

Emerging Threats in AI: A Detailed Review of Misuses and Risks Across Modern AI Technologies

1 Niyat Seghid^{1*}, Farkhund Iqbal¹, Khalifa Al-Room², Áine MacDermott³

2 ¹College of Technological Innovation, Zayed University, Abu Dhabi, UAE

3 ²Dubai Police HQ, Dubai, UAE

4 ³School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK

5 *** Correspondence:** Niyat Seghid, College of Technological Innovation, Zayed University, UAE
6 niyat.seghid@zu.ac.ae

7 **Keywords:** Artificial Intelligence, AI Misuse, AI Risk, Deepfakes, Adversarial Attacks, Privacy
8 Violations, Algorithmic Bias, AI Security

9 Abstract

10 The swift evolution of artificial intelligence technologies (AI) has introduced unparalleled capabilities,
11 alongside critical vulnerabilities that can be exploited maliciously or cause unintended harm. While
12 numerous efforts have emerged to govern AI risks, there remains a lack of comprehensive analysis of
13 how AI systems are actively being misused. This paper offers an in-depth review of AI misuses across
14 modern technologies, analyzing attack mechanisms, documented incidents, and emerging threat
15 vectors. We provide a brief review of AI risk repositories and existing taxonomic approaches to set the
16 context, and then synthesize them into a comprehensive categorization of AI misuse across nine
17 primary domains: (1) Adversarial Threats, (2) Privacy Violations, (3) Disinformation, Deception &
18 Propaganda, (4) Bias & Discrimination, (5) System Safety & Reliability Failures, (6) Socioeconomic
19 Exploitation & Inequality, (7) Environmental & Ecological Misuse, (8) Autonomy & Weaponization,
20 and (9) Human Interaction & Psychological Harm. Across these domains, we identify and analyze
21 distinct categories of AI misuses and risks, providing technical depth on exploitation mechanisms,
22 documented cases with quantified impacts, and the latest developments including large language model
23 vulnerabilities and multimodal attack vectors. We also assess the effectiveness of current mitigation
24 strategies and countermeasures, evaluating technical security frameworks (e.g. MITRE ATLAS,
25 OWASP Top 10 for Large Language Models (LLMs), MAESTRO), regulatory approaches (e.g. EU
26 AI Act, NIST AI RMF), and compliance standards. Our analysis reveals significant gaps between AI
27 capabilities and robustness of defensive measures, with adversaries holding persistent advantages
28 across most attack categories. This work contributes to the field by: (1) systematically consolidating
29 fragmented AI risk and misuse taxonomies and repositories, (2) developing a unified taxonomy of AI
30 misuse patterns grounded in both theoretical models and empirical incident data, (3) critically
31 evaluating the effectiveness of existing mitigation strategies, and (4) identifying priority research gaps
32 to foster the development of more robust, ethical, and secure AI systems.

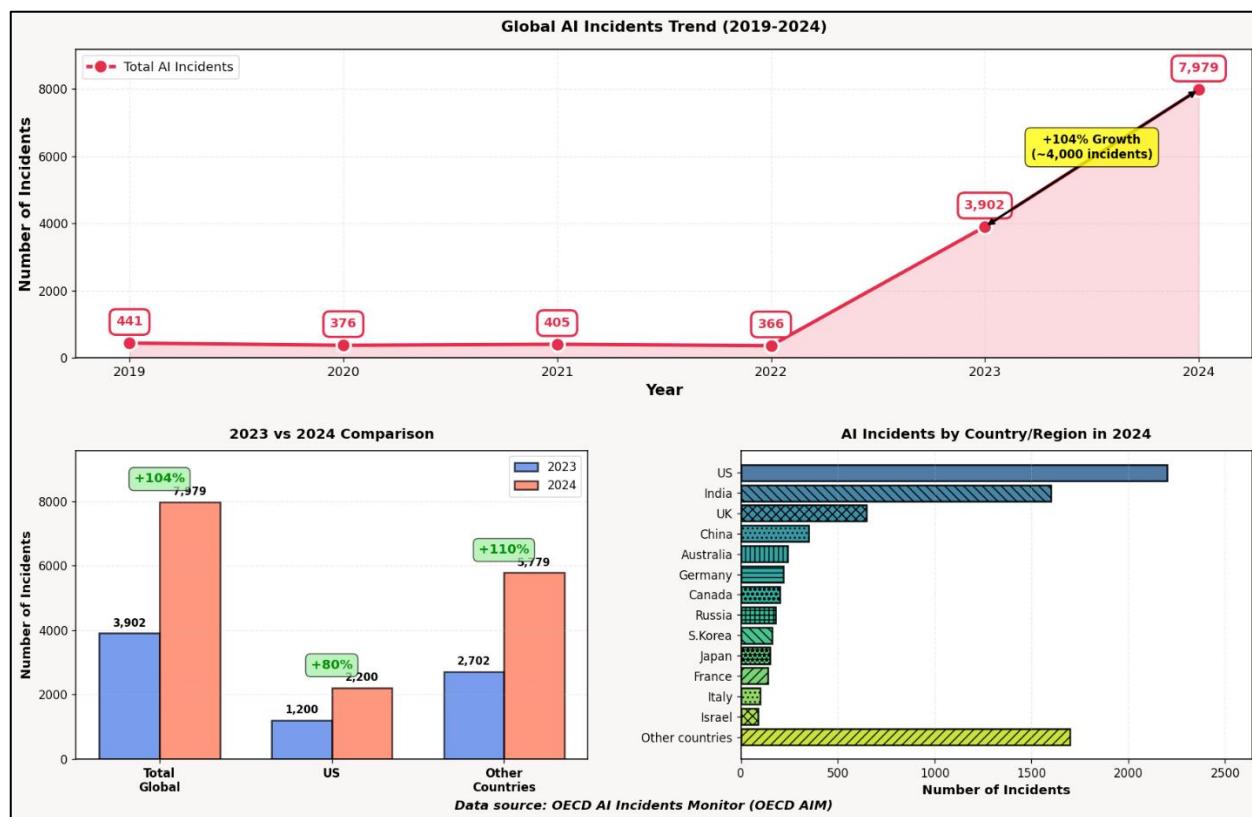
33 1 Introduction

34 Artificial Intelligence (AI) has rapidly evolved into one of the most transformative technologies of the
35 21st century, reshaping industries, governance, and everyday life. Deep learning breakthroughs since
36 2012 (LeCun et al., 2015), proliferation of LLMs (Brown et al., 2020), advances in generative AI
37 (OECD, 2019), and deployment of autonomous systems (Scharre, 2018) have created unprecedented

38 capabilities. However, these same technologies have also introduced critical vulnerabilities, offering
39 new vectors for malicious exploitation.

40 The dual-use nature of AI lies at the core of this concern. Algorithms and models designed for
41 beneficial purposes can be adapted for malicious or unethical use. Natural language models that enable
42 intelligent assistants may be leveraged to produce convincing disinformation (Goldstein et al., 2023);
43 generative models supporting creative industries can be used to fabricate realistic deepfakes (Chesney
44 et al., 2019); computer vision systems designed for safety or accessibility may facilitate intrusive
45 surveillance or unauthorized biometric profiling (Buolamwini et al., 2018); and recommendation
46 algorithms designed to personalize user experiences can be exploited to manipulate behavior (Matz et
47 al., 2017). As AI systems grow in capability, autonomy, and accessibility, their misuse potential
48 increases in both scale and sophistication.

49 Recent incidents demonstrate that AI misuse is no longer theoretical but a pressing global issue with
50 measurable consequences: deepfake-enabled fraud exceeding \$25 million (Stupp, 2019), AI-generated
51 election disinformation affecting millions (DiResta et al., 2024), wrongful arrests from facial
52 recognition errors (Garvie et al., 2016), algorithmic discrimination in healthcare affecting 200 million
53 people annually (Obermeyer et al., 2019), and adversarial attacks on safety-critical systems (Eykholz
54 et al., 2018). The proliferation of synthetic media, automated cyberattacks, and algorithmic
55 discrimination reflects how AI can amplify deception, erode privacy, and reinforce social inequalities.
56 Moreover, AI-driven automation and personalization have accelerated the scale and precision of
57 harmful activities, from widespread disinformation campaigns to targeted phishing and identity
58 manipulation. These developments highlight a growing mismatch between AI advancement and the
59 capacity to detect, regulate, or mitigate its misuse, raising pressing ethical and security concerns.
60 Recent statistics supporting these observations are shown in Fig.1.

