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Modern complex socio-technical systems demand systemic risk analysis approaches that can holistically address
the interdependencies between human, technological, and organizational components. Traditional models often
fall short in capturing the dynamic and emergent nature of these interactions. This study introduces a novel,
integrated risk analysis framework grounded in the Safety-II paradigm, which emphasizes understanding how
systems succeed under varying conditions rather than focusing solely on failure. The proposed methodology
combines the Functional Resonance Analysis Method (FRAM) with Bayesian Networks to overcome FRAM’s
qualitative limitations and enable quantitative assessment of performance variability. The framework is further
enriched by integrating complementary techniques, including Monte Carlo Simulation and canonical probabi-
listic models. This holistic toolkit enables a rigorous and scalable approach for modelling uncertainty and sys-
temic variability across complex operational environments. The methodology is demonstrated through a case
study of seaport operations, a representative example of a complex socio-technical system. The results show that
the integrated Safety-II-informed framework improves the quantification of systemic risk and enhances the ca-

pacity to manage complexity and uncertainty in real-world settings.

1. Introduction

Complex Socio-Technical Systems (CSTS) are defined by tightly
interconnected structures, unpredictable workflows, non-linear opera-
tions, and intricate interactions among their elements. These systems
encompass the interplay of human, technological, and environmental
factors within an organizational context [5,6,46]. Traditional risk
analysis methods, such as fault tree analysis, event tree analysis, and
probabilistic safety assessment, are primarily grounded in the Safety-I
paradigm. These approaches operate on several foundational assump-
tions: systems can be decomposed into simpler components; their
functioning is categorized as either successful or failed; risk analysis
depends on predefined cause-and-effect relationships; and event se-
quences are assumed to be linear. While this methodology proved
effective for purely technological systems and was widely applied in
critical industries such as chemical, nuclear, and aviation during the
20th century, its limitations became apparent when dealing with CSTS
[4,72].
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Safety-I philosophy, rooted in traditional thinking, struggles to
accommodate the dynamic, nonlinear, and emergent nature of modern
systems, making its continued application in the 21st century increas-
ingly questionable [44]. To address these limitations, a new paradigm
known as Safety-II has emerged. Rather than focusing solely on the
prevention of failures, Safety-II emphasizes ensuring that “as many
things as possible go right.” This approach adopts a proactive stance,
recognizing the adaptability of human operators and underscoring the
importance of monitoring everyday performance variability as a means
of sustaining system safety.

Over the past decade, this paradigm has sparked extensive discussion
among researchers, who have both supported and critiqued its under-
lying philosophy; a detailed exploration of which lies beyond the scope
of this study [4,18,41,65,94]. However, the research trend indicates that
the Safety-II concept has gained significant traction, with scholars from
various disciplines incorporating it into their studies. Applications span
diverse fields, including maritime operations [1,95,109], energy sys-
tems [98], aviation [119], chemical industry [124], construction [65,
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66], transportation [82,110], and nuclear power plants [35,83].

Despite the growing conceptual appeal of the Safety-II concept across
domains, efforts to translate its principles into repeatable, decision-
oriented analyses for CSTS remain fragmented. Existing operationali-
sations tend to be either qualitative (e.g., mapping work-as-done,
identifying functional dependencies, and general recommendations to
improve safety) or narrowly quantitative (e.g., indicator scoring or
isolated simulations), often without a formal mechanism to represent
everyday performance variability, propagate its effects through inter-
dependent functions, and address uncertainty in a transparent way.

Recent advances over the past years have sought to address this gap
by proposing semi-quantitative and quantitative approaches in which
Functional Resonance Analysis Method (FRAM) serves as the central
modelling framework. These efforts include the use of Monte Carlo
sampling and explicit propagation rules to characterise upstream-
downstream variability within FRAM models [52,85], as well as the
integration of FRAM with BNs or dynamic BNs [93,126]. Such combi-
nations provide a principled calculus for fusing heterogeneous evidence,
updating beliefs, and supporting diagnostic and prognostic reasoning in
interdependent systems. Collectively, these developments have paved
the way toward more rigorous operationalisation of the Safety-II
concept in CSTS. However, existing studies still have limitations, in
which some concentrate on modelling functional interactions while
overlooking internal and external variabilities within individual func-
tions, whereas others emphasise these variabilities but fail to capture the
dynamic interplay between functions.

To address these gaps, this paper proposes an integrated framework
for systemic risk analysis within the context of CSTS, aligning with the
principles of the Safety-II concept. The novel methodology integrates
FRAM and BN with advanced analytical tools, including Monte Carlo
Simulation (MCS), canonical probabilistic methods, Dempster-Shafer
theory, and criticality matrix. The key contributions of this study can
be summarized as follows:

1) Comprehensive analysis of CSTS elements: Each element of the CSTS,
including technological, human, and organizational functions, is
analysed to assess their internal and external performance variabil-
ities. These variabilities account for factors such as operational un-
certainties, environmental conditions, and human performance
fluctuations.

Interaction between functions: The interactions among related
functions are systematically examined to identify and track their
upstream-downstream performance variability. This includes
assessing their potential impacts, either negative, damping, or even
positive on the entire system. Such an analysis helps to highlight
critical dependencies and emergent behaviours within the system.
Retrospective and prospective risk analysis: The proposed frame-
work enables both retrospective and prospective evaluations of the
performance variability. This dual perspective equips decision-
makers with actionable insights to address risks effectively.
Support for risk-based decision-making: By quantifying and visual-
izing variabilities across the CSTS, the framework empowers
decision-makers to prioritize interventions and implement targeted
measures to manage identified risks.
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The remainder of this paper is structured as follows: Section 2 pro-
vides a concise literature review on CSTS, the application of the Safety-II
concept, outlining the methodologies currently applied in CSTS and
highlighting the identified research gaps. Section 3 presents a detailed
discussion of the adopted methodology, with an in-depth explanation of
the various techniques employed. Section 4 demonstrates the applica-
tion of the proposed methodology to seaport operations and includes a
discussion of the results and their interpretation. Finally, Section 5
summarizes the key insights derived from this study and formulates the
conclusions.
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2. Literature review
2.1. Systemic risk analysis of complex socio-technical systems

As previously noted, CSTS are networked configurations of in-
dividuals, technologies, rules, and environments whose behaviour
emerges from numerous non-linear interactions rather than from any
single component. Within such systems, accidents frequently originate
from mismatches, tight couplings, and feedback across organisational,
human, and technical layers, rather than solely from component failure
or human error. Systemic risk analysis perspectives emphasise that
safety performance depends on how constraints are specified, imple-
mented, and monitored throughout the entire system structure, and that
adverse outcomes may arise from otherwise normal local variability
when influenced by goal conflicts and resource pressures [57].

This inherent complexity underscores the relevance of the Safety-II
perspective, which focuses on understanding how work typically suc-
ceeds despite performance variability. Safety-II recognises that the same
adaptations that enable successful outcomes can, under certain cir-
cumstances, interact to produce failure. By shifting the analytical focus
toward everyday performance, operational trade-offs, and resilience
capacities, Safety-II provides a more robust foundation for systemic risk
analysis and for designing systems that remain tolerant and adaptive in
the face of variability [94].

In this regard, efforts have been made to introduce techniques for
systemic risk analysis, including the Function Analysis System Tech-
nique (FAST), the Structured Analysis and Design Technique (SADT),
the Systematic Human Error Reduction and Prediction Approach
(SHERPA), the Accident Causation Analysis and Taxonomy (ACAT), the
Systems Theoretic Accident Model and Processes (STAMP), and the
FRAM. Table 1 presents a concise comparative analysis of these
methods, highlighting their respective strengths and limitations in the
context of CSTS risk analysis.

2.2. FRAM application

Among the above-mentioned techniques, the FRAM has gained sig-
nificant popularity for systemic risk analysis in CSTS due to several
compelling advantages. Unlike traditional methods, FRAM avoids
decomposing systems into individual components and operates inde-
pendently of cause-effect analysis, aligning seamlessly with the princi-
ples of the Safety-II paradigm. Furthermore, it identifies the various
elements of a CSTS (Human, technological, and organizational factors)
and addresses them holistically while accounting for their interactions
and interdependencies. Additionally, FRAM enables detailed monitoring
and analysis of the performance variability of each function, its influ-
ence on downstream functions, and its overall impact on the entire
system. FRAM models CSTS by focusing on the functions that describe
what the system does, rather than its physical components or organ-
isational structure. Each function is depicted as a hexagon with six as-
pects, including Input, Output, Preconditions, Resources, Control, and
Time that define its behaviour and interaction with other functions.
Couplings between functions are represented by arrows, indicating how
the output of one function can influence the input, control, or resource
requirements of another. Variability emerging in any function may
propagate through these couplings, and this functional interaction
structure forms the basis for analysing the performance variability.

The four main principles of FRAM can be summarized as follows
[27]: First, the nature of success and failure is equivalent; in other
words, everyday work variability determines whether outcomes are
positive or negative. Second, individuals and organizations must make
ongoing, often approximate, adjustments to adapt to changing condi-
tions. Third, outcomes both positive and negative of a CSTS emerge from
interactions among multiple system functions rather than from indi-
vidual components alone, meaning outcomes cannot be traced directly
to isolated causes. Fourth, functional resonance refers to the



M. Mohsendokht et al.

Table 1
Comparative overview of systemic risk analysis methods.

Method Analytical Advantages Limitations Key
Focus / References
Application
Domain

FAST Employed Promotes Outcomes are [9]
primarily in function- highly
engineering oriented rather dependent on
design and than component-  facilitator
value analysis based thinking. expertise.
to map Facilitates Provides only
functional logic ~ stakeholder static
(“how” and engagement and representations;

“why”) creative limited capacity

between system  exploration of to model

elements. alternatives. temporal or
emergent
behaviours.

SADT Utilized for Offers a Inflexible in [3]
hierarchical standardized, dynamic or
decomposition formalized rapidly evolving
of system framework for environments.
functions, system Lacks constructs
specifying modelling and for sequencing
inputs, outputs, documentation. or dynamic
controls, and Enhances interactions;
mechanisms in communication models may
structured among become complex
diagrams. interdisciplinary and unwieldy.

teams.

SHERPA  Designed to Systematic Requires [105,13]
identify and prediction of comprehensive
classify error modes with  task
potential direct links to decomposition
human errors remedial actions.  in advance.
based on task Supports Resource-
analysis within targeted safety intensive and
complex interventions time-consuming
systems. and human to implement at

factors scale.
engineering

ACAT Focused on Provides a Primarily [59]
classifying and comprehensive retrospective in
analysing taxonomy for nature; limited
causal factors multi- use for
in past dimensional prospective risk
accidents accident assessment.
across analysis. Requires
technical, Enables domain-specific
human, systematic adaptation.
managerial, tracing of failure
and paths
environmental
domains.

STAMP Conceptualizes Captures unsafe Requires [14,106]
accidents as interactions and substantial
results of emergent risks in  conceptual
inadequate complex understanding
control and adaptive and modelling
feedback systems. effort.
within socio- Supports high- Predominantly
technical level modelling qualitative;
systems, of safety quantitative
grounded in constraints and extensions
systems theory. control remain limited

structures

FRAM Models - Well-aligned - Model [27,125]
complex socio- with the Safety-II  development is
technical paradigm; resource-
systems by captures both intensive and
examining how  successful and requires deep
functional adverse system
performance outcomes. understanding.
variability - Explicitly - Quantitative
propagates and models applications are

interactions evolving but not
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Table 1 (continued)

Method Analytical Advantages Limitations Key
Focus / References
Application
Domain
interacts over among human, yet
time. technical, and standardized.

organizational
elements.

- Enables
dynamic
assessment of
functional

resonance and
emergent risks.

amplification of normal function variability due to unexpected in-
teractions. It emphasizes the importance of identifying areas where such
resonances may occur, as they can lead to significant system-wide
consequences.

Despite its many advantages, the FRAM remains primarily a quali-
tative approach, lacking the capability to provide quantitative mea-
surements for interpreting performance variability. This limitation is
widely recognized as a significant drawback. To address this issue, re-
searchers have investigated various approaches to enhancing FRAM by
incorporating standardized and quantitative techniques. One of the
earliest efforts in this direction was undertaken by Rosa et al [99], who
combined FRAM with the Analytical Hierarchy Process (AHP) to
generate numerical rankings. Patriarca et al [85] introduced an inno-
vative semi-quantitative FRAM-based approach by integrating it with
MCS, enabling the representation of performance variability as discrete
probability distributions. The integration of fuzzy logic theory with
FRAM has also been proposed in multiple studies, offering another
pathway to quantification [39,40,102]. In their work, Lee and Chung
[56] developed a method to quantify Human-System Interaction (HSI)
variability and assess criticality using a semi-quantitative FRAM process.

