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Abstract

The swift evolution of artificial intelligence technologies (Al) has introduced unparalleled capabilities,
alongside critical vulnerabilities that can be exploited maliciously or cause unintended harm. While
numerous efforts have emerged to govern Al risks, there remains a lack of comprehensive analysis of
how Al systems are actively being misused. This paper offers an in-depth review of Al misuses across
modern technologies, analyzing attack mechanisms, documented incidents, and emerging threat
vectors. We provide a brief review of Al risk repositories and existing taxonomic approaches to set the
context, and then synthesize them into a comprehensive categorization of Al misuse across nine
primary domains: (1) Adversarial Threats, (2) Privacy Violations, (3) Disinformation, Deception &
Propaganda, (4) Bias & Discrimination, (5) System Safety & Reliability Failures, (6) Socioeconomic
Exploitation & Inequality, (7) Environmental & Ecological Misuse, (8) Autonomy & Weaponization,
and (9) Human Interaction & Psychological Harm. Across these domains, we identify and analyze
distinct categories of Al misuses and risks, providing technical depth on exploitation mechanisms,
documented cases with quantified impacts, and the latest developments including large language model
vulnerabilities and multimodal attack vectors. We also assess the effectiveness of current mitigation
strategies and countermeasures, evaluating technical security frameworks (e.g. MITRE ATLAS,
OWASP Top 10 for Large Language Models (LLMs), MAESTRO), regulatory approaches (e.g. EU
Al Act, NIST AI RMF), and compliance standards. Our analysis reveals significant gaps between Al
capabilities and robustness of defensive measures, with adversaries holding persistent advantages
across most attack categories. This work contributes to the field by: (1) systematically consolidating
fragmented Al risk and misuse taxonomies and repositories, (2) developing a unified taxonomy of Al
misuse patterns grounded in both theoretical models and empirical incident data, (3) critically
evaluating the effectiveness of existing mitigation strategies, and (4) identifying priority research gaps
to foster the development of more robust, ethical, and secure Al systems.

1 Introduction

Artificial Intelligence (Al) has rapidly evolved into one of the most transformative technologies of the
21st century, reshaping industries, governance, and everyday life. Deep learning breakthroughs since
2012 (LeCun et al., 2015), proliferation of LLMs (Brown et al., 2020), advances in generative Al
(OECD, 2019), and deployment of autonomous systems (Scharre, 2018) have created unprecedented
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capabilities. However, these same technologies have also introduced critical vulnerabilities, offering
new vectors for malicious exploitation.

The dual-use nature of Al lies at the core of this concern. Algorithms and models designed for
beneficial purposes can be adapted for malicious or unethical use. Natural language models that enable
intelligent assistants may be leveraged to produce convincing disinformation (Goldstein et al., 2023);
generative models supporting creative industries can be used to fabricate realistic deepfakes (Chesney
et al., 2019); computer vision systems designed for safety or accessibility may facilitate intrusive
surveillance or unauthorized biometric profiling (Buolamwini et al., 2018); and recommendation
algorithms designed to personalize user experiences can be exploited to manipulate behavior (Matz et
al., 2017). As Al systems grow in capability, autonomy, and accessibility, their misuse potential
increases in both scale and sophistication.

Recent incidents demonstrate that AI misuse is no longer theoretical but a pressing global issue with
measurable consequences: deepfake-enabled fraud exceeding $25 million (Stupp, 2019), Al-generated
election disinformation affecting millions (DiResta et al., 2024), wrongful arrests from facial
recognition errors (Garvie et al., 2016), algorithmic discrimination in healthcare affecting 200 million
people annually (Obermeyer et al., 2019), and adversarial attacks on safety-critical systems (Eykholt
et al., 2018). The proliferation of synthetic media, automated cyberattacks, and algorithmic
discrimination reflects how Al can amplify deception, erode privacy, and reinforce social inequalities.
Moreover, Al-driven automation and personalization have accelerated the scale and precision of
harmful activities, from widespread disinformation campaigns to targeted phishing and identity
manipulation. These developments highlight a growing mismatch between Al advancement and the
capacity to detect, regulate, or mitigate its misuse, raising pressing ethical and security concerns.
Recent statistics supporting these observations are shown in Fig.1.
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(a). Al related incidents reported worldwide (2019 —2024) from AGILE Index Report 2025
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Figure 1. Recent AI Misue Statistics

Despite the expanding body of literature on Al misuse, the research landscape remains highly
fragmented. Existing studies often focus on specific domains, such as deepfakes, adversarial attacks,
or data privacy, without integrating insights across technical, ethical, and societal dimensions (Slattery
et al.,, 2024), (National Institute of Standards and Technology, 2023). Moreover, inconsistent
terminology, varied categorization schemes, and rapidly evolving threat models further complicate
efforts to develop a unified understanding of the full spectrum of misuse. This fragmentation creates
challenges for those seeking to assess risks comprehensively or develop interdisciplinary strategies for
prevention and response.

This review addresses that fragmentation by providing a systematic synthesis of Al misuse research
across technical, ethical, and societal perspectives. Rather than proposing entirely new theoretical
models, this paper organizes and consolidates existing knowledge to create a comprehensive and
accessible overview of how Al technologies can be misused. To establish context, we briefly examine
empirical Al risk and misuse taxonomies and repositories. Building upon insights from these sources,
we propose a consolidated nine-domain categorization of Al misuse, each suitable for detailed
technical and socio-ethical analysis. Across these domains, we provide technical depth on exploitation
mechanisms, detailed real-world incidents, and discussion of countermeasure effectiveness.

Through extensive analysis of academic publications, industry reports, and documented misuse cases,
this paper seeks to:
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e Critically analyze existing Al risk and misuse taxonomies and repositories, examining how
different research initiatives categorize Al threats and identifying convergences, gaps, and
complementarities across classification schemes

e Synthesize a unified taxonomy of Al misuse that categorizes Al misuse and vectors across
technical, social, and ethical dimensions,

e Analyze various forms of Al misuse, identifying common vulnerabilities and attack patterns,
providing technical depth on exploitation mechanisms, and examining real-world case studies
to understand the practical manifestations, impacts, and consequences.

e Evaluate existing mitigation strategies, assessing technical security frameworks, regulatory
approaches, and compliance standards for their effectiveness, limitations, and applicability
across different contexts.

The remainder of this paper is organized as follows: Section 2 reviews existing Al misuse and risk
frameworks. Section 3 describes the review methodology. Section 4 categorizes Al misuse domains
and presents synthesized findings. Section 5 discusses key incidents and implications across domains.
Section 6 reviews current mitigation strategies and challenges and Al risk governance frameworks.
Section 7 concludes with recommendations for future research and governance directions.

2 Background: Review of Existing Al Risk and Misuse Taxonomies

Several organizations and research groups have developed frameworks and/or taxonomies to classify
and understand the risks and misuse of artificial intelligence, reflecting the growing need for systematic
approaches to Al safety and governance. We briefly review major existing taxonomies to establish
context before presenting our own categorization.