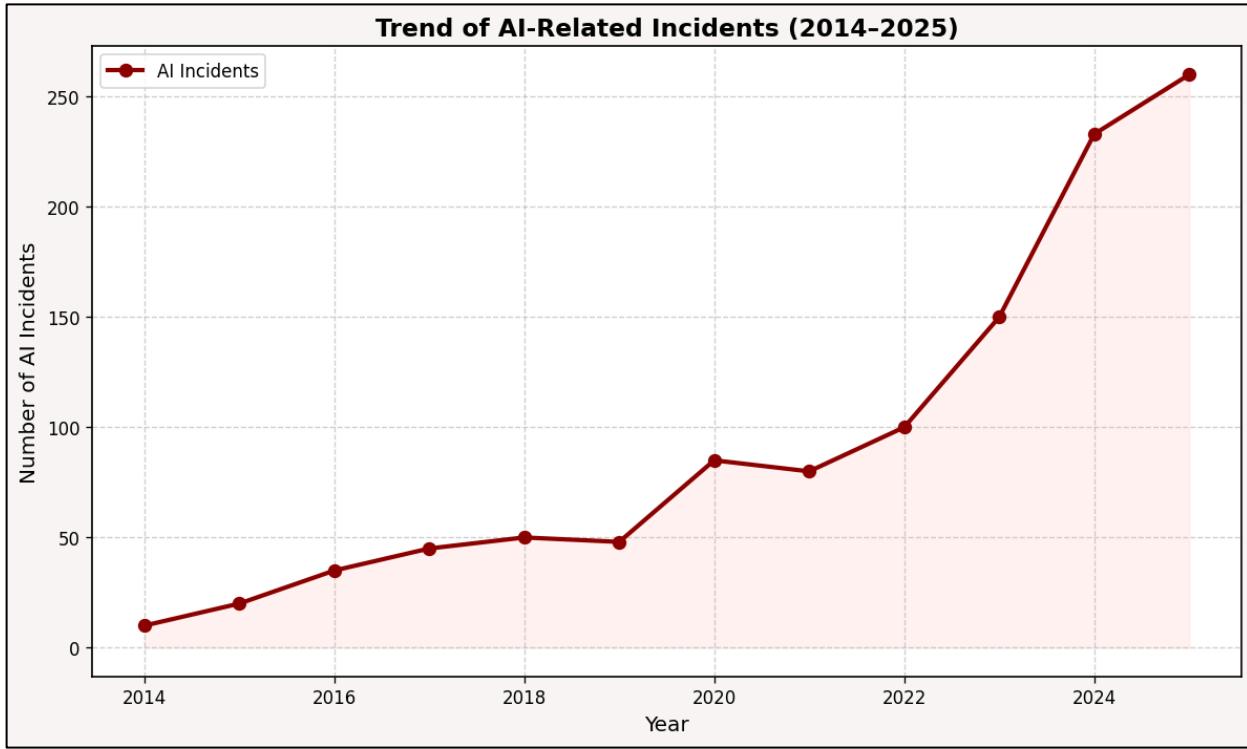


61

62

(a). AI related incidents reported worldwide (2019 – 2024) from AGILE Index Report 2025

63



64

65 (b) AI related incidents reported worldwide (2014 – 2024) from Artificial Intelligence Index Report 2025

66

Figure 1. Recent AI Misuse Statistics

67 Despite the expanding body of literature on AI misuse, the research landscape remains highly
 68 fragmented. Existing studies often focus on specific domains, such as deepfakes, adversarial attacks,
 69 or data privacy, without integrating insights across technical, ethical, and societal dimensions (Slattery
 70 et al., 2024), (National Institute of Standards and Technology, 2023). Moreover, inconsistent
 71 terminology, varied categorization schemes, and rapidly evolving threat models further complicate
 72 efforts to develop a unified understanding of the full spectrum of misuse. This fragmentation creates
 73 challenges for those seeking to assess risks comprehensively or develop interdisciplinary strategies for
 74 prevention and response.

75 This review addresses that fragmentation by providing a systematic synthesis of AI misuse research
 76 across technical, ethical, and societal perspectives. Rather than proposing entirely new theoretical
 77 models, this paper organizes and consolidates existing knowledge to create a comprehensive and
 78 accessible overview of how AI technologies can be misused. To establish context, we briefly examine
 79 empirical AI risk and misuse taxonomies and repositories. Building upon insights from these sources,
 80 we propose a consolidated nine-domain categorization of AI misuse, each suitable for detailed
 81 technical and socio-ethical analysis. Across these domains, we provide technical depth on exploitation
 82 mechanisms, detailed real-world incidents, and discussion of countermeasure effectiveness.

83 Through extensive analysis of academic publications, industry reports, and documented misuse cases,
 84 this paper seeks to:

- Critically analyze existing AI risk and misuse taxonomies and repositories, examining how different research initiatives categorize AI threats and identifying convergences, gaps, and complementarities across classification schemes
- Synthesize a unified taxonomy of AI misuse that categorizes AI misuse and vectors across technical, social, and ethical dimensions,
- Analyze various forms of AI misuse, identifying common vulnerabilities and attack patterns, providing technical depth on exploitation mechanisms, and examining real-world case studies to understand the practical manifestations, impacts, and consequences.
- Evaluate existing mitigation strategies, assessing technical security frameworks, regulatory approaches, and compliance standards for their effectiveness, limitations, and applicability across different contexts.

The remainder of this paper is organized as follows: Section 2 reviews existing AI misuse and risk frameworks. Section 3 describes the review methodology. Section 4 categorizes AI misuse domains and presents synthesized findings. Section 5 discusses key incidents and implications across domains. Section 6 reviews current mitigation strategies and challenges and AI risk governance frameworks. Section 7 concludes with recommendations for future research and governance directions.

2 Background: Review of Existing AI Risk and Misuse Taxonomies

Several organizations and research groups have developed frameworks and/or taxonomies to classify and understand the risks and misuse of artificial intelligence, reflecting the growing need for systematic approaches to AI safety and governance. We briefly review major existing taxonomies to establish context before presenting our own categorization.

Among the most influential is the *MIT AI Risk Repository* developed by Slattery et al. (2024), which represents the most comprehensive effort to date, extracting and categorizing 1,612 risks from 65 existing taxonomies (Slattery et al., 2024). The framework organizes risks using a dual approach: a causal taxonomy classifying by entity, intentionality, and timing; and a domain taxonomy with seven domains and 24 subdomains covering discrimination and toxicity, privacy and security, misinformation, malicious actors and misuse, human-computer interaction, socioeconomic and environmental impacts, and AI system safety. While highly valuable for conceptual coverage, the repository largely abstracts away from detailed technical attack mechanisms and operational misuse pathways.

Complementing this work, incident-centered repositories provide empirical grounding. The *AI Incident Database* systematically catalogs real-world AI failures and misuse events, emphasizing recurrence patterns and socio-technical root causes (McGregor, 2021). Similarly, the *OECD AI Incident Monitor* aggregates reported AI-related incidents across jurisdictions, offering longitudinal insights into emerging misuse trends (OECD, 2023). These repositories shift the focus from hypothetical risks to documented harms, but do not provide fine-grained technical taxonomies. The OECD AI Incidents Monitor provides an international repository of documented AI incidents, collecting reports from multiple sources including news media, research papers, and direct submissions (OECD.AI, 2024). The database categorizes incidents by type (bias/discrimination, privacy violation, safety failure, etc.), sector (healthcare, finance, transportation, etc.), and AI technology involved (computer vision, NLP, recommendation systems, etc.). However, the limitation lies in its limited technical depth in incident descriptions.

127 Several security-oriented and adversarial taxonomies focus explicitly on malicious AI use. *MITRE*
128 Adversarial Threat Landscape for Artificial-Intelligence Systems (ATLAS) provides a tactics-
129 techniques-procedures (TTP) knowledge base documenting real-world attacks on AI systems,
130 including data poisoning, model evasion, and supply-chain compromise (MITRE ATLAS, 2024).

131 The *ENISA AI Threat Landscape* similarly categorizes AI-related cybersecurity threats, emphasizing
132 vulnerabilities, attacker capabilities, and systemic impacts (ENISA, 2020). The *OWASP Top 10 for*
133 *LLMs* further refines this focus for generative and language models, identifying prompt injection,
134 insecure output handling, training data poisoning, model denial-of-service, and supply-chain
135 vulnerabilities as dominant misuse vectors (OWASP Foundation, 2024).

136 Beyond security, multiple domain-specific risk taxonomies have emerged. In healthcare, Golpayegani
137 et al. (2022) propose a structured taxonomy covering clinical, ethical, and operational AI risks,
138 highlighting patient harm and diagnostic bias (Golpayegani et al., 2022). In international security,
139 UNIDIR synthesizes AI risks related to strategic stability, escalation dynamics, and confidence-
140 building measures (UNIDIR, 2023). Mahmoud (2023) examines AI risks in information security,
141 emphasizing automation-enabled attack amplification. The *IAA AITF AI Risks Taxonomy* (2024)
142 introduces a three-level taxonomy tailored to actuarial and financial risk management, mapping AI-
143 specific risk amplification onto traditional actuarial risk categories.

144 Additional academic contributions have expanded taxonomies to socio-technical and human-centered
145 harms. Critch and Russell (2023) introduced their Taxonomy and Analysis of Societal-Scale Risks
146 from AI (TASRA), examining macro-level dimensions including risk accountability and ethical
147 alignment (Critch et al., 2023). TASRA focuses on long-term, systemic risks rather than near-term
148 incidents, considering how AI could reshape power dynamics, decision-making authority, and social
149 institutions. Weidinger et al. (2022) proposed taxonomies specifically targeting large language model
150 risks, highlighting concerns such as discrimination, information hazards, and malicious uses
151 (Weidinger et al., 2022). Marchal et al. (2024) focused on generative AI misuse, identifying threats
152 including prompt injection, model leakage, and large-scale disinformation (Marchal et al., 2024).
153 Moreover, Zhang et al. (2025) addressed the emerging domain of AI companionship applications,
154 developing a taxonomy of harmful algorithmic behaviors that can occur in human-AI relationship,
155 examining the psychological and relational harms that can emerge when AI systems are designed to
156 form ongoing personal bonds with users, including emotional manipulation, unhealthy dependency,
157 and intimate privacy violations (Zhang et al., 2025).