More advanced techniques have emerged in recent years, including
the integration of machine learning and data-driven approaches with
FRAM, which have been applied across various domains. BNs have also
been explored as a powerful probabilistic tool for quantifying FRAM. For
instance, Zarei et al [126] developed a causation model based on FRAM,
which they incorporated into a dynamic BN to analyse internal and
external performance variability, referred to as uncoupled variability,
within the petrochemical industry. In maritime operations, Guo et al
[33] proposed a similar approach, further enhanced by embedding a
Markov model to analyse the evolution of collision risk during ship
pilotage. These advancements demonstrate the growing efforts to inte-
grate qualitative and quantitative analyses in FRAM applications [111,
120,121,127].

2.3. Research gaps

Following a comprehensive review of the current literature, a
recurring critique highlights the lack of a systematic framework for
improving safety performance that effectively integrates both qualita-
tive and quantitative approaches. Qualitative approaches, while valu-
able for conceptual exploration, frequently lack systematic and
quantifiable measures. These approaches often focus on describing the
contrast between work-as-imagined and work-as-done, mapping func-
tional dependencies, and providing general recommendations for
improvement, but rarely progress toward measurable, evidence-based
interventions.

Quantitative approaches, on the other hand, also exhibit notable
limitations. Some studies prioritise modelling functional interactions
but neglect internal and external variabilities within individual func-
tions. Others emphasise characterising such variabilities yet fail to
adequately capture the dynamic interdependencies among functions. In
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the first case, functions are frequently treated as nodes with fixed or
weakly varying parameters, under-representing internal variability (e.
g., workload, expertise drift, equipment degradation) and external
variability (e.g., demand surges, environmental conditions, regulatory
or organisational changes). As a result, resonance pathways are
computed over unrealistically stable functions, with uncertainty
addressed through ad hoc sensitivity ranges rather than systematic
propagation techniques. In the second case, although intra-function
variability is richly characterised, functional couplings are simplified
or omitted. Outputs are often aggregated into single indices, temporal
dynamics are suppressed, and dependencies are assumed independent.
This prevents the transmission of cross-scale feedback, buffering effects,
and transient accumulations through the functional network. Addi-
tionally, the use of static or scenario-specific parameterisation and
limited evidence fusion or validation further restricts robust prospective
“what-if” analysis.

A more holistic methodology is therefore required which could
retain FRAM’s functional topology, embeds stochastic and state-
dependent models for each function, and employs a probabilistic prop-
agation engine to fully operationalise the principles of Safety-II in CSTS.
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The methodology proposed in this study seeks to address these gaps, as
detailed in the following sections.

3. Methodology

This section proposes a novel systemic risk analysis methodology
based on a hybrid approach combining FRAM and BN, representing
three key elements of CSTS: technological, human, and organizational
functions. FRAM is utilized to describe the complex interrelationships
among various functions, while BN enables the quantitative analysis of
this complexity. Fig. 1 illustrates the overall methodology, structured
into four consecutive phases.

e Phase 1: Based on Hierarchical Task Analysis (HTA) and the princi-
ples of FRAM, the functions, associated variabilities, and couplings
between functions are identified, leading to the construction of the
final FRAM model.

e Phase 2: Each function is represented as either a technological,
human, or organizational function. The internal variability within
each function is modelled using a BN, in which the interrelationships

Phase 1: FRAM modeling

FRAM Model
Development

Hierarchical
Task Analysis

=

Couplings
Identifications

Critical Task
Identification

Phase 3: FRAM & BN Integration

Mapping
FRAM to BN

Obtaining the
Prior Probabilities

Noisy-Max

Based CPT »  Model Validation

| >

Phase 2: Internal variability quantification

Function Internal Variability
Categorization Determination
BN Structure
Learning
Organizational Technological
RIF identification RIF identification

- Structural

- Resources - Safety oriented

- Management - Material integrity

- Cultural - Operational context
- External factors

v

. <

Human reliability through CREAM methodology

- Definition of common performance conditions and variables
- Rules etablishment for connecting CPCs to CCMs

- Assigning belief degrees to CCMs based on CPCs influence
- BN inference process and validation

v

Negative/Damping Resonance Identification

Recommendations & Feedback [

Phase 4: Model Interpretation

" Critical Functions Identification

Insights & Implications

Fig. 1. The Conceptual structure of the developed methodology.
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amonyg its internal contributing factors are defined both qualitatively
and quantitatively.

Phase 3: The FRAM, serving as the primary model, is integrated with
the BN to represent variability, incorporating prior probabilities,
conditional probability tables, and model validation.

Phase 4: The model is interpreted by identifying resonances, whether
negative or damping, recognizing critical functions through moni-
toring interactions between them, detecting resonant patterns, and
ultimately extracting insights and implications.

3.1. FRAM modelling

In the first phase, an HTA is developed to better understand the ac-
tivities within the process under study and to provide a general overview
of its tasks. The hierarchical structure of HTA enables detailed analysis
of specific tasks and helps clarify the relationships among them. HTA has
been extensively described in prior research [100,104]. Once the HTA is
developed, key functions are identified and selected for further analysis
through FRAM modelling. FRAM is employed to qualitatively analyse
the effective operation of a CSTS.

Based on the principles of FRAM discussed earlier, the model can be
constructed by the following steps outlined below:

1) Identification of functions: The results from the HTA inform the
FRAM construction. Activities that significantly contribute to the
overall process are identified as candidate functions.

2) Definition of aspects: Each function is characterized by six aspects:
input, output, resource, pre-condition, control, and time.

3) Determination of couplings: By understanding the flow of informa-
tion or resources within the system, links between different aspects
of various functions are identified, allowing for visualization of in-
terdependencies among functions.

4) Identification of variabilities: Function variability refers to de-
viations in a function’s output caused by factors from internal,
external, or upstream functions.

Once the FRAM structure is constructed, each function can be
characterized by potential performance variabilities. In FRAM model-
ling, three types of variability are considered: (1) Internal variability:
which originates from factors within the function itself, such as staff
training levels and equipment maintenance schedules; (2) External
variability: which is driven by external factors like weather conditions,
geopolitical events, market demands, and security issues; (3) Upstream
Variability Index (UVI), which captures the effects of interdependencies
with upstream functions that affect downstream functions, such as the
impact of container unloading efficiency and speed on the subsequent
transport accuracy and timing to yard storage in a seaport. In this paper,
the first two variabilities are referred to as Self-contained Variability
Index (SVI), which pertains to performance fluctuations caused by in-
ternal and external factors that do not arise from interactions between
system functions.

These variabilities, interpreted as abnormal daily fluctuations,
manifest in different ways, known as phenotypes, according to Erik [27].
Phenotypes may include aspects such as timing, precision, speed, dis-
tance, force, duration, and direction. Depending on the nature of the
analysis, a suitable combination of these phenotypes is chosen for FRAM
analysis. In this paper, timing and precision are selected to represent the
performance variability of the functions. Timing represents the punc-
tuality of activities being conducted. The output of a function may occur
too early, on time, late, or in the worst case, missed which means it
arrives too late to be useful for its intended purpose or is not produced at
all [51]. Regarding precision, an output can be accurate, satisfactory,
inaccurate, or, in the worst case, faulty. From a systemic perspective,
performance variability arises from local adjustments made to meet
performance demands and ensure the functioning of a CSTS. To conduct
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a meaningful analysis, it is essential to evaluate the potential variability
of each function. Therefore, a unified representation of performance
variability is needed, enabling an aggregated view across different types
of functions. To this end, integrating these two phenotypes not only
provides a unified language for describing performance variability
among functions but also facilitates the interpretation of interactions
between these functions [30,102,129]. Table 2 presents the results of
this integration using four qualitative scales: stable (ST), low variable
(LV), moderately variable (MV), and highly variable (HV).

In this context, "ST" performance is achieved when activities are both
timely and accurate, indicating no variability and reliable outcomes. It is
the only case where "work as imagined" corresponds exactly to "work as
done". "LV" describes situations where performance may show slight
deviations but remains satisfactory, being either timely or accurate.
"MV" occurs when inaccuracies or delays begin to affect performance,
though it remains functional. "HV" represents significant deviation, with
outputs frequently delayed, missed, or faulty, leading to unreliability
and potential system disruption.

3.2. BN modelling

For a quantitative analysis of FRAM, using BN to represent qualita-
tive performance variability scales in a numerical form is highly effec-
tive. This approach offers two primary advantages. First, since
performance variability has four defined states, BN can seamlessly
manage these multi-state conditions, accommodating the complexity
introduced by numerous interacting functions within a system. Second,
performance variability can be expressed as probability percentages, a
task well-suited to BN's strength in handling probabilistic analysis and
uncertainty. Thus, integrating BN with FRAM enables a robust approach
to systemic risk analysis in CSTS, leveraging probabilistic reasoning to
capture the nuanced variability and interdependencies inherent in these
environments. To begin, it is essential to differentiate functions based on
their inherent characteristics, categorizing them into three primary
types: technological functions, human functions, and organizational
functions. Each category represents a distinct aspect of the system with
unique dependencies, behaviours, and potential risks. Separate BN
models are developed for each of these categories to capture the specific
interactions, uncertainties, and causal relationships within each func-
tion type, a concept referred to as SVIL.

In this respect, a structured pipeline was used to identify and justify
priority nodes and states for each function: (i) literature-based scoping
to enumerate candidate nodes and state options; (ii) expert review to
apply inclusion/exclusion criteria and finalise observable, non-
overlapping states; and (iii) validity checks via a BN-level sensitivity
screening.

In the first step, candidates were compiled from a comprehensive
review of published sources, retaining variables with plausible causal
relevance to the target node. In the next step, a multidisciplinary domain
expert panel merged or removed overlapping items, confirmed state
labels, and standardised state counts to 2-3 for BN tractability. Inclu-
sion/exclusion criteria are set as follows: operationalisability (observ-
able in this context and discretisable into mutually exclusive,
collectively exhaustive states), non-redundancy (no conceptual dupli-
cation), and interpretability (states understandable to practitioners). In
the last step, the BN sensitivity screen fixed each parent to each of its

Table 2
Unification of performance variability based on time and precision phenotypes.
Time
Early Timely Delayed Missed
Precision Accurate ST ST LV HV
Satisfactory Lv Lv MV HV
Inaccurate MV MV HV HV
Faulty HV HV HV HV
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states, recalculated the child’s probability, computed the parent swing
(max-min change), and verified monotonicity (worsening states
increased risk); nodes with negligible or non-monotone effects were
revised or omitted.

3.2.1. Organizational functions

Organizational factors play a crucial role in system safety, either
enhancing or impairing the safety performance of a CSTS. Within an
organization, numerous interactions occur among various components,
including staff, operators, management, structure, and culture, among
others [58,92]. To explicitly account for the impact of organizational
factors on system performance variability and to capture the collective
nature of its constituent elements, it is essential to consider all relevant
aspects across multiple dimensions. These dimensions include social
factors (e.g., safety culture, level of training), structural factors (e.g.,
authority gradients), resources (e.g., financial), management (e.g.,
leadership quality), and even external factors (e.g., geopolitical in-
fluences). Furthermore, the interactions among these dimensions must
also be thoroughly examined [71]. Table 3 outlines the contributing
factors of organizational functions, along with their sub-factors and
corresponding descriptions, within the context of BN development. In
this respect, efforts are made to define the states of each node to ensure
an appropriate depth of causality in the model, while accounting for the
objectives of systemic risk analysis and the multidimensional nature of
organizational factors.

3.2.2. Technological functions

Technological functions are primarily driven by machinery, equip-
ment, or software and represent automated processes or technical op-
erations within CSTS. These functions rely on the technical features of
the system to perform specific tasks. Technological functions are typi-
cally characterized by precision, consistency, and a predictable range of
variability, usually governed by design specifications, technical capa-
bilities, or programmed protocols. To determine the SVI of this function,
the contributing factors to its performance variability must first be
identified. Performance variability states, designated as the child node
of the BN, include ST, LV, MV, and HV. The parent nodes, representing
primary influences on performance variability, can be categorized into
three main groups: safety-oriented factors, material integrity factors,
and operational context factors. Safety-oriented factors encompass the
protocols, practices, and resources dedicated to ensuring operational
safety, reliability, and performance stability. These factors reflect the
effectiveness of safety management within the system and play a crucial
role in building resilience to variability and failure. Key contributors
include maintenance activities, inspection policies, and reliability
indices. Material integrity factors represent the physical condition and
degradation of materials over time, accounting for natural wear,
corrosion, and age-related issues. Material integrity is essential in
determining a system’s ability to withstand ongoing use and environ-
mental exposure. Key factors include equipment aging, structural
degradation, wear and tear, and corrosion. Operational conditions are
another key factor influencing the performance variability of techno-
logical functions. These include external conditions, such as environ-
mental factors, that impact system operation. Stable environments offer
predictability, while harsh conditions such as extreme temperatures or
high humidity pose challenges that can compromise equipment func-
tionality and increase variability. Table 4 presents the nodes, their
respective states, and detailed descriptions.

