameters that most strongly influence the network’s outcomes can be 

identified. When certain variables show high sensitivity to parameter changes, it indicates 

that the model depends significantly on those specific inputs. Recognizing these key 

parameters allows for prioritizing data that may require more precise estimates or rigorous 

validation, as they play a crucial role in determining the model’s predictions. It is noted that 

for ease of reference, all symbols and mathematical notations used in the proposed 

methodology are summarised in the Table I in Appendix C. 

4. Results, discussion, and implications 

Seaports are widely regarded as a CSTS that are highly interconnected and interdependent, 

making them vulnerable to a diverse range of risks. Given that reliable and efficient seaport 

operations are essential for the maritime transportation sector, any disruptions or fluctuations 

in their performance can significantly impact national safety, security, economic stability, and 

public health (Mohsendokht et al., 2025). This underscores the critical need for focused 

attention from risk analysts to develop robust approaches to address these challenges. This 

section applies the proposed methodology to a typical seaport, illustrating both its practicality 

and potential impact. 

4.1. FRAM model development 

To identify the key functions for FRAM development, an initial HTA is conducted to 

represent the workflow of activities typically performed in a seaport. The hierarchical 

structure of the HTA provides a comprehensive understanding of the workflow and facilitates 

a detailed analysis of specific tasks along with their prerequisite requirements. It is important 

to note that seaport operations involve a vast array of tasks and the collaboration of numerous 

teams and crews (Carlo et al., 2015; Haas, 2016). To maintain simplicity and align with the 

scope of a journal paper, a streamlined version of the HTA focusing on the most critical 
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activities is produced. The HTA was developed by synthesizing insights from an extensive 

review of the seaport operations literature, the collective research contributions of the author 

team, and subsequent verification and approval by a panel of experts whose profiles are 

provided in Table II in Appendix C. It should be noted that this study focuses solely on 

operations occurring between the quay area and the yard within the seaport. Figure 6 presents 

this simplified HTA, which serves as the foundation for the FRAM model.  

 

Figure 6: HTA for seaport activities.  

Based on the HTA results, nine foreground functions, referred to as main functions, and four 

background functions have been selected for the FRAM development. The background 

functions define the boundaries of the analysis, providing fixed outputs that feed into and 

support the operation of the main functions. Table 7 outlines the functions, their 

characteristics, and the connections between them, while Table 8 details the various aspects 

of each function.  

It is noted that system complexity increases rapidly with size, rendering manual modelling 

increasingly challenging for large infrastructures such as seaports. To address this issue, the 

FRAM model is organized into interacting modules, such as quayside operations, yard 

operations, and intermodal transfer sections, structured across hierarchical levels, namely 

Macro, Meso, and Micro, as illustrated in Figure 7. 
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Figure 7: The interacting hierarchical levels in seaport operations. 

At the Macro level, the focus is on the seaport as an integrated system, capturing the high-

level interactions between major operational sections and strategic processes, such as overall 

cargo throughput, terminal coordination, and resource allocation. The Meso level examines 

intermediate-scale processes within individual modules. For example, within the quayside 

module, functions such as quay crane operations, vessel berthing, and container handling are 

considered, along with their interconnections and resource flows. At the Micro level, the 

model focuses on detailed, function-specific activities, including the interactions between 

individual equipment, human operators, and tasks. For instance, a micro-level analysis of a 

quay side may include the container unlashing process, operator actions, and resource 

availability.  

Each module is analysed largely independently, with only a limited set of interface variables 

connecting it to other modules. This divide-and-compose strategy contains complexity 

locally, prevents combinatorial growth as system size increases, and ensures that both high-

level coordination and fine-grained operational variability are effectively represented. 

All the identified functions and their interconnections are synthesized and visualized using 

the FRAM Model Visualization (FMV) tool (Hollnagel et al., 2023), as shown in Figure 8. 

Table 7: Function description, characterization, and links. 

Function Description Type Links 

F1 Berth assignment and 

confirmation 

Organizational F1(O)→F2(I) 

F2 Initial Safety and Security 

Checks 

Human F2(O)→F3(I) 

F3 Unlashing of Containers Human F3(O)→F4(I) 

F4 Cargo Unloading 

Preparation 

Organizational F4(O)→F5(I), F6(I) 
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F5 Quay crane operation Technological F5(O)→F7(I) 

F6 Quay crane operator Human F6(O)→F5(C) 

F7 Cargo Transport to Yard 

Storage 

Technological F7(O)→F8(I), F9(I) 

F8 Yard crane operator Human F8(O)→F9(C) 

F9 Yard crane operation Technological - 

BG1 Vessel securely moored Background 

function 

BG1(O)→F2(P) 

BG2 Port operations 

management 

Background 

function 

BG2(O)→F1(C), F2(C), F3(C), F7(C), F8(C), 

F9(C) 

BG3 Berth assignment 

information 

Background 

function 

BG3(O)→F1(I) 

BG4 Resource management Background 

function 

BG4(O)→ F1(R), F2(R), F3(R), F4(R), F5(R), 

F6(R), F7(R), F8(R), F9(R) 

 

Table 8: Functions aspects descriptions. 

Function Output Input Pre-condition Control Resource 

F1 Confirmation of 

berth assignment 

Berth assignment 

information 

- Port authority 

protocols 

Communication 

systems, Port 

staff 

F2 Safety and 

security status 

report 

Confirmation of 

berth assignment 

 

Vessel securely 

moored 

Port security 

regulations 

Safety and 

security 

equipment, 

Personnel 

(security 

officers) 

F3 Unlashed 

containers ready 

for unloading 

Safety and security 

status report 

- Unlashing 

protocols, 

Supervisor 

instructions 

Unlashing tools, 

Personnel (dock 

workers) 

F4 Instructions for 

crane operators, 

Updated cargo 

status 

Unlashed containers - Port operations 

management, 

Communication 

from the vessel 

Communication 

systems 

F5 Cargo unloaded 

to dock 

Updated cargo status - Crane 

operator’s 

commands, 

Crane control 

system 

Crane and 

fuel/power 

supply, 

Operator 

F6 Crane operator’s 

commands 

Instructions for crane 

operators 

- - Communication 

systems 

F7 Cargo delivered 

to yard storage 

Cargo unloaded to 

dock 

- AGV control 

management 

system 

Transport 

vehicles (e.g., 

AGVs, trucks), 

Drivers and 

handlers 

F8 Crane operator’s 

commands 

Cargo delivered to 

yard storage 

Clear storage 

allocation 

instructions, 

Safety checks 

completed 

- Communication 

systems 

F9 Cargo properly 

placed in 

designated 

storage areas 

Cargo delivered to 

yard storage 

- Yard 

management 

system, 

Operator 

commands, 

Crane and 

fuel/power 

supply, 

Operator 
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Figure 8: The FRAM model of typical activities conducted in a seaport. 