158 Collectively, these taxonomies and repositories provide complementary but fragmented views of AI
159 misuse, varying in scope, granularity, and empirical grounding. Some emphasize technical attack
160 vectors, others societal harms or domain-specific risks, and few attempt holistic integration. Building
161 upon these efforts, this review consolidates and aligns them into a unified nine-domain taxonomy of
162 AI misuse, collectively capturing the technical, ethical, and socio-technical dimensions of
163 contemporary AI misuse, grounded in documented incidents and technical exploitation mechanisms,
164 representing both underrepresented dimensions such as environmental sustainability as well as
165 established concerns.

166 3 Methodology

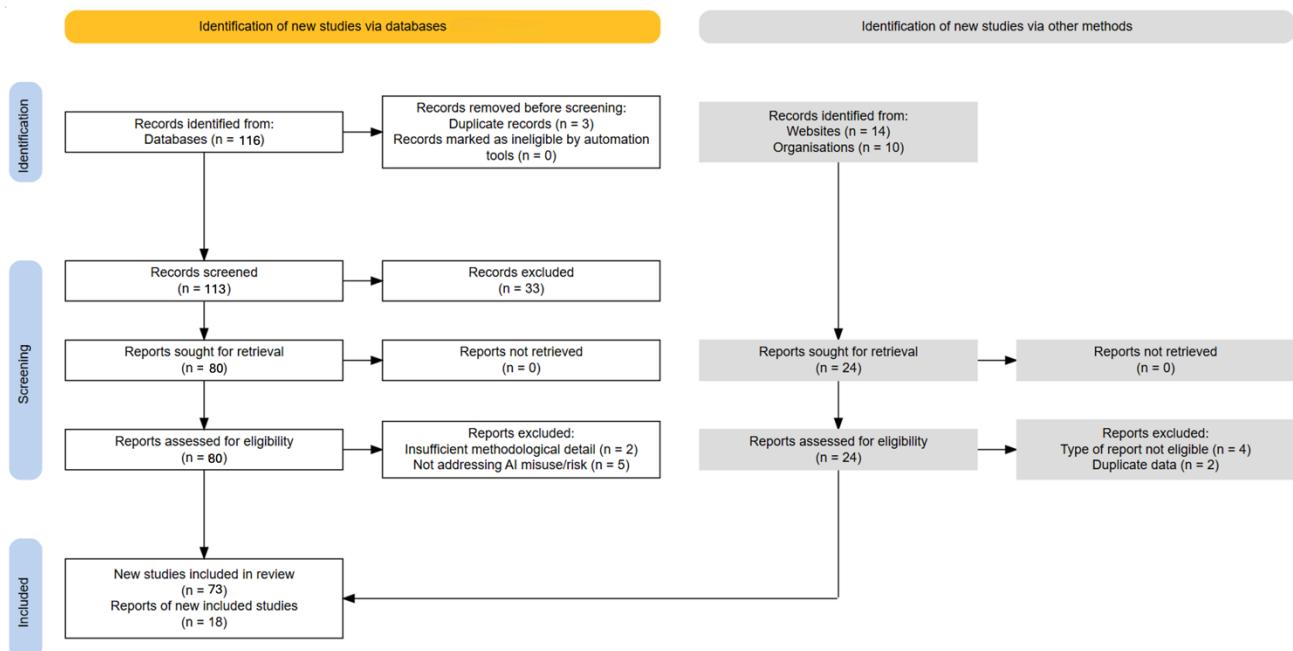
167 This study employs a mixed-methods approach, combining a systematic literature review with in-depth
168 case study analysis to develop a comprehensive understanding of AI misuse patterns and mitigation

169 strategies. By integrating these elements, the research bridges technical, social, and ethical
170 perspectives, while grounding theoretical insights in real-world incidents.

171 **3.1 Reporting Standards**

172 This study presents a systematic review in accordance with the PRISMA 2020 guidelines as illustrated
173 in Fig. 2 (Haddaway et al., 2022). Academic literature was retrieved from major scholarly databases
174 including IEEE Xplore, Scopus, and the ACM Digital Library. In parallel, relevant case-based and
175 policy-oriented materials were sourced from grey literature repositories and organizational databases
176 such as the NIST repository, MIT AI Repository, and AI Incident Database. To capture developments
177 coinciding with the rise of modern AI applications, the search covered the period from 2012 to 2025,
178 aligning with the deep learning era and the acceleration of AI adoption across critical domains. The
179 search queries combined key terms such as “artificial intelligence misuse”, “AI risks”, “AI security
180 threats”, “adversarial attacks”, “AI safety”, “algorithmic bias”, “deepfakes”, and related variations.

181 A total of 128 records (104 from academic databases and 24 from other sources) were initially
182 identified. After removing duplicate records, 125 unique studies were screened based on titles and
183 abstracts. During this phase, 33 papers were excluded due to not meeting the inclusion criteria. Full-
184 text retrieval was sought for 68 studies, of which seven were excluded after detailed assessment. The
185 remaining 61 database-based studies were included in the final synthesis. From the additional 24
186 external sources, six reports were excluded, and 18 reports were retained. Altogether, 79 studies (61
187 database studies + 18 other sources) were included in the final review.



188

189

Figure 2. PRISMA flow diagram of study selection.

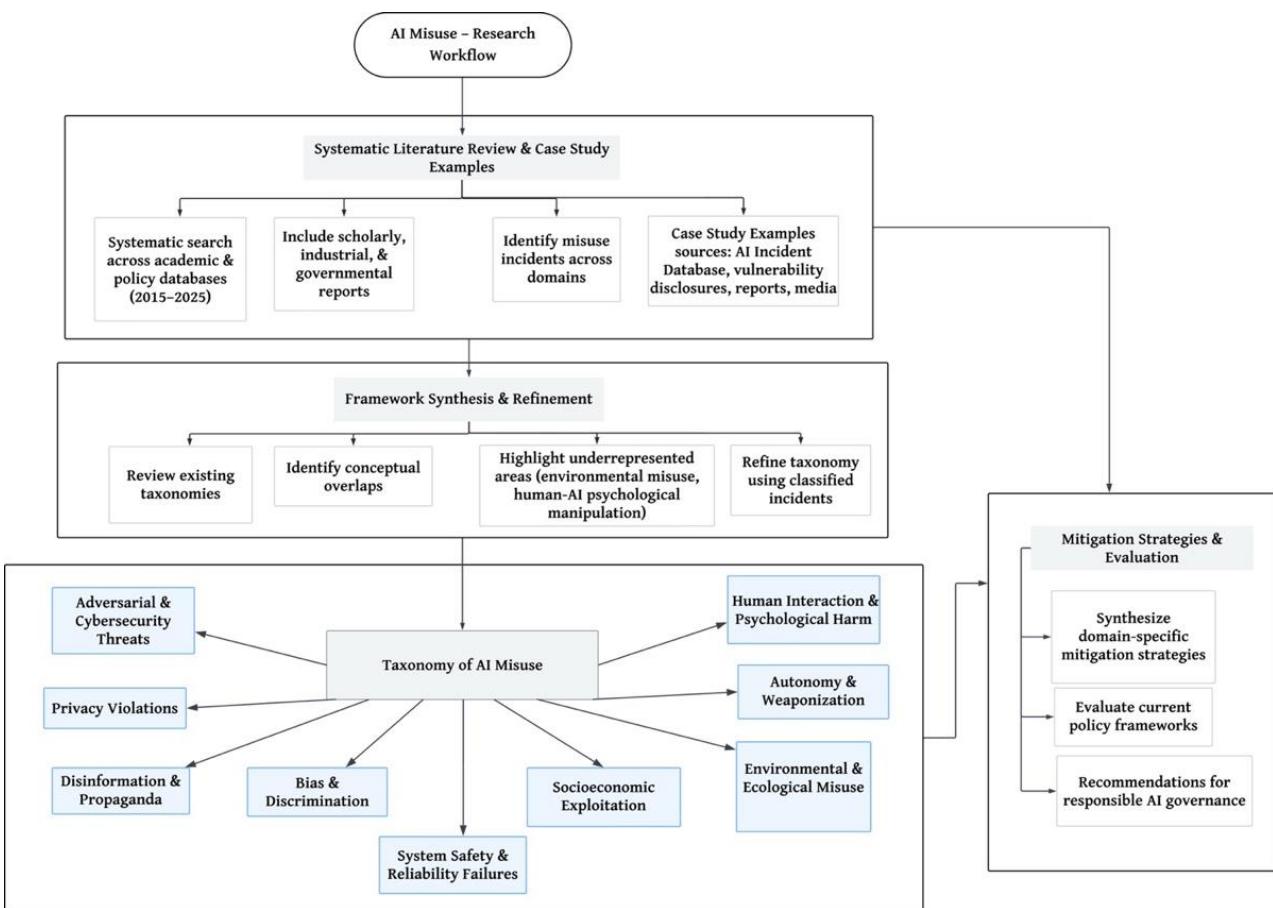
190 The diagram (Fig.2) outlines the identification, screening, eligibility assessment, and inclusion process
191 for the reviewed studies.

