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A B S T R A C T

Modern complex socio-technical systems demand systemic risk analysis approaches that can holistically address 
the interdependencies between human, technological, and organizational components. Traditional models often 
fall short in capturing the dynamic and emergent nature of these interactions. This study introduces a novel, 
integrated risk analysis framework grounded in the Safety-II paradigm, which emphasizes understanding how 
systems succeed under varying conditions rather than focusing solely on failure. The proposed methodology 
combines the Functional Resonance Analysis Method (FRAM) with Bayesian Networks to overcome FRAM’s 
qualitative limitations and enable quantitative assessment of performance variability. The framework is further 
enriched by integrating complementary techniques, including Monte Carlo Simulation and canonical probabi
listic models. This holistic toolkit enables a rigorous and scalable approach for modelling uncertainty and sys
temic variability across complex operational environments. The methodology is demonstrated through a case 
study of seaport operations, a representative example of a complex socio-technical system. The results show that 
the integrated Safety-II-informed framework improves the quantification of systemic risk and enhances the ca
pacity to manage complexity and uncertainty in real-world settings.

1. Introduction

Complex Socio-Technical Systems (CSTS) are defined by tightly 
interconnected structures, unpredictable workflows, non-linear opera
tions, and intricate interactions among their elements. These systems 
encompass the interplay of human, technological, and environmental 
factors within an organizational context [5,6,46]. Traditional risk 
analysis methods, such as fault tree analysis, event tree analysis, and 
probabilistic safety assessment, are primarily grounded in the Safety-I 
paradigm. These approaches operate on several foundational assump
tions: systems can be decomposed into simpler components; their 
functioning is categorized as either successful or failed; risk analysis 
depends on predefined cause-and-effect relationships; and event se
quences are assumed to be linear. While this methodology proved 
effective for purely technological systems and was widely applied in 
critical industries such as chemical, nuclear, and aviation during the 
20th century, its limitations became apparent when dealing with CSTS 
[4,72].

Safety-I philosophy, rooted in traditional thinking, struggles to 
accommodate the dynamic, nonlinear, and emergent nature of modern 
systems, making its continued application in the 21st century increas
ingly questionable [44]. To address these limitations, a new paradigm 
known as Safety-II has emerged. Rather than focusing solely on the 
prevention of failures, Safety-II emphasizes ensuring that “as many 
things as possible go right.” This approach adopts a proactive stance, 
recognizing the adaptability of human operators and underscoring the 
importance of monitoring everyday performance variability as a means 
of sustaining system safety.

Over the past decade, this paradigm has sparked extensive discussion 
among researchers, who have both supported and critiqued its under
lying philosophy; a detailed exploration of which lies beyond the scope 
of this study [4,18,41,65,94]. However, the research trend indicates that 
the Safety-II concept has gained significant traction, with scholars from 
various disciplines incorporating it into their studies. Applications span 
diverse fields, including maritime operations [1,95,109], energy sys
tems [98], aviation [119], chemical industry [124], construction [65,
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66], transportation [82,110], and nuclear power plants [35,83].
Despite the growing conceptual appeal of the Safety-II concept across 

domains, efforts to translate its principles into repeatable, decision- 
oriented analyses for CSTS remain fragmented. Existing operationali
sations tend to be either qualitative (e.g., mapping work-as-done, 
identifying functional dependencies, and general recommendations to 
improve safety) or narrowly quantitative (e.g., indicator scoring or 
isolated simulations), often without a formal mechanism to represent 
everyday performance variability, propagate its effects through inter
dependent functions, and address uncertainty in a transparent way.

Recent advances over the past years have sought to address this gap 
by proposing semi-quantitative and quantitative approaches in which 
Functional Resonance Analysis Method (FRAM) serves as the central 
modelling framework. These efforts include the use of Monte Carlo 
sampling and explicit propagation rules to characterise upstream- 
downstream variability within FRAM models [52,85], as well as the 
integration of FRAM with BNs or dynamic BNs [93,126]. Such combi
nations provide a principled calculus for fusing heterogeneous evidence, 
updating beliefs, and supporting diagnostic and prognostic reasoning in 
interdependent systems. Collectively, these developments have paved 
the way toward more rigorous operationalisation of the Safety-II 
concept in CSTS. However, existing studies still have limitations, in 
which some concentrate on modelling functional interactions while 
overlooking internal and external variabilities within individual func
tions, whereas others emphasise these variabilities but fail to capture the 
dynamic interplay between functions.

To address these gaps, this paper proposes an integrated framework 
for systemic risk analysis within the context of CSTS, aligning with the 
principles of the Safety-II concept. The novel methodology integrates 
FRAM and BN with advanced analytical tools, including Monte Carlo 
Simulation (MCS), canonical probabilistic methods, Dempster-Shafer 
theory, and criticality matrix. The key contributions of this study can 
be summarized as follows: 

1) Comprehensive analysis of CSTS elements: Each element of the CSTS, 
including technological, human, and organizational functions, is 
analysed to assess their internal and external performance variabil
ities. These variabilities account for factors such as operational un
certainties, environmental conditions, and human performance 
fluctuations.

2) Interaction between functions: The interactions among related 
functions are systematically examined to identify and track their 
upstream-downstream performance variability. This includes 
assessing their potential impacts, either negative, damping, or even 
positive on the entire system. Such an analysis helps to highlight 
critical dependencies and emergent behaviours within the system.

3) Retrospective and prospective risk analysis: The proposed frame
work enables both retrospective and prospective evaluations of the 
performance variability. This dual perspective equips decision- 
makers with actionable insights to address risks effectively.

4) Support for risk-based decision-making: By quantifying and visual
izing variabilities across the CSTS, the framework empowers 
decision-makers to prioritize interventions and implement targeted 
measures to manage identified risks.

The remainder of this paper is structured as follows: Section 2 pro
vides a concise literature review on CSTS, the application of the Safety-II 
concept, outlining the methodologies currently applied in CSTS and 
highlighting the identified research gaps. Section 3 presents a detailed 
discussion of the adopted methodology, with an in-depth explanation of 
the various techniques employed. Section 4 demonstrates the applica
tion of the proposed methodology to seaport operations and includes a 
discussion of the results and their interpretation. Finally, Section 5
summarizes the key insights derived from this study and formulates the 
conclusions.

2. Literature review

2.1. Systemic risk analysis of complex socio-technical systems

As previously noted, CSTS are networked configurations of in
dividuals, technologies, rules, and environments whose behaviour 
emerges from numerous non-linear interactions rather than from any 
single component. Within such systems, accidents frequently originate 
from mismatches, tight couplings, and feedback across organisational, 
human, and technical layers, rather than solely from component failure 
or human error. Systemic risk analysis perspectives emphasise that 
safety performance depends on how constraints are specified, imple
mented, and monitored throughout the entire system structure, and that 
adverse outcomes may arise from otherwise normal local variability 
when influenced by goal conflicts and resource pressures [57].

This inherent complexity underscores the relevance of the Safety-II 
perspective, which focuses on understanding how work typically suc
ceeds despite performance variability. Safety-II recognises that the same 
adaptations that enable successful outcomes can, under certain cir
cumstances, interact to produce failure. By shifting the analytical focus 
toward everyday performance, operational trade-offs, and resilience 
capacities, Safety-II provides a more robust foundation for systemic risk 
analysis and for designing systems that remain tolerant and adaptive in 
the face of variability [94].

In this regard, efforts have been made to introduce techniques for 
systemic risk analysis, including the Function Analysis System Tech
nique (FAST), the Structured Analysis and Design Technique (SADT), 
the Systematic Human Error Reduction and Prediction Approach 
(SHERPA), the Accident Causation Analysis and Taxonomy (ACAT), the 
Systems Theoretic Accident Model and Processes (STAMP), and the 
FRAM. Table 1 presents a concise comparative analysis of these 
methods, highlighting their respective strengths and limitations in the 
context of CSTS risk analysis.

2.2. FRAM application

Among the above-mentioned techniques, the FRAM has gained sig
nificant popularity for systemic risk analysis in CSTS due to several 
compelling advantages. Unlike traditional methods, FRAM avoids 
decomposing systems into individual components and operates inde
pendently of cause-effect analysis, aligning seamlessly with the princi
ples of the Safety-II paradigm. Furthermore, it identifies the various 
elements of a CSTS (Human, technological, and organizational factors) 
and addresses them holistically while accounting for their interactions 
and interdependencies. Additionally, FRAM enables detailed monitoring 
and analysis of the performance variability of each function, its influ
ence on downstream functions, and its overall impact on the entire 
system. FRAM models CSTS by focusing on the functions that describe 
what the system does, rather than its physical components or organ
isational structure. Each function is depicted as a hexagon with six as
pects, including Input, Output, Preconditions, Resources, Control, and 
Time that define its behaviour and interaction with other functions. 
Couplings between functions are represented by arrows, indicating how 
the output of one function can influence the input, control, or resource 
requirements of another. Variability emerging in any function may 
propagate through these couplings, and this functional interaction 
structure forms the basis for analysing the performance variability.

The four main principles of FRAM can be summarized as follows 
[27]: First, the nature of success and failure is equivalent; in other 
words, everyday work variability determines whether outcomes are 
positive or negative. Second, individuals and organizations must make 
ongoing, often approximate, adjustments to adapt to changing condi
tions. Third, outcomes both positive and negative of a CSTS emerge from 
interactions among multiple system functions rather than from indi
vidual components alone, meaning outcomes cannot be traced directly 
to isolated causes. Fourth, functional resonance refers to the 
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amplification of normal function variability due to unexpected in
teractions. It emphasizes the importance of identifying areas where such 
resonances may occur, as they can lead to significant system-wide 
consequences.

Despite its many advantages, the FRAM remains primarily a quali
tative approach, lacking the capability to provide quantitative mea
surements for interpreting performance variability. This limitation is 
widely recognized as a significant drawback. To address this issue, re
searchers have investigated various approaches to enhancing FRAM by 
incorporating standardized and quantitative techniques. One of the 
earliest efforts in this direction was undertaken by Rosa et al [99], who 
combined FRAM with the Analytical Hierarchy Process (AHP) to 
generate numerical rankings. Patriarca et al [85] introduced an inno
vative semi-quantitative FRAM-based approach by integrating it with 
MCS, enabling the representation of performance variability as discrete 
probability distributions. The integration of fuzzy logic theory with 
FRAM has also been proposed in multiple studies, offering another 
pathway to quantification [39,40,102]. In their work, Lee and Chung 
[56] developed a method to quantify Human-System Interaction (HSI) 
variability and assess criticality using a semi-quantitative FRAM process.

More advanced techniques have emerged in recent years, including 
the integration of machine learning and data-driven approaches with 
FRAM, which have been applied across various domains. BNs have also 
been explored as a powerful probabilistic tool for quantifying FRAM. For 
instance, Zarei et al [126] developed a causation model based on FRAM, 
which they incorporated into a dynamic BN to analyse internal and 
external performance variability, referred to as uncoupled variability, 
within the petrochemical industry. In maritime operations, Guo et al 
[33] proposed a similar approach, further enhanced by embedding a 
Markov model to analyse the evolution of collision risk during ship 
pilotage. These advancements demonstrate the growing efforts to inte
grate qualitative and quantitative analyses in FRAM applications [111, 
120,121,127].

2.3. Research gaps

Following a comprehensive review of the current literature, a 
recurring critique highlights the lack of a systematic framework for 
improving safety performance that effectively integrates both qualita
tive and quantitative approaches. Qualitative approaches, while valu
able for conceptual exploration, frequently lack systematic and 
quantifiable measures. These approaches often focus on describing the 
contrast between work-as-imagined and work-as-done, mapping func
tional dependencies, and providing general recommendations for 
improvement, but rarely progress toward measurable, evidence-based 
interventions.

Quantitative approaches, on the other hand, also exhibit notable 
limitations. Some studies prioritise modelling functional interactions 
but neglect internal and external variabilities within individual func
tions. Others emphasise characterising such variabilities yet fail to 
adequately capture the dynamic interdependencies among functions. In 

Table 1 
Comparative overview of systemic risk analysis methods.

Method Analytical 
Focus / 
Application 
Domain

Advantages Limitations Key 
References

FAST Employed 
primarily in 
engineering 
design and 
value analysis 
to map 
functional logic 
(“how” and 
“why”) 
between system 
elements.

Promotes 
function- 
oriented rather 
than component- 
based thinking. 
Facilitates 
stakeholder 
engagement and 
creative 
exploration of 
alternatives.

Outcomes are 
highly 
dependent on 
facilitator 
expertise. 
Provides only 
static 
representations; 
limited capacity 
to model 
temporal or 
emergent 
behaviours.

[9]

SADT Utilized for 
hierarchical 
decomposition 
of system 
functions, 
specifying 
inputs, outputs, 
controls, and 
mechanisms in 
structured 
diagrams.

Offers a 
standardized, 
formalized 
framework for 
system 
modelling and 
documentation. 
Enhances 
communication 
among 
interdisciplinary 
teams.

Inflexible in 
dynamic or 
rapidly evolving 
environments. 
Lacks constructs 
for sequencing 
or dynamic 
interactions; 
models may 
become complex 
and unwieldy.