4.2. SVI assessment for key functions 

4.2.1. Organizational functions 

In the context of seaport organizational functions, numerous entities are involved, with 

complex interactions among their components. To assess the performance of their internal 

variability, a BN for the organizational function is constructed, following the information and 

framework described in Section 3.2.1. As shown in Figure 9, the performance variability of 

an organizational function is influenced by five intermediate nodes: organizational culture, 

organizational management, organizational resources, organizational structure, and external 

factors. Each of these intermediate nodes is determined by its respective parent nodes. 

Achieving a stable condition with a high probability requires all intermediate nodes to be in 

their most favourable states. This includes having a highly efficient organizational structure, 

sufficient and well-allocated resources, optimal organizational management practices, a rich 

and supportive organizational culture, and minimal impact from external factors. On the other 

hand, highly variable organizational performance arises when the intermediate nodes are in 

their least favourable states. For instance, an inefficient structure, inadequate resources, poor 

management, a weak organizational culture, and significant external pressures collectively 

lead to increased variability in performance. This relationship underscores the importance of 

maintaining favourable conditions across all intermediate nodes to ensure organizational 

stability. 
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Figure 9: The BN model for SVI assessment of organizational functions. 

4.2.2. Technological functions 

In a seaport, various types of machinery, equipment, and their components contribute to the 

activities of technological functions. To evaluate their internal variability performance, the 

corresponding BN for each technological function is developed based on the information and 

structures outlined in Section 3.2.2. Due to space constraints in the journal paper format, only 

the BN for quay cranes is presented in Figure 10 to demonstrate the applicability of the 

proposed methodology. Quay cranes are widely regarded as the most important, valuable, 

costly, and complex components in a seaport. A seaport without them is often considered 

paralyzed, as they serve as the critical link between sea and land operations.  
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Figure 10: The BN model for SVI assessment of technological functions. 

In the developed BN, maintenance effectiveness and material integrity are identified as the 

two key factors directly influencing equipment reliability. Greater levels of material integrity 

and maintenance effectiveness correspond to higher reliability. It is noteworthy that the 

operation of complex systems such as quay cranes often involves dynamic processes that 

impact their structure and the reliability of their components over time. Given the critical 

importance of ensuring both safety and operational effectiveness, a shift from a two-state to a 

multistate approach in reliability analysis is warranted. This approach facilitates a more 

accurate assessment of their dependability and operational effectiveness. It also helps identify 

critical reliability thresholds, where exceeding these limits may fail to ensure the required 

level of operational effectiveness (Kołowrocki and Soszyńska-Budny, 2011). Therefore, the 

reliability is categorized into three states: high, moderate, and low, defined according to the 

specific characteristics of the component in question. For quay cranes, high reliability 

corresponds to a reliability level between 95% and 100%, moderate reliability falls between 

85% and 95%, and low reliability is defined as below 85% (Deng, 2000; Jo and Kim, 2019). 

Availability is determined by three key factors: reliability, MTTR, and redundancy. Higher 

reliability and redundancy contribute to increased availability, while a shorter MTTR 

enhances availability by reducing equipment downtime. Technological performance 

variability depends on three factors: reliability, availability, and environmental conditions. 

The SVI is likely to remain stable with high probability if environmental conditions are stable 

and both reliability and availability are high. Other SVI states are assigned proportional 

values based on the probabilities of their parent states. 

To illustrate the applicability of the methodology, prior probabilities were derived from 

historical records of the seaport under study, representing its current status. As depicted in 

Figure 10, the stable state of the technological function is assigned a probability of 68.8%, 

while the remaining probabilities are distributed as follows: 22.7% for the LV state, 6.7% for 

the MV state, and 1.8% for the HV state. These values reflect the system's realistic behaviour, 
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highlighting the influence of various factors that create discrepancies between "work as 

imagined" and "work as done." 

4.2.3. Human functions 

To determine the SVI for human functions, the modified CREAM methodology outlined in 

Section 3.2.3 is employed. The process begins with developing the BN structure by 

identifying the main CPCs, their interdependencies, and incorporating calibrated CPCs. The 

leaf node in the network is represented as the CCM, which reflects human action status. The 

four well-known modes (strategic, tactical, opportunistic, and scrambled) are interpreted as 

ST, LV, MV, and HV, respectively. Figure 11 illustrates the resulting BN for human 

functions.  

 

Figure 11: The BN model for SVI assessment of quay crane operator. 

Next, the rules governing the BN are organized using a belief structure that accounts for all 

possible combinations of CPC states. These rules form the CPT for the developed BN. It is 

important to note that not all CPCs equally influence human performance variability. To 

address this, the AHP method is applied to determine appropriate weights for each CPC, 

tailored to the nature of tasks performed by humans in a seaport environment (Yang et al., 

2013). Table 9 presents a pairwise comparison matrix showing the weights for all nine CPCs. 

The consistency ratio, calculated as 6.7E-3, confirms that the derived weights are logically 

consistent and represent a well-justified hierarchy of importance. 

Table 9: Deriving CPC weights using AHP method. 