3.2.3. Human functions

Human functions, within the framework of the Safety-II concept,
play a pivotal role as they offer the most flexibility to adapt to variability
and mitigate its adverse effects on the overall system. Consequently,
modelling human performance becomes a crucial component of sys-
temic risk analysis in a CSTS. Numerous Human Reliability Analysis
(HRA) methods have been developed in the literature to address this
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challenge [87]. Among these, the Cognitive Reliability and Error Anal-
ysis Method (CREAM) stands out as the most suitable for this study due
to the following reasons:

I Systemic perspective: CREAM is aligned with modern systemic
approaches, such as the Safety-II concept, by examining both
successful and erroneous human actions, rather than focusing
solely on failures [42].

II Versatility and applicability: CREAM is adaptable across various
industries and contexts. It evaluates the interactions between
human, technological, and organizational factors, making it an
ideal tool for analysing CSTS [90].

III Context-sensitive analysis: The methodology integrates the
impact of context on human performance using Common Per-
formance Conditions (CPCs), enabling a detailed and situational
understanding of reliability [107].

IV Focus on cognitive processes: Unlike traditional HRA methods
that emphasize physical tasks, CREAM prioritizes cognitive
functions such as decision-making and problem-solving, which
are crucial in today's complex systems [45].

V Output compatibility with performance variability: CREAM's
output, represented by Contextual Control Modes (CCMs), aligns
seamlessly with the four types of performance variability outlined
in this study: ST, LV, MV, and HV [50,101].

Building on the aforementioned reasons and drawing inspiration
from the work of Yang et al [122], this study applies a modified CREAM
methodology to assess the SVI of human functions through a five-step
sequence.

In the first step, various CPCs are described, along with their po-
tential states and how they influence human performance reliability.
The original CPCs are divided into nine categories [42]. In this study, a
minor modification is introduced which replaces the "time of day" CPC
with "circadian rhythm and stress." This change highlights the signifi-
cant impact that sleep deprivation or misalignment with natural circa-
dian cycles can have on performance. Unlike the "time of day"
classification, which is based on fixed time intervals like day and night,
the circadian rhythm considers biological phases that influence cogni-
tive performance and alertness. This approach provides a more accurate
reflection of how these factors affect human performance reliability.
Table 5 presents the CPCs along with the associated details [115,128].

In step 2, the relationships between CPCs and CCMs are established
by defining specific rules. These rules determine how various combi-
nations of CPCs, along with their corresponding effects, influence the
assigned values of the CCMs. The CCM, which represents the context of
human cognition and action, is characterized by four distinct states:
“strategic,” “tactical,” “opportunistic,” and “scrambled.” These re-
lationships are formulated as if-then rules, where the "if' component
specifies different CPC combinations and their effects, and the "then"
component maps these combinations to the appropriate CCM
characteristics.

In step 3, belief degrees are assigned to the consequences, or the
"THEN" components of the rules, to account for uncertainty and ensure
that minor variations in the "IF" components are accurately reflected in
the "THEN" outcomes. To achieve this, a systematic approach is
employed to determine the belief degrees by leveraging the basic control
mode diagram of CREAM and a weighting system. The AHP is used to
calculate the relative weights of all CPCs based on their importance.
Subsequently, the conditional belief degrees, denoted as ™ and ", are
derived using the diagram shown in Fig. 2. These degrees correspond to
the positive or negative effects of various CPC states [54]. To clarify the
approach, an illustrative example is presented in Appendix A.

Step 4 involves constructing a BN to model the dependencies be-
tween CPCs. While CPCs share similarities with Performance Shaping
Factors (PSFs) in other HRA methods, they are not the same. Their in-
terdependencies are based on their influence on human performance
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The identified contributing factors to the performance variability of organizational functions.

Categories

Nodes

States

Descriptions

Reference

External factors

Organizational
Structure

Organizational
resources

Organizational
management

Organizational
culture

Regulation and
enforcement

Market conditions

External stakeholder
relationships

Geopolitical factors

Environmental factors

Security factors

Span of control

Communication paths

Authority gradient

Equipment resources

Human resources
Financial resources

Information resources

Time resources

Resource management

Leadership quality

Communication
effectiveness

Rules & regulations
implementation

Emergency

management

Education/training

Information sharing

Safety culture

Strict, moderate, lax

Favourable, unfavourable

Strong, average, weak

Stable, tense

Favourable, unfavourable

Secure, insecure

Wide, balanced, narrow

Adequate, inadequate

Steep, balanced, shallow

Adequate, inadequate

Adequate, inadequate
Adequate, inadequate

Adequate, inadequate
Adequate, inadequate
Efficient, moderately

efficient, inefficient
Strong, moderate, weak

Adequate, inadequate

Compliant, partially

compliant, incompliant

Strong, moderate, weak

Adequate, inadequate

Adequate, inadequate

Rich, moderate, poor

Refers to the laws, regulations, standards, and oversight mechanisms established by
governmental or regulatory bodies that an organization is required to follow. Stricter
rules generally lead to improved organizational performance in the relevant functions.
Refers to the various economic factors and dynamics that impact the supply and
demand for goods and services within a specific market. Unfavourable market
conditions can significantly influence an organization’s operational decisions,
strategic planning, and overall performance.

A strong relationship with external stakeholders can enhance organizational
performance by fostering trust, facilitating resource access, and enabling smoother
collaboration. Conversely, a weak relationship may lead to communication gaps,
reduced support, and potential conflicts, leading to an increased performance
variability.

Intense geopolitical factors, such as international conflicts, trade policies, tariffs, and
economic sanctions, can negatively impact organizational performance, as managing
these external pressures requires complex and challenging decision-making. In stable
conditions, however, the organization is relieved from such difficulties.
Environmental factors, such as climate change and natural disasters, can disrupt
operations, increase costs, and require investment in sustainable practices. Failure to
respond, adapt, and recover effectively from these factors can damage the
organization’s reputation, hinder compliance, and negatively impact overall
performance.

Security factors, including data breaches, cyber threats, and physical security risks, can
compromise sensitive information, disrupt business continuity, and increase the
organizational performance variability.

Refers to the horizontal aspect of management, i.e., how many employees are directly
under the supervision of a single manager. A wider span of control means fewer
managers are needed, leading to a flatter organizational structure. A narrower span of
control requires more managers, leading to a taller structure. A balanced span of
control indicates of the appropriate number of managers.

Communication paths refer to the adequacy and quality of communication between
different levels of an organization. When communication is sufficient and effective, the
organization’s performance variability becomes more stable.

An authority gradient describes the hierarchy of power within an organization,
influencing how freely subordinates can challenge superiors. A steep gradient
discourages lower-ranking individuals from speaking up, while a balanced gradient
promotes open dialogue across levels. Conversely, a shallow gradient can lead to a
chaotic environment.

An adequate amount of equipment resources is essential for stable organizational
performance.

An adequate number of personnel is essential for stable organizational performance.
An adequate number of financial resources is essential for stable organizational
performance.

An adequate amount of information resources is essential for stable organizational
performance.

An adequate amount of time resources is critical for meeting deadlines, maintaining
productivity, and ensuring efficient workflow.

Refers to the organized efforts and procedures an organization implements to allocate
existing resources effectively and efficiently.

Refers to the effectiveness and characteristics of leaders within an organization. Strong
and high-quality leadership is crucial for setting the direction, inspiring employees,
and ensuring the achievement of organizational goals.

Refers to the quality of communication within an organization and its impact on
achieving stable performance. It encompasses the clarity, accuracy, and timeliness of
information shared among team members. Clear communication promotes
collaboration, minimizes misunderstandings, and aligns everyone with the
organization's objectives, ultimately ensuring consistent performance.

Refers to the effectiveness with which an organization enforces and adheres to internal
policies, standards, and external regulations governing its operations. Greater
compliance with these rules and regulations leads to more stable organizational
performance variability.

Refers to the organized efforts and procedures that an organization establishes
strategies to handle emergencies by planning ahead, managing responses, and
facilitating recovery efforts, including natural disasters, technological incidents,
security threats, and other unexpected events that may disrupt normal operations. The
stronger the emergency management, the more stable the organization’s performance
variability.

An adequate level of education and training among personnel contributes to a vibrant
organizational culture.

Refers to the process of exchanging relevant information including data, knowledge,
insights, and updates among individuals, teams, departments, or organizations.
Adequate level of information sharing is crucial for overall organizational efficiency.
Refers to shared mindset, outlook, and priorities of employees concerning safety
practices and standards within an organization. It encompasses how safety is
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[771
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[112]
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[80]
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Categories Nodes States

Descriptions

Reference

prioritized, communicated, and practiced at all levels, from management to front-line
workers. A rich safety culture fosters a proactive approach to managing risks.

Organizational cohesion High, moderate, low

It reflects how well employees work together toward common goals, the strength of [32]

relationships within the organization, and the overall sense of belonging and loyalty
that employees feel. An organization with high level of cohesion typically experiences
higher levels of productivity, and performance stability.

Employee inclusivity Inclusive, moderately

inclusive, exclusive

Encompasses initiatives aimed at fostering an inclusive and supportive workplace [15]
where every employee feels respected, appreciated, and encouraged to actively

participate. A high level of inclusivity within an organization fosters a rich
organizational culture.

reliability. Furthermore, CPCs may be calibrated based on the states of
other CPCs. For instance, if a CPC initially exhibits a neutral effect but
depends on other CPCs, its primary effect may shift toward either a
positive or negative influence depending on the states of the CPCs it
relies on. Table 6 illustrates the dependencies among various CPCs. The
CPCs listed in the left-hand column are influenced by those defined in
the top row. For instance, examining the third column reveals that
“COW,” “NGC,” and “ATT” depend on “HMIL.” This implies that if the
human-machine interface and operational support improve, working
conditions and the availability of time are expected to improve, as
indicated by the letter “P,” representing a positive influence. Conversely,
the number of goals and conflict resolution tasks required of the oper-
ator are expected to decrease, as denoted by the letter “N,” signifying a
negative influence. The remaining cells in the table, marked with “-,”
indicate no dependencies between the respective CPCs.

Considering these dependencies and the dynamic adjustability of
CPCs based on the status of other related CPCs, a BN is well-suited for
modelling these variabilities and interactive relationships. In this
framework, the child node of the BN represents CCMs, which include the
four defined states: strategic, tactical, opportunistic, and scrambled.
These states align closely with the four performance variability levels
commonly applied in both technological and organizational functions:
ST, LV, MV, and HV, respectively. The parent nodes, representing the
CPCs with their multiple states, are outlined in Table 5. To account for
the dependencies shown in Table 6, four additional nodes, referred to as
calibrated nodes, were introduced. These nodes capture the interactive
relationships among CPCs and reflect their updated status based on
changes in related CPCs. The four calibrated nodes are labelled as
“calibrated COW”, “calibrated TCQ”, “calibrated NGC”, and “calibrated
ATT”.

In the final step, the BN inference and validation process is carried
out. This process includes determining the posterior probabilities of the
target variables in the network and verifying the outcomes to confirm
the precision and dependability of the suggested approach. First, ob-
servations are analysed to derive the prior probabilities for each CPC in
terms of numerical variables that correspond to CPC states and their
effects. Next, during the inference process, belief degrees are converted
into rules, which serve as the conditional probabilities for the con-
structed BN. Using these transformed rules and the prior probabilities,
the marginal probabilities of the leaf node states are then computed
accordingly.

3.2.4. Prior probabilities extraction

Due to the complexity of CSTS and the diverse nature of their ele-
ments, various data sources with different origins are required to inform
the developed models. For technical functions, several data types are
particularly useful. Measurements from equipment sensors, operational
conditions, and processes provide valuable empirical data. Operational
logs detailing equipment performance and failures are essential, as are
records of preventive and corrective maintenance activities, which help
evaluate maintenance effectiveness. Additionally, manufacturer speci-
fications, including reliability data such as Mean Time to Failure
(MTTF), Mean Time to Repair (MTTR), and other relevant metrics, are

integral to reliability assessment.