192 **3.2 Case Study Selection**

193 Case studies were identified through systematic monitoring of multiple sources including the AI
 194 Incident Database, vulnerability disclosures, regulatory publications, industry transparency reports,
 195 and media coverage. The aim was to capture a diverse set of examples spanning different domains of
 196 misuse, levels of severity, and cultural or geographic contexts. Selected cases were required to have
 197 documented evidence verifying the incident. This ensured that the analysis addressed both technical
 198 and social dimensions of misuse and highlighted the ways AI vulnerabilities manifest in practice.

199 3.3 Taxonomy Development

200 The taxonomy of AI misuse was derived through a systematic synthesis of major AI risk frameworks,
 201 consolidating and extending them into a unified and comprehensive classification. Drawing on
 202 established taxonomies, we identified key conceptual overlaps and critical gaps, particularly in areas
 203 such as environmental sustainability and human-AI psychological manipulation. Accordingly, AI
 204 misuse was classified into nine domains encompassing both the technical and socio-technical
 205 dimensions of contemporary misuse. The detailed research workflow is given in Fig. 3, illustrating the
 206 methodological workflow adopted in the study, beginning with a systematic literature review and case
 207 study analysis, followed by framework synthesis and refinement, taxonomy construction, and the
 208 formulation of mitigation strategies.



209
 210 Figure 3. Methodological workflow of the research

211 4 Taxonomy of AI Misuse

212 To enable systematic analysis of AI misuse, this study develops a taxonomy that organizes threat
 213 vectors across nine primary domains, each further divided into subcategories. These domains
 214 encompass adversarial and cybersecurity threats, privacy violations, disinformation and synthetic
 215 media, bias and discrimination, system safety and reliability failures, socio-economic exploitation and
 216 inequality, environmental and ecological misuse, autonomy and weaponization, and human interaction
 217 and psychological harm. While these categories represent distinct manifestations of misuse, they are
 218 also deeply interconnected, with vulnerabilities in one domain frequently compounding risks in
 219 another. By organizing the landscape in this structured manner, the taxonomy provides a
 220 comprehensive framework for both researchers and practitioners to classify incidents, anticipate
 221 threats, and design targeted interventions (Slattery et al., 2024), (NIST, 2023).

222 **Table 1. Taxonomy of AI Misuse**

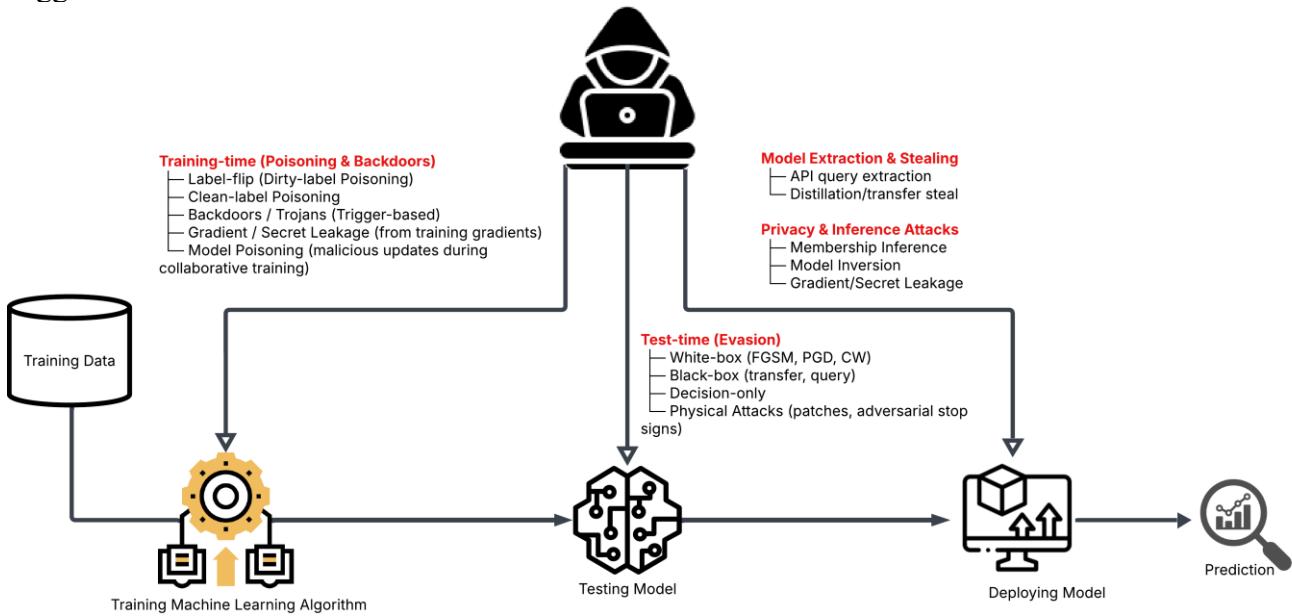
	Domain	Key Examples (Attack Types)	Mechanisms	Implications
1	<i>Adversarial Threats</i>	Evasion attacks, poisoning, backdoors, model extraction, membership inference, model inversion, supply chain attacks	Subtle perturbations to inputs, maliciously crafted training data, unauthorized model queries, compromised dependencies in AI pipelines	Compromise of AI integrity, intellectual property theft, inaccurate outputs in critical systems (e.g., autonomous vehicles, medical AI)
2	<i>Privacy Violations</i>	Sensitive attribute inference, re-identification, data leakage, unauthorized surveillance	Analysis of model outputs, correlational inference, generative model reconstruction	Breach of user confidentiality, regulatory violations, erosion of trust in digital services
3	<i>Disinformation, Deception, & Propaganda</i>	Deepfakes, automated fake news, targeted propaganda, harmful/illegal content generation, prompt injection, erosion of trust	Generative models for text, image, video; automated amplification on social media	Misinformation at scale, manipulation of public opinion, destabilization of political and social systems
4	<i>Bias & Discrimination</i>	Gender, racial, socioeconomic biases; opaque decision-making; stereotyping	Biased training data, reinforcement of historical inequities, algorithmic opacity	Unequal access to services, perpetuation of social inequities, reputational and legal risks for deploying organizations
5	<i>System Safety & Reliability Failures</i>	Autonomous vehicle accidents, misdiagnoses in healthcare, industrial automation failures	Model misbehavior under unexpected conditions, inadequate validation and monitoring	Physical harm, operational disruption, loss of human life or safety incidents
6	<i>Socioeconomic Exploitation & Inequality</i>	Job displacement, economic fraud, cheating, microtargeting, exploitation of vulnerable populations	Automation replacing human labor, AI-driven manipulation of financial and social systems	Increased economic disparities, reduced employment opportunities, ethical and legal challenges in AI governance
7	<i>Environmental & Ecological Misuse</i>	High energy consumption of AI, carbon-intensive model training, automated harmful industrial practices	Resource-intensive model training, misuse of AI in environmental systems	Increased carbon footprint, ecological damage, sustainability concerns
8	<i>Autonomy & Weaponization</i>	Autonomous drones, lethal AI weapons, cyber-physical attacks, Agentic AI systems	Decision-making without human oversight, AI-guided military systems	Escalation in conflict, ethical concerns over lethal AI, potential breaches of international law
9	<i>Human Interaction & Psychological Harm</i>	Emotional manipulation via AI, addiction to AI interfaces, mental health impacts	Personalized content targeting, persuasive AI, immersive digital environments	Anxiety, depression, behavioral manipulation, loss of agency and autonomy

223 **4.1 Adversarial Threats**

224 Machine learning systems are vulnerable to a wide array of adversarial attacks that exploit both the
 225 data and model layers of the learning pipeline (as shown in Fig. 4). *Evasion attacks* exploit weaknesses
 226 in trained models by subtly perturbing inputs, causing misclassifications without visibly altering the
 227 underlying data (Biggio et al., 2013). These perturbations are often unnoticeable to humans but are
 228 designed to shift the input across the model's decision boundary. Such attacks are particularly

229 concerning in real-time systems, where even minor perturbations to data can induce high-confidence
230 yet incorrect predictions, compromising safety-critical applications such as healthcare decisions,
231 autonomous navigation, or biometric authentication.

232 *Poisoning attacks*, in contrast, corrupt the training dataset itself, embedding malicious patterns that
233 compromise the integrity of models even before deployment (Gu et al., 2017). Attackers may inject a
234 small fraction of poisoned samples into the training sets to manipulate model behavior, either globally
235 (causing widespread accuracy degradation) or specifically (triggering backdoor conditions under
236 certain inputs). For instance, a backdoor poisoning attack might train a face recognition model to
237 always classify images containing a specific pixel pattern as a trusted user, regardless of the actual
238 identity. Such manipulation remains dormant during evaluation, evading detection, and activates only
239 under attacker-controlled triggers. Because machine learning pipelines often rely on large,
240 automatically scraped or user-contributed data, the injection of poisoned samples is both feasible and
241 difficult to detect. Gu et al. (2017) introduced "BadNets," demonstrating how backdoor triggers
242 embedded in training data enable attackers to maintain control over model behavior post-deployment.
243 The poisoned model performs normally on clean inputs but exhibits attacker-specified behavior when
244 triggered.



245
246 Figure 4. Examples of adversarial attacks across the machine learning lifecycle

247 *Model extraction attacks* further extend the adversarial threat surface by demonstrating how
248 adversaries can reconstruct proprietary models through systematic querying and analyzing outputs
249 (Papernot et al., 2017). By sending numerous inputs to a deployed model (often accessible via APIs)
250 and recording the corresponding outputs, attackers can approximate the model's decision boundaries
251 and replicate its functionality locally (see Fig. 5). This stolen surrogate model can then be exploited
252 for additional purposes, such as launching more precise evasion attacks or performing model inversion
253 to recover sensitive training data. In many cases, such extraction requires no privileged access, relying
254 solely on adaptive query strategies and output probability vectors exposed by the API. Tramèr et al.
255 demonstrated that prediction APIs expose sufficient information for attackers to build functionally
256 equivalent models (Tramèr et al., 2016).