Among the most influential is the MIT Al Risk Repository developed by Slattery et al. (2024), which
represents the most comprehensive effort to date, extracting and categorizing 1,612 risks from 65
existing taxonomies (Slattery et al., 2024). The framework organizes risks using a dual approach: a
causal taxonomy classifying by entity, intentionality, and timing; and a domain taxonomy with seven
domains and 24 subdomains covering discrimination and toxicity, privacy and security,
misinformation, malicious actors and misuse, human-computer interaction, socioeconomic and
environmental impacts, and Al system safety. While highly valuable for conceptual coverage, the
repository largely abstracts away from detailed technical attack mechanisms and operational misuse
pathways.

Complementing this work, incident-centered repositories provide empirical grounding. The Al Incident
Database systematically catalogs real-world Al failures and misuse events, emphasizing recurrence
patterns and socio-technical root causes (McGregor, 2021). Similarly, the OECD Al Incident Monitor
aggregates reported Al-related incidents across jurisdictions, offering longitudinal insights into
emerging misuse trends (OECD, 2023). These repositories shift the focus from hypothetical risks to
documented harms, but do not provide fine-grained technical taxonomies. The OECD Al Incidents
Monitor provides an international repository of documented Al incidents, collecting reports from
multiple sources including news media, research papers, and direct submissions (OECD.AI, 2024).
The database categorizes incidents by type (bias/discrimination, privacy violation, safety failure, etc.),
sector (healthcare, finance, transportation, etc.), and Al technology involved (computer vision, NLP,
recommendation systems, etc.). However, the limitation lies in its limited technical depth in incident
descriptions.

This is a provisional file, not the final typeset article 4
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Several security-oriented and adversarial taxonomies focus explicitly on malicious Al use. MITRE
Adversarial Threat Landscape for Artificial-Intelligence Systems (ATLAS) provides a tactics—
techniques—procedures (TTP) knowledge base documenting real-world attacks on Al systems,
including data poisoning, model evasion, and supply-chain compromise (MITRE ATLAS, 2024).

The ENISA Al Threat Landscape similarly categorizes Al-related cybersecurity threats, emphasizing
vulnerabilities, attacker capabilities, and systemic impacts (ENISA, 2020). The OWASP Top 10 for
LLMs further refines this focus for generative and language models, identifying prompt injection,
insecure output handling, training data poisoning, model denial-of-service, and supply-chain
vulnerabilities as dominant misuse vectors (OWASP Foundation, 2024).

Beyond security, multiple domain-specific risk taxonomies have emerged. In healthcare, Golpayegani
et al. (2022) propose a structured taxonomy covering clinical, ethical, and operational AI risks,
highlighting patient harm and diagnostic bias (Golpayegani et al., 2022). In international security,
UNIDIR synthesizes Al risks related to strategic stability, escalation dynamics, and confidence-
building measures (UNIDIR, 2023). Mahmoud (2023) examines Al risks in information security,
emphasizing automation-enabled attack amplification. The /A4 AITF Al Risks Taxonomy (2024)
introduces a three-level taxonomy tailored to actuarial and financial risk management, mapping Al-
specific risk amplification onto traditional actuarial risk categories.

Additional academic contributions have expanded taxonomies to socio-technical and human-centered
harms. Critch and Russell (2023) introduced their Taxonomy and Analysis of Societal-Scale Risks
from Al (TASRA), examining macro-level dimensions including risk accountability and ethical
alignment (Critch et al., 2023). TASRA focuses on long-term, systemic risks rather than near-term
incidents, considering how Al could reshape power dynamics, decision-making authority, and social
institutions. Weidinger et al. (2022) proposed taxonomies specifically targeting large language model
risks, highlighting concerns such as discrimination, information hazards, and malicious uses
(Weidinger et al., 2022). Marchal et al. (2024) focused on generative Al misuse, identifying threats
including prompt injection, model leakage, and large-scale disinformation (Marchal et al., 2024).
Moreover, Zhang et al. (2025) addressed the emerging domain of Al companionship applications,
developing a taxonomy of harmful algorithmic behaviors that can occur in human-Al relationship,
examining the psychological and relational harms that can emerge when Al systems are designed to
form ongoing personal bonds with users, including emotional manipulation, unhealthy dependency,
and intimate privacy violations (Zhang et al., 2025).

Collectively, these taxonomies and repositories provide complementary but fragmented views of Al
misuse, varying in scope, granularity, and empirical grounding. Some emphasize technical attack
vectors, others societal harms or domain-specific risks, and few attempt holistic integration. Building
upon these efforts, this review consolidates and aligns them into a unified nine-domain taxonomy of
Al misuse, collectively capturing the technical, ethical, and socio-technical dimensions of
contemporary Al misuse, grounded in documented incidents and technical exploitation mechanisms,
representing both underrepresented dimensions such as environmental sustainability as well as
established concerns.

3 Methodology

This study employs a mixed-methods approach, combining a systematic literature review with in-depth
case study analysis to develop a comprehensive understanding of Al misuse patterns and mitigation
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strategies. By integrating these elements, the research bridges technical, social, and ethical
perspectives, while grounding theoretical insights in real-world incidents.

3.1 Reporting Standards

This study presents a systematic review in accordance with the PRISMA 2020 guidelines as illustrated
in Fig. 2 (Haddaway et al., 2022). Academic literature was retrieved from major scholarly databases
including IEEE Xplore, Scopus, and the ACM Digital Library. In parallel, relevant case-based and
policy-oriented materials were sourced from grey literature repositories and organizational databases
such as the NIST repository, MIT Al Repository, and Al Incident Database. To capture developments
coinciding with the rise of modern Al applications, the search covered the period from 2012 to 2025,
aligning with the deep learning era and the acceleration of Al adoption across critical domains. The
search queries combined key terms such as “artificial intelligence misuse”, “Al risks”, “Al security

99 <¢ 2 ¢¢

threats”, “adversarial attacks”, “Al safety”, “algorithmic bias”, “deepfakes”, and related variations.

A total of 128 records (104 from academic databases and 24 from other sources) were initially
identified. After removing duplicate records, 125 unique studies were screened based on titles and
abstracts. During this phase, 33 papers were excluded due to not meeting the inclusion criteria. Full-
text retrieval was sought for 68 studies, of which seven were excluded after detailed assessment. The
remaining 61 database-based studies were included in the final synthesis. From the additional 24
external sources, six reports were excluded, and 18 reports were retained. Altogether, 79 studies (61
database studies + 18 other sources) were included in the final review.