When it comes to organizational functions, obtaining realistic data
can be challenging. Managers are often reluctant to critique their
management practices, organizational structure, or operational effi-
ciency due to concerns about reputation and prestige [60,62]. Never-
theless, for the organizational functions, valuable information can be
gathered from various sources, including compliance and incident data
from internal audits, human resource databases (e.g., staff turnover
rates, training schedules, and role-specific records), and regulatory da-
tabases containing compliance reports or industry-level performance
benchmarks. Additionally, input from independent expert elicitation
can be incorporated for several nodes of the developed BN. In relation to
the structure of organizational performance, organizational resources,
and external factors, the data are primarily obtained from documented
evidence and available empirical sources. However, obtaining objective
data on organizational management and culture remains inherently
challenging, as such aspects are often subjective and difficult to quantify
even across other industrial sectors. For instance, safety culture is a
latent and intangible construct that cannot be measured directly. It is
typically assessed through a combination of subjective (survey-based)
and objective (performance-based) indicators. Although no purely
objective measure of safety culture exists, triangulating multiple data
sources, such as surveys, audits, and performance indicators, enhances
validity and reduces bias. Accordingly, for the organizational functions,
both empirical and subjective data sources are employed to capture the
multifaceted nature of organizational performance.

Assessing human performance variability requires the use of expert
judgment, as databases in this area are often insufficient to meet ex-
pectations. To this end, the Dempster-Shafer evidence theory (DSET) is
employed for several purposes:

a) Systematically combining diverse expert opinions to produce a uni-
fied final judgment.

b) Accounting for both epistemic and aleatory uncertainties, thanks to
its unique features, such as representing and propagating degrees of
belief.

c) Providing a structured framework for reasoning under uncertainty,
allowing for the integration of incomplete or conflicting evidence.

This approach enhances the reliability of expert-based assessments
by managing variability and uncertainty in a more systematic and robust
manner. DSET is frequently characterized as an advanced form of
probability theory or an expanded interpretation of Bayesian inference.
It has been widely used to extract subjective expert judgments and
resolve disparities between differing viewpoints to produce an aggre-
gated output. In this context, DSET is referred to as a theory of evidence
because it focuses on the weight of evidence. Before combining infor-
mation, the foundational principles of DSET must be introduced. A
comprehensive explanation of DSET can be found in the literature [31,
108], while a brief introduction is provided in Appendix B.
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Table 4 (continued)

logical functions. Categories Nodes States Descriptions Reference
Categories Nodes States Descriptions Reference system
components. It
Safety- Maintenance Preventive- A preventive- [113] encompasses the
oriented strategy oriented, oriented impact of
factors balanced, maintenance maintenance
corrective- strategy strategies,
oriented emphasizes inspection
proactive frequency, and
measures to the quality of
prevent potential maintenance
failures, activities on
significantly equipment
boosting performance.
reliability but at Reliability High, Reliability 71
a higher cost. In moderate, indicates the
contrast, a low system's
corrective- likelihood to
oriented strategy perform its
addresses function without
failures only failure, under a
after they occur. specified
A balanced condition, and
strategy over a specified
combines both period of time.
approaches, Redundancy Adequate, Redundancy [91]
optimizing inadequate adds a layer of
reliability while resilience;
distributing the adequate
budget more redundancy
evenly. reduces the
Maintenance Optimal, Maintenance [61] likelihood of
quality acceptable, quality evaluates high variability
poor the thoroughness in performance.
and technical MTTR Short, long Mean Time To [7]
precision of Repair affects
maintenance downtime;
tasks. Optimal longer repair
maintenance times increase
quality reflects the risk of
skilled performance
execution, interruptions.
accuracy, Availability High, Availability [71
attention to moderate, measures how
detail, and low often the system
adherence to best can perform its
practices and intended
standards, while function,
poor quality impacted by
indicates a lack reliability,
of these redundancy, and
attributes. MTTR.
Inspection Intensive, Sporadic or [28] Material Equipment New, old Equipment aging  [17]
practice moderate, inadequate integrity aging is the gradual
sporadic inspections raise factors decline in
the risk of performance and
undetected reliability due to
degradation, the natural
whereas an lifecycle of
intensive components.
inspection with older
regimen equipment, it is
enhances the more likely to
detection of exhibit
potential variability in
degradation. performance due
Maintenance High, Maintenance [19] to accumulated
effectiveness moderate, effectiveness wear, reduced
low refers to how flexibility, and
successfully potentially
maintenance outdated
activities prevent technology.
or mitigate Structural Low, Structural [114]
failures and degradation moderate, degradation
ensure reliable high captures the
overall

operation of

deterioration of

(continued on next page)
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Categories Nodes States Descriptions Reference Categories Nodes States Descriptions Reference
components or temperatures,
subsystems due corrosive
to a combination substances,
of internal heavy vibrations,
stresses, high humidity, or
environmental dust. A variable
conditions, and environment
aging. High exhibits
levels of moderate
structural fluctuations in
degradation pose external
significant risks conditions.
to the system,
leading to more
frequent
breakdowns, Table 5
reduced load- CPCs description, their states, and effects.
bearing
capacities, and CPC CPC states Effects
increased Training and competence (TAC) Inadequate (S1,1) Negative
variability in Adequate with limited Neutral
performance. experience (S;,2)
Wear and tear Minimal, Mechanical wear [76] Adequate with high Positive
condition moderate, and tear describe experience (S;,3)
severe the progressive Human-machine interface and Inappropriate (Sz,1) Negative
degradation of operational support (HMI) Tolerable (Sa,2) Neutral
parts caused by Adequate (Sz3) Neutral
continuous usage Supportive (S.4) Positive
and friction over Availability of procedures and plans Inappropriate (S31) Negative
time. it affects (APP) Acceptable (S32) Neutral
performance and Appropriate (S33) Positive
longevity, with Conditions of working (COW) Incompatible (S41) Negative
severe wear Compatible (S42) Neutral
leading to higher Advantageous (S4,3) Positive
failure rates. Number of goals and conflict resolution More than actual capacity Negative
Corrosion Low, Corrosion [68] (NGC) (Ss,1)
moderate, impacts the Matching current capacity Neutral
high integrity of (Ss,2)
materials, Fewer than actual capacity Positive
particularly (Ss,3)
metals and Available time and time pressure (ATT)  Continuously inadequate Negative
surfaces exposed (Se6,1)
to harsh Temporarily inadequate Neutral
environments. (Se,2)
High corrosion Adequate (S 3) Positive
rates Circadian rhythm and stress (CRS) High (S7,1) Negative
significantly Moderate (S7,2) Neutral
compromise Low (S7,3) Positive
structural Team collaboration quality (TCQ) Deficient (Sg1) Negative
strength, Inefficient (Sg2) Neutral
increase the Efficient (Sg 3) Neutral
likelihood of Very efficient (Sg 4) Positive
unexpected Quality and support of the organization =~ Deficient (Sg ;) Negative
failures, and lead (QS0O) Inefficient (Sq ) Negative
to reduced Efficient (So,3) Neutral
performance Very efficient (So,4) Positive
reliability.
Operational Environmental Stable, A stable [26]
context conditions variable, environment 3.3. Quantitative analysis of system performance variability
factors harsh features
predictable and
consistent Once the FRAM model is developed and the internal variabilities
conditions, with across all function categories are obtained, the next step is to map the
minimal

fluctuations in
factors like
temperature,
humidity, and air
quality. In
contrast, a harsh
environment is
marked by
extreme or
persistent
stressors such as
high

10

FRAM model into a BN to conduct a quantitative analysis of system
performance variability. As previously discussed, various types of vari-
abilities are integral to an FRAM model, including SVI and UVL
Aggregating these variabilities across different functions is essential to
gain a comprehensive understanding of performance variability within a
CSTS. This aggregation represents the unified interactions between
functions that are interconnected in a sequential manner within the
FRAM model.

3.3.1. FRAM and BN integration
The process begins by converting various aspects of a function into
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Low Var. (Tactical)
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discrete probability distributions, categorized into states such as ST, LV,
MV, and HV. This approach enhances the representation of functional
variability and serves as a common framework, simplifying the inter-
pretation of interactions between functions [85]. Furthermore, the in-
ternal variability identified for each function can be regarded as an
additional dimension, reflecting the influence of the operational envi-
ronment and current performance conditions during the function’s
execution [102]. The mapping process begins with the output from
background functions, establishing the initial performance variability
distribution for downstream functions. This variability can be deter-
mined either through empirical data, if available, or expert elicitation
when data is limited. To represent this as discrete probability distribu-
tions, the frequency of event occurrences may be used when empirical
data is applied. For each function, all available and defined aspects are

TIME

CONTROL

set as parent nodes in the BN model, with the output serving as the child
node. This configuration enables a quantitative calculation of the in-
teractions among different aspects of each function, resulting in an in-
tegrated performance variability distribution with consistent state
definitions. Fig. 3 demonstrates a simplified mechanism for mapping the
FRAM model onto a BN, providing clearer insight into the process.

A key advantage of BN is its flexibility in integrating a variety of
nodes with multiple states, accommodating both discrete and contin-
uous forms. Given this flexibility and recognizing performance vari-
ability across four distinct states defined by a discrete probability
distribution, as well as the independence of different functional aspects
and their separate impacts on the output, the CPT can be calculated
using canonical probabilistic models like noisy OR, noisy MAX, noisy
MIN, noisy AND, and noisy Adder gates [24]. The Noisy-OR model,

[O Intenal_Variabity

PRECONDITION RESOURCES

Time

Precondition

Fig. 3. The simplified process of mapping FRAM into a BN model.
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introduced by Pearl [88], initially addressed probabilistic dependencies
among binary variables [37]. extended this concept, adapting the model
to include binary leaky Noisy-OR gates, which account for additional
uncertainty in influence pathways. Further developments came when
[23] and Srinivas [103] independently proposed generalizations of the
model to accommodate multi-valued variables, leading to the creation of
multi-valued Noisy-OR gates. These foundational works eventually
paved the way for the Noisy-MAX model, which expanded the frame-
work to capture more complex probabilistic relationships across diverse
variable states. In this study, the complexity of the problem, charac-
terized by multi-state parent nodes, a multi-state child node, and the
independent influence of each parent on the child makes the Noisy-MAX
technique particularly suitable. This approach not only streamlines the
construction of the CPT but also effectively captures the non-linear re-
lationships between parent and child nodes, enabling a more accurate
representation of these dependencies [10,116,118].

3.3.2. Noisy-MAX structure-based BN modelling

Using the Noisy-MAX technique, the conditional probability between
a child node C and its parent node R can be represented by incorporating
a set of n auxiliary variables {A; ..., A} [24]. Asillustrated in Fig. 4, this
formulation allows the conditional probability to be expressed as:

ZP C/A).

P(C/R) = P(A/R) €Y)

Note that the variables A; are purely auxiliary elements used to facilitate
equation derivation and are not part of the actual model. Given the
graph in Fig. 4, there are no interactions between the causal mechanisms
through which R; influences the value of C. In the graph, this property is
represented by the absence of connections R;—A; and A;—A; for all i#j,
indicating that:

P(A/R) = HP /R 2
With this, combined with Egs. 1 and 2, results in:
P(C/R) Z HP 3)

A/f(A

In this context, each A; signifies the contribution of R; to the value of
C. The combined outcome generated by each R; is represented as C=fyax
a)- Consequently, C and A; variables must operate within the same
domain. Each A; reflects the impact of R; elevating C to a particular level,
and the actual value of C is determined as the maximum among the A;
values.

Now, to establish the CPT for the Noisy-MAX model, P(C=c|A) is
calculated for every possible value ¢ and each configuration of R. This is
achieved by applying Eq. 3 and recognizing that f pax)-max(Ay,...,An).
This function implies that f yaxa)<y, if and only if A;<C for each i.
Hence, it can be obtained that:

Fig. 4. Simplified BN structure for noisy-MAX model derivation.
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PC<c/R)= Y [[rai/Rr)
A/fuax@ay<c i (4)
_ Z...ZHP(Ai/Ri) = H (ZP(Ai/Ri)>

With consideration of accumulative parameters, the values of the CPT
can be obtained as follows:

P(C < c/R) —P(C < c—1/R) for ¢ # Cmin

P(C < ¢/R) for ¢ = Cpn ®)

P(c/R):{

After calculating the CPTs for all BNs related to each function, using
prior probabilities derived from either empirical data or expert input,
the complete set of BN models is analysed to generate the final output for
the last function. This analysis enables us to assess the performance
variability of each function independently, as well as to evaluate its
impact on downstream functions.