CPC TAC HMI APP COW NGC ATT CRS TCQ QSO Weight 

TAC 1.00 5.00 2.00 4.00 1.50 1.50 5.00 5.00 5.00 0.25 

HMI 0.20 1.00 0.33 1.00 0.25 0.25 1.00 1.00 1.00 0.05 

APP 0.50 3.00 1.00 2.00 0.67 0.67 3.00 3.00 3.00 0.13 

COW 0.25 1.00 0.50 1.00 0.33 0.33 0.50 1.50 1.50 0.06 
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NGC 4.00 4.00 1.50 3.00 1.00 1.00 4.00 4.00 4.00 0.18 

ATT 0.67 4.00 1.50 3.00 1.00 1.00 4.00 4.00 4.00 0.18 

CRS 0.20 1.00 0.33 2.00 0.25 0.25 1.00 1.00 1.00 0.05 

TCQ 0.20 1.00 0.33 0.67 0.25 0.25 1.00 1.00 1.00 0.05 

QSO 0.20 1.00 0.33 0.67 0.25 0.25 1.00 1.00 1.00 0.05 

 

After determining the weights, the rules with their corresponding belief degrees are 

established following the instructions in Section 3.2.3. To illustrate the process, Rule 23326 

is used as an example. This rule is defined by the set (S1,2, S2,2, S3,3, S4,3, S5,3, S6,3, S7,3, S8,4, 

S9,2), which corresponds to the effects (neutral, neutral, positive, positive, positive, positive, 

positive, positive, negative) based on the guidance in Table 5. Using Figure 2, the following 

values are subsequently calculated: 

β
+
 ={(0.75, ST), (0.25, LV), (0, MV), (0, HV)} 

β
-
 ={(0.38, ST), (0.62, LV), (0, MV), (0, HV)} 

Using the corresponding weights of CPCs with positive effects from Table 9, their sum, W
+
 is 

calculated as 0.83 (=0.13+0.06+0.18+0.18+0.05+0.05). Conversely, W
−
 showing the 

weights of negatively influencing CPCs, is 0.05, since QSO is the only CPC with negative 

effect in the given set. Having obtained the normalized values of W
+
 and W

−
, along with the 

corresponding β
+
 and β

-
 values using the evidential reasoning algorithm implemented in IDS 

software (Xu and Yang, 2005), the final results for this combination of CPCs are determined 

as follows: 

β ={(0.745, ST), (0.255, LV), (0, MV), (0, HV)} 

In this manner, all the rules and their corresponding values are determined. Table 10 provides 

an example by showcasing nine of these rules, including the first three rows, three from the 

middle, and the last three rows. 

Table 10: Rule-based CPT development for human function BN. 

Rules CPC combinations (IF part) CCM belief degrees (THEN part) 

1 S1,1, S2,1, S3,1, S4,1, S5,1, S6,1, S7,1, S8,1, S9,1 {(0.000, ST),( 0.000, LV),( 0.000, MV),( 1.000, HV)} 

2 S1,2, S2,1, S3,1, S4,1, S5,1, S6,1, S7,1, S8,1, S9,1 {(0.000, ST),( 0.000, LV),( 0.500, MV),( 0.500, HV)} 

3 S1,3, S2,1, S3,1, S4,1, S5,1, S6,1, S7,1, S8,1, S9,1 {(0.000, ST),( 0.030, LV),( 0.561, MV),( 0.409, HV)} 

… … … 

23326 S1,2, S2,2, S3,3, S4,3, S5,3, S6,3, S7,3, S8,4, S9,2 {(0.745, ST),( 0.255, LV),( 0.000, MV),( 0.000, HV)} 

23327 S1,2, S2,2, S3,3, S4,3, S5,3, S6,3, S7,3, S8,4, S9,3 {(0.750, ST),( 0.250, LV),( 0.000, MV),( 0.000, HV)} 

23328 S1,2, S2,2, S3,3, S4,3, S5,3, S6,3, S7,3, S8,4, S9,4 {(1.000, ST),( 0.000, LV),( 0.000, MV),( 0.000, HV)} 

… … … 

46654 S1,3, S2,4, S3,3, S4,3, S5,3, S6,3, S7,3, S8,4, S9,2 {(0.998, ST),( 0.002, LV),( 0.000, MV),( 0.000, HV)} 

46655 S1,3, S2,4, S3,3, S4,3, S5,3, S6,3, S7,3, S8,4, S9,3 {(1.000, ST),( 0.000, LV),( 0.000, MV),( 0.000, HV)} 

46656 S1,3, S2,4, S3,3, S4,3, S5,3, S6,3, S7,3, S8,4, S9,4 {(1.000, ST),( 0.000, LV),( 0.000, MV),( 0.000, HV)} 

 

In the subsequent step, prior probabilities for various CPC states are determined based on 

expert judgment. Three seasoned experts were asked to assess the performance variability of 

quay crane operators during a typical yet busy day at a seaport, taking into account potential 

disruptive scenarios. The experts with extensive experience in seaport operations are 

interviewed to provide their probabilistic assessments, assigning values between 0% and 

100% to different states. These individual judgments are then aggregated using DSET, 

                  



34 

 

yielding consolidated probabilities for each CPC state, as shown in Table III in Appendix C. 

These probability-based insights are incorporated into the BN as prior probabilities, while the 

rules and corresponding values in Table 10 serve as the CPT. To demonstrate the process, a 

sample calculation is provided as follows:  

 (   )  ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  (    
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Where P(CCM) represents the probability of performance variability in each of the four 

possible states, P(CCM/Si,j) denotes the conditional probability of CCM given Si,j, and P(Si,j) 

signifies the probability of specific states of a given CPC. Depending on the aggregated 

probabilities and their potential impact on performance variability, proportional rules are 

extracted from Table 10. In this case, referring to the states of each CPC and their 

corresponding values, 576 rules are derived, representing various combinations of these 

states. By applying these rules and the values obtained from the aggregated expert judgments 

to the developed BN, the probabilities for the CCM states are calculated as follows: 

ST=0.005, LV=0.536, MV=0.459, and HV=0.000. These values suggest that, in the specified 

situation, the performance variability of the quay crane operator is more inclined toward low 

and moderate levels of variability. 