Identification of new studies via databases Identification of new studies via other methods

Records removed before screening: .
‘ Records identified from: Duplicate records (n = 3) Reovsre%sSilt(éesn(t’l_lﬂidw Z{?m'
Databases (n = 116) Records markedtoauslsm(:lglgge by automation Organisations (n = 10)

Identification

Records screened Records excluded
(n=113) (n=33)
2 Reports sought for retrieval Reports not retrieved Reports sought for retrieval Reports not retrieved
£ (n= 80) n=0) (n=24) > (n=0)
o
i}
(2}
P—— Reports excluded: = Reports excluded:
‘ Reports asiisf':}%;‘” eligibity }—» Insufficient methodological detail (n = 2) Reports 355(?:92‘1;”' eligibilty — Type of report not eligible (n = 4)
_ Not addressing Al misuse/risk (n = 5) Duplicate data (n = 2)

New studies included in review
(n=73)

Reports of new included studies
(n=18)

Included

Figure 2. PRISMA flow diagram of study selection.

The diagram (Fig.2) outlines the identification, screening, eligibility assessment, and inclusion process
for the reviewed studies.

3.2 Case Study Selection

This is a provisional file, not the final typeset article 6
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Case studies were identified through systematic monitoring of multiple sources including the Al
Incident Database, vulnerability disclosures, regulatory publications, industry transparency reports,
and media coverage. The aim was to capture a diverse set of examples spanning different domains of
misuse, levels of severity, and cultural or geographic contexts. Selected cases were required to have
documented evidence verifying the incident. This ensured that the analysis addressed both technical
and social dimensions of misuse and highlighted the ways Al vulnerabilities manifest in practice.

3.3 Taxonomy Development

The taxonomy of Al misuse was derived through a systematic synthesis of major Al risk frameworks,
consolidating and extending them into a unified and comprehensive classification. Drawing on
established taxonomies, we identified key conceptual overlaps and critical gaps, particularly in areas
such as environmental sustainability and human-Al psychological manipulation. Accordingly, Al
misuse was classified into nine domains encompassing both the technical and socio-technical
dimensions of contemporary misuse. The detailed research workflow is given in Fig. 3, illustrating the
methodological workflow adopted in the study, beginning with a systematic literature review and case
study analysis, followed by framework synthesis and refinement, taxonomy construction, and the
formulation of mitigation strategies.

Al Misuse - Research
Workflow

Systematic Literature Review & Case Study
Examples
! ! ' }
Systematic search Include scholarly, Identify misuse Case Study Exal.nples
across academic & industrial, & incidents across sources: Al Inqde'n.t
policy databases governmental domains Database, vulnerability
(2015-2025) reports disclosures, reports, media
1
Fr k Synthesis & Refi
|
f ] ] [}
z Highlight underrepresented Refine taxonomy
Review existing Identlfy conceptual areas (environmental misuse, using classified
. overlaps g b g ¢
taxonomies human-Al psycholog PRt
manipulation)

Mitigation Strategies &
Evaluation

Adversarial & Human Interaction &
Cybersecurity Psychological Harm Synthesize
Threats —=  domain-specific
Taxonomy of Al Misuse mitigation strategies
Autonomy &

d o — e
Weaponization

Privacy Violations <——__ Evaluate current
policy frameworks

A 4 Environmental & :
Disinformation & Bias & Socioeconomic Ecological Misuse Recommendations for

Propaganda Discrimination Exploitation responsible Al governance

System Safety &
Reliability Failures

Figure 3. Methodological workflow of the research

4 Taxonomy of AI Misuse
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To enable systematic analysis of Al misuse, this study develops a taxonomy that organizes threat
vectors across nine primary domains, each further divided into subcategories. These domains
encompass adversarial and cybersecurity threats, privacy violations, disinformation and synthetic
media, bias and discrimination, system safety and reliability failures, socio-economic exploitation and
inequality, environmental and ecological misuse, autonomy and weaponization, and human interaction
and psychological harm. While these categories represent distinct manifestations of misuse, they are
also deeply interconnected, with vulnerabilities in one domain frequently compounding risks in
another. By organizing the landscape in this structured manner, the taxonomy provides a
comprehensive framework for both researchers and practitioners to classify incidents, anticipate
threats, and design targeted interventions (Slattery et al., 2024), (NIST, 2023).

Table 1. Taxonomy of AI Misuse

Domain

Key Examples (Attack Types)

Mechanisms

Implications

Adversarial Threats

Evasion attacks, poisoning,
backdoors, model extraction,
membership inference, model
inversion, supply chain attacks

Subtle perturbations to inputs,
maliciously crafted training data,
unauthorized model queries,
compromised dependencies in
Al pipelines

Compromise of Al integrity,
intellectual property theft,
inaccurate outputs in critical
systems (e.g., autonomous
vehicles, medical Al)

Privacy Violations

Sensitive attribute inference,
re-identification, data leakage,
unauthorized surveillance

Analysis of model outputs,
correlational inference,
generative model reconstruction

Breach of user confidentiality,
regulatory violations, erosion of
trust in digital services

Disinformation, Deepfakes, automated fake Generative models for text, Misinformation at scale,
Deception, & news, targeted propaganda, image, video; automated manipulation of public opinion,
Propaganda harmful/illegal content amplification on social media destabilization of political and
generation, prompt injection, social systems
erosion of trust
Bias & Gender, racial, socioeconomic Biased training data, Unequal access to services,
Discrimination biases; opaque decision- reinforcement of historical perpetuation of social inequities,
making; stereotyping inequities, algorithmic opacity reputational and legal risks for
deploying organizations
System Safety & Autonomous vehicle accidents, | Model misbehavior under Physical harm, operational
Reliability Failures | misdiagnoses in healthcare, unexpected conditions, disruption, loss of human life or
industrial automation failures inadequate validation and safety incidents
monitoring
Socioeconomic Job displacement, economic Automation replacing human Increased economic disparities,
Exploitation & fraud, cheating, microtargeting, | labor, Al-driven manipulation of | reduced employment
Inequality exploitation of vulnerable financial and social systems opportunities, ethical and legal

populations

challenges in Al governance

Environmental &

High energy consumption of

Resource-intensive model

Increased carbon footprint,

Ecological Misuse Al, carbon-intensive model training, misuse of Al in ecological damage, sustainability
training, automated harmful environmental systems concerns
industrial practices
Autonomy & Autonomous drones, lethal Al Decision-making without human | Escalation in conflict, ethical
Weaponization weapons, cyber-physical oversight, Al-guided military concerns over lethal Al, potential

attacks, Agentic Al systems

systems

breaches of international law

Human Interaction
& Psychological
Harm

Emotional manipulation via Al,
addiction to Al interfaces,
mental health impacts

Personalized content targeting,
persuasive Al, immersive digital
environments

Anxiety, depression, behavioral
manipulation, loss of agency and
autonomy

4.1 Adversarial Threats

Machine learning systems are vulnerable to a wide array of adversarial attacks that exploit both the
data and model layers of the learning pipeline (as shown in Fig. 4). Evasion attacks exploit weaknesses
in trained models by subtly perturbing inputs, causing misclassifications without visibly altering the
underlying data (Biggio et al., 2013). These perturbations are often unnoticable to humans but are
designed to shift the input across the model’s decision boundary. Such attacks are particularly

This is a provisional file, not the final typeset article 8
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concerning in real-time systems, where even minor perturbations to data can induce high-confidence
yet incorrect predictions, compromising safety-critical applications such as helathcare decsisons,
autonomous navigation, or biometric authentication.