3.3.3. FRAM interpretation process

The ultimate goal of FRAM modelling is to understand how disrup-
tions or variations in upstream functions influence the performance
variability of connected functions. In essence, it examines how reso-
nance, whether positive or negative, affects the variability in perfor-
mance across downstream functions. This approach provides a detailed
view of how any disruption in a CSTS can propagate, helping us un-
derstand how changes in one part of the system influence the entire
system's behaviour. To this end, a 2-D criticality matrix is proposed to
support the decision-making process [51,86,126]. The matrix di-
mensions represent probability and consequence. For the probability
dimension, the mean value of performance variability serves as a nu-
merical representation of the average variability a function experiences.
This considers the likelihood of being in one of four states: HV, MV, LV,
or ST, multiplied by the assigned scores of 4, 3, 2, and 1, respectively.
These scores reflect the significance of each state in terms of safety
impact. HV is given the highest score (4) to represent substantial
disruption; MV receives a moderate score (3) for moderate variability;
while LV and ST are assigned lower scores (2 and 1) to indicate minimal
variability or stability. For the consequence dimension, three categories
are defined: critical (indicating severe consequences), moderate
(manageable consequences requiring attention), and minor (minimal or
tolerable consequences). Functions are classified into these categories
based on their significance to both safety and operational performance.
The magnitude of consequences is highly dependent on the specific
domain under study and the function's role in the system's operation and
safety. This classification can be determined using expert judgment or
established criteria. Fig. 5 illustrates the proposed criticality matrix,
which categorizes functions into three levels of criticality based on their
variability and consequence severity.

Level C, located in the top-right quadrant, represents high variability
and critical consequences. Functions in this category are prime candi-
dates for triggering negative resonance, as their high variability com-
bined with critical consequences makes them likely to interact
unpredictably with downstream functions, potentially amplifying risks

Variability Severity level
level Minor Moderate Critical
HY 3 I
MV B 5
LV A B B
ST A A B

Fig. 5. The proposed criticality matrix.
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across the system. Level B, which includes functions with moderate
variability, highlights that these functions can also contribute to nega-
tive resonance. This occurs particularly when their variability interacts
with other moderately variable or interconnected functions, creating
conditions where risks propagate through the system. Such interactions
are especially critical when these functions are linked to others with
similar variability characteristics. Level A encompasses functions that
are relatively stable or exhibit low variability. These functions can play a
stabilizing role within the system and be strategically leveraged to
design interventions that dampen variability and mitigate risks. By
strengthening the interactions of these stable functions, they can coun-
teract the effects of high variability in connected functions. This criti-
cality matrix provides a systematic tool to prioritize functions for
intervention based on their role in system dynamics. It facilitates the
detection and mitigation of resonances in the FRAM model by antici-
pating how function interactions might lead to either risk amplification
(negative resonance) or system stabilization (damping resonance).

3.4. Verification and validation process

Verification and validation process are the essential component of
any methodological approach, ensuring that developed models are
reliable, robust, and sensible. They also builds confidence in the accu-
racy of the findings and results. In this study, various techniques and
numerous models have been employed to address the complexity of
CSTS, making comprehensive benchmarking challenging. To address
this, we adopted a modular approach using a range of techniques,
allowing us to validate and benchmark different models independently.
Validation of the HTA and FRAM components, as qualitative analysis
methods, primarily depends on the knowledge and proficiency of the
analysts conducting the evaluation. Additionally, the results and find-
ings from these models are compared and benchmarked against out-
comes from similar studies.

For validating the developed BN models, sensitivity analysis, regar-
ded as one of the most practical validation methods, is applied. This
analysis involves two approaches. The first approach confirms the
model’s robustness by verifying that small adjustments in the prior
probabilities of parent nodes reliably affect the probabilities of child
nodes. This principle-based sensitivity analysis ensures that the model
responds predictably to changes in inputs, enhancing its reliability and
accuracy. To achieve this, the analysis follows these principles [49]:

e Principle 1: Minor adjustments in the prior probabilities of the parent
node should lead to proportionate changes, either increases or de-
creases, in the posterior probability distribution of the child node.

e Principle 2: The combined influence of changes in the probabilities of
all evidence variables should be equal to or greater than the influ-
ence produced by modifying any individual subset of that evidence.

In the second approach, the analysis focuses on how changes in
probability parameters influence the BN’s output. This is done by
calculating the derivatives of the posterior probability distributions,
which helps reveal the sensitivity of the model’s target nodes (such as
performance variability) to adjustments in various numerical parame-
ters. This derivative-based analysis measures the rate at which each
target node’s probability shifts as a reaction to small modifications in the
parent nodes’ prior probability values. By examining these derivatives,
the parameters that most strongly influence the network’s outcomes can
be identified. When certain variables show high sensitivity to parameter
changes, it indicates that the model depends significantly on those
specific inputs. Recognizing these key parameters allows for prioritizing
data that may require more precise estimates or rigorous validation, as
they play a crucial role in determining the model’s predictions. It is
noted that for ease of reference, all symbols and mathematical notations
used in the proposed methodology are summarised in the Table C1 in
Appendix C.
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4. Results, discussion, and implications

Seaports are widely regarded as a CSTS that are highly inter-
connected and interdependent, making them vulnerable to a diverse
range of risks. Given that reliable and efficient seaport operations are
essential for the maritime transportation sector, any disruptions or
fluctuations in their performance can significantly impact national
safety, security, economic stability, and public health [73]. This un-
derscores the critical need for focused attention from risk analysts to
develop robust approaches to address these challenges. This section
applies the proposed methodology to a typical seaport, illustrating both
its practicality and potential impact.

4.1. FRAM model development

To identify the key functions for FRAM development, an initial HTA
is conducted to represent the workflow of activities typically performed
in a seaport. The hierarchical structure of the HTA provides a compre-
hensive understanding of the workflow and facilitates a detailed analysis
of specific tasks along with their prerequisite requirements. It is
important to note that seaport operations involve a vast array of tasks
and the collaboration of numerous teams and crews [11,34]. To main-
tain simplicity and align with the scope of a journal paper, a streamlined
version of the HTA focusing on the most critical activities is produced.
The HTA was developed by synthesizing insights from an extensive re-
view of the seaport operations literature, the collective research con-
tributions of the author team, and subsequent verification and approval
by a panel of experts whose profiles are provided in Table C2 in Ap-
pendix C. It should be noted that this study focuses solely on operations
occurring between the quay area and the yard within the seaport. Fig. 6
presents this simplified HTA, which serves as the foundation for the
FRAM model.

Based on the HTA results, nine foreground functions, referred to as
main functions, and four background functions have been selected for
the FRAM development. The background functions define the bound-
aries of the analysis, providing fixed outputs that feed into and support
the operation of the main functions. Table 7 outlines the functions, their
characteristics, and the connections between them, while Table 8 details
the various aspects of each function.

It is noted that system complexity increases rapidly with size,
rendering manual modelling increasingly challenging for large in-
frastructures such as seaports. To address this issue, the FRAM model is
organized into interacting modules, such as quayside operations, yard
operations, and intermodal transfer sections, structured across hierar-
chical levels, namely Macro, Meso, and Micro, as illustrated in Fig. 7.

At the Macro level, the focus is on the seaport as an integrated sys-
tem, capturing the high-level interactions between major operational
sections and strategic processes, such as overall cargo throughput, ter-
minal coordination, and resource allocation. The Meso level examines
intermediate-scale processes within individual modules. For example,
within the quayside module, functions such as quay crane operations,
vessel berthing, and container handling are considered, along with their
interconnections and resource flows. At the Micro level, the model fo-
cuses on detailed, function-specific activities, including the interactions
between individual equipment, human operators, and tasks. For
instance, a micro-level analysis of a quay side may include the container
unlashing process, operator actions, and resource availability.

Each module is analysed largely independently, with only a limited
set of interface variables connecting it to other modules. This divide-
and-compose strategy contains complexity locally, prevents combina-
torial growth as system size increases, and ensures that both high-level
coordination and fine-grained operational variability are effectively
represented.

All the identified functions and their interconnections are synthe-
sized and visualized using the FRAM Model Visualization (FMV) tool
[43], as shown in Fig. 8.
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Fig. 6. HTA for seaport activities.

Table 7
Function description, characterization, and links.

Function  Description Type Links

F1 Berth assignment Organizational F1(0)-F2()
and confirmation

F2 Initial Safety and Human F2(0)-F3()
Security Checks

F3 Unlashing of Human F3(0)-F4(D)
Containers

F4 Cargo Unloading Organizational F4(0)—F5(D), F6(I)
Preparation

F5 Quay crane Technological F5(0)-F7(1)
operation

F6 Quay crane Human F6(0)—F5(C)
operator

F7 Cargo Transport to Technological F7(0)—-F8(I), Fo(I)
Yard Storage

F8 Yard crane operator ~ Human F8(0)—F9(C)

F9 Yard crane Technological -
operation

BG1 Vessel securely Background BG1(0)—F2(P)
moored function

BG2 Port operations Background BG2(0)—F1(C), F2(C), F3
management function (C), F7(QC), F8(C), F9(C)

BG3 Berth assignment Background BG3(0)-F1(D)
information function

BG4 Resource Background BG4(0)— F1(R), F2(R), F3
management function (R), F4(R), F5(R), F6(R), F7

(R), F8(R), FO(R)
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4.2. SVI assessment for key functions

4.2.1. Organizational functions

In the context of seaport organizational functions, numerous entities
are involved, with complex interactions among their components. To
assess the performance of their internal variability, a BN for the orga-
nizational function is constructed, following the information and
framework described in Section 3.2.1. As shown in Fig. 9, the perfor-
mance variability of an organizational function is influenced by five
intermediate nodes: organizational culture, organizational manage-
ment, organizational resources, organizational structure, and external
factors. Each of these intermediate nodes is determined by its respective
parent nodes. Achieving a stable condition with a high probability re-
quires all intermediate nodes to be in their most favourable states. This
includes having a highly efficient organizational structure, sufficient
and well-allocated resources, optimal organizational management
practices, a rich and supportive organizational culture, and minimal
impact from external factors. On the other hand, highly variable orga-
nizational performance arises when the intermediate nodes are in their
least favourable states. For instance, an inefficient structure, inadequate
resources, poor management, a weak organizational culture, and sig-
nificant external pressures collectively lead to increased variability in
performance. This relationship underscores the importance of main-
taining favourable conditions across all intermediate nodes to ensure
organizational stability.

4.2.2. Technological functions
In a seaport, various types of machinery, equipment, and their
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Table 8
Functions aspects descriptions.

Function  Output Input Pre-condition Control Resource

F1 Confirmation of berth Berth assignment - Port authority protocols Communication systems, Port
assignment information staff

F2 Safety and security status Confirmation of berth  Vessel securely moored Port security regulations Safety and security equipment,
report assignment Personnel (security officers)

F3 Unlashed containers ready for ~ Safety and security - Unlashing protocols, Supervisor Unlashing tools, Personnel (dock
unloading status report instructions workers)

F4 Instructions for crane Unlashed containers - Port operations management, Communication systems
operators, Updated cargo Communication from the vessel
status

F5 Cargo unloaded to dock Updated cargo status - Crane operator’s commands, Crane and fuel/power supply,

Crane control system Operator
F6 Crane operator’s commands Instructions for crane - - Communication systems
operators

F7 Cargo delivered to yard Cargo unloaded to - AGV control management system Transport vehicles (e.g., AGVs,
storage dock trucks), Drivers and handlers

F8 Crane operator’s commands Cargo delivered to Clear storage allocation - Communication systems

yard storage instructions, Safety checks
completed
F9 Cargo properly placed in Cargo delivered to - Yard management system, Crane and fuel/power supply,

designated storage areas yard storage

Operator commands, Operator

Macro-level functions

Micro-level functions

Fig. 7. The interacting hierarchical levels in seaport operations.

components contribute to the activities of technological functions. To
evaluate their internal variability performance, the corresponding BN
for each technological function is developed based on the information
and structures outlined in Section 3.2.2. Due to space constraints in the
journal paper format, only the BN for quay cranes is presented in Fig. 10
to demonstrate the applicability of the proposed methodology. Quay
cranes are widely regarded as the most important, valuable, costly, and
complex components in a seaport. A seaport without them is often
considered paralyzed, as they serve as the critical link between sea and
land operations.

In the developed BN, maintenance effectiveness and material integ-
rity are identified as the two key factors directly influencing equipment
reliability. Greater levels of material integrity and maintenance effec-
tiveness correspond to higher reliability. It is noteworthy that the
operation of complex systems such as quay cranes often involves dy-
namic processes that impact their structure and the reliability of their
components over time. Given the critical importance of ensuring both
safety and operational effectiveness, a shift from a two-state to a
multistate approach in reliability analysis is warranted. This approach
facilitates a more accurate assessment of their dependability and
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operational effectiveness. It also helps identify critical reliability
thresholds, where exceeding these limits may fail to ensure the required
level of operational effectiveness [53]. Therefore, the reliability is
categorized into three states: high, moderate, and low, defined accord-
ing to the specific characteristics of the component in question. For quay
cranes, high reliability corresponds to a reliability level between 95 %
and 100 %, moderate reliability falls between 85 % and 95 %, and low
reliability is defined as below 85 % [21,47]. Availability is determined
by three key factors: reliability, MTTR, and redundancy. Higher reli-
ability and redundancy contribute to increased availability, while a
shorter MTTR enhances availability by reducing equipment downtime.
Technological performance variability depends on three factors: reli-
ability, availability, and environmental conditions. The SVI is likely to
remain stable with high probability if environmental conditions are
stable and both reliability and availability are high. Other SVI states are
assigned proportional values based on the probabilities of their parent
states.