[3]

SHERPA Designed to 
identify and 
classify 
potential 
human errors 
based on task 
analysis within 
complex 
systems.

Systematic 
prediction of 
error modes with 
direct links to 
remedial actions. 
Supports 
targeted safety 
interventions 
and human 
factors 
engineering

Requires 
comprehensive 
task 
decomposition 
in advance. 
Resource- 
intensive and 
time-consuming 
to implement at 
scale.

[105,13]

ACAT Focused on 
classifying and 
analysing 
causal factors 
in past 
accidents 
across 
technical, 
human, 
managerial, 
and 
environmental 
domains.

Provides a 
comprehensive 
taxonomy for 
multi- 
dimensional 
accident 
analysis. 
Enables 
systematic 
tracing of failure 
paths

Primarily 
retrospective in 
nature; limited 
use for 
prospective risk 
assessment. 
Requires 
domain-specific 
adaptation.

[59]

STAMP Conceptualizes 
accidents as 
results of 
inadequate 
control and 
feedback 
within socio- 
technical 
systems, 
grounded in 
systems theory.

Captures unsafe 
interactions and 
emergent risks in 
complex 
adaptive 
systems. 
Supports high- 
level modelling 
of safety 
constraints and 
control 
structures

Requires 
substantial 
conceptual 
understanding 
and modelling 
effort. 
Predominantly 
qualitative; 
quantitative 
extensions 
remain limited

[14,106]

FRAM Models 
complex socio- 
technical 
systems by 
examining how 
functional 
performance 
variability 
propagates and 

- Well-aligned 
with the Safety-II 
paradigm; 
captures both 
successful and 
adverse 
outcomes. 
- Explicitly 
models 
interactions 

- Model 
development is 
resource- 
intensive and 
requires deep 
system 
understanding. 
- Quantitative 
applications are 
evolving but not 

[27,125]

Table 1 (continued )

Method Analytical 
Focus / 
Application 
Domain 

Advantages Limitations Key 
References

interacts over 
time.

among human, 
technical, and 
organizational 
elements. 
- Enables 
dynamic 
assessment of 
functional 
resonance and 
emergent risks.

yet 
standardized.
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the first case, functions are frequently treated as nodes with fixed or 
weakly varying parameters, under-representing internal variability (e. 
g., workload, expertise drift, equipment degradation) and external 
variability (e.g., demand surges, environmental conditions, regulatory 
or organisational changes). As a result, resonance pathways are 
computed over unrealistically stable functions, with uncertainty 
addressed through ad hoc sensitivity ranges rather than systematic 
propagation techniques. In the second case, although intra-function 
variability is richly characterised, functional couplings are simplified 
or omitted. Outputs are often aggregated into single indices, temporal 
dynamics are suppressed, and dependencies are assumed independent. 
This prevents the transmission of cross-scale feedback, buffering effects, 
and transient accumulations through the functional network. Addi
tionally, the use of static or scenario-specific parameterisation and 
limited evidence fusion or validation further restricts robust prospective 
“what-if” analysis.

A more holistic methodology is therefore required which could 
retain FRAM’s functional topology, embeds stochastic and state- 
dependent models for each function, and employs a probabilistic prop
agation engine to fully operationalise the principles of Safety-II in CSTS. 

The methodology proposed in this study seeks to address these gaps, as 
detailed in the following sections.

3. Methodology

This section proposes a novel systemic risk analysis methodology 
based on a hybrid approach combining FRAM and BN, representing 
three key elements of CSTS: technological, human, and organizational 
functions. FRAM is utilized to describe the complex interrelationships 
among various functions, while BN enables the quantitative analysis of 
this complexity. Fig. 1 illustrates the overall methodology, structured 
into four consecutive phases. 

• Phase 1: Based on Hierarchical Task Analysis (HTA) and the princi
ples of FRAM, the functions, associated variabilities, and couplings 
between functions are identified, leading to the construction of the 
final FRAM model.

• Phase 2: Each function is represented as either a technological, 
human, or organizational function. The internal variability within 
each function is modelled using a BN, in which the interrelationships 

Fig. 1. The Conceptual structure of the developed methodology.
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among its internal contributing factors are defined both qualitatively 
and quantitatively.

• Phase 3: The FRAM, serving as the primary model, is integrated with 
the BN to represent variability, incorporating prior probabilities, 
conditional probability tables, and model validation.

• Phase 4: The model is interpreted by identifying resonances, whether 
negative or damping, recognizing critical functions through moni
toring interactions between them, detecting resonant patterns, and 
ultimately extracting insights and implications.

3.1. FRAM modelling

In the first phase, an HTA is developed to better understand the ac
tivities within the process under study and to provide a general overview 
of its tasks. The hierarchical structure of HTA enables detailed analysis 
of specific tasks and helps clarify the relationships among them. HTA has 
been extensively described in prior research [100,104]. Once the HTA is 
developed, key functions are identified and selected for further analysis 
through FRAM modelling. FRAM is employed to qualitatively analyse 
the effective operation of a CSTS.

Based on the principles of FRAM discussed earlier, the model can be 
constructed by the following steps outlined below: 

1) Identification of functions: The results from the HTA inform the 
FRAM construction. Activities that significantly contribute to the 
overall process are identified as candidate functions.

2) Definition of aspects: Each function is characterized by six aspects: 
input, output, resource, pre-condition, control, and time.

3) Determination of couplings: By understanding the flow of informa
tion or resources within the system, links between different aspects 
of various functions are identified, allowing for visualization of in
terdependencies among functions.

4) Identification of variabilities: Function variability refers to de
viations in a function’s output caused by factors from internal, 
external, or upstream functions.

Once the FRAM structure is constructed, each function can be 
characterized by potential performance variabilities. In FRAM model
ling, three types of variability are considered: (1) Internal variability: 
which originates from factors within the function itself, such as staff 
training levels and equipment maintenance schedules; (2) External 
variability: which is driven by external factors like weather conditions, 
geopolitical events, market demands, and security issues; (3) Upstream 
Variability Index (UVI), which captures the effects of interdependencies 
with upstream functions that affect downstream functions, such as the 
impact of container unloading efficiency and speed on the subsequent 
transport accuracy and timing to yard storage in a seaport. In this paper, 
the first two variabilities are referred to as Self-contained Variability 
Index (SVI), which pertains to performance fluctuations caused by in
ternal and external factors that do not arise from interactions between 
system functions.

These variabilities, interpreted as abnormal daily fluctuations, 
manifest in different ways, known as phenotypes, according to Erik [27]. 
Phenotypes may include aspects such as timing, precision, speed, dis
tance, force, duration, and direction. Depending on the nature of the 
analysis, a suitable combination of these phenotypes is chosen for FRAM 
analysis. In this paper, timing and precision are selected to represent the 
performance variability of the functions. Timing represents the punc
tuality of activities being conducted. The output of a function may occur 
too early, on time, late, or in the worst case, missed which means it 
arrives too late to be useful for its intended purpose or is not produced at 
all [51]. Regarding precision, an output can be accurate, satisfactory, 
inaccurate, or, in the worst case, faulty. From a systemic perspective, 
performance variability arises from local adjustments made to meet 
performance demands and ensure the functioning of a CSTS. To conduct 

a meaningful analysis, it is essential to evaluate the potential variability 
of each function. Therefore, a unified representation of performance 
variability is needed, enabling an aggregated view across different types 
of functions. To this end, integrating these two phenotypes not only 
provides a unified language for describing performance variability 
among functions but also facilitates the interpretation of interactions 
between these functions [30,102,129]. Table 2 presents the results of 
this integration using four qualitative scales: stable (ST), low variable 
(LV), moderately variable (MV), and highly variable (HV).

In this context, "ST" performance is achieved when activities are both 
timely and accurate, indicating no variability and reliable outcomes. It is 
the only case where "work as imagined" corresponds exactly to "work as 
done". "LV" describes situations where performance may show slight 
deviations but remains satisfactory, being either timely or accurate. 
"MV" occurs when inaccuracies or delays begin to affect performance, 
though it remains functional. "HV" represents significant deviation, with 
outputs frequently delayed, missed, or faulty, leading to unreliability 
and potential system disruption.

3.2. BN modelling

For a quantitative analysis of FRAM, using BN to represent qualita
tive performance variability scales in a numerical form is highly effec
tive. This approach offers two primary advantages. First, since 
performance variability has four defined states, BN can seamlessly 
manage these multi-state conditions, accommodating the complexity 
introduced by numerous interacting functions within a system. Second, 
performance variability can be expressed as probability percentages, a 
task well-suited to BN's strength in handling probabilistic analysis and 
uncertainty. Thus, integrating BN with FRAM enables a robust approach 
to systemic risk analysis in CSTS, leveraging probabilistic reasoning to 
capture the nuanced variability and interdependencies inherent in these 
environments. To begin, it is essential to differentiate functions based on 
their inherent characteristics, categorizing them into three primary 
types: technological functions, human functions, and organizational 
functions. Each category represents a distinct aspect of the system with 
unique dependencies, behaviours, and potential risks. Separate BN 
models are developed for each of these categories to capture the specific 
interactions, uncertainties, and causal relationships within each func
tion type, a concept referred to as SVI.

In this respect, a structured pipeline was used to identify and justify 
priority nodes and states for each function: (i) literature-based scoping 
to enumerate candidate nodes and state options; (ii) expert review to 
apply inclusion/exclusion criteria and finalise observable, non- 
overlapping states; and (iii) validity checks via a BN-level sensitivity 
screening.

In the first step, candidates were compiled from a comprehensive 
review of published sources, retaining variables with plausible causal 
relevance to the target node. In the next step, a multidisciplinary domain 
expert panel merged or removed overlapping items, confirmed state 
labels, and standardised state counts to 2-3 for BN tractability. Inclu
sion/exclusion criteria are set as follows: operationalisability (observ
able in this context and discretisable into mutually exclusive, 
collectively exhaustive states), non-redundancy (no conceptual dupli
cation), and interpretability (states understandable to practitioners). In 
the last step, the BN sensitivity screen fixed each parent to each of its 

Table 2 
Unification of performance variability based on time and precision phenotypes.

Time

Early Timely Delayed Missed

Precision Accurate ST ST LV HV
Satisfactory LV LV MV HV
Inaccurate MV MV HV HV
Faulty HV HV HV HV
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states, recalculated the child’s probability, computed the parent swing 
(max-min change), and verified monotonicity (worsening states 
increased risk); nodes with negligible or non-monotone effects were 
revised or omitted.

3.2.1. Organizational functions
Organizational factors play a crucial role in system safety, either 

enhancing or impairing the safety performance of a CSTS. Within an 
organization, numerous interactions occur among various components, 
including staff, operators, management, structure, and culture, among 
others [58,92]. To explicitly account for the impact of organizational 
factors on system performance variability and to capture the collective 
nature of its constituent elements, it is essential to consider all relevant 
aspects across multiple dimensions. These dimensions include social 
factors (e.g., safety culture, level of training), structural factors (e.g., 
authority gradients), resources (e.g., financial), management (e.g., 
leadership quality), and even external factors (e.g., geopolitical in
fluences). Furthermore, the interactions among these dimensions must 
also be thoroughly examined [71]. Table 3 outlines the contributing 
factors of organizational functions, along with their sub-factors and 
corresponding descriptions, within the context of BN development. In 
this respect, efforts are made to define the states of each node to ensure 
an appropriate depth of causality in the model, while accounting for the 
objectives of systemic risk analysis and the multidimensional nature of 
organizational factors.

3.2.2. Technological functions
Technological functions are primarily driven by machinery, equip

ment, or software and represent automated processes or technical op
erations within CSTS. These functions rely on the technical features of 
the system to perform specific tasks. Technological functions are typi
cally characterized by precision, consistency, and a predictable range of 
variability, usually governed by design specifications, technical capa
bilities, or programmed protocols. To determine the SVI of this function, 
the contributing factors to its performance variability must first be 
identified. Performance variability states, designated as the child node 
of the BN, include ST, LV, MV, and HV. The parent nodes, representing 
primary influences on performance variability, can be categorized into 
three main groups: safety-oriented factors, material integrity factors, 
and operational context factors. Safety-oriented factors encompass the 
protocols, practices, and resources dedicated to ensuring operational 
safety, reliability, and performance stability. These factors reflect the 
effectiveness of safety management within the system and play a crucial 
role in building resilience to variability and failure. Key contributors 
include maintenance activities, inspection policies, and reliability 
indices. Material integrity factors represent the physical condition and 
degradation of materials over time, accounting for natural wear, 
corrosion, and age-related issues. Material integrity is essential in 
determining a system’s ability to withstand ongoing use and environ
mental exposure. Key factors include equipment aging, structural 
degradation, wear and tear, and corrosion. Operational conditions are 
another key factor influencing the performance variability of techno
logical functions. These include external conditions, such as environ
mental factors, that impact system operation. Stable environments offer 
predictability, while harsh conditions such as extreme temperatures or 
high humidity pose challenges that can compromise equipment func
tionality and increase variability. Table 4 presents the nodes, their 
respective states, and detailed descriptions.