4.3. FRAM to BN mapping results 

After determining the SVI values for each function in the previous sections, the next step is to 

adopt a holistic perspective on the variabilities within the entire model. To achieve this, the 

output of each upstream function is integrated as the input or other related aspects for 

downstream functions. For illustration, Figure 12 highlights the output of Function 2. As 

shown, the input to Function 2 is derived from the output of Function 1, while other aspects 

of Function 2, along with its SVI, are represented as independent parent nodes in the 

developed BN. In this context, the noisy-max technique is utilized to calculate the CPT 

values for inter-functional relationships in the BN, as outlined in Section 3.3.2. The output 

performance variability of Function 2 results from the interaction of several factors: the input 

from Function 1, the SVI associated with Function 2, and the contributions of background 

functions BG1, BG2, and BG4, which serve as the precondition, control, and resources, 

respectively.  

 

Figure 12: BN model for UVI calculation in function 2. 
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The values for background functions, which define the boundaries of the developed FRAM 

model, are derived using various methods discussed in this paper. For BG1, representing the 

performance variability of mooring operations in a seaport, these values are determined from 

empirical data collected over several years. The ST state corresponds to all mooring 

operations that were conducted successfully and safely, adhering to the plan without any 

disruptions or noticeable variabilities. This state reflects the baseline performance where the 

operation proceeds as expected. The LV state includes scenarios where minor disruptions 

occurred, such as slight delays or minor deviations in precision. While these variabilities are 

noticeable, they do not significantly affect the overall operation or system performance. The 

MV state reflects situations where variabilities begin to impact the system more substantially. 

Examples include delays significant enough to disrupt schedules or minor incidents that 

require corrective actions but do not escalate into major issues. The HV state represents 

conditions where variabilities cause critical disruptions to the operation. This includes severe 

delays, major accidents, or incidents that significantly compromise the safety, efficiency, or 

overall integrity of the mooring process. These states are attributed proportionally to the 

observed data, reflecting their frequency and impact on the system. 

BG2 is an organizational function that encompasses a wide range of port management 

operations. Its role varies depending on the specific activities and requirements of the seaport, 

but it fundamentally oversees the overall management of the port by ensuring that operations 

are controlled, monitored, and efficiently coordinated. This function is critical for 

maintaining seamless day-to-day operations and adapting to the dynamic challenges of port 

environments. The variability in the performance of BG2 is analysed by modelling its 

behaviour using a BN framework. This modelling approach, as described in Section 3.2.1, 

provides insights into how different organizational factors and conditions influence the 

effectiveness of BG2, thereby supporting decision-making and performance optimization in 

seaport management.  

BG4 represents the logistics management and resource allocation capabilities of a seaport, 

encompassing its ability to supply and distribute necessary resources to various operational 

activities. This function is pivotal in ensuring that each section of the seaport operates 

efficiently. However, resource allocation is not uniform across all activities and depends on 

factors such as the level of investment, the priorities of stakeholders, and the criticality of 

specific operations to the overall performance of the seaport. In a technical context, resource 

prioritization is particularly important for high-stakes operations. For instance, logistics 

support for critical assets like quay cranes should be robust and well-structured. Quay cranes 

are integral to loading and unloading cargo, and any disruption in their operation can lead to 

significant delays, increased costs, and ripple effects throughout the supply chain. In contrast, 

yard-side operations, while essential, may not require the same level of resource intensity or 

redundancy because their disruptions, although impactful, are generally less immediate in 

their consequences. As a result, the output value of BG4 is expected to vary across different 

functions, reflecting the unique logistical demands and resource priorities associated with 

each operation. However, for simplicity in this research, the UVI for all BG4 elements is 

assigned the same value. After determining the performance variabilities of all background 

functions, which serve as inputs to the main model, and obtaining the SVI values for the 

foreground functions through the outlined approaches, the main model can now be computed. 

This allows for analysing and monitoring the impact of upstream variabilities on downstream 

functions. It is important to note that a comprehensive dataset, encompassing both objective 

                  



36 

 

and subjective information, was collected from a specific seaport. However, due to 

confidentiality agreements, the name of this seaport cannot be disclosed. 

Figures 13, and 14 illustrate the performance variability values for all functions, including the 

SVI and UVI.  

 

Figure 13: The SVI values. 

 

 

Figure 14: The UVI values. 

4.4. Criticality matrix development 

Once the performance variability for each function is quantified, the next step is to identify 

critical functions and evaluate the system's overall weaknesses from a systemic perspective. 

To achieve this, the UVI values are assigned appropriate scores, as outlined in Section 3.3.3, 
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to derive a unique representative value for each function. This process involves calculating 

the mean, standard deviation, and the lower and upper bounds of the variability. 

To represent the variability probabilistically, it is assumed that these aggregate scores follow 

a normal distribution. This assumption is common in probabilistic modelling, as the normal 

distribution effectively captures central tendencies (mean) and variability (standard deviation) 

(Mitrani, 2008). Table 11 provides the representative output values for each function, 

reflecting the variability and its implications for the system. It is to be noted that the lower 

and upper bounds are determined at a 95% confidence level through MCSs, utilizing 100,000 

iterations for precision. 

Table 11: The functions representative output values for resonance analysis. 

Function Mean value Standard deviation Lower bound Upper bound Severity level 

F1 1.930 0.570 0.812 3.048 Moderate 

F2 1.930 0.515 0.921 2.939 Critical 

F3 2.100 0.520 1.082 3.118 Moderate 

F4 2.030 0.538 0.976 3.084 Moderate 

F5 2.140 0.601 0.963 3.317 Critical 

F6 2.300 0.574 1.174 3.426 Critical 

F7 1.940 0.562 0.838 3.042 Moderate 

F8 2.050 0.517 1.036 3.064 Moderate 

F9 1.880 0.520 0.861 2.899 Moderate 

BG1 1.935 0.644 0.673 3.197 Critical 

BG2 1.970 0.513 0.965 2.975 Critical 

BG3 1.614 0.565 0.507 2.721 Moderate 

BG4 2.308 0.779 0.781 3.835 Critical 

To assess the magnitude of variability in critical functions, their severity levels are also 

determined. However, accurately quantifying the magnitude of variability and its impact in 

terms of severity requires an independent study, as this step is crucial for understanding the 

consequential effects of disruptions in various elements of a CSTS. Given the scope of this 

study, we have relied on expert judgment to classify each function into three categories of 

severity: minor, moderate, and critical, as presented in Table 11. 