To illustrate the applicability of the methodology, prior probabilities
were derived from historical records of the seaport under study, repre-
senting its current status. As depicted in Fig. 10, the stable state of the
technological function is assigned a probability of 68.8 %, while the
remaining probabilities are distributed as follows: 22.7 % for the LV
state, 6.7 % for the MV state, and 1.8 % for the HV state. These values
reflect the system's realistic behaviour, highlighting the influence of
various factors that create discrepancies between "work as imagined"
and "work as done."

4.2.3. Human functions

To determine the SVI for human functions, the modified CREAM
methodology outlined in Section 3.2.3 is employed. The process begins
with developing the BN structure by identifying the main CPCs, their
interdependencies, and incorporating calibrated CPCs. The leaf node in
the network is represented as the CCM, which reflects human action
status. The four well-known modes (strategic, tactical, opportunistic,
and scrambled) are interpreted as ST, LV, MV, and HV, respectively.
Fig. 11 illustrates the resulting BN for human functions.

Next, the rules governing the BN are organized using a belief struc-
ture that accounts for all possible combinations of CPC states. These
rules form the CPT for the developed BN. It is important to note that not
all CPCs equally influence human performance variability. To address
this, the AHP method is applied to determine appropriate weights for
each CPC, tailored to the nature of tasks performed by humans in a
seaport environment [122]. Table 9 presents a pairwise comparison
matrix showing the weights for all nine CPCs. The consistency ratio,
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Fig. 8. The FRAM model of typical activities conducted in a seaport.

calculated as 6.7E-3, confirms that the derived weights are logically
consistent and represent a well-justified hierarchy of importance.

After determining the weights, the rules with their corresponding
belief degrees are established following the instructions in Section 3.2.3.
To illustrate the process, Rule 23326 is used as an example. This rule is
defined by the set (51’2, 52’2, S3)3, S4’3, 55,3, 86’3, S7,3, 53’4, Sg}z), which
corresponds to the effects (neutral, neutral, positive, positive, positive,
positive, positive, positive, negative) based on the guidance in Table 5.
Using Fig. 2, the following values are subsequently calculated:

p* ={(0.75, ST), (0.25, LV), (0, MV), (0, HV)}
p~={(0.38, ST), (0.62, LV), (0, MV), (0, HV)}

Using the corresponding weights of CPCs with positive effects from
Table 9, their sum, W7 is  calculated as 0.83
(=0.13+0.06+0.18+0.18+0.05+0.05). Conversely, W~ showing the
weights of negatively influencing CPCs, is 0.05, since QSO is the only
CPC with negative effect in the given set. Having obtained the normal-
ized values of W™ and W™, along with the corresponding p* and ~ values
using the evidential reasoning algorithm implemented in IDS software
[117], the final results for this combination of CPCs are determined as
follows:

B ={(0.745, ST), (0.255, LV), (0, MV), (0, HV)}

In this manner, all the rules and their corresponding values are
determined. Table 10 provides an example by showcasing nine of these
rules, including the first three rows, three from the middle, and the last
three rows.

In the subsequent step, prior probabilities for various CPC states are
determined based on expert judgment. Three seasoned experts were
asked to assess the performance variability of quay crane operators
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during a typical yet busy day at a seaport, taking into account potential
disruptive scenarios. The experts with extensive experience in seaport
operations are interviewed to provide their probabilistic assessments,
assigning values between 0 % and 100 % to different states. These in-
dividual judgments are then aggregated using DSET, yielding consoli-
dated probabilities for each CPC state, as shown in Table C3 in Appendix
C. These probability-based insights are incorporated into the BN as prior
probabilities, while the rules and corresponding values in Table 10 serve
as the CPT. To demonstrate the process, a sample calculation is provided
as follows:

P(CCM) =
3 4 3 3 3 3 3 4 4

2 2. D D > D P(acM/Sy)P(Sy)

i=1j=1i=2j=1 i=3j=1 i=4j=1 {=5j=1 i=6j=1 i=7 j=1 i=8—=1 i=9j=1
(6)

where P(CCM) represents the probability of performance variability in
each of the four possible states, P(CCM/S;;) denotes the conditional
probability of CCM given S;;, and P(S;;) signifies the probability of
specific states of a given CPC. Depending on the aggregated probabilities
and their potential impact on performance variability, proportional
rules are extracted from Table 10. In this case, referring to the states of
each CPC and their corresponding values, 576 rules are derived, repre-
senting various combinations of these states. By applying these rules and
the values obtained from the aggregated expert judgments to the
developed BN, the probabilities for the CCM states are calculated as
follows: ST=0.005, LV=0.536, MV=0.459, and HV=0.000. These values
suggest that, in the specified situation, the performance variability of the
quay crane operator is more inclined toward low and moderate levels of
variability.



M. Mohsendokht et al. Reliability Engineering and System Safety 270 (2026) 112200

©) Ext@ (O Education/training @)
Strong  40% -

- Inclusive 50%
IO Environmental factors @ Secusity factors Average 50% [T 'Ade‘quale Sg: Moderately_inchusive 40% ||
, . % ¥ T ,
Favourable 0% [N | | ?g?[]- Weak  10%6 @ ¥ lexclusive 10%|l .
Insecure 10%) =

Employee inclusivity

/O Organizational cohesion

IO Geopolitical factors
Stable 80% [ @ External factors

Tense 20%|] PM‘H" Influential 17%
=
L |

(O Organizational culture 1
i L

Rich 2%

Moderate 51%

| - -
/ Marginal 32% ‘ p\o Information sharing
/O Regulation and enforcement Adequate  75%
strict  75% [ Otgacizonal Foncho Inadequate 25%|l]
Moderate 20%|Ji] @)

Strong  70%

Moderate 25%
/ Weak 5%

Lax s%ll . g
(©  Market conditions _Variable
- - %
Favorable  70%|[IN _Variable % Optimal 1% [

) Suboptimal 16% I
Unfavorable 30%|] / - il
(©  Span of control

Wide  10% (@) Organizational Structure
Balanced 80% [ PHighty_efficient 60%
Narrow  10%) = Moderately_efficient 34%|J |

/Inefﬁcim %1
(© Communication paths /

5%]

[Partially Compliant 1.

p 5%|l
Adequate  85%| [ M~
o 15%]1 - (O Authority gradient
Steep  10%]]
[Balanced 80% (I (@] i0n resou.... [@) Resource
Shatow 1%l [ [ Equipment resources Adequate 9% [Efficient 0%
Adequate  100%) Inad 5%| @ [Moderately_efficient 20%|Ji]
Inadequate 0% Inefficient 10% v
(O Human resources (O Financial resources (© Time resources
Adequate  100%) Adequate 0%  |Adequate  80% ([
Inadequate  0%| q 1% 4 Inadequate 20%[l A

Fig. 9. The BN model for SVI assessment of organizational functions.
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4.3. FRAM to BN mapping results variabilities within the entire model. To achieve this, the output of each

upstream function is integrated as the input or other related aspects for
After determining the SVI values for each function in the previous downstream functions. For illustration, Fig. 12 highlights the output of
sections, the next step is to adopt a holistic perspective on the Function 2. As shown, the input to Function 2 is derived from the output
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Fig. 11. The BN model for SVI assessment of quay crane operator.
Table 9
Deriving CPC weights using AHP method.
CPC TAC HMI APP cow NGC ATT CRS TCQ Qso Weight
TAC 1.00 5.00 2.00 4.00 1.50 1.50 5.00 5.00 5.00 0.25
HMI 0.20 1.00 0.33 1.00 0.25 0.25 1.00 1.00 1.00 0.05
APP 0.50 3.00 1.00 2.00 0.67 0.67 3.00 3.00 3.00 0.13
COW 0.25 1.00 0.50 1.00 0.33 0.33 0.50 1.50 1.50 0.06
NGC 4.00 4.00 1.50 3.00 1.00 1.00 4.00 4.00 4.00 0.18
ATT 0.67 4.00 1.50 3.00 1.00 1.00 4.00 4.00 4.00 0.18
CRS 0.20 1.00 0.33 2.00 0.25 0.25 1.00 1.00 1.00 0.05
TCQ 0.20 1.00 0.33 0.67 0.25 0.25 1.00 1.00 1.00 0.05
QSO 0.20 1.00 0.33 0.67 0.25 0.25 1.00 1.00 1.00 0.05
Table 10 of Function 1, while other aspects of Function 2, along with its SVI, are
able

Rule-based CPT development for human function BN.

Rules CPC combinations (IF part) CCM belief degrees (THEN part)

1 S1,1, S2,1, S3,1, S4,1, S5,1, S6,15 S7,1, (0.000, ST, 0.000, LV, 0.000, MV,
Sg,1, So,1 1.000, HV)

2 S1,2, S2,1, S3.1, S4.15 S5.15 S6,15 S7,1, (0.000, ST, 0.000, LV, 0.500, MV,
Sg,1, So,1 0.500, HV)

3 $1,3, S2,15 S3,1, S4,1, S5,1, S6,1> S7,15 (0.000, ST, 0.030, LV, 0.561, MV,
Sg,1, So,1 0.409, HV)

23326 Sy, S22, S3,3, S4,3, S5,3, S6,3, S7.3, (0.745, ST, 0.255, LV, 0.000, MV,
Sg.4> So.2 0.000, HV)

23327  S1., S22, S3,3, S4,3, S5.3, S6,3, S7.3, (0.750, ST, 0.250, LV, 0.000, MV,
Sg,4, So.3 0.000, HV)

23328 Sy, S5, S3.3, S4.3, S5.3, S6.3» 57,3, (1.000, ST, 0.000, LV, 0.000, MV,
Ss,4, So.4 0.000, HV)

46654  Sy3, S2.4, S3,3, S4.3, S5,3, S6,3, S7.3, (0.998, ST, 0.002, LV, 0.000, MV,
Sg,4, So.2 0.000, HV)

46655  S13, S2.4, S3,3, S4,3, Ss5.3, S6,3, S7.3, (1.000, ST, 0.000, LV, 0.000, MV,
Sg4, So.3 0.000, HV)

46656  S13, S2.4, S3,3, S4,3, S5.3, S6,3, S7.3, (1.000, ST, 0.000, LV, 0.000, MV,

Sg,4, So,4

0.000, HV)
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represented as independent parent nodes in the developed BN. In this
context, the noisy-max technique is utilized to calculate the CPT values
for inter-functional relationships in the BN, as outlined in Section 3.3.2.
The output performance variability of Function 2 results from the
interaction of several factors: the input from Function 1, the SVI asso-
ciated with Function 2, and the contributions of background functions
BG1, BG2, and BG4, which serve as the precondition, control, and re-
sources, respectively.

The values for background functions, which define the boundaries of
the developed FRAM model, are derived using various methods dis-
cussed in this paper. For BG1, representing the performance variability
of mooring operations in a seaport, these values are determined from
empirical data collected over several years. The ST state corresponds to
all mooring operations that were conducted successfully and safely,
adhering to the plan without any disruptions or noticeable variabilities.
This state reflects the baseline performance where the operation pro-
ceeds as expected. The LV state includes scenarios where minor dis-
ruptions occurred, such as slight delays or minor deviations in precision.
While these variabilities are noticeable, they do not significantly affect
the overall operation or system performance. The MV state reflects sit-
uations where variabilities begin to impact the system more substan-
tially. Examples include delays significant enough to disrupt schedules
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Fig. 12. BN model for UVI calculation in function 2.

or minor incidents that require corrective actions but do not escalate
into major issues. The HV state represents conditions where variabilities
cause critical disruptions to the operation. This includes severe delays,
major accidents, or incidents that significantly compromise the safety,
efficiency, or overall integrity of the mooring process. These states are
attributed proportionally to the observed data, reflecting their frequency
and impact on the system.

BG2 is an organizational function that encompasses a wide range of
port management operations. Its role varies depending on the specific
activities and requirements of the seaport, but it fundamentally oversees
the overall management of the port by ensuring that operations are
controlled, monitored, and efficiently coordinated. This function is
critical for maintaining seamless day-to-day operations and adapting to
the dynamic challenges of port environments. The variability in the
performance of BG2 is analysed by modelling its behaviour using a BN
framework. This modelling approach, as described in Section 3.2.1,
provides insights into how different organizational factors and condi-
tions influence the effectiveness of BG2, thereby supporting decision-
making and performance optimization in seaport management.