3.2.3. Human functions
Human functions, within the framework of the Safety-II concept, 

play a pivotal role as they offer the most flexibility to adapt to variability 
and mitigate its adverse effects on the overall system. Consequently, 
modelling human performance becomes a crucial component of sys
temic risk analysis in a CSTS. Numerous Human Reliability Analysis 
(HRA) methods have been developed in the literature to address this 

challenge [87]. Among these, the Cognitive Reliability and Error Anal
ysis Method (CREAM) stands out as the most suitable for this study due 
to the following reasons: 

I Systemic perspective: CREAM is aligned with modern systemic 
approaches, such as the Safety-II concept, by examining both 
successful and erroneous human actions, rather than focusing 
solely on failures [42].

II Versatility and applicability: CREAM is adaptable across various 
industries and contexts. It evaluates the interactions between 
human, technological, and organizational factors, making it an 
ideal tool for analysing CSTS [90].

III Context-sensitive analysis: The methodology integrates the 
impact of context on human performance using Common Per
formance Conditions (CPCs), enabling a detailed and situational 
understanding of reliability [107].

IV Focus on cognitive processes: Unlike traditional HRA methods 
that emphasize physical tasks, CREAM prioritizes cognitive 
functions such as decision-making and problem-solving, which 
are crucial in today's complex systems [45].

V Output compatibility with performance variability: CREAM's 
output, represented by Contextual Control Modes (CCMs), aligns 
seamlessly with the four types of performance variability outlined 
in this study: ST, LV, MV, and HV [50,101].

Building on the aforementioned reasons and drawing inspiration 
from the work of Yang et al [122], this study applies a modified CREAM 
methodology to assess the SVI of human functions through a five-step 
sequence.

In the first step, various CPCs are described, along with their po
tential states and how they influence human performance reliability. 
The original CPCs are divided into nine categories [42]. In this study, a 
minor modification is introduced which replaces the "time of day" CPC 
with "circadian rhythm and stress." This change highlights the signifi
cant impact that sleep deprivation or misalignment with natural circa
dian cycles can have on performance. Unlike the "time of day" 
classification, which is based on fixed time intervals like day and night, 
the circadian rhythm considers biological phases that influence cogni
tive performance and alertness. This approach provides a more accurate 
reflection of how these factors affect human performance reliability. 
Table 5 presents the CPCs along with the associated details [115,128].

In step 2, the relationships between CPCs and CCMs are established 
by defining specific rules. These rules determine how various combi
nations of CPCs, along with their corresponding effects, influence the 
assigned values of the CCMs. The CCM, which represents the context of 
human cognition and action, is characterized by four distinct states: 
“strategic,” “tactical,” “opportunistic,” and “scrambled.” These re
lationships are formulated as if-then rules, where the "if" component 
specifies different CPC combinations and their effects, and the "then" 
component maps these combinations to the appropriate CCM 
characteristics.

In step 3, belief degrees are assigned to the consequences, or the 
"THEN" components of the rules, to account for uncertainty and ensure 
that minor variations in the "IF" components are accurately reflected in 
the "THEN" outcomes. To achieve this, a systematic approach is 
employed to determine the belief degrees by leveraging the basic control 
mode diagram of CREAM and a weighting system. The AHP is used to 
calculate the relative weights of all CPCs based on their importance. 
Subsequently, the conditional belief degrees, denoted as β+ and β-, are 
derived using the diagram shown in Fig. 2. These degrees correspond to 
the positive or negative effects of various CPC states [54]. To clarify the 
approach, an illustrative example is presented in Appendix A.

Step 4 involves constructing a BN to model the dependencies be
tween CPCs. While CPCs share similarities with Performance Shaping 
Factors (PSFs) in other HRA methods, they are not the same. Their in
terdependencies are based on their influence on human performance 
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Table 3 
The identified contributing factors to the performance variability of organizational functions.

Categories Nodes States Descriptions Reference

External factors Regulation and 
enforcement

Strict, moderate, lax Refers to the laws, regulations, standards, and oversight mechanisms established by 
governmental or regulatory bodies that an organization is required to follow. Stricter 
rules generally lead to improved organizational performance in the relevant functions.

[25]

Market conditions Favourable, unfavourable Refers to the various economic factors and dynamics that impact the supply and 
demand for goods and services within a specific market. Unfavourable market 
conditions can significantly influence an organization’s operational decisions, 
strategic planning, and overall performance.

[29]

External stakeholder 
relationships

Strong, average, weak A strong relationship with external stakeholders can enhance organizational 
performance by fostering trust, facilitating resource access, and enabling smoother 
collaboration. Conversely, a weak relationship may lead to communication gaps, 
reduced support, and potential conflicts, leading to an increased performance 
variability.

[38]

Geopolitical factors Stable, tense Intense geopolitical factors, such as international conflicts, trade policies, tariffs, and 
economic sanctions, can negatively impact organizational performance, as managing 
these external pressures requires complex and challenging decision-making. In stable 
conditions, however, the organization is relieved from such difficulties.

[55]

Environmental factors Favourable, unfavourable Environmental factors, such as climate change and natural disasters, can disrupt 
operations, increase costs, and require investment in sustainable practices. Failure to 
respond, adapt, and recover effectively from these factors can damage the 
organization’s reputation, hinder compliance, and negatively impact overall 
performance.

[8]

Security factors Secure, insecure Security factors, including data breaches, cyber threats, and physical security risks, can 
compromise sensitive information, disrupt business continuity, and increase the 
organizational performance variability.

[36]

Organizational 
Structure

Span of control Wide, balanced, narrow Refers to the horizontal aspect of management, i.e., how many employees are directly 
under the supervision of a single manager. A wider span of control means fewer 
managers are needed, leading to a flatter organizational structure. A narrower span of 
control requires more managers, leading to a taller structure. A balanced span of 
control indicates of the appropriate number of managers.

[97]

Communication paths Adequate, inadequate Communication paths refer to the adequacy and quality of communication between 
different levels of an organization. When communication is sufficient and effective, the 
organization’s performance variability becomes more stable.

[77]

Authority gradient Steep, balanced, shallow An authority gradient describes the hierarchy of power within an organization, 
influencing how freely subordinates can challenge superiors. A steep gradient 
discourages lower-ranking individuals from speaking up, while a balanced gradient 
promotes open dialogue across levels. Conversely, a shallow gradient can lead to a 
chaotic environment.

[63]

Organizational 
resources

Equipment resources Adequate, inadequate An adequate amount of equipment resources is essential for stable organizational 
performance.

[81]

Human resources Adequate, inadequate An adequate number of personnel is essential for stable organizational performance. [79]
Financial resources Adequate, inadequate An adequate number of financial resources is essential for stable organizational 

performance.
[12]

Information resources Adequate, inadequate An adequate amount of information resources is essential for stable organizational 
performance.

[84]

Time resources Adequate, inadequate An adequate amount of time resources is critical for meeting deadlines, maintaining 
productivity, and ensuring efficient workflow.

[2]

Organizational 
management

Resource management Efficient, moderately 
efficient, inefficient

Refers to the organized efforts and procedures an organization implements to allocate 
existing resources effectively and efficiently.

[112]

Leadership quality Strong, moderate, weak Refers to the effectiveness and characteristics of leaders within an organization. Strong 
and high-quality leadership is crucial for setting the direction, inspiring employees, 
and ensuring the achievement of organizational goals.

[78]

Communication 
effectiveness

Adequate, inadequate Refers to the quality of communication within an organization and its impact on 
achieving stable performance. It encompasses the clarity, accuracy, and timeliness of 
information shared among team members. Clear communication promotes 
collaboration, minimizes misunderstandings, and aligns everyone with the 
organization's objectives, ultimately ensuring consistent performance.

[80]

Rules & regulations 
implementation

Compliant, partially 
compliant, incompliant

Refers to the effectiveness with which an organization enforces and adheres to internal 
policies, standards, and external regulations governing its operations. Greater 
compliance with these rules and regulations leads to more stable organizational 
performance variability.

[89]

Emergency 
management

Strong, moderate, weak Refers to the organized efforts and procedures that an organization establishes 
strategies to handle emergencies by planning ahead, managing responses, and 
facilitating recovery efforts, including natural disasters, technological incidents, 
security threats, and other unexpected events that may disrupt normal operations. The 
stronger the emergency management, the more stable the organization’s performance 
variability.

[67]

Organizational 
culture

Education/training Adequate, inadequate An adequate level of education and training among personnel contributes to a vibrant 
organizational culture.

[96]

Information sharing Adequate, inadequate Refers to the process of exchanging relevant information including data, knowledge, 
insights, and updates among individuals, teams, departments, or organizations. 
Adequate level of information sharing is crucial for overall organizational efficiency.

[22]

Safety culture Rich, moderate, poor Refers to shared mindset, outlook, and priorities of employees concerning safety 
practices and standards within an organization. It encompasses how safety is 

[80]

(continued on next page)
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reliability. Furthermore, CPCs may be calibrated based on the states of 
other CPCs. For instance, if a CPC initially exhibits a neutral effect but 
depends on other CPCs, its primary effect may shift toward either a 
positive or negative influence depending on the states of the CPCs it 
relies on. Table 6 illustrates the dependencies among various CPCs. The 
CPCs listed in the left-hand column are influenced by those defined in 
the top row. For instance, examining the third column reveals that 
“COW,” “NGC,” and “ATT” depend on “HMI.” This implies that if the 
human-machine interface and operational support improve, working 
conditions and the availability of time are expected to improve, as 
indicated by the letter “P,” representing a positive influence. Conversely, 
the number of goals and conflict resolution tasks required of the oper
ator are expected to decrease, as denoted by the letter “N,” signifying a 
negative influence. The remaining cells in the table, marked with “-,” 
indicate no dependencies between the respective CPCs.

Considering these dependencies and the dynamic adjustability of 
CPCs based on the status of other related CPCs, a BN is well-suited for 
modelling these variabilities and interactive relationships. In this 
framework, the child node of the BN represents CCMs, which include the 
four defined states: strategic, tactical, opportunistic, and scrambled. 
These states align closely with the four performance variability levels 
commonly applied in both technological and organizational functions: 
ST, LV, MV, and HV, respectively. The parent nodes, representing the 
CPCs with their multiple states, are outlined in Table 5. To account for 
the dependencies shown in Table 6, four additional nodes, referred to as 
calibrated nodes, were introduced. These nodes capture the interactive 
relationships among CPCs and reflect their updated status based on 
changes in related CPCs. The four calibrated nodes are labelled as 
“calibrated COW”, “calibrated TCQ”, “calibrated NGC”, and “calibrated 
ATT”.

In the final step, the BN inference and validation process is carried 
out. This process includes determining the posterior probabilities of the 
target variables in the network and verifying the outcomes to confirm 
the precision and dependability of the suggested approach. First, ob
servations are analysed to derive the prior probabilities for each CPC in 
terms of numerical variables that correspond to CPC states and their 
effects. Next, during the inference process, belief degrees are converted 
into rules, which serve as the conditional probabilities for the con
structed BN. Using these transformed rules and the prior probabilities, 
the marginal probabilities of the leaf node states are then computed 
accordingly.

3.2.4. Prior probabilities extraction
Due to the complexity of CSTS and the diverse nature of their ele

ments, various data sources with different origins are required to inform 
the developed models. For technical functions, several data types are 
particularly useful. Measurements from equipment sensors, operational 
conditions, and processes provide valuable empirical data. Operational 
logs detailing equipment performance and failures are essential, as are 
records of preventive and corrective maintenance activities, which help 
evaluate maintenance effectiveness. Additionally, manufacturer speci
fications, including reliability data such as Mean Time to Failure 
(MTTF), Mean Time to Repair (MTTR), and other relevant metrics, are 

integral to reliability assessment.
When it comes to organizational functions, obtaining realistic data 

can be challenging. Managers are often reluctant to critique their 
management practices, organizational structure, or operational effi
ciency due to concerns about reputation and prestige [60,62]. Never
theless, for the organizational functions, valuable information can be 
gathered from various sources, including compliance and incident data 
from internal audits, human resource databases (e.g., staff turnover 
rates, training schedules, and role-specific records), and regulatory da
tabases containing compliance reports or industry-level performance 
benchmarks. Additionally, input from independent expert elicitation 
can be incorporated for several nodes of the developed BN. In relation to 
the structure of organizational performance, organizational resources, 
and external factors, the data are primarily obtained from documented 
evidence and available empirical sources. However, obtaining objective 
data on organizational management and culture remains inherently 
challenging, as such aspects are often subjective and difficult to quantify 
even across other industrial sectors. For instance, safety culture is a 
latent and intangible construct that cannot be measured directly. It is 
typically assessed through a combination of subjective (survey-based) 
and objective (performance-based) indicators. Although no purely 
objective measure of safety culture exists, triangulating multiple data 
sources, such as surveys, audits, and performance indicators, enhances 
validity and reduces bias. Accordingly, for the organizational functions, 
both empirical and subjective data sources are employed to capture the 
multifaceted nature of organizational performance.