Poisoning attacks, in contrast, corrupt the training dataset itself, embedding malicious patterns that
compromise the integrity of models even before deployment (Gu et al., 2017). Attackers may inject a
small fraction of poisoned samples into the training sets to manipulate model behavior, either globally
(causing widespread accuracy degradation) or specifically (triggering backdoor conditions under
certain inputs). For instance, a backdoor poisoning attack might train a face recognition model to
always classify images containing a specific pixel pattern as a trusted user, regardless of the actual
identity. Such manipulation remains dormant during evaluation, evading detection, and activates only
under attacker-controlled triggers. Because machine learning pipelines often rely on large,
automatically scraped or user-contributed data, the injection of poisoned samples is both feasible and
difficult to detect. Gu et al. (2017) introduced "BadNets," demonstrating how backdoor triggers
embedded in training data enable attackers to maintain control over model behavior post-deployment.
The poisoned model performs normally on clean inputs but exhibits attacker-specified behavior when

triggered.

(o)

Training-time (Poisoning & Backdoors) Model Extraction & Stealing
Label-flip (Dirty-label Poisoning) API query extraction
Clean-label Poisoning Distillation/transfer steal
Backdoors [ Trojans (Trigger-based)

Gradient [ Secret Leakage (from training gradients) Privacy & Inference Attacks
Model Poisoning (malicious updates during Membership ]nference
collaborative training) Model Inversion
Gradient/Secret Leakage

Test-time (Evasion)

Training Data White-box (FGSM, PGD, CW)
Black-box (transfer, query)
Decision-only
Physical Attacks (patches, adversarial stop
signs)
0 \/
@
. .
¢ N > > » “Jn
- - ol " @
a5
Prediction
Testing Model Deploying Model

Training Machine Learning Algorithm

Figure 4. Examples of adversarial attacks across the machine learning lifecycle

Model extraction attacks further extend the adversarial threat surface by demonstrating how
adversaries can reconstruct proprietary models through systematic querying and analyzing outputs
(Papernot et al., 2017). By sending numerous inputs to a deployed model (often accessible via APIs)
and recording the corresponding outputs, attackers can approximate the model’s decision boundaries
and replicate its functionality locally (see Fig. 5). This stolen surrogate model can then be exploited
for additional purposes, such as launching more precise evasion attacks or performing model inversion
to recover sensitive training data. In many cases, such extraction requires no privileged access, relying
solely on adaptive query strategies and output probability vectors exposed by the API. Tramer et al.
demonstrated that prediction APIs expose sufficient information for attackers to build functionally
equivalent models (Tramer et al., 2016).
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Figure 5. Model extraction attack

These attacks are not merely academic. In computer vision, adversarial perturbations have been shown
to cause traffic sign recognition systems to misidentify stop signs as yield signs, with potentially
catastrophic consequences for autonomous driving (Eykholt et al., 2018). In natural language
processing, adversarial inputs can be crafted by substituting semantically similar words or introducing
orthographic noise, allowing attackers to manipulate sentiment analysis models or bypass content
moderation. The persistence of these vulnerabilities highlights the fragility of Al systems operating in
adversarial environments (Madry et al., 2017).

4.2 Privacy Violations

Al systems frequently depend on vast amounts of personal and sensitive data, creating risks of privacy
violations at multiple levels. At the individual level, models are vulnerable to attacks that expose
whether particular data points were part of the training set, referred as membership inference attack
(Hu et al., 2022). Model inversion attacks similarly enable the reconstruction of sensitive features from
model outputs (Fredrikson et al., 2015). These vulnerabilities illustrate that Al systems, even when
anonymized, can inadvertently leak private information.

At the systemic level, Al-driven surveillance technologies such as facial recognition amplify
longstanding privacy concerns. It has been demonstarted by Sharif et al. (2016), that specially crafted
eyeglass frames could enable individuals to impersonate others or evade facial recognition systems and
access controls, making them particularly concerning for safety-critical applications (Sharif et al.,
2016). Other studies have also revealed consistent accuracy disparities across demographic groups
(Buolamwini et al., 2018), raising both technical and ethical questions about their use in law
enforcement and public surveillance (Garvie et al., 2016). As Al systems become more deeply
embedded in public and commercial infrastructures, the tension between utility and privacy continues
to intensify. Without stronger safeguards, transparency, and privacy-preserving techniques, Al risks
normalizing pervasive surveillance and eroding individual privacy.

4.3 Disinformation and Synthetic Media

The proliferation of generative models has dramatically transformed the landscape of disinformation.
Deepfakes exemplify the capacity of Al systems to generate highly realistic yet fabricated content,
including videos, audio, and images. These technologies have been used to create non-consensual
intimate imagery, impersonate public officials, and manipulate political discourse (Chesney et al.,
2019), (Vaccari et al., 2020). Large language models further extend this threat by enabling automated
production of persuasive, coherent text at unprecedented scale (Goldstein et al., 2023). The

This is a provisional file, not the final typeset article 10
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convergence of these technologies enables campaigns of influence that are more targeted, scalable, and
difficult to attribute than traditional forms of propaganda.

The societal consequences of synthetic media are amplified by what Chesney and Citron (2019)
describe as the “liar's dividend”, whereby the mere existence of deepfakes undermines trust in
authentic information (Chesney et al., 2019). Thus, Al-driven disinformation poses not only direct
harm by spreading falsehoods but also indirect harm by eroding epistemic trust - the shared confidence
in sources of knowledge - within societies.

4.4 Bias and Discrimination

The embedding of bias into Al systems represents one of the most significant ethical challenges in
contemporary deployment. Bias can arise at any stage of the machine learning pipeline, from the
framing of research questions to data collection and algorithmic optimization (Barocas et al., 2016).
Empirical evidence has repeatedly demonstrated how these biases translate into discriminatory
outcomes. Buolamwini and Gebru (2018) showed that commercial facial recognition systems
misclassified darker-skinned women at rates far higher than lighter-skinned subjects (Buolamwini et
al., 2018). Obermeyer et al. (2019) also identified racial bias in healthcare algorithms that
systematically underestimated the needs of Black patients (Obermeyer et al., 2019). Similarly, Angwin
et al. (2016) documented how criminal justice risk assessment systems produced racially skewed
predictions (Angwin et al., 2016). Such accuracy disparities have tangible real-world consequences.
For example, in 2020, Robert Williams became the first documented case of wrongful arrest due to a
facial recognition error, after Detroit Police Department’s system generated a false match (Evans,
2022).

Mitigating bias remains a profound challenge. Debiasing strategies, such as re-weighting datasets or
modifying loss functions, have achieved partial success (Corbett-Davies et al., 2023), (Mehrabi et al.,
2021). Yet scholars caution that fairness is a contested and multidimensional concept, with different
definitions often mathematically incompatible (Green et al., 2020). Moreover, technical fixes alone
cannot address the structural inequalities that biases both reflect and reinforce.