Figure 15 illustrates the criticality matrix, which maps functions to their appropriate positions 

within the matrix. In this framework, the vertical axis reflects performance variability, with 

evenly distributed boundaries defined by the nature of each function in the seaport context. 

The proposed matrix offers flexibility for adaptation based on user-specific requirements, 

enabling its application to diverse systems of interest. 

 

Figure 15: The criticality matrix for identifying critical functions in resonance analysis. 
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The criticality analysis reveals that all functions fall into level B, indicating minor levels of 

variability. While these variabilities are relatively low, they still have the potential to 

contribute to negative resonance, especially when interacting with moderately variable or 

interconnected functions. Such interactions can propagate risks throughout the system. 

According to Safety-II principle, variability at level B can be viewed as an asset, as it arises 

from the adaptive adjustments necessary for everyday operations. However, the criticality 

matrix utilizes mean values derived from variability distributions to categorize variability into 

three levels. To incorporate uncertainty into risk-based decision-making, the upper and lower 

bounds of variability scores can provide a more nuanced understanding of the confidence in 

the mean score's placement within the matrix. For instance, if the upper bound is considered 

and indicates higher criticality, it could flag functions for further investigation even when the 

mean suggests a lower criticality level. Using this approach, functions such as F2, F5, F6, F7, 

BG1, BG2, and BG4 would move to level C when upper bounds are applied. This shift 

indicates that these functions exceed acceptable thresholds and signal a need for immediate 

attention to mitigate the risk of negative resonance. As a practical example, if F7 (Cargo 

transport to yard storage) were to fall within the red zone of the criticality matrix, this would 

signal the need for immediate intervention by terminal logistics teams. In such a situation, 

additional trucks would be deployed to avoid delays in container movement to the yard. 

Without timely action, performance variability in this function could propagate upstream to 

the quayside, increase variability in quay crane operations, and ultimately elevate the 

probability of terminal-wide disruption. By allocating redundant trucking capacity and 

addressing the issue at its source, variability can be contained, localized, and eliminated 

before it cascades into broader system instability. All in all, this approach rigorously 

prioritizes functions for safety countermeasures, emphasizing the need to reduce variability in 

their outputs. Addressing these criticalities pre-emptively can prevent negative resonance and 

ensure system stability, particularly in downstream processes. 

4.5. Model validation process 

As outlined in Section 3.4, multiple approaches are employed to validate the proposed model 

and its findings. For the HTA and FRAM, the validation process involved consultation with 

seven experts, each possessing at least 15 years of experience in seaport operations. These 

experts, with minor revisions, confirmed that the activities represented in the HTA and 

subsequently modelled in the FRAM, along with their structures and interconnections, 

accurately reflect the most significant and realistic activities observed in practice. 

Additionally, the results were partially benchmarked against other studies (Cho et al., 2018; 

Darbra and Casal, 2004; John et al., 2014; Majumdar et al., 2022; Mitra et al., 2024; Yin et 

al., 2024). However, identifying and aligning with similar studies for comparison proved 

challenging due to the limited availability of directly comparable research and the complexity 

of matching findings. 

In addition to the previously mentioned methods, sensitivity analysis was performed to 

validate the BN models. This process involved two sequential steps. First, the developed BNs 

for SVI evaluation were analysed as a partial validation of the overall model. Second, the 

FRAM-based BN models, which map the relationships between functions, were validated 

through sensitivity analysis. Using GeNIe software, a derivative-based sensitivity analysis 

was conducted, allowing the quantification of how changes in the BN’s parameters influence 

the target nodes by calculating their derivatives. In this approach, the software uses 
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mathematical and numerical techniques to compute the derivative of the posterior probability 

distribution of each target node with respect to each parameter. For instance, if P(C/A) 

represents the probability of a child node C given a parent node A, the derivative value is 

obtained as 
  ( )

  ( )
, which quantifies how P(C) changes when P(A) is adjusted. Larger 

derivatives signify that even minor changes in a parameter have a substantial impact on the 

target node. By comparing derivatives across various parameters, the most influential ones 

can be identified.  

As shown in Table 12, the three highest derivatives were selected along with their associated 

nodes as examples. It is important to note that these selections are based on the ST state of 

the target node. In other words, by setting the target node’s state to ST, the most sensitive 

parameters were identified. Additionally, the variation range of the leaf node’s ST state is 

reported, illustrating the span of possible values. For instance, within the technological 

function, setting environmental conditions to stable, MTTR to short, and ensuring an 

adequate level of redundancy is expected to contribute to the stability of performance 

variability. The interval values are centred around the original ST state values of the target 

node, fulfilling Principle 1 of sensitivity analysis. 

To address Principle 2, the top three nodes, along with their relevant states, were subjected to 

a 10% increase in their values to observe the combined effect on the target node. For human 

functions, since the initial values for these three top nodes were at their maximum (100%), a 

10% decrease was applied instead. 

The results indicate that the posterior probabilities of the target node for technological, 

organizational, and F2 functions shifted favourably toward the ST state, resulting in a 

corresponding reduction in performance variability as the ST values increased. In contrast, 

for human functions, the posterior probabilities leaned toward greater performance 

variability, with an increase in the MV values. This demonstrates that the collective impact of 

changes in the selected nodes on the target node’s probabilities is consistently more 

significant than the impact of individual changes in each node, thereby validating Principle 2. 

Table 12: The sensitivity analysis results. 

Function Node State Interval Derivative Prior prob. Posterior 

prob. 