Assessing human performance variability requires the use of expert 
judgment, as databases in this area are often insufficient to meet ex
pectations. To this end, the Dempster-Shafer evidence theory (DSET) is 
employed for several purposes: 

a) Systematically combining diverse expert opinions to produce a uni
fied final judgment.

b) Accounting for both epistemic and aleatory uncertainties, thanks to 
its unique features, such as representing and propagating degrees of 
belief.

c) Providing a structured framework for reasoning under uncertainty, 
allowing for the integration of incomplete or conflicting evidence.

This approach enhances the reliability of expert-based assessments 
by managing variability and uncertainty in a more systematic and robust 
manner. DSET is frequently characterized as an advanced form of 
probability theory or an expanded interpretation of Bayesian inference. 
It has been widely used to extract subjective expert judgments and 
resolve disparities between differing viewpoints to produce an aggre
gated output. In this context, DSET is referred to as a theory of evidence 
because it focuses on the weight of evidence. Before combining infor
mation, the foundational principles of DSET must be introduced. A 
comprehensive explanation of DSET can be found in the literature [31,
108], while a brief introduction is provided in Appendix B.

Table 3 (continued )

Categories Nodes States Descriptions Reference

prioritized, communicated, and practiced at all levels, from management to front-line 
workers. A rich safety culture fosters a proactive approach to managing risks.

Organizational cohesion High, moderate, low It reflects how well employees work together toward common goals, the strength of 
relationships within the organization, and the overall sense of belonging and loyalty 
that employees feel. An organization with high level of cohesion typically experiences 
higher levels of productivity, and performance stability.

[32]

Employee inclusivity Inclusive, moderately 
inclusive, exclusive

Encompasses initiatives aimed at fostering an inclusive and supportive workplace 
where every employee feels respected, appreciated, and encouraged to actively 
participate. A high level of inclusivity within an organization fosters a rich 
organizational culture.

[15]
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Table 4 
The identified contributing factors to the performance variability of techno
logical functions.

Categories Nodes States Descriptions Reference

Safety- 
oriented 
factors

Maintenance 
strategy

Preventive- 
oriented, 
balanced, 
corrective- 
oriented

A preventive- 
oriented 
maintenance 
strategy 
emphasizes 
proactive 
measures to 
prevent potential 
failures, 
significantly 
boosting 
reliability but at 
a higher cost. In 
contrast, a 
corrective- 
oriented strategy 
addresses 
failures only 
after they occur. 
A balanced 
strategy 
combines both 
approaches, 
optimizing 
reliability while 
distributing the 
budget more 
evenly.

[113]

Maintenance 
quality

Optimal, 
acceptable, 
poor

Maintenance 
quality evaluates 
the thoroughness 
and technical 
precision of 
maintenance 
tasks. Optimal 
maintenance 
quality reflects 
skilled 
execution, 
accuracy, 
attention to 
detail, and 
adherence to best 
practices and 
standards, while 
poor quality 
indicates a lack 
of these 
attributes.

[61]

Inspection 
practice

Intensive, 
moderate, 
sporadic

Sporadic or 
inadequate 
inspections raise 
the risk of 
undetected 
degradation, 
whereas an 
intensive 
inspection 
regimen 
enhances the 
detection of 
potential 
degradation.

[28]

Maintenance 
effectiveness

High, 
moderate, 
low

Maintenance 
effectiveness 
refers to how 
successfully 
maintenance 
activities prevent 
or mitigate 
failures and 
ensure reliable 
operation of 

[19]

Table 4 (continued )

Categories Nodes States Descriptions Reference

system 
components. It 
encompasses the 
impact of 
maintenance 
strategies, 
inspection 
frequency, and 
the quality of 
maintenance 
activities on 
equipment 
performance.

Reliability High, 
moderate, 
low

Reliability 
indicates the 
system's 
likelihood to 
perform its 
function without 
failure, under a 
specified 
condition, and 
over a specified 
period of time.

[7]

Redundancy Adequate, 
inadequate

Redundancy 
adds a layer of 
resilience; 
adequate 
redundancy 
reduces the 
likelihood of 
high variability 
in performance.

[91]

MTTR Short, long Mean Time To 
Repair affects 
downtime; 
longer repair 
times increase 
the risk of 
performance 
interruptions.

[7]

Availability High, 
moderate, 
low

Availability 
measures how 
often the system 
can perform its 
intended 
function, 
impacted by 
reliability, 
redundancy, and 
MTTR.

[7]

Material 
integrity 
factors

Equipment 
aging

New, old Equipment aging 
is the gradual 
decline in 
performance and 
reliability due to 
the natural 
lifecycle of 
components. 
with older 
equipment, it is 
more likely to 
exhibit 
variability in 
performance due 
to accumulated 
wear, reduced 
flexibility, and 
potentially 
outdated 
technology.

[17]

Structural 
degradation

Low, 
moderate, 
high

Structural 
degradation 
captures the 
overall 
deterioration of 

[114]

(continued on next page)
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3.3. Quantitative analysis of system performance variability

Once the FRAM model is developed and the internal variabilities 
across all function categories are obtained, the next step is to map the 
FRAM model into a BN to conduct a quantitative analysis of system 
performance variability. As previously discussed, various types of vari
abilities are integral to an FRAM model, including SVI and UVI. 
Aggregating these variabilities across different functions is essential to 
gain a comprehensive understanding of performance variability within a 
CSTS. This aggregation represents the unified interactions between 
functions that are interconnected in a sequential manner within the 
FRAM model.

3.3.1. FRAM and BN integration
The process begins by converting various aspects of a function into 

Table 4 (continued )

Categories Nodes States Descriptions Reference

components or 
subsystems due 
to a combination 
of internal 
stresses, 
environmental 
conditions, and 
aging. High 
levels of 
structural 
degradation pose 
significant risks 
to the system, 
leading to more 
frequent 
breakdowns, 
reduced load- 
bearing 
capacities, and 
increased 
variability in 
performance.

Wear and tear 
condition

Minimal, 
moderate, 
severe

Mechanical wear 
and tear describe 
the progressive 
degradation of 
parts caused by 
continuous usage 
and friction over 
time. it affects 
performance and 
longevity, with 
severe wear 
leading to higher 
failure rates.

[76]

Corrosion Low, 
moderate, 
high

Corrosion 
impacts the 
integrity of 
materials, 
particularly 
metals and 
surfaces exposed 
to harsh 
environments. 
High corrosion 
rates 
significantly 
compromise 
structural 
strength, 
increase the 
likelihood of 
unexpected 
failures, and lead 
to reduced 
performance 
reliability.

[68]

Operational 
context 
factors

Environmental 
conditions

Stable, 
variable, 
harsh

A stable 
environment 
features 
predictable and 
consistent 
conditions, with 
minimal 
fluctuations in 
factors like 
temperature, 
humidity, and air 
quality. In 
contrast, a harsh 
environment is 
marked by 
extreme or 
persistent 
stressors such as 
high 

[26]

Table 4 (continued )

Categories Nodes States Descriptions Reference

temperatures, 
corrosive 
substances, 
heavy vibrations, 
high humidity, or 
dust. A variable 
environment 
exhibits 
moderate 
fluctuations in 
external 
conditions.

Table 5 
CPCs description, their states, and effects.

CPC CPC states Effects

Training and competence (TAC) Inadequate (S1,1) Negative
Adequate with limited 
experience (S1,2)

Neutral

Adequate with high 
experience (S1,3)

Positive

Human-machine interface and 
operational support (HMI)

Inappropriate (S2,1) Negative
Tolerable (S2,2) Neutral
Adequate (S2,3) Neutral
Supportive (S2,4) Positive

Availability of procedures and plans 
(APP)

Inappropriate (S3,1) Negative
Acceptable (S3,2) Neutral
Appropriate (S3,3) Positive

Conditions of working (COW) Incompatible (S4,1) Negative
Compatible (S4,2) Neutral
Advantageous (S4,3) Positive

Number of goals and conflict resolution 
(NGC)

More than actual capacity 
(S5,1)

Negative

Matching current capacity 
(S5,2)

Neutral

Fewer than actual capacity 
(S5,3)

Positive

Available time and time pressure (ATT) Continuously inadequate 
(S6,1)

Negative

Temporarily inadequate 
(S6,2)

Neutral

Adequate (S6,3) Positive
Circadian rhythm and stress (CRS) High (S7,1) Negative

Moderate (S7,2) Neutral
Low (S7,3) Positive

Team collaboration quality (TCQ) Deficient (S8,1) Negative
Inefficient (S8,2) Neutral
Efficient (S8,3) Neutral
Very efficient (S8,4) Positive

Quality and support of the organization 
(QSO)

Deficient (S9,1) Negative
Inefficient (S9,2) Negative
Efficient (S9,3) Neutral
Very efficient (S9,4) Positive
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discrete probability distributions, categorized into states such as ST, LV, 
MV, and HV. This approach enhances the representation of functional 
variability and serves as a common framework, simplifying the inter
pretation of interactions between functions [85]. Furthermore, the in
ternal variability identified for each function can be regarded as an 
additional dimension, reflecting the influence of the operational envi
ronment and current performance conditions during the function’s 
execution [102]. The mapping process begins with the output from 
background functions, establishing the initial performance variability 
distribution for downstream functions. This variability can be deter
mined either through empirical data, if available, or expert elicitation 
when data is limited. To represent this as discrete probability distribu
tions, the frequency of event occurrences may be used when empirical 
data is applied. For each function, all available and defined aspects are 

set as parent nodes in the BN model, with the output serving as the child 
node. This configuration enables a quantitative calculation of the in
teractions among different aspects of each function, resulting in an in
tegrated performance variability distribution with consistent state 
definitions. Fig. 3 demonstrates a simplified mechanism for mapping the 
FRAM model onto a BN, providing clearer insight into the process.

A key advantage of BN is its flexibility in integrating a variety of 
nodes with multiple states, accommodating both discrete and contin
uous forms. Given this flexibility and recognizing performance vari
ability across four distinct states defined by a discrete probability 
distribution, as well as the independence of different functional aspects 
and their separate impacts on the output, the CPT can be calculated 
using canonical probabilistic models like noisy OR, noisy MAX, noisy 
MIN, noisy AND, and noisy Adder gates [24]. The Noisy-OR model, 

Fig. 2. Basic Diagram of CREAM for different CCMs.

Table 6 
Dependencies among CPCs.

TAC HMI APP COW NGC ATT CRS TCQ QSO

TAC - - - - - - - - P
HMI - - - - - - - - P
APP - - - - - - - - P
COW P P - - - P P - P
NGC - N N N - - - - -
ATT - P P P N - P P -
CRS - - - - - - - - -
TCQ P - - - - - - - P
QSO - - - - - - - - -

Fig. 3. The simplified process of mapping FRAM into a BN model.
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introduced by Pearl [88], initially addressed probabilistic dependencies 
among binary variables [37]. extended this concept, adapting the model 
to include binary leaky Noisy-OR gates, which account for additional 
uncertainty in influence pathways. Further developments came when 
[23] and Srinivas [103] independently proposed generalizations of the 
model to accommodate multi-valued variables, leading to the creation of 
multi-valued Noisy-OR gates. These foundational works eventually 
paved the way for the Noisy-MAX model, which expanded the frame
work to capture more complex probabilistic relationships across diverse 
variable states. In this study, the complexity of the problem, charac
terized by multi-state parent nodes, a multi-state child node, and the 
independent influence of each parent on the child makes the Noisy-MAX 
technique particularly suitable. This approach not only streamlines the 
construction of the CPT but also effectively captures the non-linear re
lationships between parent and child nodes, enabling a more accurate 
representation of these dependencies [10,116,118].

3.3.2. Noisy-MAX structure-based BN modelling
Using the Noisy-MAX technique, the conditional probability between 

a child node C and its parent node R can be represented by incorporating 
a set of n auxiliary variables {A1,…, An} [24]. As illustrated in Fig. 4, this 
formulation allows the conditional probability to be expressed as: 

P(C /R) =
∑

A
P(C /A). P(A /R) (1) 

Note that the variables Ai are purely auxiliary elements used to facilitate 
equation derivation and are not part of the actual model. Given the 
graph in Fig. 4, there are no interactions between the causal mechanisms 
through which Ri influences the value of C. In the graph, this property is 
represented by the absence of connections Ri→Aj and Ai→Aj for all i∕=j, 
indicating that: 

P(A /R) =
∏

i
P(Ai /Ri) (2) 

With this, combined with Eqs. 1 and 2, results in: 

P(C /R) =
∑

A/f(A)=C

∏

i
P(Ai /Ri) (3) 

In this context, each Ai signifies the contribution of Ri to the value of 
C. The combined outcome generated by each Ri is represented as C=fMAX 

(A). Consequently, C and Ai variables must operate within the same 
domain. Each Ai reflects the impact of Ri elevating C to a particular level, 
and the actual value of C is determined as the maximum among the Ai 
values.