4.5 System Safety & Reliability Failures

Al has become a dual-use technology in cybersecurity, serving both defensive and offensive roles. On
the defensive side, machine learning enhances intrusion detection systems, anomaly detection, and
malware classification. On the offensive side, adversaries have leveraged Al to automate phishing
campaigns, discover software vulnerabilities, and craft adaptive malware (Brundage et al., 2018),
(Apruzzese et al., 2018).

The emergence of large language models intensifies these threats by lowering the technical barriers to
entry. Yao et al. demonstrated that such models can be prompted to generate functional malicious code,
while Perez and Ribeiro showed how adversarial prompting can circumvent built-in safeguards (Yao
et al., 2024), (Perez et al., 2022). These capabilities enable attackers with limited expertise to mount
sophisticated operations, thereby expanding the threat landscape.

Apart from these, Al systems deployed in safety-critical applications present risks of catastrophic
failures when models behave unexpectedly or incorrectly under operational conditions. For instance.
Autonomous vehicles have been involved in multiple accidents resulting from perception failures,
planning errors, and inadequate handling of edge cases.
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4.6 Socioeconomic Exploitation and Inequality

Al technologies have significant implications for labor markets and economic structures. Automation
driven by Al has displaced workers across various sectors, from manufacturing to customer service
(Brynjolfsson et al., 2014), (Acemoglu et al., 2020). While some argue that new job categories will
emerge, the transition period creates substantial economic disruption and exacerbates inequality (Autor
etal., 2015).

Al also enables new forms of economic manipulation, including algorithmic pricing collusion,
predatory microtargeting, and exploitation of vulnerable populations through personalized
manipulation (Susser et al., 2019), (Calvano et al., 2020). These applications raise concerns about
fairness, autonomy, and the concentration of economic power.

4.7 Environmental and Ecological Misuse

The environmental impact of Al training and deployment has gained increasing attention. Large-scale
model training requires substantial computational resources, resulting in significant energy
consumption and carbon emissions (Strubell et al., 2019). Additionally, Al can be misused to optimize
environmentally harmful activities or bypass environmental regulations (Crawford et al., 2018). These
risks are exacerbated by the growing scale and accessibility of Al technologies, which make it easier
for actors with limited oversight to exploit systems in ways that harm ecological sustainability.

4.8 Autonomous Weaponization

Perhaps the most controversial domain of Al misuse concerns its application in military and defense
systems. Lethal autonomous weapons systems (LAWS) have been identified as a critical area of
concern, as they raise profound ethical, legal, and strategic dilemmas (Scharre, 2018). Scholars argue
that delegating life-and-death decisions to machines undermines human accountability, risks lowering
thresholds for armed conflict, and destabilizes international security (Russell, 2019). Despite calls for
international regulation, progress toward binding agreements has been limited (Campaign to Stop
Killer Robots, 2020).

Beyond lethal systems, Al has also been deployed for intelligence analysis, logistics optimization, and
cyber operations, illustrating its broader role in military applications. The dual-use nature of these
technologies complicates regulation, since advances intended for civilian purposes can be readily
adapted for warfare (Horowitz et al., 2018).

Apart from these, agentic Al systems introduce novel attack vectors through their capacity for
autonomous reasoning, tool use, and multi-step task execution. Unlike traditional Al systems that
operate within narrowly defined boundaries, agentic systems can pursue goals through complex action
sequences with minimal human oversight, creating opportunities for misuse. Agentic systems can
autonomously chain together multiple attack steps, such as reconnaissance, exploitation, lateral
movement, and data exfiltration, without requiring human intervention at each stage, challenging static
security measures designed for simpler models (Ferrag et al., 2025), (Shrestha et al., 2025). Moreover,
these systems can learn and adapt their strategies in real-time based on defensive responses, making
static security measures less effective. With access to APIs, code execution environments, and system
tools, agentic Al can misuse legitimate functionality to achieve unauthorized objectives, potentially
escalating privileges through logical reasoning rather than traditional exploitation. Recent
demonstrations have shown proof-of-concept scenarios where LLM-based agents autonomously
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exploit vulnerabilities, conduct social engineering, or manipulate financial systems (Zhang et al.,
2025). While large-scale malicious deployment remains limited, the rapid advancement of agentic
capabilities warrants proactive security consideration.

4.9 Human Interaction and Psychological Harm

Al systems designed to engage users can have unintended psychological consequences. Persuasive Al,
personalized content targeting, and immersive digital environments can lead to behavioral
manipulation, addiction, and mental health impacts (Burr et al., 2020). The opacity of these systems
makes it difficult for users to recognize when they are being manipulated, raising concerns about
autonomy and wellbeing.

Although presented as distinct domains, these categories of misuse are deeply interconnected.
Disinformation campaigns may be amplified by adversarially manipulated recommendation systems;
bias in training data can exacerbate privacy violations; and cybersecurity threats can intersect with
disinformation by spreading Al-generated propaganda through compromised platforms.
Understanding these intersections is critical for developing holistic defensive strategies that address
the complex ways in which Al misuse manifests across technological, social, and geopolitical contexts.

5 Case Studies of AI Misuse

This section presents detailed case studies illustrating real-world instances of Al misuse across multiple
domains, highlighting technical mechanisms, impacts, responses, and lessons learned. These cases
serve to contextualize the taxonomy of Al misuse described previously and underscore both the
opportunities and risks inherent in Al technologies.

5.1 Deepfake Pornography and Non-Consensual Intimate Imagery

Since 2017, deepfake technology has been widely weaponized to generate non-consensual
pornographic content, disproportionately targeting women, including celebrities, journalists,
politicians, and private individuals (Ajder et al., 2019). Early deepfakes relied on GAN-based face-
swapping models trained on publicly available images, but modern tools, such as DeepFaceLab' and
commercial applications, have democratized creation, enabling realistic content creation with minimal
technical expertise. Advances in model architecture and training methods have resulted in highly
realistic outputs that are increasingly indistinguishable from authentic content.

The impact on victims is profound, including psychological distress, reputational damage, and
sustained harassment. The rapid and widespread dissemination of such content online renders complete
removal virtually impossible. Legal recourse remains limited in many jurisdictions, although some
regions, such as Virginia, California, and the UK, have enacted laws criminalizing non-consensual
deepfakes. While detection tools have emerged, they struggle to keep pace with increasingly
sophisticated fakes, and platform enforcement remains inconsistent. This case highlights the
inadequacy of purely reactive approaches, emphasizing the need for victim-centered strategies, robust
legal frameworks, and platform accountability (MacDermott., 2025).
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5.2 The 2024 Election Disinformation Campaigns

The 2024 US presidential election witnessed unprecedented deployment of Al-generated
disinformation, including fabricated videos, Al-authored articles, and coordinated bot networks
disseminating false narratives (DiResta et al., 2024). Large language models generated thousands of
fake news articles and social media posts with human-level writing quality, while voice cloning
enabled the creation of false audio of candidates making controversial statements. Moreover,
automated accounts amplified content across platforms, and personalization algorithms targeted
specific voter segments with tailored messaging.