BG4 represents the logistics management and resource allocation
capabilities of a seaport, encompassing its ability to supply and
distribute necessary resources to various operational activities. This
function is pivotal in ensuring that each section of the seaport operates
efficiently. However, resource allocation is not uniform across all ac-
tivities and depends on factors such as the level of investment, the pri-
orities of stakeholders, and the criticality of specific operations to the
overall performance of the seaport. In a technical context, resource
prioritization is particularly important for high-stakes operations. For
instance, logistics support for critical assets like quay cranes should be
robust and well-structured. Quay cranes are integral to loading and
unloading cargo, and any disruption in their operation can lead to sig-
nificant delays, increased costs, and ripple effects throughout the supply
chain. In contrast, yard-side operations, while essential, may not require
the same level of resource intensity or redundancy because their dis-
ruptions, although impactful, are generally less immediate in their
consequences. As a result, the output value of BG4 is expected to vary
across different functions, reflecting the unique logistical demands and
resource priorities associated with each operation. However, for
simplicity in this research, the UVI for all BG4 elements is assigned the
same value. After determining the performance variabilities of all
background functions, which serve as inputs to the main model, and
obtaining the SVI values for the foreground functions through the out-
lined approaches, the main model can now be computed. This allows for
analysing and monitoring the impact of upstream variabilities on
downstream functions. It is important to note that a comprehensive
dataset, encompassing both objective and subjective information, was
collected from a specific seaport. However, due to confidentiality

agreements, the name of this seaport cannot be disclosed.
Figs. 13, and 14 illustrate the performance variability values for all
functions, including the SVI and UVI.

4.4. Criticality matrix development

Once the performance variability for each function is quantified, the
next step is to identify critical functions and evaluate the system's overall
weaknesses from a systemic perspective. To achieve this, the UVI values
are assigned appropriate scores, as outlined in Section 3.3.3, to derive a
unique representative value for each function. This process involves
calculating the mean, standard deviation, and the lower and upper
bounds of the variability.

To represent the variability probabilistically, it is assumed that these
aggregate scores follow a normal distribution. This assumption is com-
mon in probabilistic modelling, as the normal distribution effectively
captures central tendencies (mean) and variability (standard deviation)
[70]. Table 11 provides the representative output values for each
function, reflecting the variability and its implications for the system. It
is to be noted that the lower and upper bounds are determined at a 95 %
confidence level through MCSs, utilizing 100,000 iterations for
precision.

To assess the magnitude of variability in critical functions, their
severity levels are also determined. However, accurately quantifying the
magnitude of variability and its impact in terms of severity requires an
independent study, as this step is crucial for understanding the conse-
quential effects of disruptions in various elements of a CSTS. Given the
scope of this study, we have relied on expert judgment to classify each
function into three categories of severity: minor, moderate, and critical,
as presented in Table 11.

Fig. 15 illustrates the criticality matrix, which maps functions to
their appropriate positions within the matrix. In this framework, the
vertical axis reflects performance variability, with evenly distributed
boundaries defined by the nature of each function in the seaport context.
The proposed matrix offers flexibility for adaptation based on user-
specific requirements, enabling its application to diverse systems of
interest.

The criticality analysis reveals that all functions fall into level B,
indicating minor levels of variability. While these variabilities are
relatively low, they still have the potential to contribute to negative
resonance, especially when interacting with moderately variable or
interconnected functions. Such interactions can propagate risks
throughout the system.

According to Safety-II principle, variability at level B can be viewed
as an asset, as it arises from the adaptive adjustments necessary for
everyday operations. However, the criticality matrix utilizes mean
values derived from variability distributions to categorize variability
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Fig. 13. The SVI values.

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

F2 F3

UL

F8 F9 BGl BG2 BG3 BG4

ST mLV ="MV mHV

Fig. 14. The UVI values.

Table 11

The functions representative output values for resonance analysis.
Function = Mean Standard Lower Upper Severity

value deviation bound bound level

F1 1.930 0.570 0.812 3.048 Moderate
F2 1.930 0.515 0.921 2.939 Critical
F3 2.100 0.520 1.082 3.118 Moderate
F4 2.030 0.538 0.976 3.084 Moderate
F5 2.140 0.601 0.963 3.317 Critical
F6 2.300 0.574 1.174 3.426 Critical
F7 1.940 0.562 0.838 3.042 Moderate
F8 2.050 0.517 1.036 3.064 Moderate
F9 1.880 0.520 0.861 2.899 Moderate
BG1 1.935 0.644 0.673 3.197 Critical
BG2 1.970 0.513 0.965 2.975 Critical
BG3 1.614 0.565 0.507 2.721 Moderate
BG4 2.308 0.779 0.781 3.835 Critical

into three levels. To incorporate uncertainty into risk-based decision-
making, the upper and lower bounds of variability scores can provide a
more nuanced understanding of the confidence in the mean score's
placement within the matrix. For instance, if the upper bound is
considered and indicates higher criticality, it could flag functions for
further investigation even when the mean suggests a lower criticality
level. Using this approach, functions such as F2, F5, F6, F7, BG1, BG2,
and BG4 would move to level C when upper bounds are applied. This
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Fig. 15. The criticality matrix for identifying critical functions in reso-
nance analysis.

shift indicates that these functions exceed acceptable thresholds and
signal a need for immediate attention to mitigate the risk of negative
resonance. As a practical example, if F7 (Cargo transport to yard stor-
age) were to fall within the red zone of the criticality matrix, this would
signal the need for immediate intervention by terminal logistics teams.
In such a situation, additional trucks would be deployed to avoid delays
in container movement to the yard. Without timely action, performance
variability in this function could propagate upstream to the quayside,
increase variability in quay crane operations, and ultimately elevate the
probability of terminal-wide disruption. By allocating redundant
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trucking capacity and addressing the issue at its source, variability can
be contained, localized, and eliminated before it cascades into broader
system instability. All in all, this approach rigorously prioritizes func-
tions for safety countermeasures, emphasizing the need to reduce vari-
ability in their outputs. Addressing these criticalities pre-emptively can
prevent negative resonance and ensure system stability, particularly in
downstream processes.

4.5. Model validation process

As outlined in Section 3.4, multiple approaches are employed to
validate the proposed model and its findings. For the HTA and FRAM,
the validation process involved consultation with seven experts, each
possessing at least 15 years of experience in seaport operations. These
experts, with minor revisions, confirmed that the activities represented
in the HTA and subsequently modelled in the FRAM, along with their
structures and interconnections, accurately reflect the most significant
and realistic activities observed in practice. Additionally, the results
were partially benchmarked against other studies [16,20,48,64,69,123].
However, identifying and aligning with similar studies for comparison
proved challenging due to the limited availability of directly comparable
research and the complexity of matching findings.

In addition to the previously mentioned methods, sensitivity analysis
was performed to validate the BN models. This process involved two
sequential steps. First, the developed BNs for SVI evaluation were ana-
lysed as a partial validation of the overall model. Second, the FRAM-
based BN models, which map the relationships between functions,
were validated through sensitivity analysis. Using GeNle software, a
derivative-based sensitivity analysis was conducted, allowing the
quantification of how changes in the BN’s parameters influence the
target nodes by calculating their derivatives. In this approach, the
software uses mathematical and numerical techniques to compute the
derivative of the posterior probability distribution of each target node
with respect to each parameter. For instance, if P(C/A) represents the
probability of a child node C given a parent node A, the derivative value
is obtained as %, which quantifies how P(C) changes when P(A) is
adjusted. Larger derivatives signify that even minor changes in a
parameter have a substantial impact on the target node. By comparing
derivatives across various parameters, the most influential ones can be
identified.

As shown in Table 12, the three highest derivatives were selected
along with their associated nodes as examples. It is important to note
that these selections are based on the ST state of the target node. In other
words, by setting the target node’s state to ST, the most sensitive pa-
rameters were identified. Additionally, the variation range of the leaf
node’s ST state is reported, illustrating the span of possible values. For
instance, within the technological function, setting environmental con-
ditions to stable, MTTR to short, and ensuring an adequate level of
redundancy is expected to contribute to the stability of performance
variability. The interval values are centred around the original ST state

Table 12
The sensitivity analysis results.
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values of the target node, fulfilling Principle 1 of sensitivity analysis.

To address Principle 2, the top three nodes, along with their relevant
states, were subjected to a 10 % increase in their values to observe the
combined effect on the target node. For human functions, since the
initial values for these three top nodes were at their maximum (100 %), a
10 % decrease was applied instead.

The results indicate that the posterior probabilities of the target node
for technological, organizational, and F2 functions shifted favourably
toward the ST state, resulting in a corresponding reduction in perfor-
mance variability as the ST values increased. In contrast, for human
functions, the posterior probabilities leaned toward greater performance
variability, with an increase in the MV values. This demonstrates that
the collective impact of changes in the selected nodes on the target
node’s probabilities is consistently more significant than the impact of
individual changes in each node, thereby validating Principle 2.

4.6. Implications

Based on the obtained results and the associated discussion, several
implications can be drawn to support various seaport stakeholders, each
benefiting from these insights from different operational and strategic
perspectives, as outlined below:

1) Immediate control through the prioritisation of “level C”
functions.

When the upper confidence bounds of the UVI distributions are
considered, seven elements, including F2 (Initial Safety and Security
Checks), F5 (Quay crane operation), F6 (Quay crane operator), F7
(Cargo Transport to Yard Storage), BG1 (Vessel securely moored), BG2
(Port operations management) and BG4 (Resource management)
migrate from a minor variability “B” zone to the critical “C” zone of the
matrix. This shows that apparently “well-behaved” functions can
become risk amplifiers once uncertainty is acknowledged, so early
safeguards must focus on these nodes before local variation resonates
through the wider seaport system.

2) Operational stakeholders (pilots, berth masters, equipment
maintainers).

F2 (cargo-handling coordination) and F5/F6 (quay-crane and yard
operations) emerge as volatility hot-spots; actions such as dynamic berth
planning and predictive maintenance will give the biggest risk-reduction
pay-off.

3) Strategic management (port authority and terminal operators).

BG1 (mooring practice) and BG2 (organisational control) highlight
that managerial routines and safety culture are as variable as front-line
work; leadership should institutionalise continuous monitoring and
learning loops.

Function Node State Interval Derivative Prior prob. Posterior prob. Performance variability
Organizational Authority gradient Balanced [0.258-0.419] 0.160 ST=0.38 LV=0.52 ST=0.43 LV=0.49 PV,=1.74
Span of control Balanced [0.258-0.419] 0.160 MV=0.08 MV=0.07 PV,=1.66
Communication effectiveness Adequate [0.255-0.410] 0.155 HV=0.02 HV=0.01 AP=-5 %
Technological Environmental condition Stable [0.483-0.820] 0.337 ST=0.69 LV=0.23 ST=0.75 LV=0.20 PV;=1.39
MTTR Short [0.582-0.729] 0.148 MV=0.07 MV=0.05 PV,=1.30
Redundancy Adequate [0.575-0.722] 0.146 HV=0.01 HV=0.00 AP=-7 %
Human Qso So.4 [0.353-0.540] 0.192 ST=0.00 LV=0.54 ST=0.00 LV=0.45 PV;=2.46
APP S33 [0.378-0.540] 0.181 MV=0.46 MV=0.55 PV,=2.55
TAC Si3 [0.404-0.540] 0.167 HV=0.00 HV=0.00 AP=+4 %
F2 Internal ST [0.165-0.173] 0.174 ST=0.17 LV=0.73 ST=0.22 LV=0.70 PV;=1.93
BG1 ST [0.164-0.172] 0.173 MV=0.10 MV=0.08 PV,=1.86
F1 ST [0.162-0.171] 0.172 HV=0.00 HV=0.00 AP=-4 %
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4) Logistics partners and investors.

BG4’s high variability underlines that resource-allocation policy (e.
g., spare-part inventories, redundancy levels) directly drives systemic
stability.

5) Resource-allocation rules derived from sensitivity analysis.

Derivative-based sensitivity reveals that keeping environmental
conditions stable, MTTR short and redundancy adequate produces 5-7 %
shifts of the posterior toward the ST state for technological functions,
whereas poor attention to these parameters moves human functions
toward the MV state. This quantifies how marginal investment in
redundancy or faster repair capability suppresses resonance potential
system wide.

6) Balancing Safety-II adaptability with resonance prevention.

Although most mean UVIs sit in the “beneficial variability” band
(level B), the wide upper tails caution against complacency; variability is
an asset only while resources exist to damp it. The integrated FRAM-BN
model makes that trade-off explicit by letting analysts toggle between
mean, lower- and upper-bound scenarios during what-if simulations.

7) Methodological generalisation to other complex transport
systems.

The quantitative FRAM-BN coupling used here aligns with the recent
trend in maritime-risk science toward data-driven Bayesian networks
combined with functional models [33,74,75,120].