Performance 

variability 

 

 

Organizational 

Authority 

gradient 

Balanced [0.258-0.419] 0.160 ST=0.38 

LV=0.52 

MV=0.08 

HV=0.02 

ST=0.43 

LV=0.49 

MV=0.07 

HV=0.01 

PV1=1.74 

PV2=1.66 

ΔP=-5% 

 
Span of control Balanced [0.258-0.419] 0.160 

Communication 

effectiveness 

Adequate [0.255-0.410] 0.155 

 

Technological 

Environmental 

condition 

Stable [0.483-0.820] 0.337 ST=0.69 

LV=0.23 

MV=0.07 

HV=0.01 

ST=0.75 

LV=0.20 

MV=0.05 

HV=0.00 

PV1=1.39 

PV2=1.30 

ΔP=-7% 

 
MTTR Short [0.582-0.729] 0.148 

Redundancy Adequate [0.575-0.722] 0.146 

 

Human 

QSO S9,4 [0.353-0.540] 0.192 ST=0.00 

LV=0.54 

MV=0.46 

HV=0.00 

ST=0.00 

LV=0.45 

MV=0.55 

HV=0.00 

PV1=2.46 

PV2=2.55 

ΔP=+4% 

 

APP S3,3 [0.378-0.540] 0.181 

TAC S1,3 [0.404-0.540] 0.167 

 

F2 

Internal ST [0.165-0.173] 0.174 ST=0.17 

LV=0.73 

MV=0.10 

HV=0.00 

ST=0.22 

LV=0.70 

MV=0.08 

HV=0.00 

PV1=1.93 

PV2=1.86 

ΔP=-4% 

 

BG1 ST [0.164-0.172] 0.173 

F1 ST [0.162-0.171] 0.172 
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4.6. Implications 

Based on the obtained results and the associated discussion, several implications can be 

drawn to support various seaport stakeholders, each benefiting from these insights from 

different operational and strategic perspectives, as outlined below: 

1) Immediate control through the prioritisation of “level C” functions. 

When the upper confidence bounds of the UVI distributions are considered, seven elements, 

including F2 (Initial Safety and Security Checks), F5 (Quay crane operation), F6 (Quay crane 

operator), F7 (Cargo Transport to Yard Storage), BG1 (Vessel securely moored), BG2 (Port 

operations management) and BG4 (Resource management) migrate from a minor variability 

“B” zone to the critical “C” zone of the matrix. This shows that apparently “well-behaved” 

functions can become risk amplifiers once uncertainty is acknowledged, so early safeguards 

must focus on these nodes before local variation resonates through the wider seaport system.  

2) Operational stakeholders (pilots, berth masters, equipment maintainers).  

F2 (cargo-handling coordination) and F5/F6 (quay-crane and yard operations) emerge as 

volatility hot-spots; actions such as dynamic berth planning and predictive maintenance will 

give the biggest risk-reduction pay-off. 

3) Strategic management (port authority & terminal operators). 

BG1 (mooring practice) and BG2 (organisational control) highlight that managerial routines 

and safety culture are as variable as front-line work; leadership should institutionalise 

continuous monitoring and learning loops. 

4) Logistics partners & investors. 

BG4’s high variability underlines that resource-allocation policy (e.g., spare-part inventories, 

redundancy levels) directly drives systemic stability. 

5) Resource-allocation rules derived from sensitivity analysis. 

Derivative-based sensitivity reveals that keeping environmental conditions stable, MTTR 

short and redundancy adequate produces 5-7% shifts of the posterior toward the ST state for 

technological functions, whereas poor attention to these parameters moves human functions 

toward the MV state. This quantifies how marginal investment in redundancy or faster repair 

capability suppresses resonance potential system wide.  

6) Balancing Safety-II adaptability with resonance prevention. 

Although most mean UVIs sit in the “beneficial variability” band (level B), the wide upper 

tails caution against complacency; variability is an asset only while resources exist to damp 

it. The integrated FRAM-BN model makes that trade-off explicit by letting analysts toggle 

between mean, lower- and upper-bound scenarios during what-if simulations.  

7) Methodological generalisation to other complex transport systems. 

The quantitative FRAM-BN coupling used here aligns with the recent trend in maritime-risk 

science toward data-driven Bayesian networks combined with functional models (Guo et al., 

2023; Mohsendokht et al., 2024a, 2024b; Z. Yang et al., 2025). 
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It is noted that the proposed framework has been designed to address the inherent complexity 

of safety assessment in complex socio-technical systems through a Safety-II-oriented 

perspective. While seaport operations were selected as the primary case study to demonstrate 

applicability and practical feasibility, the methodological structure is not domain specific. 

Owing to its modular design principles and emphasis on functional variability, the framework 

is readily generalisable to other complex sectors, such as aviation, rail, energy, and 

healthcare, where multi-actor interactions, dynamic operating environments, and emergent 

performance conditions similarly influence system resilience and safety outcomes. With 

appropriate contextualisation of system functions and domain-specific variables, these sectors 

can likewise adopt the framework to undertake systemic, performance-based Safety-II risk 

assessments. The applicability of this approach can be considered from two perspectives, 

reflecting both the commonalities and the sector-specific differences.  

From a commonality perspective, these sectors share fundamental characteristics with 

maritime operations, including high interdependence among human, technical, and 

organizational elements, reliance on continuous coordination between multiple agents, and 

the presence of tightly coupled subsystems where small performance variabilities can lead to 

potential negative resonances with significant system-wide consequences. In aviation and rail 

transport, as in seaports, operational safety depends on synchronized human-machine 

interactions, adherence to procedural constraints, and resilience to unexpected disturbances. 

Similarly, healthcare systems exhibit comparable socio-technical complexity, where 

variability in human performance and resource constraints can critically affect outcomes. 

Thus, the framework’s focus on modelling functional variability and emergent behaviour 

makes it well suited for analysing these domains. 

From a uniqueness perspective, each sector exhibits distinct features that require contextual 

adaptation of the framework. For instance, aviation and rail industries often possess richer 

operational and safety data through advanced monitoring systems and regulatory reporting, 

which can reduce subjective bias in quantification of performance variability and improve the 

empirical grounding of probabilistic models. In contrast, healthcare environments are 

characterized by higher contextual diversity and limited standardization, meaning that 

qualitative judgment and expert elicitation remain essential for capturing functional 

dependencies and performance variability. Consequently, appropriate contextualization of 

system functions, data availability, and performance indicators will be essential when 

adapting the framework to each domain. 