Although direct electoral impact remains difficult to measure, the campaigns spread misinformation to
millions of voters, complicated fact-checking efforts, and further eroded trust in information sources.
This case underscores the scale and sophistication achievable with Al-powered disinformation and
demonstrates that reactive detection approaches alone are insufficient without coordinated strategies
involving platforms, governments, civil society, and technical researchers, etc. to defend users against
manipulative content.

5.3 Clearview Al and Mass Surveillance

Clearview Al aggregated billions of facial images from social media and other publicly available
sources without consent to build a facial recognition database marketed to law enforcement and private
entities (Hill, 2020). The company collected approximately ten billion images with associated
metadata, enabling searches for any individual across the internet from a single photograph. State-of-
the-art deep learning models provided high recognition accuracy, raising concerns about pervasive
surveillance and privacy violations.

The system facilitated monitoring of activists, protesters, and ordinary citizens, and disparities in
accuracy generated discriminatory outcomes. Legal actions in multiple jurisdictions, including the EU,
Canada, Australia, and several US states, resulted in fines and restrictions, while some law enforcement
agencies ceased using the service. Nonetheless, the collected data cannot be retroactively
"uncollected," and the company continues operations. This case illustrates the limitations of privacy
frameworks designed for pre-Al contexts, demonstrating that proactive regulation to prevent data
collection is essential, given the stark asymmetry between surveillance capability and individual
privacy protection.

5.4 Algorithmic Bias in Healthcare Resource Allocation

In a study, Obermeyer et al. showed that a widely used algorithm in U.S. health systems systematically
under-identified Black patients for enrollment into high-risk care management programs, relative to
White patients with equivalent illness (Obermeyer et al., 2019). At the same risk score, Black patients
were measurably sicker. The algorithm used health care costs as a proxy for medical needs, and because
Black patients tend to incur lower costs for the same level of illness (due to unequal access and systemic
barriers), the model underestimated their needs. In the studied sample, correcting for this bias would
raise the share of Black patients flagged for extra care from 17.7 % to46.5 %. In response, the
algorithm developer committed to addressing the bias, prompting hospitals to audit other predictive
tools. This case underscores how proxies correlated with sensitive attributes can encode bias,
emphasizing the importance of understanding causal mechanisms rather than relying solely on
correlations. It also highlights ethical considerations in defining optimization objectives and the
necessity of comprehensive algorithmic auditing.
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5.5 Voice-Cloning CEO Fraud

In March 2019, criminals exploited Al voice-cloning technology to impersonate a CEO's voice,
successfully convincing a subordinate to transfer $243,000 to fraudulent accounts (Stupp, 2019).
Commercial voice synthesis tools trained on publicly available audio enabled the attackers to mimic
speech patterns, tone, and accent convincingly. Beyond the immediate financial loss, the incident
exposed vulnerabilities in voice-based authentication, previously considered secure, and demonstrated
how Al can weaponize social engineering.

Organizations responded by implementing multi-factor authentication, out-of-band verification, and
security training addressing voice-cloning risks. The case illustrates that Al capabilities can
compromise traditional security assumptions, that low technical barriers facilitate broad exploitation,
and that human factors often remain the weak link despite technical safeguards.

5.6 Adversarial Attacks on Autonomous Vehicle Systems

Research has demonstrated that autonomous vehicle vision systems can be misled by adversarial
perturbations, such as strategically placed stickers on stop signs causing misclassification as speed
limit signs (Eykholt et al., 2018). In these experiments, researchers used optimization algorithms to
determine the smallest possible visual changes, that could consistently fool the vehicle’s recognition
model even under varying real-world conditions like different lighting, viewing angles, and distances.
Although these attacks were conducted in controlled research environments rather than malicious
settings, they expose fundamental weaknesses in safety-critical Al systems and highlight ongoing
concerns about security, reliability, and potential misuse.

In 2018, an autonomous test vehicle in Tempe, Arizona, struck and killed a pedestrian, illustrating the
real-world consequences of imperfect autonomous systems (Penmetsa et al., 2021). Tesla’s Autopilot
has also been involved in numerous crashes, some fatal, often occurring when the system fails to detect
stationary obstacles, misinterprets road geometry, etc. The US National Transportation Safety Board
has documented cases where drivers over-relied on automation and failed to maintain attention as
required (Chu et al., 2023). Developers have begun incorporating adversarial training and robustness
testing, yet comprehensive solutions remain elusive. These incidents emphasize that Al vulnerabilities
extend from digital to physical domains, requiring security considerations from the design stage and
defense-in-depth strategies rather than reliance solely on perceptual capabilities.

6 Mitigation Strategies and Evaluation

Mitigation of Al-related risks requires a multifaceted approach encompassing technical, regulatory,
organizational, and social interventions. Each of these approaches is discussed in the following sections
and a summary of the strategies is provided in Table 2.

6.1 Technical Countermeasures

Adversarial robustness techniques aim to improve the resilience of machine learning models against
manipulative inputs. Adversarial training, which involves augmenting training datasets with
adversarial examples (as shown in Fig.6), has demonstrated moderate effectiveness in enhancing
robustness against known attacks; however, it struggles against adaptive adversaries and novel attack
methods (Madry et al., 2017). This approach incurs significant computational costs that scale with the
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complexity of the threat model and often involves trade-offs between accuracy and robustness.
Consequently, it is most suitable for high-value targets where computational overheads are acceptable.
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Figure 6. Adversarial training

Perturbed Data

Defensive distillation, which trains models with softened probability distributions to smooth decision
boundaries, initially appeared promising (Papernot et al., 2016). While it may provide a layer of
defense-in-depth, it is insufficient when deployed in isolation considering adaptive attacks. Input
preprocessing methods, such as denoising, feature squeezing, or JPEG compression, can neutralize
certain perturbations (Guo et al., 2017), yet these techniques degrade legitimate inputs and are easily
circumvented by adaptive attackers.

Certified defenses also offer provable robustness guarantees within specified perturbation bounds,
providing high theoretical value but with substantial practical limitations, including reduced accuracy
and significant computational requirements (Cohen et al., 2019). Overall, no single technique currently
provides comprehensive protection, and a defense-in-depth strategy combining multiple approaches
represents the most viable option, albeit with persistent real-world limitations.

Apart from these, deepfake detection technologies have emerged to address the proliferation of
synthetic media. Biological signal analysis, which detects irregularities in eye blinking, pulse, or
breathing patterns, was moderately effective against early deepfakes (Wang et al., 2019) but is
increasingly circumvented as generation techniques improve. GAN fingerprint detection can identify
model-specific artifacts left by generative networks (Yu et al., 2019), proving useful for forensic
attribution of known generators; however, it fails against unseen generators and adaptive attacks.