258

259

Figure 5. Model extraction attack

260 These attacks are not merely academic. In computer vision, adversarial perturbations have been shown
 261 to cause traffic sign recognition systems to misidentify stop signs as yield signs, with potentially
 262 catastrophic consequences for autonomous driving (Eykholt et al., 2018). In natural language
 263 processing, adversarial inputs can be crafted by substituting semantically similar words or introducing
 264 orthographic noise, allowing attackers to manipulate sentiment analysis models or bypass content
 265 moderation. The persistence of these vulnerabilities highlights the fragility of AI systems operating in
 266 adversarial environments (Madry et al., 2017).

267 **4.2 Privacy Violations**

268 AI systems frequently depend on vast amounts of personal and sensitive data, creating risks of privacy
 269 violations at multiple levels. At the individual level, models are vulnerable to attacks that expose
 270 whether particular data points were part of the training set, referred as membership inference attack
 271 (Hu et al., 2022). Model inversion attacks similarly enable the reconstruction of sensitive features from
 272 model outputs (Fredrikson et al., 2015). These vulnerabilities illustrate that AI systems, even when
 273 anonymized, can inadvertently leak private information.

274 At the systemic level, AI-driven surveillance technologies such as facial recognition amplify
 275 longstanding privacy concerns. It has been demonstrated by Sharif et al. (2016), that specially crafted
 276 eyeglass frames could enable individuals to impersonate others or evade facial recognition systems and
 277 access controls, making them particularly concerning for safety-critical applications (Sharif et al.,
 278 2016). Other studies have also revealed consistent accuracy disparities across demographic groups
 279 (Buolamwini et al., 2018), raising both technical and ethical questions about their use in law
 280 enforcement and public surveillance (Garvie et al., 2016). As AI systems become more deeply
 281 embedded in public and commercial infrastructures, the tension between utility and privacy continues
 282 to intensify. Without stronger safeguards, transparency, and privacy-preserving techniques, AI risks
 283 normalizing pervasive surveillance and eroding individual privacy.

284 **4.3 Disinformation and Synthetic Media**

285 The proliferation of generative models has dramatically transformed the landscape of disinformation.
 286 Deepfakes exemplify the capacity of AI systems to generate highly realistic yet fabricated content,
 287 including videos, audio, and images. These technologies have been used to create non-consensual
 288 intimate imagery, impersonate public officials, and manipulate political discourse (Chesney et al.,
 289 2019), (Vaccari et al., 2020). Large language models further extend this threat by enabling automated
 290 production of persuasive, coherent text at unprecedented scale (Goldstein et al., 2023). The

291 convergence of these technologies enables campaigns of influence that are more targeted, scalable, and
292 difficult to attribute than traditional forms of propaganda.

293 The societal consequences of synthetic media are amplified by what Chesney and Citron (2019)
294 describe as the “*liar’s dividend*”, whereby the mere existence of deepfakes undermines trust in
295 authentic information (Chesney et al., 2019). Thus, AI-driven disinformation poses not only direct
296 harm by spreading falsehoods but also indirect harm by eroding epistemic trust - the shared confidence
297 in sources of knowledge - within societies.

298 **4.4 Bias and Discrimination**

299 The embedding of bias into AI systems represents one of the most significant ethical challenges in
300 contemporary deployment. Bias can arise at any stage of the machine learning pipeline, from the
301 framing of research questions to data collection and algorithmic optimization (Barocas et al., 2016).
302 Empirical evidence has repeatedly demonstrated how these biases translate into discriminatory
303 outcomes. Buolamwini and Gebru (2018) showed that commercial facial recognition systems
304 misclassified darker-skinned women at rates far higher than lighter-skinned subjects (Buolamwini et
305 al., 2018). Obermeyer et al. (2019) also identified racial bias in healthcare algorithms that
306 systematically underestimated the needs of Black patients (Obermeyer et al., 2019). Similarly, Angwin
307 et al. (2016) documented how criminal justice risk assessment systems produced racially skewed
308 predictions (Angwin et al., 2016). Such accuracy disparities have tangible real-world consequences.
309 For example, in 2020, Robert Williams became the first documented case of wrongful arrest due to a
310 facial recognition error, after Detroit Police Department’s system generated a false match (Evans,
311 2022).

312 Mitigating bias remains a profound challenge. Debiasing strategies, such as re-weighting datasets or
313 modifying loss functions, have achieved partial success (Corbett-Davies et al., 2023), (Mehrabi et al.,
314 2021). Yet scholars caution that fairness is a contested and multidimensional concept, with different
315 definitions often mathematically incompatible (Green et al., 2020). Moreover, technical fixes alone
316 cannot address the structural inequalities that biases both reflect and reinforce.

317 **4.5 System Safety & Reliability Failures**

318 AI has become a dual-use technology in cybersecurity, serving both defensive and offensive roles. On
319 the defensive side, machine learning enhances intrusion detection systems, anomaly detection, and
320 malware classification. On the offensive side, adversaries have leveraged AI to automate phishing
321 campaigns, discover software vulnerabilities, and craft adaptive malware (Brundage et al., 2018),
322 (Apruzzese et al., 2018).

323 The emergence of large language models intensifies these threats by lowering the technical barriers to
324 entry. Yao et al. demonstrated that such models can be prompted to generate functional malicious code,
325 while Perez and Ribeiro showed how adversarial prompting can circumvent built-in safeguards (Yao
326 et al., 2024), (Perez et al., 2022). These capabilities enable attackers with limited expertise to mount
327 sophisticated operations, thereby expanding the threat landscape.

328 Apart from these, AI systems deployed in safety-critical applications present risks of catastrophic
329 failures when models behave unexpectedly or incorrectly under operational conditions. For instance.
330 Autonomous vehicles have been involved in multiple accidents resulting from perception failures,
331 planning errors, and inadequate handling of edge cases.

332 **4.6 Socioeconomic Exploitation and Inequality**

333 AI technologies have significant implications for labor markets and economic structures. Automation
334 driven by AI has displaced workers across various sectors, from manufacturing to customer service
335 (Brynjolfsson et al., 2014), (Acemoglu et al., 2020). While some argue that new job categories will
336 emerge, the transition period creates substantial economic disruption and exacerbates inequality (Autor
337 et al., 2015).

338 AI also enables new forms of economic manipulation, including algorithmic pricing collusion,
339 predatory microtargeting, and exploitation of vulnerable populations through personalized
340 manipulation (Susser et al., 2019), (Calvano et al., 2020). These applications raise concerns about
341 fairness, autonomy, and the concentration of economic power.

342 **4.7 Environmental and Ecological Misuse**

343 The environmental impact of AI training and deployment has gained increasing attention. Large-scale
344 model training requires substantial computational resources, resulting in significant energy
345 consumption and carbon emissions (Strubell et al., 2019). Additionally, AI can be misused to optimize
346 environmentally harmful activities or bypass environmental regulations (Crawford et al., 2018). These
347 risks are exacerbated by the growing scale and accessibility of AI technologies, which make it easier
348 for actors with limited oversight to exploit systems in ways that harm ecological sustainability.

349 **4.8 Autonomous Weaponization**

350 Perhaps the most controversial domain of AI misuse concerns its application in military and defense
351 systems. Lethal autonomous weapons systems (LAWS) have been identified as a critical area of
352 concern, as they raise profound ethical, legal, and strategic dilemmas (Scharre, 2018). Scholars argue
353 that delegating life-and-death decisions to machines undermines human accountability, risks lowering
354 thresholds for armed conflict, and destabilizes international security (Russell, 2019). Despite calls for
355 international regulation, progress toward binding agreements has been limited (Campaign to Stop
356 Killer Robots, 2020).

357 Beyond lethal systems, AI has also been deployed for intelligence analysis, logistics optimization, and
358 cyber operations, illustrating its broader role in military applications. The dual-use nature of these
359 technologies complicates regulation, since advances intended for civilian purposes can be readily
360 adapted for warfare (Horowitz et al., 2018).

361 Apart from these, agentic AI systems introduce novel attack vectors through their capacity for
362 autonomous reasoning, tool use, and multi-step task execution. Unlike traditional AI systems that
363 operate within narrowly defined boundaries, agentic systems can pursue goals through complex action
364 sequences with minimal human oversight, creating opportunities for misuse. Agentic systems can
365 autonomously chain together multiple attack steps, such as reconnaissance, exploitation, lateral
366 movement, and data exfiltration, without requiring human intervention at each stage, challenging static
367 security measures designed for simpler models (Ferrag et al., 2025), (Shrestha et al., 2025). Moreover,
368 these systems can learn and adapt their strategies in real-time based on defensive responses, making
369 static security measures less effective. With access to APIs, code execution environments, and system
370 tools, agentic AI can misuse legitimate functionality to achieve unauthorized objectives, potentially
371 escalating privileges through logical reasoning rather than traditional exploitation. Recent
372 demonstrations have shown proof-of-concept scenarios where LLM-based agents autonomously

373 exploit vulnerabilities, conduct social engineering, or manipulate financial systems (Zhang et al.,
374 2025). While large-scale malicious deployment remains limited, the rapid advancement of agentic
375 capabilities warrants proactive security consideration.