In summary, the proposed Safety-II-based framework provides a flexible foundation for 

systemic and performance-based risk assessment across diverse complex socio-technical 

sectors. Its modular architecture allows for both cross-domain generalization and domain-

specific customization, ensuring its applicability to different CSTS. 

5. CONCLUSION 

In this study, a novel systemic risk assessment approach is designed to capture the dynamic 

interactions among the various elements of a seaport. Performance variability is 

acknowledged as a distinctive framework for expressing and understanding the 

interdependencies between diverse functions. The FRAM serves as the foundational 
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component of the approach, enabling the visualization of real-world relationships between 

activities, referred to as functions, within a seaport context. To enhance FRAM's capability 

for quantitative analysis, it is integrated with BN, allowing consideration of both internal and 

external factors that may influence individual functions. The proposed methodology builds 

upon the principles of the Safety-II concept, emphasizing a functional safety perspective. The 

outcomes of the study and the application of the framework provide deeper insights into 

system dynamics and offer more practical, versatile strategies for improving overall system 

safety.  

Given the obtained results, insights, and implications, this study makes several significant 

contributions, as follows: 

1) Holistic analysis of CSTS elements: Technological, human, and organizational 

functions within the CSTS are analysed to evaluate their internal and external 

performance variabilities, considering factors such as operational uncertainties, 

environmental conditions, and human performance fluctuations. 

2) Function interactions: Interactions between functions are systematically analysed to 

track upstream-downstream performance variability, assessing their impacts on the 

overall system. This approach highlights critical dependencies and emergent 

behaviours. 

3) Comprehensive risk analysis: The framework supports both retrospective and 

prospective evaluations of performance variability, providing actionable insights for 

addressing risks effectively. 

4) Enhanced decision-making: By quantifying and visualizing performance variabilities, 

the framework enables risk-based decision-making, helping prioritize interventions 

and implement targeted risk management measures. 

This integrated approach provides a solid foundation for understanding and mitigating 

systemic risks in complex socio-technical system environments. Nevertheless, while the 

framework demonstrates strong potential for comprehensive systemic risk assessment, 

several limitations and avenues for future enhancement remain. 

First, the FRAM model development was based on expert knowledge and focused on key 

operational functions. As system size and complexity grow, the number of functions and their 

interdependencies may expand significantly, making manual modelling increasingly 

demanding and time-consuming. Future research could integrate machine-learning-assisted 

techniques, such as those informed by HTA analysis, to support automated function 

identification and coupling detection. These techniques would serve as an advisory tool to 

assist experts, thereby improving scalability and modelling efficiency while preserving 

domain oversight.  Second, limited availability of empirical data for human and 

organisational functions necessitated reliance on expert judgment. Although expert elicitation 

remains a widely accepted practice in complex socio-technical analyses where datasets are 

scarce, this reliance may introduce subjectivity and uncertainty. In particular, access to 

verifiable performance-related information for organisational functions is often constrained, 

as managers and policymakers may be reluctant to critically examine or disclose internal 

performance practices. Consequently, unlike technological functions, where structured 

monitoring and measurable performance data are routinely available, organisational and 

human performance data remain largely qualitative and under-reported. Furthermore, while 
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certain industries such as nuclear energy sector have established quantitative data collection 

frameworks for human reliability, similar systematic mechanisms are still emerging within 

the maritime sector, especially for capturing performance variability rather than traditional 

error-based measures. To address these gaps, future works should focus on developing 

structured platforms for continuous collection and documentation of operational performance 

data, covering both routine and non-routine conditions. Such efforts would reduce reliance on 

subjective input, enhance traceability, and enable more robust, data-driven modelling of 

human and organisational variability. 

APPENDICES 

Appendix A 

Regarding the application of modified CREAM methodology to assess the SVI of human 

functions in step 3 the following example is brought up here to clarify the procedure. Let’s 

say, in rule number k, out of the nine CPCs, four have positive effects, three have negative 

effects, and two have neutral effects. Referring to the vertical axis of the diagram, which 

corresponds to the value four, and examining the shares of the slots associated with different, 

it is evident that there is one block for "strategic", five blocks for "tactical", and none for the 

other CCMs. Based on this, β
+
 is estimated as: 

β
+
 ={(0.17,CCM1), (0.73,CCM2), (0, CCM3), (0,CCM4)} 

Similarly, using the horizontal axis of the diagram and identifying the value three, two blocks 

are observed for "opportunistic", five blocks for "tactical", and none for the other CCMs. 

Consequently, β
-
 is calculated as: 

β
-
 ={(0,CCM1), (0.71,CCM2), (0.29, CCM3), (0,CCM4)} 

It should be emphasized that the "neutral" effect does not contribute to the integrated result, 

as it has already been accounted for in the uncertainty, and its belief degree is therefore 

excluded from the process.  

Once the positive and negative belief degrees are determined, and the weights derived using 

the AHP approach are incorporated, evidential reasoning is employed to synthesize this 

information. This process delivers the final combined belief degree for each CCM.  

Appendix B 

Regarding the DSET approach, let’s consider a set of n mutually exclusive and exhaustive 

propositions, referred to in this context as the BN states, Ω={X0, X1,…, Xn}. This set Ω is 

called the frame of discernment.  

The power set, denoted 2
Ω

, includes all possible subsets of Ω, including the empty set (∅) and 

Ω itself. For a frame Ω={X0, X1}, the power set is: 2
Ω
={∅,{X0},{X1},{X0,X1}}. In general, for n 

elements in Ω, 2
n
 subsets are formed.  

DSET comprises three vital functions: the Basic Probability Assignment (BPA), the Belief 

Function (BEL), and Plausibility Function (PL). BPA, denoted as m(A), assigns a mass of 

probability to a subset A of the frame of discernment Ω, where A∈Ω. 
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The following rules are applied: The mass of the empty set is always zero: m(∅)=0, and the 

sum of all masses over 2
Ω
 is 1, which is illustrated as ∑  ( )   ∈ 1. A is referred to as a 

focal element if m(A)˃0 and m(A) represents the extent to which the evidence supports the 

proposition A.  