Temporal consistency analysis exploits frame-to-frame inconsistencies in video deepfakes, offering
moderate effectiveness, particularly for video contents (Sabir et al., 2019). However, its utility
diminishes as generation methods evolve. Multimodal inconsistency detection evaluates audio-visual
synchronization and semantic coherence (Mittal et al., 2020), showing promise against poorly
constructed deepfakes, though high-quality content often maintains consistency. Blockchain and
cryptographic authentication can create verifiable chains of custody for authentic media (Hasan et al.,
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2019), providing strong authenticity guarantees but requiring adoption at the point of capture, limiting
applicability to existing media.

Collectively, detection approaches face an adversarial co-evolution, suggesting that proactive
authentication mechanisms may prove more effective than reactive detection, albeit requiring
substantial infrastructure development.

Privacy-preserving machine learning approaches, including differential privacy, federated learning,
homomorphic encryption, and secure multi-party computation, aim to protect sensitive data while
maintaining analytical capabilities. Differential privacy offers strong theoretical guarantees by
introducing calibrated noise, though it necessitates careful parameter tuning to balance privacy and
utility (Dwork et al., 2014). Federated learning allows decentralized training, reducing risks associated
with centralized data storage (McMahan et al., 2017), but remains vulnerable to some inference attacks
and incurs communication overhead.

Homomorphic encryption enables computation on encrypted data, providing theoretically strong
privacy protection (Rahman et al., 2020). But this may be computationally prohibitive for complex
operations. Secure multi-party computation facilitates joint computation without revealing individual
inputs, offering robust privacy guarantees at the cost of significant communication and computational
requirements. Overall, privacy-preserving techniques present effective protection but involve trade-
offs in utility, performance, and implementation complexity.

In addition, Al safety and alignment techniques focus on guiding model behavior to reduce harmful
outputs. Bai et al. (2022) came up with “Constitutional AI’, a method for training a harmless Al
assistant through self-improvement, without human intervention to identify harmful outputs. It
incorporates explicit principles to steer decisions, showing potential in mitigating undesired outputs
but requiring careful selection of values. Reinforcement learning from human feedback (RLHF) also
leverages human preferences to improve alignment (Ouyang et al., 2022) yet depends heavily on
feedback quality and may inherit labeler biases.

Red teaming systematically probes system vulnerabilities (Perez et al., 2022), enabling targeted
mitigation, but cannot exhaustively identify all risks and is expensive. Interpretability and
explainability methods aid in understanding model decision-making (Molnar et al., 2020), which is
valuable for building trust and identifying potential issues; however, explanation quality varies and
post-hoc interpretations may be misleading. While these techniques advance safety, they remain
incomplete, underscoring the necessity of complementary approaches for high-stakes applications.

6.2 Regulatory and Policy Interventions

Regulatory and policy interventions constitute a foundational layer in mitigating Al risks, particularly
those related to privacy, accountability, and systemic harm. Data protection and privacy regulations
establish essential frameworks for mitigating Al risks. The General Data Protection Regulation
(GDPR) in the European Union exemplifies comprehensive privacy protection (European Parliament
and Council, 2016), though enforcement challenges, jurisdictional limitations, and compliance burdens
persist. Sector-specific regulations, such as HIPAA, GLBA, and COPPA, provide targeted protection
for sensitive contexts but create fragmented coverage and may not fully address Al-specific risks.

In response to these limitations, Al-specific regulatory initiatives have emerged to address the unique
challenges posed by Al systems. The EU Al Act represents a pioneering attempt at comprehensive,
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risk-based Al regulation (European Commission, 2024), though its full effectiveness remains uncertain
given ongoing implementation. Algorithmic accountability requirements, including audits, impact
assessments, and transparency obligations, enhance visibility into Al systems but require technical
expertise and standardization. While disclosure mandates (like informing users when Al-generated
content is present), contribute to transparency, they fall short of preventing harm and often encounter
challenges in enforcement and compliance. Overall, Al-specific regulatory frameworks remain
fragmented and incomplete, necessitating global coordination that balances innovation with protective
measures.

Beyond formal regulation, content moderation and platform governance constitute additional layers of
policy intervention.. Platform self-regulation involves companies enforcing policies on Al-generated
content, disinformation, and harmful material, with effectiveness varying across platforms. Proposals
to reform Section 230 in the United States aim to adjust intermediary liability, though the potential
impacts remain uncertain (Kosseff, 2019). Co-regulatory approaches, combining industry self-
regulation with government oversight, such as the UK Online Safety Bill, may balance flexibility with
accountability but require sustained political will and operational capacity. Al both amplifies the
challenges of content moderation and offers potential solutions, indicating that multi-stakeholder
governance is essential.

International cooperation is critical for addressing Al risks that transcend borders. Initiatives such as
Al safety summits and agreements, exemplified by the Bletchley Declaration (i.e. a global agreement
signed by 28 countries and the EU to foster a shared understanding of the risks and opportunities of
advanced Al), facilitate shared understanding but remain non-binding and vulnerable to geopolitical
tensions. Arms control frameworks propose restrictions on autonomous weapons and offensive cyber-
Al offering potential efficacy if adopted and enforced, though verification and enforcement challenges
persist. International standards and best practices offer guidance on Al safety and security, promoting
interoperability across systems. However, adherence is typically voluntary, and these standards often
struggle to keep pace with rapid technological advancements. While global collaboration is essential,
it remains inadequate in fully addressing the fast-evolving risks associated with Al

6.2.1 AI Risk Governance Frameworks

Within this regulatory and policy landscape, Al risk governance frameworks play a critical
complementary role by translating high-level regulatory goals into structured principles, processes, and
operational guidance. Unlike legally binding regulations, these frameworks are designed to support
organizations in identifying, assessing, and managing Al risks throughout the system lifecycle.

The NIST Al Risk Management Framework (2023) adopts a practical, implementation-oriented
approach focused on organizational risk management in the US (National Institute of Standards and
Technology, 2023). It structures Al risks around core trustworthy Al characteristics, including validity
and reliability, safety, security and resilience, accountability and transparency, fairness with managed
bias, and privacy enhancement. By emphasizing continuous risk assessment, governance integration,
and lifecycle management, the NIST RMF provides actionable guidance well suited for organizational
adoption across diverse sectors.

At a global level, the OECD Al Principles (2019) offer a high-level values-based framework adopted
by 42 countries, covering inclusive growth, human-centered values, transparency, robustness and
safety, and accountability (Organization for Economic Co-operation and Development, 2019). These
principles provide important normative foundations and have achieved broad international consensus.
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Multi-stakeholder governance initiatives further extend these efforts. The Partnership on AI (2021)
developed a framework emphasizing responsible Al development across eight impact areas, including
safety and robustness, fairness and non-discrimination, transparency and accountability, privacy and
security, societal and environmental well-being, human control and autonomy, professional
responsibility, and the promotion of human values (Partnership on Al, 2021). By integrating
perspectives from academia, industry, civil society, and policymakers, such frameworks aim to bridge
ethical principles with real-world deployment challenges.