376 **4.9 Human Interaction and Psychological Harm**

377 AI systems designed to engage users can have unintended psychological consequences. Persuasive AI,
378 personalized content targeting, and immersive digital environments can lead to behavioral
379 manipulation, addiction, and mental health impacts (Burr et al., 2020). The opacity of these systems
380 makes it difficult for users to recognize when they are being manipulated, raising concerns about
381 autonomy and wellbeing.

382 Although presented as distinct domains, these categories of misuse are deeply interconnected.
383 Disinformation campaigns may be amplified by adversarially manipulated recommendation systems;
384 bias in training data can exacerbate privacy violations; and cybersecurity threats can intersect with
385 disinformation by spreading AI-generated propaganda through compromised platforms.
386 Understanding these intersections is critical for developing holistic defensive strategies that address
387 the complex ways in which AI misuse manifests across technological, social, and geopolitical contexts.

388 **5 Case Studies of AI Misuse**

389 This section presents detailed case studies illustrating real-world instances of AI misuse across multiple
390 domains, highlighting technical mechanisms, impacts, responses, and lessons learned. These cases
391 serve to contextualize the taxonomy of AI misuse described previously and underscore both the
392 opportunities and risks inherent in AI technologies.

393 **5.1 Deepfake Pornography and Non-Consensual Intimate Imagery**

394 Since 2017, deepfake technology has been widely weaponized to generate non-consensual
395 pornographic content, disproportionately targeting women, including celebrities, journalists,
396 politicians, and private individuals (Ajder et al., 2019). Early deepfakes relied on GAN-based face-
397 swapping models trained on publicly available images, but modern tools, such as DeepFaceLab¹ and
398 commercial applications, have democratized creation, enabling realistic content creation with minimal
399 technical expertise. Advances in model architecture and training methods have resulted in highly
400 realistic outputs that are increasingly indistinguishable from authentic content.

401 The impact on victims is profound, including psychological distress, reputational damage, and
402 sustained harassment. The rapid and widespread dissemination of such content online renders complete
403 removal virtually impossible. Legal recourse remains limited in many jurisdictions, although some
404 regions, such as Virginia, California, and the UK, have enacted laws criminalizing non-consensual
405 deepfakes. While detection tools have emerged, they struggle to keep pace with increasingly
406 sophisticated fakes, and platform enforcement remains inconsistent. This case highlights the
407 inadequacy of purely reactive approaches, emphasizing the need for victim-centered strategies, robust
408 legal frameworks, and platform accountability (MacDermott., 2025).

¹ DeepFaceLab is a leading software for creating deepfakes.

409 **5.2 The 2024 Election Disinformation Campaigns**

410 The 2024 US presidential election witnessed unprecedented deployment of AI-generated
411 disinformation, including fabricated videos, AI-authored articles, and coordinated bot networks
412 disseminating false narratives (DiResta et al., 2024). Large language models generated thousands of
413 fake news articles and social media posts with human-level writing quality, while voice cloning
414 enabled the creation of false audio of candidates making controversial statements. Moreover,
415 automated accounts amplified content across platforms, and personalization algorithms targeted
416 specific voter segments with tailored messaging.

417 Although direct electoral impact remains difficult to measure, the campaigns spread misinformation to
418 millions of voters, complicated fact-checking efforts, and further eroded trust in information sources.
419 This case underscores the scale and sophistication achievable with AI-powered disinformation and
420 demonstrates that reactive detection approaches alone are insufficient without coordinated strategies
421 involving platforms, governments, civil society, and technical researchers, etc. to defend users against
422 manipulative content.

423 **5.3 Clearview AI and Mass Surveillance**

424 Clearview AI aggregated billions of facial images from social media and other publicly available
425 sources without consent to build a facial recognition database marketed to law enforcement and private
426 entities (Hill, 2020). The company collected approximately ten billion images with associated
427 metadata, enabling searches for any individual across the internet from a single photograph. State-of-
428 the-art deep learning models provided high recognition accuracy, raising concerns about pervasive
429 surveillance and privacy violations.

430 The system facilitated monitoring of activists, protesters, and ordinary citizens, and disparities in
431 accuracy generated discriminatory outcomes. Legal actions in multiple jurisdictions, including the EU,
432 Canada, Australia, and several US states, resulted in fines and restrictions, while some law enforcement
433 agencies ceased using the service. Nonetheless, the collected data cannot be retroactively
434 "uncollected," and the company continues operations. This case illustrates the limitations of privacy
435 frameworks designed for pre-AI contexts, demonstrating that proactive regulation to prevent data
436 collection is essential, given the stark asymmetry between surveillance capability and individual
437 privacy protection.

438 **5.4 Algorithmic Bias in Healthcare Resource Allocation**

439 In a study, Obermeyer et al. showed that a widely used algorithm in U.S. health systems systematically
440 under-identified Black patients for enrollment into high-risk care management programs, relative to
441 White patients with equivalent illness (Obermeyer et al., 2019). At the same risk score, Black patients
442 were measurably sicker. The algorithm used health care costs as a proxy for medical needs, and because
443 Black patients tend to incur lower costs for the same level of illness (due to unequal access and systemic
444 barriers), the model underestimated their needs. In the studied sample, correcting for this bias would
445 raise the share of Black patients flagged for extra care from 17.7 % to 46.5 %. In response, the
446 algorithm developer committed to addressing the bias, prompting hospitals to audit other predictive
447 tools. This case underscores how proxies correlated with sensitive attributes can encode bias,
448 emphasizing the importance of understanding causal mechanisms rather than relying solely on
449 correlations. It also highlights ethical considerations in defining optimization objectives and the
450 necessity of comprehensive algorithmic auditing.

451 **5.5 Voice-Cloning CEO Fraud**

452 In March 2019, criminals exploited AI voice-cloning technology to impersonate a CEO's voice,
453 successfully convincing a subordinate to transfer \$243,000 to fraudulent accounts (Stupp, 2019).
454 Commercial voice synthesis tools trained on publicly available audio enabled the attackers to mimic
455 speech patterns, tone, and accent convincingly. Beyond the immediate financial loss, the incident
456 exposed vulnerabilities in voice-based authentication, previously considered secure, and demonstrated
457 how AI can weaponize social engineering.

458 Organizations responded by implementing multi-factor authentication, out-of-band verification, and
459 security training addressing voice-cloning risks. The case illustrates that AI capabilities can
460 compromise traditional security assumptions, that low technical barriers facilitate broad exploitation,
461 and that human factors often remain the weak link despite technical safeguards.

462 **5.6 Adversarial Attacks on Autonomous Vehicle Systems**

463 Research has demonstrated that autonomous vehicle vision systems can be misled by adversarial
464 perturbations, such as strategically placed stickers on stop signs causing misclassification as speed
465 limit signs (Eykholt et al., 2018). In these experiments, researchers used optimization algorithms to
466 determine the smallest possible visual changes, that could consistently fool the vehicle's recognition
467 model even under varying real-world conditions like different lighting, viewing angles, and distances.
468 Although these attacks were conducted in controlled research environments rather than malicious
469 settings, they expose fundamental weaknesses in safety-critical AI systems and highlight ongoing
470 concerns about security, reliability, and potential misuse.

471 In 2018, an autonomous test vehicle in Tempe, Arizona, struck and killed a pedestrian, illustrating the
472 real-world consequences of imperfect autonomous systems (Penmetsa et al., 2021). Tesla's Autopilot
473 has also been involved in numerous crashes, some fatal, often occurring when the system fails to detect
474 stationary obstacles, misinterprets road geometry, etc. The US National Transportation Safety Board
475 has documented cases where drivers over-relied on automation and failed to maintain attention as
476 required (Chu et al., 2023). Developers have begun incorporating adversarial training and robustness
477 testing, yet comprehensive solutions remain elusive. These incidents emphasize that AI vulnerabilities
478 extend from digital to physical domains, requiring security considerations from the design stage and
479 defense-in-depth strategies rather than reliance solely on perceptual capabilities.

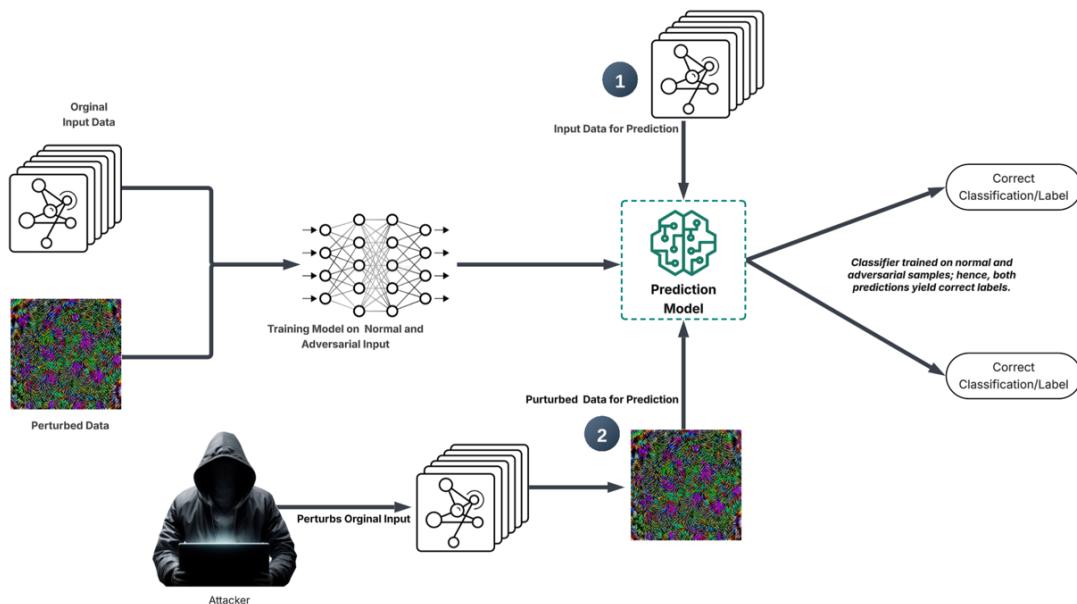
480 **6 Mitigation Strategies and Evaluation**

481 Mitigation of AI-related risks requires a multifaceted approach encompassing technical, regulatory,
482 organizational, and social interventions. Each of these approaches is discussed in the following sections
483 and a summary of the strategies is provided in Table 2.