Now, to establish the CPT for the Noisy-MAX model, P(C=c∣A) is 
calculated for every possible value c and each configuration of R. This is 
achieved by applying Eq. 3 and recognizing that f MAX(A)=max(A1,…,An). 
This function implies that f MAX(A)≤y, if and only if Ai≤C for each i. 
Hence, it can be obtained that: 

P(C ≤ c/R) =
∑

A/fMAX(A)≤c

∏

i
P(Ai/Ri)

=
∑

A1≤c
⋯
∑

An≤c

∏

i
P(Ai/Ri) =

∏

i

(
∑

Ai≤c
P(Ai/Ri)

) (4) 

With consideration of accumulative parameters, the values of the CPT 
can be obtained as follows: 

P(c /R) =
{

P(C ≤ c/R) − P(C ≤ c − 1/R) for c ∕= cmin
P(C ≤ c/R) for c = cmin

(5) 

After calculating the CPTs for all BNs related to each function, using 
prior probabilities derived from either empirical data or expert input, 
the complete set of BN models is analysed to generate the final output for 
the last function. This analysis enables us to assess the performance 
variability of each function independently, as well as to evaluate its 
impact on downstream functions.

3.3.3. FRAM interpretation process
The ultimate goal of FRAM modelling is to understand how disrup

tions or variations in upstream functions influence the performance 
variability of connected functions. In essence, it examines how reso
nance, whether positive or negative, affects the variability in perfor
mance across downstream functions. This approach provides a detailed 
view of how any disruption in a CSTS can propagate, helping us un
derstand how changes in one part of the system influence the entire 
system's behaviour. To this end, a 2-D criticality matrix is proposed to 
support the decision-making process [51,86,126]. The matrix di
mensions represent probability and consequence. For the probability 
dimension, the mean value of performance variability serves as a nu
merical representation of the average variability a function experiences. 
This considers the likelihood of being in one of four states: HV, MV, LV, 
or ST, multiplied by the assigned scores of 4, 3, 2, and 1, respectively. 
These scores reflect the significance of each state in terms of safety 
impact. HV is given the highest score (4) to represent substantial 
disruption; MV receives a moderate score (3) for moderate variability; 
while LV and ST are assigned lower scores (2 and 1) to indicate minimal 
variability or stability. For the consequence dimension, three categories 
are defined: critical (indicating severe consequences), moderate 
(manageable consequences requiring attention), and minor (minimal or 
tolerable consequences). Functions are classified into these categories 
based on their significance to both safety and operational performance. 
The magnitude of consequences is highly dependent on the specific 
domain under study and the function's role in the system's operation and 
safety. This classification can be determined using expert judgment or 
established criteria. Fig. 5 illustrates the proposed criticality matrix, 
which categorizes functions into three levels of criticality based on their 
variability and consequence severity.

Level C, located in the top-right quadrant, represents high variability 
and critical consequences. Functions in this category are prime candi
dates for triggering negative resonance, as their high variability com
bined with critical consequences makes them likely to interact 
unpredictably with downstream functions, potentially amplifying risks 

Fig. 4. Simplified BN structure for noisy-MAX model derivation. Fig. 5. The proposed criticality matrix.
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across the system. Level B, which includes functions with moderate 
variability, highlights that these functions can also contribute to nega
tive resonance. This occurs particularly when their variability interacts 
with other moderately variable or interconnected functions, creating 
conditions where risks propagate through the system. Such interactions 
are especially critical when these functions are linked to others with 
similar variability characteristics. Level A encompasses functions that 
are relatively stable or exhibit low variability. These functions can play a 
stabilizing role within the system and be strategically leveraged to 
design interventions that dampen variability and mitigate risks. By 
strengthening the interactions of these stable functions, they can coun
teract the effects of high variability in connected functions. This criti
cality matrix provides a systematic tool to prioritize functions for 
intervention based on their role in system dynamics. It facilitates the 
detection and mitigation of resonances in the FRAM model by antici
pating how function interactions might lead to either risk amplification 
(negative resonance) or system stabilization (damping resonance).

3.4. Verification and validation process

Verification and validation process are the essential component of 
any methodological approach, ensuring that developed models are 
reliable, robust, and sensible. They also builds confidence in the accu
racy of the findings and results. In this study, various techniques and 
numerous models have been employed to address the complexity of 
CSTS, making comprehensive benchmarking challenging. To address 
this, we adopted a modular approach using a range of techniques, 
allowing us to validate and benchmark different models independently. 
Validation of the HTA and FRAM components, as qualitative analysis 
methods, primarily depends on the knowledge and proficiency of the 
analysts conducting the evaluation. Additionally, the results and find
ings from these models are compared and benchmarked against out
comes from similar studies.

For validating the developed BN models, sensitivity analysis, regar
ded as one of the most practical validation methods, is applied. This 
analysis involves two approaches. The first approach confirms the 
model’s robustness by verifying that small adjustments in the prior 
probabilities of parent nodes reliably affect the probabilities of child 
nodes. This principle-based sensitivity analysis ensures that the model 
responds predictably to changes in inputs, enhancing its reliability and 
accuracy. To achieve this, the analysis follows these principles [49]: 

• Principle 1: Minor adjustments in the prior probabilities of the parent 
node should lead to proportionate changes, either increases or de
creases, in the posterior probability distribution of the child node.

• Principle 2: The combined influence of changes in the probabilities of 
all evidence variables should be equal to or greater than the influ
ence produced by modifying any individual subset of that evidence.

In the second approach, the analysis focuses on how changes in 
probability parameters influence the BN’s output. This is done by 
calculating the derivatives of the posterior probability distributions, 
which helps reveal the sensitivity of the model’s target nodes (such as 
performance variability) to adjustments in various numerical parame
ters. This derivative-based analysis measures the rate at which each 
target node’s probability shifts as a reaction to small modifications in the 
parent nodes’ prior probability values. By examining these derivatives, 
the parameters that most strongly influence the network’s outcomes can 
be identified. When certain variables show high sensitivity to parameter 
changes, it indicates that the model depends significantly on those 
specific inputs. Recognizing these key parameters allows for prioritizing 
data that may require more precise estimates or rigorous validation, as 
they play a crucial role in determining the model’s predictions. It is 
noted that for ease of reference, all symbols and mathematical notations 
used in the proposed methodology are summarised in the Table C1 in 
Appendix C.

4. Results, discussion, and implications

Seaports are widely regarded as a CSTS that are highly inter
connected and interdependent, making them vulnerable to a diverse 
range of risks. Given that reliable and efficient seaport operations are 
essential for the maritime transportation sector, any disruptions or 
fluctuations in their performance can significantly impact national 
safety, security, economic stability, and public health [73]. This un
derscores the critical need for focused attention from risk analysts to 
develop robust approaches to address these challenges. This section 
applies the proposed methodology to a typical seaport, illustrating both 
its practicality and potential impact.

4.1. FRAM model development

To identify the key functions for FRAM development, an initial HTA 
is conducted to represent the workflow of activities typically performed 
in a seaport. The hierarchical structure of the HTA provides a compre
hensive understanding of the workflow and facilitates a detailed analysis 
of specific tasks along with their prerequisite requirements. It is 
important to note that seaport operations involve a vast array of tasks 
and the collaboration of numerous teams and crews [11,34]. To main
tain simplicity and align with the scope of a journal paper, a streamlined 
version of the HTA focusing on the most critical activities is produced. 
The HTA was developed by synthesizing insights from an extensive re
view of the seaport operations literature, the collective research con
tributions of the author team, and subsequent verification and approval 
by a panel of experts whose profiles are provided in Table C2 in Ap
pendix C. It should be noted that this study focuses solely on operations 
occurring between the quay area and the yard within the seaport. Fig. 6
presents this simplified HTA, which serves as the foundation for the 
FRAM model.

Based on the HTA results, nine foreground functions, referred to as 
main functions, and four background functions have been selected for 
the FRAM development. The background functions define the bound
aries of the analysis, providing fixed outputs that feed into and support 
the operation of the main functions. Table 7 outlines the functions, their 
characteristics, and the connections between them, while Table 8 details 
the various aspects of each function.

It is noted that system complexity increases rapidly with size, 
rendering manual modelling increasingly challenging for large in
frastructures such as seaports. To address this issue, the FRAM model is 
organized into interacting modules, such as quayside operations, yard 
operations, and intermodal transfer sections, structured across hierar
chical levels, namely Macro, Meso, and Micro, as illustrated in Fig. 7.

At the Macro level, the focus is on the seaport as an integrated sys
tem, capturing the high-level interactions between major operational 
sections and strategic processes, such as overall cargo throughput, ter
minal coordination, and resource allocation. The Meso level examines 
intermediate-scale processes within individual modules. For example, 
within the quayside module, functions such as quay crane operations, 
vessel berthing, and container handling are considered, along with their 
interconnections and resource flows. At the Micro level, the model fo
cuses on detailed, function-specific activities, including the interactions 
between individual equipment, human operators, and tasks. For 
instance, a micro-level analysis of a quay side may include the container 
unlashing process, operator actions, and resource availability.

Each module is analysed largely independently, with only a limited 
set of interface variables connecting it to other modules. This divide- 
and-compose strategy contains complexity locally, prevents combina
torial growth as system size increases, and ensures that both high-level 
coordination and fine-grained operational variability are effectively 
represented.

All the identified functions and their interconnections are synthe
sized and visualized using the FRAM Model Visualization (FMV) tool 
[43], as shown in Fig. 8.
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4.2. SVI assessment for key functions

4.2.1. Organizational functions
In the context of seaport organizational functions, numerous entities 

are involved, with complex interactions among their components. To 
assess the performance of their internal variability, a BN for the orga
nizational function is constructed, following the information and 
framework described in Section 3.2.1. As shown in Fig. 9, the perfor
mance variability of an organizational function is influenced by five 
intermediate nodes: organizational culture, organizational manage
ment, organizational resources, organizational structure, and external 
factors. Each of these intermediate nodes is determined by its respective 
parent nodes. Achieving a stable condition with a high probability re
quires all intermediate nodes to be in their most favourable states. This 
includes having a highly efficient organizational structure, sufficient 
and well-allocated resources, optimal organizational management 
practices, a rich and supportive organizational culture, and minimal 
impact from external factors. On the other hand, highly variable orga
nizational performance arises when the intermediate nodes are in their 
least favourable states. For instance, an inefficient structure, inadequate 
resources, poor management, a weak organizational culture, and sig
nificant external pressures collectively lead to increased variability in 
performance. This relationship underscores the importance of main
taining favourable conditions across all intermediate nodes to ensure 
organizational stability.

4.2.2. Technological functions
In a seaport, various types of machinery, equipment, and their 

Fig. 6. HTA for seaport activities.

Table 7 
Function description, characterization, and links.

Function Description Type Links

F1 Berth assignment 
and confirmation

Organizational F1(O)→F2(I)

F2 Initial Safety and 
Security Checks

Human F2(O)→F3(I)

F3 Unlashing of 
Containers

Human F3(O)→F4(I)

F4 Cargo Unloading 
Preparation

Organizational F4(O)→F5(I), F6(I)

F5 Quay crane 
operation

Technological F5(O)→F7(I)

F6 Quay crane 
operator

Human F6(O)→F5(C)

F7 Cargo Transport to 
Yard Storage

Technological F7(O)→F8(I), F9(I)

F8 Yard crane operator Human F8(O)→F9(C)
F9 Yard crane 

operation
Technological -

BG1 Vessel securely 
moored

Background 
function

BG1(O)→F2(P)

BG2 Port operations 
management

Background 
function

BG2(O)→F1(C), F2(C), F3 
(C), F7(C), F8(C), F9(C)

BG3 Berth assignment 
information

Background 
function

BG3(O)→F1(I)

BG4 Resource 
management

Background 
function

BG4(O)→ F1(R), F2(R), F3 
(R), F4(R), F5(R), F6(R), F7 
(R), F8(R), F9(R)
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components contribute to the activities of technological functions. To 
evaluate their internal variability performance, the corresponding BN 
for each technological function is developed based on the information 
and structures outlined in Section 3.2.2. Due to space constraints in the 
journal paper format, only the BN for quay cranes is presented in Fig. 10
to demonstrate the applicability of the proposed methodology. Quay 
cranes are widely regarded as the most important, valuable, costly, and 
complex components in a seaport. A seaport without them is often 
considered paralyzed, as they serve as the critical link between sea and 
land operations.

In the developed BN, maintenance effectiveness and material integ
rity are identified as the two key factors directly influencing equipment 
reliability. Greater levels of material integrity and maintenance effec
tiveness correspond to higher reliability. It is noteworthy that the 
operation of complex systems such as quay cranes often involves dy
namic processes that impact their structure and the reliability of their 
components over time. Given the critical importance of ensuring both 
safety and operational effectiveness, a shift from a two-state to a 
multistate approach in reliability analysis is warranted. This approach 
facilitates a more accurate assessment of their dependability and 

operational effectiveness. It also helps identify critical reliability 
thresholds, where exceeding these limits may fail to ensure the required 
level of operational effectiveness [53]. Therefore, the reliability is 
categorized into three states: high, moderate, and low, defined accord
ing to the specific characteristics of the component in question. For quay 
cranes, high reliability corresponds to a reliability level between 95 % 
and 100 %, moderate reliability falls between 85 % and 95 %, and low 
reliability is defined as below 85 % [21,47]. Availability is determined 
by three key factors: reliability, MTTR, and redundancy. Higher reli
ability and redundancy contribute to increased availability, while a 
shorter MTTR enhances availability by reducing equipment downtime. 
Technological performance variability depends on three factors: reli
ability, availability, and environmental conditions. The SVI is likely to 
remain stable with high probability if environmental conditions are 
stable and both reliability and availability are high. Other SVI states are 
assigned proportional values based on the probabilities of their parent 
states.