For tackling risks associated with Agentic Al systems, technical threat models have been developed
alongside these major frameworks. The MAESTRO (Multi-Agent Environment, Security, Threat, Risk,
and Outcome), threat model provides a structured approach to identifying vulnerabilities in agentic Al
systems across seven key dimensions such as model manipulation, adversarial inputs, privilege
escalation, supply-chain compromise, training data poisoning, robustness failures, and output integrity
issues (Huang, 2025). This technical threat modeling approach complements risk frameworks by
focusing specifically on attack surfaces and defensive strategies for autonomous Al systems.

While the above comprehensive frameworks provide broad coverage, some domain-specific
frameworks also address unique risks in specialized contexts. The WHO Ethics and Governance of Al
for Health framework (WHO, 2021) identifies health-specific concerns including medical data privacy
in Al-assisted diagnosis, algorithmic bias in health resource allocation, and Al-enabled health
misinformation. Moreover, emergence of agentic Al systems has prompted development of specialized
threat models. In biosecurity, frameworks address dual-use risks where Al capabilities for beneficial
biological research can be misused for designing harmful biological agents or automating synthesis of
dangerous compounds, effectively lowering technical barriers for bio-threat development (de Lima,
2024), (Trotsyuk, 2024). The UK's Al Security Institute (AISI) has developed safety case frameworks
specifically for risk mitigation in biomedical research contexts, emphasizing structured argumentation
for safety claims in high-stakes domains.

Together, these governance frameworks complement regulatory interventions by offering principled,
operational, and technical approaches to managing Al risk. While none fully address the breadth of Al
misuse in isolation, their combined application provides essential scaffolding for mitigating risks
identified throughout this review.

6.3 Organizational and Social Interventions

Organizational ethics programs and responsible Al frameworks play a crucial role in internal
governance. Ethics review boards can identify and address ethical concerns prior to deployment, but
their effectiveness is contingent on institutional authority and resources. Responsible Al frameworks,
such as Microsoft's RAI framework or Google's Al Principles, provide structured guidance for ethical
Al development, though implementation quality varies. Bias auditing and testing help detect
discriminatory system behavior, enabling targeted mitigation, yet defining fairness metrics remains
contested and costly. Thus, genuine institutional commitment, supported by external accountability
mechanisms, is essential for efficacy.

Education and awareness initiatives complement technical and regulatory measures. Al literacy
programs educate the public on Al capabilities, risks, and critical evaluation of Al-generated content,
fostering long-term societal resilience. Professional training for developers, policymakers, and domain
experts enhances Al governance and responsible development, though rapid technological evolution
challenges curriculum relevance. Media literacy and critical thinking programs further strengthen
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resilience against disinformation. While essential, educational interventions cannot provide immediate
protection and require sustained investment.

Transparency and accountability mechanisms are vital for monitoring Al deployment. Algorithmic
impact assessments evaluate potential societal consequences before deployment (Reisman et al., 2018),
while independent algorithmic auditing identifies issues post-deployment (Raji et al., 2020).
Transparency reporting enables public scrutiny of system development and performance, though
concerns regarding trade secrets, information overload, and technical complexity persist. Legal
protections for whistleblowers facilitate internal accountability, provided they are genuinely enforced
(Brown, 2017). Overall, transparency and accountability mechanisms remain underdeveloped relative
to Al's societal impact and require urgent strengthening.

Table 2. Mitigation Effectiveness Summary

Approach Category Representative Effectiveness Limitations Deployment Status
Techniques

Technical - Adversarial Adversarial training, Low-Medium Trade-offs, Adaptive Research/Limited

Robustness Certified defenses adversaries deployment

Technical - Detection

Deepfake detection,
Anomaly detection

Medium

Arms race dynamics

Active deployment but
limited

Technical - Privacy

Differential privacy,
Federated learning

Medium-High

Utility costs,
Complexity

Growing deployment

Technical - Safety

Constitutional AI, RLHF

Medium

Incomplete, Research
ongoing

Recent deployment

Regulatory - Privacy
Laws

GDPR, CCPA

Medium-High

Enforcement challenges

Active in jurisdictions

Regulatory - Al-Specific

EU AI Act, Sector rules

Unknown

Early implementation

Emerging

Regulatory - Content
Moderation

Platform policies, Co-
regulation

Low-Medium

Inconsistent, Capture
risk

Active but inadequate

Organizational - Ethics

Review boards, Impact

Low-Medium

Variable commitment

Mixed adoption

Programs assessments
Organizational - Audits, Reporting, Medium Access barriers, Growing adoption
Transparency Documentation Standardization
Social - Education Al literacy, Media literacy Medium (long- Scale challenges, Time Early stage

term) lag
Ecosystem - Standards, Information Medium Cooperation barriers Early stage
Coordination sharing

Despite growing mitigation efforts, significant gaps remain because many interventions are reactive,
addressing known threats while adversaries continue to innovate. Offensive Al has access to resources
comparable to defensive Al, enabling attackers to rapidly adopt the latest techniques and making it
challenging for defenders to keep pace. Furthermore, policy verification and enforcement are often
weak or inconsistent, and differences in regulations across jurisdictions create opportunities for
regulatory arbitrage.

Compounding these challenges, AI’s rapid evolution continues to outpace regulatory, educational, and
societal adaptation. Persistent technical problems, such as adversarial robustness and deepfake
detection, lack comprehensive solutions, and conflicting stakeholder priorities make it difficult to
balance innovation, security, and privacy, while the widespread accessibility of Al tools amplifies the
challenges of scaling effective defenses. Together, these factors underscore the persistent and growing
difficulties in anticipating, managing, and mitigating Al misuse.

7 Conclusion
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Al technologies hold immense transformative potential, yet they also introduce significant technical,
social, and systemic risks. This paper has critically examined existing mitigation strategies, revealing
that while technical defenses, regulatory frameworks, and organizational measures provide partial
protection, they are often reactive, fragmented, and limited against adaptive threats. The emergence of
advanced capabilities such as multimodal models and autonomous agents further amplify these risks,
highlighting the need for proactive, integrated, and multi-stakeholder responses. To support this effort,
we introduceda comprehensive taxonomy that organizes Al misuse into nine primary domains,
providing a structured framework for understanding the full spectrum of risks - from technical
vulnerabilities to socio-technical harms. The case studies presented demonstrate that Al misuse has
tangible, measurable impacts, disproportionately affecting marginalized populations and eroding trust
in digital systems and democratic institutions.

The trajectory of Al development presents society with critical choices about the values embedded in
technological systems and the governance structures that shape their deployment. While Al capabilities
continue to advance rapidly, our collective capacity to govern these technologies responsibly remains
significantly underdeveloped. Addressing Al misuse requires moving beyond reactive, fragmented
approaches toward proactive, integrated strategies that recognize the deeply socio-technical nature of
these challenges. The stakes are high: unchecked misuse threatens privacy, security, democratic
integrity, social equity, and human autonomy. Yet, with coordinated effort across technical, policy,
and social domains, it remains possible to steer Al development toward beneficial outcomes that
respect human rights, promote fairness, and enhance societal wellbeing.
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