484 **6.1 Technical Countermeasures**

485 *Adversarial robustness* techniques aim to improve the resilience of machine learning models against
486 manipulative inputs. Adversarial training, which involves augmenting training datasets with
487 adversarial examples (as shown in Fig.6), has demonstrated moderate effectiveness in enhancing
488 robustness against known attacks; however, it struggles against adaptive adversaries and novel attack
489 methods (Madry et al., 2017). This approach incurs significant computational costs that scale with the

490 complexity of the threat model and often involves trade-offs between accuracy and robustness.
491 Consequently, it is most suitable for high-value targets where computational overheads are acceptable.



492

493

Figure 6. Adversarial training

494 Defensive distillation, which trains models with softened probability distributions to smooth decision
495 boundaries, initially appeared promising (Papernot et al., 2016). While it may provide a layer of
496 defense-in-depth, it is insufficient when deployed in isolation considering adaptive attacks. Input
497 preprocessing methods, such as denoising, feature squeezing, or JPEG compression, can neutralize
498 certain perturbations (Guo et al., 2017), yet these techniques degrade legitimate inputs and are easily
499 circumvented by adaptive attackers.

500 Certified defenses also offer provable robustness guarantees within specified perturbation bounds,
501 providing high theoretical value but with substantial practical limitations, including reduced accuracy
502 and significant computational requirements (Cohen et al., 2019). Overall, no single technique currently
503 provides comprehensive protection, and a defense-in-depth strategy combining multiple approaches
504 represents the most viable option, albeit with persistent real-world limitations.

505 Apart from these, *deepfake detection technologies* have emerged to address the proliferation of
506 synthetic media. Biological signal analysis, which detects irregularities in eye blinking, pulse, or
507 breathing patterns, was moderately effective against early deepfakes (Wang et al., 2019) but is
508 increasingly circumvented as generation techniques improve. GAN fingerprint detection can identify
509 model-specific artifacts left by generative networks (Yu et al., 2019), proving useful for forensic
510 attribution of known generators; however, it fails against unseen generators and adaptive attacks.

511 Temporal consistency analysis exploits frame-to-frame inconsistencies in video deepfakes, offering
512 moderate effectiveness, particularly for video contents (Sabir et al., 2019). However, its utility
513 diminishes as generation methods evolve. Multimodal inconsistency detection evaluates audio-visual
514 synchronization and semantic coherence (Mittal et al., 2020), showing promise against poorly
515 constructed deepfakes, though high-quality content often maintains consistency. Blockchain and
516 cryptographic authentication can create verifiable chains of custody for authentic media (Hasan et al.,

517 2019), providing strong authenticity guarantees but requiring adoption at the point of capture, limiting
518 applicability to existing media.

519 Collectively, detection approaches face an adversarial co-evolution, suggesting that proactive
520 authentication mechanisms may prove more effective than reactive detection, albeit requiring
521 substantial infrastructure development.

522 *Privacy-preserving machine learning* approaches, including differential privacy, federated learning,
523 homomorphic encryption, and secure multi-party computation, aim to protect sensitive data while
524 maintaining analytical capabilities. Differential privacy offers strong theoretical guarantees by
525 introducing calibrated noise, though it necessitates careful parameter tuning to balance privacy and
526 utility (Dwork et al., 2014). Federated learning allows decentralized training, reducing risks associated
527 with centralized data storage (McMahan et al., 2017), but remains vulnerable to some inference attacks
528 and incurs communication overhead.

529 Homomorphic encryption enables computation on encrypted data, providing theoretically strong
530 privacy protection (Rahman et al., 2020). But this may be computationally prohibitive for complex
531 operations. Secure multi-party computation facilitates joint computation without revealing individual
532 inputs, offering robust privacy guarantees at the cost of significant communication and computational
533 requirements. Overall, privacy-preserving techniques present effective protection but involve trade-
534 offs in utility, performance, and implementation complexity.

535 In addition, *AI safety and alignment techniques* focus on guiding model behavior to reduce harmful
536 outputs. Bai et al. (2022) came up with “*Constitutional AI*”, a method for training a harmless AI
537 assistant through self-improvement, without human intervention to identify harmful outputs. It
538 incorporates explicit principles to steer decisions, showing potential in mitigating undesired outputs
539 but requiring careful selection of values. Reinforcement learning from human feedback (RLHF) also
540 leverages human preferences to improve alignment (Ouyang et al., 2022) yet depends heavily on
541 feedback quality and may inherit labeler biases.

542 Red teaming systematically probes system vulnerabilities (Perez et al., 2022), enabling targeted
543 mitigation, but cannot exhaustively identify all risks and is expensive. Interpretability and
544 explainability methods aid in understanding model decision-making (Molnar et al., 2020), which is
545 valuable for building trust and identifying potential issues; however, explanation quality varies and
546 post-hoc interpretations may be misleading. While these techniques advance safety, they remain
547 incomplete, underscoring the necessity of complementary approaches for high-stakes applications.

548 **6.2 Regulatory and Policy Interventions**

549 Regulatory and policy interventions constitute a foundational layer in mitigating AI risks, particularly
550 those related to privacy, accountability, and systemic harm. *Data protection and privacy regulations*
551 establish essential frameworks for mitigating AI risks. The General Data Protection Regulation
552 (GDPR) in the European Union exemplifies comprehensive privacy protection (European Parliament
553 and Council, 2016), though enforcement challenges, jurisdictional limitations, and compliance burdens
554 persist. Sector-specific regulations, such as HIPAA, GLBA, and COPPA, provide targeted protection
555 for sensitive contexts but create fragmented coverage and may not fully address AI-specific risks.

556 In response to these limitations, AI-specific regulatory initiatives have emerged to address the unique
557 challenges posed by AI systems. The EU AI Act represents a pioneering attempt at comprehensive,

558 risk-based AI regulation (European Commission, 2024), though its full effectiveness remains uncertain
559 given ongoing implementation. Algorithmic accountability requirements, including audits, impact
560 assessments, and transparency obligations, enhance visibility into AI systems but require technical
561 expertise and standardization. While disclosure mandates (like informing users when AI-generated
562 content is present), contribute to transparency, they fall short of preventing harm and often encounter
563 challenges in enforcement and compliance. Overall, AI-specific regulatory frameworks remain
564 fragmented and incomplete, necessitating global coordination that balances innovation with protective
565 measures.

566 Beyond formal regulation, *content moderation and platform governance* constitute additional layers of
567 policy intervention.. Platform self-regulation involves companies enforcing policies on AI-generated
568 content, disinformation, and harmful material, with effectiveness varying across platforms. Proposals
569 to reform Section 230 in the United States aim to adjust intermediary liability, though the potential
570 impacts remain uncertain (Kosseff, 2019). Co-regulatory approaches, combining industry self-
571 regulation with government oversight, such as the UK Online Safety Bill, may balance flexibility with
572 accountability but require sustained political will and operational capacity. AI both amplifies the
573 challenges of content moderation and offers potential solutions, indicating that multi-stakeholder
574 governance is essential.

575 *International cooperation* is critical for addressing AI risks that transcend borders. Initiatives such as
576 AI safety summits and agreements, exemplified by the Bletchley Declaration (i.e. a global agreement
577 signed by 28 countries and the EU to foster a shared understanding of the risks and opportunities of
578 advanced AI), facilitate shared understanding but remain non-binding and vulnerable to geopolitical
579 tensions. Arms control frameworks propose restrictions on autonomous weapons and offensive cyber-
580 AI, offering potential efficacy if adopted and enforced, though verification and enforcement challenges
581 persist. International standards and best practices offer guidance on AI safety and security, promoting
582 interoperability across systems. However, adherence is typically voluntary, and these standards often
583 struggle to keep pace with rapid technological advancements. While global collaboration is essential,
584 it remains inadequate in fully addressing the fast-evolving risks associated with AI.

585 6.2.1 AI Risk Governance Frameworks

586 Within this regulatory and policy landscape, AI risk governance frameworks play a critical
587 complementary role by translating high-level regulatory goals into structured principles, processes, and
588 operational guidance. Unlike legally binding regulations, these frameworks are designed to support
589 organizations in identifying, assessing, and managing AI risks throughout the system lifecycle.