It is noted that the proposed framework has been designed to address
the inherent complexity of safety assessment in complex socio-technical
systems through a Safety-II-oriented perspective. While seaport opera-
tions were selected as the primary case study to demonstrate applica-
bility and practical feasibility, the methodological structure is not
domain specific. Owing to its modular design principles and emphasis on
functional variability, the framework is readily generalisable to other
complex sectors, such as aviation, rail, energy, and healthcare, where
multi-actor interactions, dynamic operating environments, and emer-
gent performance conditions similarly influence system resilience and
safety outcomes. With appropriate contextualisation of system functions
and domain-specific variables, these sectors can likewise adopt the
framework to undertake systemic, performance-based Safety-II risk as-
sessments. The applicability of this approach can be considered from
two perspectives, reflecting both the commonalities and the sector-
specific differences.

From a commonality perspective, these sectors share fundamental
characteristics with maritime operations, including high interdepen-
dence among human, technical, and organizational elements, reliance
on continuous coordination between multiple agents, and the presence
of tightly coupled subsystems where small performance variabilities can
lead to potential negative resonances with significant system-wide
consequences. In aviation and rail transport, as in seaports, opera-
tional safety depends on synchronized human-machine interactions,
adherence to procedural constraints, and resilience to unexpected dis-
turbances. Similarly, healthcare systems exhibit comparable socio-
technical complexity, where variability in human performance and
resource constraints can critically affect outcomes. Thus, the frame-
work’s focus on modelling functional variability and emergent behav-
iour makes it well suited for analysing these domains.

From a uniqueness perspective, each sector exhibits distinct features
that require contextual adaptation of the framework. For instance,
aviation and rail industries often possess richer operational and safety
data through advanced monitoring systems and regulatory reporting,
which can reduce subjective bias in quantification of performance
variability and improve the empirical grounding of probabilistic models.
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In contrast, healthcare environments are characterized by higher
contextual diversity and limited standardization, meaning that qualita-
tive judgment and expert elicitation remain essential for capturing
functional dependencies and performance variability. Consequently,
appropriate contextualization of system functions, data availability, and
performance indicators will be essential when adapting the framework
to each domain.

In summary, the proposed Safety-1I-based framework provides a
flexible foundation for systemic and performance-based risk assessment
across diverse complex socio-technical sectors. Its modular architecture
allows for both cross-domain generalization and domain-specific cus-
tomization, ensuring its applicability to different CSTS.

5. Conclusions

In this study, a novel systemic risk assessment approach is designed
to capture the dynamic interactions among the various elements of a
seaport. Performance variability is acknowledged as a distinctive
framework for expressing and understanding the interdependencies
between diverse functions. The FRAM serves as the foundational
component of the approach, enabling the visualization of real-world
relationships between activities, referred to as functions, within a
seaport context. To enhance FRAM's capability for quantitative analysis,
it is integrated with BN, allowing consideration of both internal and
external factors that may influence individual functions. The proposed
methodology builds upon the principles of the Safety-II concept,
emphasizing a functional safety perspective. The outcomes of the study
and the application of the framework provide deeper insights into sys-
tem dynamics and offer more practical, versatile strategies for
improving overall system safety.

Given the obtained results, insights, and implications, this study
makes several significant contributions, as follows:

1) Holistic analysis of CSTS elements: Technological, human, and
organizational functions within the CSTS are analysed to evaluate
their internal and external performance variabilities, considering
factors such as operational uncertainties, environmental conditions,
and human performance fluctuations.

Function interactions: Interactions between functions are systemat-
ically analysed to track upstream-downstream performance vari-
ability, assessing their impacts on the overall system. This approach
highlights critical dependencies and emergent behaviours.
Comprehensive risk analysis: The framework supports both retro-
spective and prospective evaluations of performance variability,
providing actionable insights for addressing risks effectively.
Enhanced decision-making: By quantifying and visualizing perfor-
mance variabilities, the framework enables risk-based decision-
making, helping prioritize interventions and implement targeted risk
management measures.

2)

3)

4

—

This integrated approach provides a solid foundation for under-
standing and mitigating systemic risks in complex socio-technical sys-
tem environments. Nevertheless, while the framework demonstrates
strong potential for comprehensive systemic risk assessment, several
limitations and avenues for future enhancement remain.

First, the FRAM model development was based on expert knowledge
and focused on key operational functions. As system size and complexity
grow, the number of functions and their interdependencies may expand
significantly, making manual modelling increasingly demanding and
time-consuming. Future research could integrate machine-learning-
assisted techniques, such as those informed by HTA analysis, to sup-
port automated function identification and coupling detection. These
techniques would serve as an advisory tool to assist experts, thereby
improving scalability and modelling efficiency while preserving domain
oversight. Second, limited availability of empirical data for human and
organisational functions necessitated reliance on expert judgment.
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Appendix A

Regarding the application of modified CREAM methodology to assess the SVI of human functions in step 3 the following example is brought up here
to clarify the procedure. Let’s say, in rule number k, out of the nine CPCs, four have positive effects, three have negative effects, and two have neutral
effects. Referring to the vertical axis of the diagram, which corresponds to the value four, and examining the shares of the slots associated with
different, it is evident that there is one block for "strategic", five blocks for "tactical", and none for the other CCMs. Based on this, p™ is estimated as:

p* ={(0.17,CCMy), (0.73,CCMy), (0, CCMs3), (0,CCM4)}
Similarly, using the horizontal axis of the diagram and identifying the value three, two blocks are observed for "opportunistic", five blocks for "tactical",
and none for the other CCMs. Consequently, f is calculated as:

p~ ={(0,CCMy,), (0.71,CCMy), (0.29, CCM3), (0,CCM4)}
It should be emphasized that the "neutral" effect does not contribute to the integrated result, as it has already been accounted for in the uncertainty,
and its belief degree is therefore excluded from the process.

Once the positive and negative belief degrees are determined, and the weights derived using the AHP approach are incorporated, evidential
reasoning is employed to synthesize this information. This process delivers the final combined belief degree for each CCM.

Appendix B

Regarding the DSET approach, let’s consider a set of n mutually exclusive and exhaustive propositions, referred to in this context as the BN states,
Q={Xyp, Xi,..., Xn}. This set Q is called the frame of discernment.

The power set, denoted 2%, includes all possible subsets of Q, including the empty set () and Q itself. For a frame Q={Xy, X;}, the power set is:
2°={3,{Xp, X1, X0, X1}}. In general, for n elements in Q, 2" subsets are formed.

DSET comprises three vital functions: the Basic Probability Assignment (BPA), the Belief Function (BEL), and Plausibility Function (PL). BPA,
denoted as m(A), assigns a mass of probability to a subset A of the frame of discernment Q, where AcQ.

The following rules are applied: The mass of the empty set is always zero: m(@)=0, and the sum of all masses over 2 is 1, which is illustrated as
> acaMm(A) = 1. A is referred to as a focal element if m(A)>0 and m(A) represents the extent to which the evidence supports the proposition A.

Continuing, the BEL serves as the lower bound of the probability interval, while the PL acts as the upper bound. They are defined as follows:

BEL (X) = > [[ m(P) (B1)
PCX1<i<n
PL(X) = 1 — BEL(X) (B2)
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where P is the proper subset of the set of interest (X), i is the number of beliefs, and X signifies the complement of X, indicating that the belief is
governed by the principle that the total basic probability BPA must equal 1.

When multiple pieces of evidence from different sources are presented, the fusion of beliefs is determined by the combination rule of DSET as
follows:

m(A) = my(A) & ma(A)..m (4) = 2 za ™ B (C) 1 2) (83)
when A#£@, m(?)=0, and where,
K= > m(B)my(C)..my(2) (B4)

BNCN...Z=0

K represents the level of conflict between the pieces of evidence, with K=0 indicating no conflict and K=1 signifying complete contradiction between
the evidence.

Appendix C

Table C1
Symbols and definitions used in the proposed methodology.
Symbol Description
ST Stable conditions, no variability
Lv Low variability
MV Moderate variability
HV High variability
CPT Conditional Probability Table
CPC Common Performance Condition
P(C/R) Conditional probability of child node state Cgiven parent node state R
P(CCM) Probability of performance variability in terms of Contextual Control Mode
Sij The state of CPC i and number j
P(Sij) Probability of specific states of a given common performance condition
P(CCM/S;) Conditional probability of performance variability given a CPC states
0P(C) The derivative value of child node C given a parent node A
oP(A)
MTTF Mean Time To Failure
MTTR Mean Time To Repair
SVI Self-contained Variability Index
UVl Upstream Variability Index
B Belief degrees with positive effect
B Belief degrees with negative effect
B Combinatory belief degrees
wt The corresponding weights of CPCs with positive effects
e The corresponding weights of CPCs with negative effects
Fi Foreground function number i
BG; Background function number i

Table C2
The expert’s profile and their related experience and expertise.

Number  Title Educational Experience Location Specialization
level (years)

1 General Manager MSc 20 Iran Port master planning; concession/PPP contract management; stakeholder engagement;
ESG & sustainability; business continuity & resilience.

2 Operations Manager MSc 15 Iran Berth planning & vessel scheduling; quay-crane assignment; yard planning & resource
optimization; stowage coordination with shipping lines.

3 Operations Manager Ph.D 12 Canada Container terminal management; stevedoring planning; turnaround-time optimization.

4 HSE Director Ph.D 10 Belgium ISO 45001/14001 systems; HAZID/HAZOP/JSA risk assessment; emergency response
& oil-spill (ICS) planning; contractor HSE auditing.

5 Harbour Master MSc 18 USA VTS & navigational safety; pilotage & towage coordination; mooring/lines safety; ISPS
drills & security interface; incident investigation & root-cause analysis.

6 Port Planning MSc 16 UK Berth/yard capacity modelling; approach-channel design & navigational risk; asset
management (PIANC/ICE standards).

7 Terminal Systems & MSc 14 Australia  TOS configuration; yard optimization & equipment dispatching (ASC/RTG/AGV); EDI/

Automation Manager port community systems; operational analytics & dashboarding.
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Table C3
CPC estimates based on expert elicitation.

Reliability Engineering and System Safety 270 (2026) 112200

CPC States Expert 1 Expert 2 Expert 3 Aggregated value Effects on performance variability
TAC S1,1 0.00 0.00 0.00 0.0000 Negative
S1,2 0.10 0.15 0.10 0.0022 Neutral
S1,3 0.90 0.85 0.90 0.9978 Positive
HMI Sa1 0.00 0.00 0.00 0.0000 Negative
Sa2 0.10 0.00 0.05 0.0000 Neutral
Sa3 0.75 0.80 0.85 0.9941 Neutral
Sa4 0.15 0.20 0.10 0.0059 Positive
APP S3,1 0.00 0.00 0.00 0.0000 Negative
S32 0.10 0.00 0.05 0.0000 Neutral
S33 0.90 1.00 0.95 1.0000 Positive
Ccow S41 0.35 0.25 0.30 0.0714 Negative
Sa2 0.65 0.75 0.70 0.9286 Neutral
Sa3 0.00 0.00 0.00 0.0000 Positive
NGC Ss,1 0.25 0.10 0.20 0.0092 Negative
Ss,2 0.75 0.90 0.80 0.9908 Neutral
Ss,3 0.00 0.00 0.00 0.0000 Positive
ATT Se,1 0.30 0.30 0.20 0.0542 Negative
Se,2 0.70 0.60 0.75 0.9458 Neutral
Se,3 0.00 0.10 0.05 0.0000 Positive
CRS S71 0.05 0.05 0.10 0.0007 Negative
S7.2 0.70 0.75 0.75 0.9806 Neutral
S7.3 0.25 0.20 0.15 0.0187 Positive
TCQ Sg1 0.00 0.00 0.00 0.0000 Negative
Sg2 0.15 0.10 0.10 0.0030 Neutral
Sg,3 0.80 0.75 0.85 0.9963 Neutral
Sg,4 0.05 0.15 0.05 0.0007 Positive
QSO So,1 0.05 0.00 0.05 0.0000 Negative
So,2 0.25 0.30 0.35 0.0819 Negative
So,3 0.70 0.70 0.60 0.9181 Neutral
So,4 0.00 0.00 0.00 0.0000 Positive
Data availability [13] Catelani M, Ciani L, Guidi G, Patrizi G. An enhanced SHERPA (E-SHERPA)
method for human reliability analysis in railway engineering. Reliab Eng Syst Saf
2021;215:107866. https://doi.org/10.1016/j.ress.2021.107866.

The authors do not have permission to share data. [14] Ceylan BO, Akyuz E, Arslan O. Systems-theoretic Accident model and processes
(STAMP) approach to analyse socio-technical systems of ship allision in narrow
waters. Ocean Eng 2021;239:109804. https://doi.org/10.1016/j.
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