Continuing, the BEL serves as the lower bound of the probability interval, while the PL acts 

as the upper bound. They are defined as follows:  

    ( )  ∑ ∏   (  )

        

 (1) 

  ( )       ( ̅) (2) 

where P is the proper subset of the set of interest (X), i is the number of beliefs, and  ̅ 

signifies the complement of X, indicating that the belief is governed by the principle that the 

total basic probability BPA must equal 1. 

When multiple pieces of evidence from different sources are presented, the fusion of beliefs 

is determined by the combination rule of DSET as follows: 

 ( )    ( )   ( )     ( )  
∑   ( )  ( )     ( )          

   
          (3) 

when A≠Ø, m(Ø)=0,  

and where,  

  ∑   ( )  ( )     ( )                   (4) 

K represents the level of conflict between the pieces of evidence, with K=0 indicating no 

conflict and K=1 signifying complete contradiction between the evidence.  

Appendix C 

Table I: Symbols and definitions used in the proposed methodology. 

Symbol Description 

ST Stable conditions, no variability 

LV Low variability 

MV Moderate variability 

HV High variability 

CPT Conditional Probability Table 

CPC Common Performance Condition 

P(C/R) Conditional probability of child node state  given parent node state   

P(CCM) Probability of performance variability in terms of Contextual Control Mode 

Si,j The state of CPC i and number j    

P(Si,j) Probability of specific states of a given common performance condition 

P(CCM/Si,j) Conditional probability of performance variability given a CPC states 

 
  ( )

  ( )
 

The derivative value of child node C given a parent node A 

MTTF Mean Time To Failure 

MTTR Mean Time To Repair 

SVI Self-contained Variability Index 

UVI Upstream Variability Index 

β
+

 Belief degrees with positive effect 

β
-
 Belief degrees with negative effect 

β Combinatory belief degrees 

W
+
 The corresponding weights of CPCs with positive effects 

W
−
 The corresponding weights of CPCs with negative effects 
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Fi Foreground function number i 

BGi Background function number i 

 

Table II: The expert’s profile and their related experience and expertise. 

Number Title Educational 

level 

Experience 

(years) 

Location Specialization  

1 General 

Manager 

MSc 20 Iran Port master planning; concession/PPP 

contract management; stakeholder 

engagement; ESG & sustainability; 

business continuity & resilience. 

2 Operations 

Manager 

MSc 15 Iran Berth planning & vessel scheduling; 

quay-crane assignment; yard planning 

& resource optimization; stowage 

coordination with shipping lines. 

3 Operations 

Manager 

Ph.D 12 Canada Container terminal management; 

stevedoring planning; turnaround-time 

optimization. 

4 HSE Director Ph.D 10 Belgium ISO 45001/14001 systems; 

HAZID/HAZOP/JSA risk assessment; 

emergency response & oil-spill (ICS) 

planning; contractor HSE auditing. 

5 Harbour 

Master 

MSc 18 USA VTS & navigational safety; pilotage 

& towage coordination; mooring/lines 

safety; ISPS drills & security 

interface; incident investigation & 

root-cause analysis. 

6 Port Planning MSc 16 UK Berth/yard capacity modelling; 

approach-channel design & 

navigational risk; asset management 

(PIANC/ICE standards). 

7 Terminal 

Systems & 

Automation 

Manager 

MSc 14 Australia TOS configuration; yard optimization 

& equipment dispatching 

(ASC/RTG/AGV); EDI/port 

community systems; operational 

analytics & dashboarding. 

 

 Table III: CPC estimates based on expert elicitation. 

CPC States Expert 1 Expert 2 Expert 3 Aggregated value Effects on performance variability 

 

TAC 

S1,1 0.00 0.00 0.00 0.0000 Negative 

S1,2 0.10 0.15 0.10 0.0022 Neutral 

S1,3 0.90 0.85 0.90 0.9978 Positive 

 

 

HMI 

S2,1 0.00 0.00 0.00 0.0000 Negative 

S2,2 0.10 0.00 0.05 0.0000 Neutral 

S2,3 0.75 0.80 0.85 0.9941 Neutral 

S2,4 0.15 0.20 0.10 0.0059 Positive 

 

APP 

S3,1 0.00 0.00 0.00 0.0000 Negative 

S3,2 0.10 0.00 0.05 0.0000 Neutral 
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S3,3 0.90 1.00 0.95 1.0000 Positive 

 

COW 

S4,1 0.35 0.25 0.30 0.0714 Negative 

S4,2 0.65 0.75 0.70 0.9286 Neutral 

S4,3 0.00 0.00 0.00 0.0000 Positive 

 

NGC 

S5,1 0.25 0.10 0.20 0.0092 Negative 

S5,2 0.75 0.90 0.80 0.9908 Neutral 

S5,3 0.00 0.00 0.00 0.0000 Positive 

 

ATT 

S6,1 0.30 0.30 0.20 0.0542 Negative 

S6,2 0.70 0.60 0.75 0.9458 Neutral 

S6,3 0.00 0.10 0.05 0.0000 Positive 

 

CRS 

S7,1 0.05 0.05 0.10 0.0007 Negative 

S7,2 0.70 0.75 0.75 0.9806 Neutral 

S7,3 0.25 0.20 0.15 0.0187 Positive 

 

TCQ 

S8,1 0.00 0.00 0.00 0.0000 Negative 

S8,2 0.15 0.10 0.10 0.0030 Neutral 

S8,3 0.80 0.75 0.85 0.9963 Neutral 

S8,4 0.05 0.15 0.05 0.0007 Positive 

 

QSO 

S9,1 0.05 0.00 0.05 0.0000 Negative 

S9,2 0.25 0.30 0.35 0.0819 Negative 

S9,3 0.70 0.70 0.60 0.9181 Neutral 

S9,4 0.00 0.00 0.00 0.0000 Positive 
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