To illustrate the applicability of the methodology, prior probabilities 
were derived from historical records of the seaport under study, repre
senting its current status. As depicted in Fig. 10, the stable state of the 
technological function is assigned a probability of 68.8 %, while the 
remaining probabilities are distributed as follows: 22.7 % for the LV 
state, 6.7 % for the MV state, and 1.8 % for the HV state. These values 
reflect the system's realistic behaviour, highlighting the influence of 
various factors that create discrepancies between "work as imagined" 
and "work as done."

4.2.3. Human functions
To determine the SVI for human functions, the modified CREAM 

methodology outlined in Section 3.2.3 is employed. The process begins 
with developing the BN structure by identifying the main CPCs, their 
interdependencies, and incorporating calibrated CPCs. The leaf node in 
the network is represented as the CCM, which reflects human action 
status. The four well-known modes (strategic, tactical, opportunistic, 
and scrambled) are interpreted as ST, LV, MV, and HV, respectively. 
Fig. 11 illustrates the resulting BN for human functions.

Next, the rules governing the BN are organized using a belief struc
ture that accounts for all possible combinations of CPC states. These 
rules form the CPT for the developed BN. It is important to note that not 
all CPCs equally influence human performance variability. To address 
this, the AHP method is applied to determine appropriate weights for 
each CPC, tailored to the nature of tasks performed by humans in a 
seaport environment [122]. Table 9 presents a pairwise comparison 
matrix showing the weights for all nine CPCs. The consistency ratio, 

Table 8 
Functions aspects descriptions.

Function Output Input Pre-condition Control Resource

F1 Confirmation of berth 
assignment

Berth assignment 
information

- Port authority protocols Communication systems, Port 
staff

F2 Safety and security status 
report

Confirmation of berth 
assignment

Vessel securely moored Port security regulations Safety and security equipment, 
Personnel (security officers)

F3 Unlashed containers ready for 
unloading

Safety and security 
status report

- Unlashing protocols, Supervisor 
instructions

Unlashing tools, Personnel (dock 
workers)

F4 Instructions for crane 
operators, Updated cargo 
status

Unlashed containers - Port operations management, 
Communication from the vessel

Communication systems

F5 Cargo unloaded to dock Updated cargo status - Crane operator’s commands, 
Crane control system

Crane and fuel/power supply, 
Operator

F6 Crane operator’s commands Instructions for crane 
operators

- - Communication systems

F7 Cargo delivered to yard 
storage

Cargo unloaded to 
dock

- AGV control management system Transport vehicles (e.g., AGVs, 
trucks), Drivers and handlers

F8 Crane operator’s commands Cargo delivered to 
yard storage

Clear storage allocation 
instructions, Safety checks 
completed

- Communication systems

F9 Cargo properly placed in 
designated storage areas

Cargo delivered to 
yard storage

- Yard management system, 
Operator commands,

Crane and fuel/power supply, 
Operator

Fig. 7. The interacting hierarchical levels in seaport operations.
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calculated as 6.7E-3, confirms that the derived weights are logically 
consistent and represent a well-justified hierarchy of importance.

After determining the weights, the rules with their corresponding 
belief degrees are established following the instructions in Section 3.2.3. 
To illustrate the process, Rule 23326 is used as an example. This rule is 
defined by the set (S1,2, S2,2, S3,3, S4,3, S5,3, S6,3, S7,3, S8,4, S9,2), which 
corresponds to the effects (neutral, neutral, positive, positive, positive, 
positive, positive, positive, negative) based on the guidance in Table 5. 
Using Fig. 2, the following values are subsequently calculated: 

β+ ={(0.75, ST), (0.25, LV), (0, MV), (0, HV)}                                     

β- ={(0.38, ST), (0.62, LV), (0, MV), (0, HV)}                                      

Using the corresponding weights of CPCs with positive effects from 
Table 9, their sum, W+ is calculated as 0.83 
(=0.13+0.06+0.18+0.18+0.05+0.05). Conversely, W− showing the 
weights of negatively influencing CPCs, is 0.05, since QSO is the only 
CPC with negative effect in the given set. Having obtained the normal
ized values of W+ and W− , along with the corresponding β+ and β- values 
using the evidential reasoning algorithm implemented in IDS software 
[117], the final results for this combination of CPCs are determined as 
follows: 

β ={(0.745, ST), (0.255, LV), (0, MV), (0, HV)}                                   

In this manner, all the rules and their corresponding values are 
determined. Table 10 provides an example by showcasing nine of these 
rules, including the first three rows, three from the middle, and the last 
three rows.

In the subsequent step, prior probabilities for various CPC states are 
determined based on expert judgment. Three seasoned experts were 
asked to assess the performance variability of quay crane operators 

during a typical yet busy day at a seaport, taking into account potential 
disruptive scenarios. The experts with extensive experience in seaport 
operations are interviewed to provide their probabilistic assessments, 
assigning values between 0 % and 100 % to different states. These in
dividual judgments are then aggregated using DSET, yielding consoli
dated probabilities for each CPC state, as shown in Table C3 in Appendix 
C. These probability-based insights are incorporated into the BN as prior 
probabilities, while the rules and corresponding values in Table 10 serve 
as the CPT. To demonstrate the process, a sample calculation is provided 
as follows: 

P(CCM)=

∑3

i=1,j=1

∑4

i=2,j=1

∑3

i=3,j=1

∑3

i=4,j=1

∑3

i=5,j=1

∑3

i=6,j=1

∑3

i=7,j=1

∑4

i=8,j=1

∑4

i=9,j=1
P
(
CCM

/
Si,j
)
P
(
Si,j
)

(6) 

where P(CCM) represents the probability of performance variability in 
each of the four possible states, P(CCM/Si,j) denotes the conditional 
probability of CCM given Si,j, and P(Si,j) signifies the probability of 
specific states of a given CPC. Depending on the aggregated probabilities 
and their potential impact on performance variability, proportional 
rules are extracted from Table 10. In this case, referring to the states of 
each CPC and their corresponding values, 576 rules are derived, repre
senting various combinations of these states. By applying these rules and 
the values obtained from the aggregated expert judgments to the 
developed BN, the probabilities for the CCM states are calculated as 
follows: ST=0.005, LV=0.536, MV=0.459, and HV=0.000. These values 
suggest that, in the specified situation, the performance variability of the 
quay crane operator is more inclined toward low and moderate levels of 
variability.

Fig. 8. The FRAM model of typical activities conducted in a seaport.
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4.3. FRAM to BN mapping results

After determining the SVI values for each function in the previous 
sections, the next step is to adopt a holistic perspective on the 

variabilities within the entire model. To achieve this, the output of each 
upstream function is integrated as the input or other related aspects for 
downstream functions. For illustration, Fig. 12 highlights the output of 
Function 2. As shown, the input to Function 2 is derived from the output 

Fig. 9. The BN model for SVI assessment of organizational functions.

Fig. 10. The BN model for SVI assessment of technological functions.
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of Function 1, while other aspects of Function 2, along with its SVI, are 
represented as independent parent nodes in the developed BN. In this 
context, the noisy-max technique is utilized to calculate the CPT values 
for inter-functional relationships in the BN, as outlined in Section 3.3.2. 
The output performance variability of Function 2 results from the 
interaction of several factors: the input from Function 1, the SVI asso
ciated with Function 2, and the contributions of background functions 
BG1, BG2, and BG4, which serve as the precondition, control, and re
sources, respectively.

The values for background functions, which define the boundaries of 
the developed FRAM model, are derived using various methods dis
cussed in this paper. For BG1, representing the performance variability 
of mooring operations in a seaport, these values are determined from 
empirical data collected over several years. The ST state corresponds to 
all mooring operations that were conducted successfully and safely, 
adhering to the plan without any disruptions or noticeable variabilities. 
This state reflects the baseline performance where the operation pro
ceeds as expected. The LV state includes scenarios where minor dis
ruptions occurred, such as slight delays or minor deviations in precision. 
While these variabilities are noticeable, they do not significantly affect 
the overall operation or system performance. The MV state reflects sit
uations where variabilities begin to impact the system more substan
tially. Examples include delays significant enough to disrupt schedules 

Fig. 11. The BN model for SVI assessment of quay crane operator.

Table 9 
Deriving CPC weights using AHP method.

CPC TAC HMI APP COW NGC ATT CRS TCQ QSO Weight

TAC 1.00 5.00 2.00 4.00 1.50 1.50 5.00 5.00 5.00 0.25
HMI 0.20 1.00 0.33 1.00 0.25 0.25 1.00 1.00 1.00 0.05
APP 0.50 3.00 1.00 2.00 0.67 0.67 3.00 3.00 3.00 0.13
COW 0.25 1.00 0.50 1.00 0.33 0.33 0.50 1.50 1.50 0.06
NGC 4.00 4.00 1.50 3.00 1.00 1.00 4.00 4.00 4.00 0.18
ATT 0.67 4.00 1.50 3.00 1.00 1.00 4.00 4.00 4.00 0.18
CRS 0.20 1.00 0.33 2.00 0.25 0.25 1.00 1.00 1.00 0.05
TCQ 0.20 1.00 0.33 0.67 0.25 0.25 1.00 1.00 1.00 0.05
QSO 0.20 1.00 0.33 0.67 0.25 0.25 1.00 1.00 1.00 0.05

Table 10 
Rule-based CPT development for human function BN.

Rules CPC combinations (IF part) CCM belief degrees (THEN part)

1 S1,1, S2,1, S3,1, S4,1, S5,1, S6,1, S7,1, 
S8,1, S9,1

(0.000, ST, 0.000, LV, 0.000, MV, 
1.000, HV)

2 S1,2, S2,1, S3,1, S4,1, S5,1, S6,1, S7,1, 
S8,1, S9,1

(0.000, ST, 0.000, LV, 0.500, MV, 
0.500, HV)

3 S1,3, S2,1, S3,1, S4,1, S5,1, S6,1, S7,1, 
S8,1, S9,1

(0.000, ST, 0.030, LV, 0.561, MV, 
0.409, HV)

… … …
23326 S1,2, S2,2, S3,3, S4,3, S5,3, S6,3, S7,3, 

S8,4, S9,2

(0.745, ST, 0.255, LV, 0.000, MV, 
0.000, HV)

23327 S1,2, S2,2, S3,3, S4,3, S5,3, S6,3, S7,3, 
S8,4, S9,3

(0.750, ST, 0.250, LV, 0.000, MV, 
0.000, HV)

23328 S1,2, S2,2, S3,3, S4,3, S5,3, S6,3, S7,3, 
S8,4, S9,4

(1.000, ST, 0.000, LV, 0.000, MV, 
0.000, HV)

… … …
46654 S1,3, S2,4, S3,3, S4,3, S5,3, S6,3, S7,3, 

S8,4, S9,2

(0.998, ST, 0.002, LV, 0.000, MV, 
0.000, HV)

46655 S1,3, S2,4, S3,3, S4,3, S5,3, S6,3, S7,3, 
S8,4, S9,3

(1.000, ST, 0.000, LV, 0.000, MV, 
0.000, HV)

46656 S1,3, S2,4, S3,3, S4,3, S5,3, S6,3, S7,3, 
S8,4, S9,4

(1.000, ST, 0.000, LV, 0.000, MV, 
0.000, HV)
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or minor incidents that require corrective actions but do not escalate 
into major issues. The HV state represents conditions where variabilities 
cause critical disruptions to the operation. This includes severe delays, 
major accidents, or incidents that significantly compromise the safety, 
efficiency, or overall integrity of the mooring process. These states are 
attributed proportionally to the observed data, reflecting their frequency 
and impact on the system.

BG2 is an organizational function that encompasses a wide range of 
port management operations. Its role varies depending on the specific 
activities and requirements of the seaport, but it fundamentally oversees 
the overall management of the port by ensuring that operations are 
controlled, monitored, and efficiently coordinated. This function is 
critical for maintaining seamless day-to-day operations and adapting to 
the dynamic challenges of port environments. The variability in the 
performance of BG2 is analysed by modelling its behaviour using a BN 
framework. This modelling approach, as described in Section 3.2.1, 
provides insights into how different organizational factors and condi
tions influence the effectiveness of BG2, thereby supporting decision- 
making and performance optimization in seaport management.

BG4 represents the logistics management and resource allocation 
capabilities of a seaport, encompassing its ability to supply and 
distribute necessary resources to various operational activities. This 
function is pivotal in ensuring that each section of the seaport operates 
efficiently. However, resource allocation is not uniform across all ac
tivities and depends on factors such as the level of investment, the pri
orities of stakeholders, and the criticality of specific operations to the 
overall performance of the seaport. In a technical context, resource 
prioritization is particularly important for high-stakes operations. For 
instance, logistics support for critical assets like quay cranes should be 
robust and well-structured. Quay cranes are integral to loading and 
unloading cargo, and any disruption in their operation can lead to sig
nificant delays, increased costs, and ripple effects throughout the supply 
chain. In contrast, yard-side operations, while essential, may not require 
the same level of resource intensity or redundancy because their dis
ruptions, although impactful, are generally less immediate in their 
consequences. As a result, the output value of BG4 is expected to vary 
across different functions, reflecting the unique logistical demands and 
resource priorities associated with each operation. However, for 
simplicity in this research, the UVI for all BG4 elements is assigned the 
same value. After determining the performance variabilities of all 
background functions, which serve as inputs to the main model, and 
obtaining the SVI values for the foreground functions through the out
lined approaches, the main model can now be computed. This allows for 
analysing and monitoring the impact of upstream variabilities on 
downstream functions. It is important to note that a comprehensive 
dataset, encompassing both objective and subjective information, was 
collected from a specific seaport. However, due to confidentiality 

agreements, the name of this seaport cannot be disclosed.
Figs. 13, and 14 illustrate the performance variability values for all 

functions, including the SVI and UVI.

4.4. Criticality matrix development

Once the performance variability for each function is quantified, the 
next step is to identify critical functions and evaluate the system's overall 
weaknesses from a systemic perspective. To achieve this, the UVI values 
are assigned appropriate scores, as outlined in Section 3.3.3, to derive a 
unique representative value for each function. This process involves 
calculating the mean, standard deviation, and the lower and upper 
bounds of the variability.

To represent the variability probabilistically, it is assumed that these 
aggregate scores follow a normal distribution. This assumption is com
mon in probabilistic modelling, as the normal distribution effectively 
captures central tendencies (mean) and variability (standard deviation) 
[70]. Table 11 provides the representative output values for each 
function, reflecting the variability and its implications for the system. It 
is to be noted that the lower and upper bounds are determined at a 95 % 
confidence level through MCSs, utilizing 100,000 iterations for 
precision.

To assess the magnitude of variability in critical functions, their 
severity levels are also determined. However, accurately quantifying the 
magnitude of variability and its impact in terms of severity requires an 
independent study, as this step is crucial for understanding the conse
quential effects of disruptions in various elements of a CSTS. Given the 
scope of this study, we have relied on expert judgment to classify each 
function into three categories of severity: minor, moderate, and critical, 
as presented in Table 11.

Fig. 15 illustrates the criticality matrix, which maps functions to 
their appropriate positions within the matrix. In this framework, the 
vertical axis reflects performance variability, with evenly distributed 
boundaries defined by the nature of each function in the seaport context. 
The proposed matrix offers flexibility for adaptation based on user- 
specific requirements, enabling its application to diverse systems of 
interest.

The criticality analysis reveals that all functions fall into level B, 
indicating minor levels of variability. While these variabilities are 
relatively low, they still have the potential to contribute to negative 
resonance, especially when interacting with moderately variable or 
interconnected functions. Such interactions can propagate risks 
throughout the system.

According to Safety-II principle, variability at level B can be viewed 
as an asset, as it arises from the adaptive adjustments necessary for 
everyday operations. However, the criticality matrix utilizes mean 
values derived from variability distributions to categorize variability 

Fig. 12. BN model for UVI calculation in function 2.
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into three levels. To incorporate uncertainty into risk-based decision- 
making, the upper and lower bounds of variability scores can provide a 
more nuanced understanding of the confidence in the mean score's 
placement within the matrix. For instance, if the upper bound is 
considered and indicates higher criticality, it could flag functions for 
further investigation even when the mean suggests a lower criticality 
level. Using this approach, functions such as F2, F5, F6, F7, BG1, BG2, 
and BG4 would move to level C when upper bounds are applied. This 

shift indicates that these functions exceed acceptable thresholds and 
signal a need for immediate attention to mitigate the risk of negative 
resonance. As a practical example, if F7 (Cargo transport to yard stor
age) were to fall within the red zone of the criticality matrix, this would 
signal the need for immediate intervention by terminal logistics teams. 
In such a situation, additional trucks would be deployed to avoid delays 
in container movement to the yard. Without timely action, performance 
variability in this function could propagate upstream to the quayside, 
increase variability in quay crane operations, and ultimately elevate the 
probability of terminal-wide disruption. By allocating redundant 

Fig. 13. The SVI values.

Fig. 14. The UVI values.

Table 11 
The functions representative output values for resonance analysis.

Function Mean 
value

Standard 
deviation

Lower 
bound

Upper 
bound

Severity 
level

F1 1.930 0.570 0.812 3.048 Moderate
F2 1.930 0.515 0.921 2.939 Critical
F3 2.100 0.520 1.082 3.118 Moderate
F4 2.030 0.538 0.976 3.084 Moderate
F5 2.140 0.601 0.963 3.317 Critical
F6 2.300 0.574 1.174 3.426 Critical
F7 1.940 0.562 0.838 3.042 Moderate
F8 2.050 0.517 1.036 3.064 Moderate
F9 1.880 0.520 0.861 2.899 Moderate
BG1 1.935 0.644 0.673 3.197 Critical
BG2 1.970 0.513 0.965 2.975 Critical
BG3 1.614 0.565 0.507 2.721 Moderate
BG4 2.308 0.779 0.781 3.835 Critical

Fig. 15. The criticality matrix for identifying critical functions in reso
nance analysis.
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trucking capacity and addressing the issue at its source, variability can 
be contained, localized, and eliminated before it cascades into broader 
system instability. All in all, this approach rigorously prioritizes func
tions for safety countermeasures, emphasizing the need to reduce vari
ability in their outputs. Addressing these criticalities pre-emptively can 
prevent negative resonance and ensure system stability, particularly in 
downstream processes.

4.5. Model validation process

As outlined in Section 3.4, multiple approaches are employed to 
validate the proposed model and its findings. For the HTA and FRAM, 
the validation process involved consultation with seven experts, each 
possessing at least 15 years of experience in seaport operations. These 
experts, with minor revisions, confirmed that the activities represented 
in the HTA and subsequently modelled in the FRAM, along with their 
structures and interconnections, accurately reflect the most significant 
and realistic activities observed in practice. Additionally, the results 
were partially benchmarked against other studies [16,20,48,64,69,123]. 
However, identifying and aligning with similar studies for comparison 
proved challenging due to the limited availability of directly comparable 
research and the complexity of matching findings.

In addition to the previously mentioned methods, sensitivity analysis 
was performed to validate the BN models. This process involved two 
sequential steps. First, the developed BNs for SVI evaluation were ana
lysed as a partial validation of the overall model. Second, the FRAM- 
based BN models, which map the relationships between functions, 
were validated through sensitivity analysis. Using GeNIe software, a 
derivative-based sensitivity analysis was conducted, allowing the 
quantification of how changes in the BN’s parameters influence the 
target nodes by calculating their derivatives. In this approach, the 
software uses mathematical and numerical techniques to compute the 
derivative of the posterior probability distribution of each target node 
with respect to each parameter. For instance, if P(C/A) represents the 
probability of a child node C given a parent node A, the derivative value 
is obtained as ∂P(C)

∂P(A), which quantifies how P(C) changes when P(A) is 
adjusted. Larger derivatives signify that even minor changes in a 
parameter have a substantial impact on the target node. By comparing 
derivatives across various parameters, the most influential ones can be 
identified.

As shown in Table 12, the three highest derivatives were selected 
along with their associated nodes as examples. It is important to note 
that these selections are based on the ST state of the target node. In other 
words, by setting the target node’s state to ST, the most sensitive pa
rameters were identified. Additionally, the variation range of the leaf 
node’s ST state is reported, illustrating the span of possible values. For 
instance, within the technological function, setting environmental con
ditions to stable, MTTR to short, and ensuring an adequate level of 
redundancy is expected to contribute to the stability of performance 
variability. The interval values are centred around the original ST state 

values of the target node, fulfilling Principle 1 of sensitivity analysis.
To address Principle 2, the top three nodes, along with their relevant 

states, were subjected to a 10 % increase in their values to observe the 
combined effect on the target node. For human functions, since the 
initial values for these three top nodes were at their maximum (100 %), a 
10 % decrease was applied instead.

The results indicate that the posterior probabilities of the target node 
for technological, organizational, and F2 functions shifted favourably 
toward the ST state, resulting in a corresponding reduction in perfor
mance variability as the ST values increased. In contrast, for human 
functions, the posterior probabilities leaned toward greater performance 
variability, with an increase in the MV values. This demonstrates that 
the collective impact of changes in the selected nodes on the target 
node’s probabilities is consistently more significant than the impact of 
individual changes in each node, thereby validating Principle 2.

4.6. Implications

Based on the obtained results and the associated discussion, several 
implications can be drawn to support various seaport stakeholders, each 
benefiting from these insights from different operational and strategic 
perspectives, as outlined below: 

1) Immediate control through the prioritisation of “level C” 
functions.

When the upper confidence bounds of the UVI distributions are 
considered, seven elements, including F2 (Initial Safety and Security 
Checks), F5 (Quay crane operation), F6 (Quay crane operator), F7 
(Cargo Transport to Yard Storage), BG1 (Vessel securely moored), BG2 
(Port operations management) and BG4 (Resource management) 
migrate from a minor variability “B” zone to the critical “C” zone of the 
matrix. This shows that apparently “well-behaved” functions can 
become risk amplifiers once uncertainty is acknowledged, so early 
safeguards must focus on these nodes before local variation resonates 
through the wider seaport system. 

2) Operational stakeholders (pilots, berth masters, equipment 
maintainers).

F2 (cargo-handling coordination) and F5/F6 (quay-crane and yard 
operations) emerge as volatility hot-spots; actions such as dynamic berth 
planning and predictive maintenance will give the biggest risk-reduction 
pay-off. 

3) Strategic management (port authority and terminal operators).

BG1 (mooring practice) and BG2 (organisational control) highlight 
that managerial routines and safety culture are as variable as front-line 
work; leadership should institutionalise continuous monitoring and 
learning loops. 

Table 12 
The sensitivity analysis results.

Function Node State Interval Derivative Prior prob. Posterior prob. Performance variability

Organizational Authority gradient Balanced [0.258-0.419] 0.160 ST=0.38 LV=0.52 
MV=0.08 
HV=0.02

ST=0.43 LV=0.49 
MV=0.07 
HV=0.01

PV1=1.74 
PV2=1.66 
ΔP=-5 %

Span of control Balanced [0.258-0.419] 0.160
Communication effectiveness Adequate [0.255-0.410] 0.155

Technological Environmental condition Stable [0.483-0.820] 0.337 ST=0.69 LV=0.23 
MV=0.07 
HV=0.01

ST=0.75 LV=0.20 
MV=0.05 
HV=0.00

PV1=1.39 
PV2=1.30 
ΔP=-7 %

MTTR Short [0.582-0.729] 0.148
Redundancy Adequate [0.575-0.722] 0.146

Human QSO S9,4 [0.353-0.540] 0.192 ST=0.00 LV=0.54 
MV=0.46 
HV=0.00

ST=0.00 LV=0.45 
MV=0.55 
HV=0.00

PV1=2.46 
PV2=2.55 
ΔP=+4 %

APP S3,3 [0.378-0.540] 0.181
TAC S1,3 [0.404-0.540] 0.167

F2 Internal ST [0.165-0.173] 0.174 ST=0.17 LV=0.73 
MV=0.10 
HV=0.00

ST=0.22 LV=0.70 
MV=0.08 
HV=0.00

PV1=1.93 
PV2=1.86 
ΔP=-4 %

BG1 ST [0.164-0.172] 0.173
F1 ST [0.162-0.171] 0.172
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4) Logistics partners and investors.

BG4’s high variability underlines that resource-allocation policy (e. 
g., spare-part inventories, redundancy levels) directly drives systemic 
stability. 

5) Resource-allocation rules derived from sensitivity analysis.

Derivative-based sensitivity reveals that keeping environmental 
conditions stable, MTTR short and redundancy adequate produces 5-7 % 
shifts of the posterior toward the ST state for technological functions, 
whereas poor attention to these parameters moves human functions 
toward the MV state. This quantifies how marginal investment in 
redundancy or faster repair capability suppresses resonance potential 
system wide. 

6) Balancing Safety-II adaptability with resonance prevention.

Although most mean UVIs sit in the “beneficial variability” band 
(level B), the wide upper tails caution against complacency; variability is 
an asset only while resources exist to damp it. The integrated FRAM-BN 
model makes that trade-off explicit by letting analysts toggle between 
mean, lower- and upper-bound scenarios during what-if simulations. 

7) Methodological generalisation to other complex transport 
systems.

The quantitative FRAM-BN coupling used here aligns with the recent 
trend in maritime-risk science toward data-driven Bayesian networks 
combined with functional models [33,74,75,120].

It is noted that the proposed framework has been designed to address 
the inherent complexity of safety assessment in complex socio-technical 
systems through a Safety-II-oriented perspective. While seaport opera
tions were selected as the primary case study to demonstrate applica
bility and practical feasibility, the methodological structure is not 
domain specific. Owing to its modular design principles and emphasis on 
functional variability, the framework is readily generalisable to other 
complex sectors, such as aviation, rail, energy, and healthcare, where 
multi-actor interactions, dynamic operating environments, and emer
gent performance conditions similarly influence system resilience and 
safety outcomes. With appropriate contextualisation of system functions 
and domain-specific variables, these sectors can likewise adopt the 
framework to undertake systemic, performance-based Safety-II risk as
sessments. The applicability of this approach can be considered from 
two perspectives, reflecting both the commonalities and the sector- 
specific differences.

From a commonality perspective, these sectors share fundamental 
characteristics with maritime operations, including high interdepen
dence among human, technical, and organizational elements, reliance 
on continuous coordination between multiple agents, and the presence 
of tightly coupled subsystems where small performance variabilities can 
lead to potential negative resonances with significant system-wide 
consequences. In aviation and rail transport, as in seaports, opera
tional safety depends on synchronized human-machine interactions, 
adherence to procedural constraints, and resilience to unexpected dis
turbances. Similarly, healthcare systems exhibit comparable socio- 
technical complexity, where variability in human performance and 
resource constraints can critically affect outcomes. Thus, the frame
work’s focus on modelling functional variability and emergent behav
iour makes it well suited for analysing these domains.

From a uniqueness perspective, each sector exhibits distinct features 
that require contextual adaptation of the framework. For instance, 
aviation and rail industries often possess richer operational and safety 
data through advanced monitoring systems and regulatory reporting, 
which can reduce subjective bias in quantification of performance 
variability and improve the empirical grounding of probabilistic models. 

In contrast, healthcare environments are characterized by higher 
contextual diversity and limited standardization, meaning that qualita
tive judgment and expert elicitation remain essential for capturing 
functional dependencies and performance variability. Consequently, 
appropriate contextualization of system functions, data availability, and 
performance indicators will be essential when adapting the framework 
to each domain.

In summary, the proposed Safety-II-based framework provides a 
flexible foundation for systemic and performance-based risk assessment 
across diverse complex socio-technical sectors. Its modular architecture 
allows for both cross-domain generalization and domain-specific cus
tomization, ensuring its applicability to different CSTS.

5. Conclusions

In this study, a novel systemic risk assessment approach is designed 
to capture the dynamic interactions among the various elements of a 
seaport. Performance variability is acknowledged as a distinctive 
framework for expressing and understanding the interdependencies 
between diverse functions. The FRAM serves as the foundational 
component of the approach, enabling the visualization of real-world 
relationships between activities, referred to as functions, within a 
seaport context. To enhance FRAM's capability for quantitative analysis, 
it is integrated with BN, allowing consideration of both internal and 
external factors that may influence individual functions. The proposed 
methodology builds upon the principles of the Safety-II concept, 
emphasizing a functional safety perspective. The outcomes of the study 
and the application of the framework provide deeper insights into sys
tem dynamics and offer more practical, versatile strategies for 
improving overall system safety.

Given the obtained results, insights, and implications, this study 
makes several significant contributions, as follows: 

1) Holistic analysis of CSTS elements: Technological, human, and 
organizational functions within the CSTS are analysed to evaluate 
their internal and external performance variabilities, considering 
factors such as operational uncertainties, environmental conditions, 
and human performance fluctuations.

2) Function interactions: Interactions between functions are systemat
ically analysed to track upstream-downstream performance vari
ability, assessing their impacts on the overall system. This approach 
highlights critical dependencies and emergent behaviours.

3) Comprehensive risk analysis: The framework supports both retro
spective and prospective evaluations of performance variability, 
providing actionable insights for addressing risks effectively.

4) Enhanced decision-making: By quantifying and visualizing perfor
mance variabilities, the framework enables risk-based decision- 
making, helping prioritize interventions and implement targeted risk 
management measures.

This integrated approach provides a solid foundation for under
standing and mitigating systemic risks in complex socio-technical sys
tem environments. Nevertheless, while the framework demonstrates 
strong potential for comprehensive systemic risk assessment, several 
limitations and avenues for future enhancement remain.

First, the FRAM model development was based on expert knowledge 
and focused on key operational functions. As system size and complexity 
grow, the number of functions and their interdependencies may expand 
significantly, making manual modelling increasingly demanding and 
time-consuming. Future research could integrate machine-learning- 
assisted techniques, such as those informed by HTA analysis, to sup
port automated function identification and coupling detection. These 
techniques would serve as an advisory tool to assist experts, thereby 
improving scalability and modelling efficiency while preserving domain 
oversight. Second, limited availability of empirical data for human and 
organisational functions necessitated reliance on expert judgment. 
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Although expert elicitation remains a widely accepted practice in com
plex socio-technical analyses where datasets are scarce, this reliance 
may introduce subjectivity and uncertainty. In particular, access to 
verifiable performance-related information for organisational functions 
is often constrained, as managers and policymakers may be reluctant to 
critically examine or disclose internal performance practices. Conse
quently, unlike technological functions, where structured monitoring 
and measurable performance data are routinely available, organisa
tional and human performance data remain largely qualitative and 
under-reported. Furthermore, while certain industries such as nuclear 
energy sector have established quantitative data collection frameworks 
for human reliability, similar systematic mechanisms are still emerging 
within the maritime sector, especially for capturing performance vari
ability rather than traditional error-based measures. To address these 
gaps, future works should focus on developing structured platforms for 
continuous collection and documentation of operational performance 
data, covering both routine and non-routine conditions. Such efforts 
would reduce reliance on subjective input, enhance traceability, and 
enable more robust, data-driven modelling of human and organisational 
variability.
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Appendix A

Regarding the application of modified CREAM methodology to assess the SVI of human functions in step 3 the following example is brought up here 
to clarify the procedure. Let’s say, in rule number k, out of the nine CPCs, four have positive effects, three have negative effects, and two have neutral 
effects. Referring to the vertical axis of the diagram, which corresponds to the value four, and examining the shares of the slots associated with 
different, it is evident that there is one block for "strategic", five blocks for "tactical", and none for the other CCMs. Based on this, β+ is estimated as: 

β+ ={(0.17,CCM1), (0.73,CCM2), (0, CCM3), (0,CCM4)}                                                                                                                                        
Similarly, using the horizontal axis of the diagram and identifying the value three, two blocks are observed for "opportunistic", five blocks for "tactical", 
and none for the other CCMs. Consequently, β- is calculated as: 

β- ={(0,CCM1), (0.71,CCM2), (0.29, CCM3), (0,CCM4)}                                                                                                                                         
It should be emphasized that the "neutral" effect does not contribute to the integrated result, as it has already been accounted for in the uncertainty, 
and its belief degree is therefore excluded from the process.

Once the positive and negative belief degrees are determined, and the weights derived using the AHP approach are incorporated, evidential 
reasoning is employed to synthesize this information. This process delivers the final combined belief degree for each CCM.

Appendix B

Regarding the DSET approach, let’s consider a set of n mutually exclusive and exhaustive propositions, referred to in this context as the BN states, 
Ω={X0, X1,…, Xn}. This set Ω is called the frame of discernment.

The power set, denoted 2Ω, includes all possible subsets of Ω, including the empty set (∅) and Ω itself. For a frame Ω={X0, X1}, the power set is: 
2Ω={∅,{X0, X1, X0, X1}}. In general, for n elements in Ω, 2n subsets are formed.

DSET comprises three vital functions: the Basic Probability Assignment (BPA), the Belief Function (BEL), and Plausibility Function (PL). BPA, 
denoted as m(A), assigns a mass of probability to a subset A of the frame of discernment Ω, where A∈Ω.

The following rules are applied: The mass of the empty set is always zero: m(∅)=0, and the sum of all masses over 2Ω is 1, which is illustrated as 
∑

A∈Ωm(A) = 1. A is referred to as a focal element if m(A)˃0 and m(A) represents the extent to which the evidence supports the proposition A.
Continuing, the BEL serves as the lower bound of the probability interval, while the PL acts as the upper bound. They are defined as follows: 

BEL (X) =
∑

P⊆X

∏

1≤i≤n
mi(Pi) (B1) 

PL(X) = 1 − BEL(X) (B2) 
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where P is the proper subset of the set of interest (X), i is the number of beliefs, and X signifies the complement of X, indicating that the belief is 
governed by the principle that the total basic probability BPA must equal 1.

When multiple pieces of evidence from different sources are presented, the fusion of beliefs is determined by the combination rule of DSET as 
follows: 

m(A) = m1(A) ⊕ m2(A)...mn(A) =
∑

B∩C∩...Z=Am1(B)m2(C)...mn(Z)
1 − K

(B3) 

when A∕=Ø, m(Ø)=0, and where, 

K =
∑

B∩C∩...Z=Ø
m1(B)m2(C)...mn(Z) (B4) 

K represents the level of conflict between the pieces of evidence, with K=0 indicating no conflict and K=1 signifying complete contradiction between 
the evidence.

Appendix C

Table C1 
Symbols and definitions used in the proposed methodology.

Symbol Description

ST Stable conditions, no variability
LV Low variability
MV Moderate variability
HV High variability
CPT Conditional Probability Table
CPC Common Performance Condition
P(C/R) Conditional probability of child node state Cgiven parent node state R
P(CCM) Probability of performance variability in terms of Contextual Control Mode
Si,j The state of CPC i and number j
P(Si,j) Probability of specific states of a given common performance condition
P(CCM/Si,j) Conditional probability of performance variability given a CPC states
∂P(C)
∂P(A)

The derivative value of child node C given a parent node A

MTTF Mean Time To Failure
MTTR Mean Time To Repair
SVI Self-contained Variability Index
UVI Upstream Variability Index
β+ Belief degrees with positive effect
β- Belief degrees with negative effect
В Combinatory belief degrees
W+ The corresponding weights of CPCs with positive effects
W− The corresponding weights of CPCs with negative effects
Fi Foreground function number i
BGi Background function number i

Table C2 
The expert’s profile and their related experience and expertise.

Number Title Educational 
level

Experience 
(years)

Location Specialization

1 General Manager MSc 20 Iran Port master planning; concession/PPP contract management; stakeholder engagement; 
ESG & sustainability; business continuity & resilience.

2 Operations Manager MSc 15 Iran Berth planning & vessel scheduling; quay-crane assignment; yard planning & resource 
optimization; stowage coordination with shipping lines.

3 Operations Manager Ph.D 12 Canada Container terminal management; stevedoring planning; turnaround-time optimization.
4 HSE Director Ph.D 10 Belgium ISO 45001/14001 systems; HAZID/HAZOP/JSA risk assessment; emergency response 

& oil-spill (ICS) planning; contractor HSE auditing.
5 Harbour Master MSc 18 USA VTS & navigational safety; pilotage & towage coordination; mooring/lines safety; ISPS 

drills & security interface; incident investigation & root-cause analysis.
6 Port Planning MSc 16 UK Berth/yard capacity modelling; approach-channel design & navigational risk; asset 

management (PIANC/ICE standards).
7 Terminal Systems & 

Automation Manager
MSc 14 Australia TOS configuration; yard optimization & equipment dispatching (ASC/RTG/AGV); EDI/ 

port community systems; operational analytics & dashboarding.
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Table C3 
CPC estimates based on expert elicitation.

CPC States Expert 1 Expert 2 Expert 3 Aggregated value Effects on performance variability

TAC S1,1 0.00 0.00 0.00 0.0000 Negative
S1,2 0.10 0.15 0.10 0.0022 Neutral
S1,3 0.90 0.85 0.90 0.9978 Positive

HMI S2,1 0.00 0.00 0.00 0.0000 Negative
S2,2 0.10 0.00 0.05 0.0000 Neutral
S2,3 0.75 0.80 0.85 0.9941 Neutral
S2,4 0.15 0.20 0.10 0.0059 Positive

APP S3,1 0.00 0.00 0.00 0.0000 Negative
S3,2 0.10 0.00 0.05 0.0000 Neutral
S3,3 0.90 1.00 0.95 1.0000 Positive

COW S4,1 0.35 0.25 0.30 0.0714 Negative
S4,2 0.65 0.75 0.70 0.9286 Neutral
S4,3 0.00 0.00 0.00 0.0000 Positive

NGC S5,1 0.25 0.10 0.20 0.0092 Negative
S5,2 0.75 0.90 0.80 0.9908 Neutral
S5,3 0.00 0.00 0.00 0.0000 Positive

ATT S6,1 0.30 0.30 0.20 0.0542 Negative
S6,2 0.70 0.60 0.75 0.9458 Neutral
S6,3 0.00 0.10 0.05 0.0000 Positive

CRS S7,1 0.05 0.05 0.10 0.0007 Negative
S7,2 0.70 0.75 0.75 0.9806 Neutral
S7,3 0.25 0.20 0.15 0.0187 Positive

TCQ S8,1 0.00 0.00 0.00 0.0000 Negative
S8,2 0.15 0.10 0.10 0.0030 Neutral
S8,3 0.80 0.75 0.85 0.9963 Neutral
S8,4 0.05 0.15 0.05 0.0007 Positive

QSO S9,1 0.05 0.00 0.05 0.0000 Negative
S9,2 0.25 0.30 0.35 0.0819 Negative
S9,3 0.70 0.70 0.60 0.9181 Neutral
S9,4 0.00 0.00 0.00 0.0000 Positive

Data availability

The authors do not have permission to share data.
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