590 The *NIST AI Risk Management Framework* (2023) adopts a practical, implementation-oriented
591 approach focused on organizational risk management in the US (National Institute of Standards and
592 Technology, 2023). It structures AI risks around core trustworthy AI characteristics, including validity
593 and reliability, safety, security and resilience, accountability and transparency, fairness with managed
594 bias, and privacy enhancement. By emphasizing continuous risk assessment, governance integration,
595 and lifecycle management, the NIST RMF provides actionable guidance well suited for organizational
596 adoption across diverse sectors.

597 At a global level, the *OECD AI Principles* (2019) offer a high-level values-based framework adopted
598 by 42 countries, covering inclusive growth, human-centered values, transparency, robustness and
599 safety, and accountability (Organization for Economic Co-operation and Development, 2019). These
600 principles provide important normative foundations and have achieved broad international consensus.

601 Multi-stakeholder governance initiatives further extend these efforts. The *Partnership on AI* (2021)
602 developed a framework emphasizing responsible AI development across eight impact areas, including
603 safety and robustness, fairness and non-discrimination, transparency and accountability, privacy and
604 security, societal and environmental well-being, human control and autonomy, professional
605 responsibility, and the promotion of human values (Partnership on AI, 2021). By integrating
606 perspectives from academia, industry, civil society, and policymakers, such frameworks aim to bridge
607 ethical principles with real-world deployment challenges.

608 For tackling risks associated with Agentic AI systems, technical threat models have been developed
609 alongside these major frameworks. The *MAESTRO* (Multi-Agent Environment, Security, Threat, Risk,
610 and Outcome), threat model provides a structured approach to identifying vulnerabilities in agentic AI
611 systems across seven key dimensions such as model manipulation, adversarial inputs, privilege
612 escalation, supply-chain compromise, training data poisoning, robustness failures, and output integrity
613 issues (Huang, 2025). This technical threat modeling approach complements risk frameworks by
614 focusing specifically on attack surfaces and defensive strategies for autonomous AI systems.

615 While the above comprehensive frameworks provide broad coverage, some domain-specific
616 frameworks also address unique risks in specialized contexts. The *WHO Ethics and Governance of AI*
617 for Health framework (WHO, 2021) identifies health-specific concerns including medical data privacy
618 in AI-assisted diagnosis, algorithmic bias in health resource allocation, and AI-enabled health
619 misinformation. Moreover, emergence of agentic AI systems has prompted development of specialized
620 threat models. In biosecurity, frameworks address dual-use risks where AI capabilities for beneficial
621 biological research can be misused for designing harmful biological agents or automating synthesis of
622 dangerous compounds, effectively lowering technical barriers for bio-threat development (de Lima,
623 2024), (Trotsyuk, 2024). The UK's *AI Security Institute* (AISI) has developed safety case frameworks
624 specifically for risk mitigation in biomedical research contexts, emphasizing structured argumentation
625 for safety claims in high-stakes domains.

626 Together, these governance frameworks complement regulatory interventions by offering principled,
627 operational, and technical approaches to managing AI risk. While none fully address the breadth of AI
628 misuse in isolation, their combined application provides essential scaffolding for mitigating risks
629 identified throughout this review.

630 **6.3 Organizational and Social Interventions**

631 *Organizational ethics programs and responsible AI frameworks* play a crucial role in internal
632 governance. Ethics review boards can identify and address ethical concerns prior to deployment, but
633 their effectiveness is contingent on institutional authority and resources. Responsible AI frameworks,
634 such as Microsoft's RAI framework or Google's AI Principles, provide structured guidance for ethical
635 AI development, though implementation quality varies. Bias auditing and testing help detect
636 discriminatory system behavior, enabling targeted mitigation, yet defining fairness metrics remains
637 contested and costly. Thus, genuine institutional commitment, supported by external accountability
638 mechanisms, is essential for efficacy.

639 *Education and awareness initiatives* complement technical and regulatory measures. AI literacy
640 programs educate the public on AI capabilities, risks, and critical evaluation of AI-generated content,
641 fostering long-term societal resilience. Professional training for developers, policymakers, and domain
642 experts enhances AI governance and responsible development, though rapid technological evolution
643 challenges curriculum relevance. Media literacy and critical thinking programs further strengthen

644 resilience against disinformation. While essential, educational interventions cannot provide immediate
645 protection and require sustained investment.

646 *Transparency and accountability mechanisms* are vital for monitoring AI deployment. Algorithmic
647 impact assessments evaluate potential societal consequences before deployment (Reisman et al., 2018),
648 while independent algorithmic auditing identifies issues post-deployment (Raji et al., 2020). Transparency
649 reporting enables public scrutiny of system development and performance, though concerns regarding trade
650 secrets, information overload, and technical complexity persist. Legal
651 protections for whistleblowers facilitate internal accountability, provided they are genuinely enforced
652 (Brown, 2017). Overall, transparency and accountability mechanisms remain underdeveloped relative
653 to AI's societal impact and require urgent strengthening.

654 **Table 2. Mitigation Effectiveness Summary**

Approach Category	Representative Techniques	Effectiveness	Limitations	Deployment Status
Technical - Adversarial Robustness	Adversarial training, Certified defenses	Low-Medium	Trade-offs, Adaptive adversaries	Research/Limited deployment
Technical - Detection	Deepfake detection, Anomaly detection	Medium	Arms race dynamics	Active deployment but limited
Technical - Privacy	Differential privacy, Federated learning	Medium-High	Utility costs, Complexity	Growing deployment
Technical - Safety	Constitutional AI, RLHF	Medium	Incomplete, Research ongoing	Recent deployment
Regulatory - Privacy Laws	GDPR, CCPA	Medium-High	Enforcement challenges	Active in jurisdictions
Regulatory - AI-Specific	EU AI Act, Sector rules	Unknown	Early implementation	Emerging
Regulatory - Content Moderation	Platform policies, Co-regulation	Low-Medium	Inconsistent, Capture risk	Active but inadequate
Organizational - Ethics Programs	Review boards, Impact assessments	Low-Medium	Variable commitment	Mixed adoption
Organizational - Transparency	Audits, Reporting, Documentation	Medium	Access barriers, Standardization	Growing adoption
Social - Education	AI literacy, Media literacy	Medium (long-term)	Scale challenges, Time lag	Early stage
Ecosystem - Coordination	Standards, Information sharing	Medium	Cooperation barriers	Early stage

655 Despite growing mitigation efforts, significant gaps remain because many interventions are reactive,
656 addressing known threats while adversaries continue to innovate. Offensive AI has access to resources
657 comparable to defensive AI, enabling attackers to rapidly adopt the latest techniques and making it
658 challenging for defenders to keep pace. Furthermore, policy verification and enforcement are often
659 weak or inconsistent, and differences in regulations across jurisdictions create opportunities for
660 regulatory arbitrage.

661 Compounding these challenges, AI's rapid evolution continues to outpace regulatory, educational, and
662 societal adaptation. Persistent technical problems, such as adversarial robustness and deepfake
663 detection, lack comprehensive solutions, and conflicting stakeholder priorities make it difficult to
664 balance innovation, security, and privacy, while the widespread accessibility of AI tools amplifies the
665 challenges of scaling effective defenses. Together, these factors underscore the persistent and growing
666 difficulties in anticipating, managing, and mitigating AI misuse.

667 **7 Conclusion**

668 AI technologies hold immense transformative potential, yet they also introduce significant technical,
669 social, and systemic risks. This paper has critically examined existing mitigation strategies, revealing
670 that while technical defenses, regulatory frameworks, and organizational measures provide partial
671 protection, they are often reactive, fragmented, and limited against adaptive threats. The emergence of
672 advanced capabilities such as multimodal models and autonomous agents further amplify these risks,
673 highlighting the need for proactive, integrated, and multi-stakeholder responses. To support this effort,
674 we introduced a comprehensive taxonomy that organizes AI misuse into nine primary domains,
675 providing a structured framework for understanding the full spectrum of risks - from technical
676 vulnerabilities to socio-technical harms. The case studies presented demonstrate that AI misuse has
677 tangible, measurable impacts, disproportionately affecting marginalized populations and eroding trust
678 in digital systems and democratic institutions.

679 The trajectory of AI development presents society with critical choices about the values embedded in
680 technological systems and the governance structures that shape their deployment. While AI capabilities
681 continue to advance rapidly, our collective capacity to govern these technologies responsibly remains
682 significantly underdeveloped. Addressing AI misuse requires moving beyond reactive, fragmented
683 approaches toward proactive, integrated strategies that recognize the deeply socio-technical nature of
684 these challenges. The stakes are high: unchecked misuse threatens privacy, security, democratic
685 integrity, social equity, and human autonomy. Yet, with coordinated effort across technical, policy,
686 and social domains, it remains possible to steer AI development toward beneficial outcomes that
687 respect human rights, promote fairness, and enhance societal wellbeing.

688

689 REFERENCES

- 690 [1] Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets.
691 *Journal of Political Economy*, 128(6), 2188-2244.
- 692 [2] Agile-index.ai. (2025). Available at: <https://agile-index.ai/publications/2025>.
- 693 [3] Ajder, H., Patrini, G., Cavalli, F., & Cullen, L. (2019). The State of Deepfakes: Landscape,
694 Threats, and Impact. Deeptrace. Available at:
695 <https://scirp.org/reference/referencespapers?referenceid=3622764>
- 696 [4] Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias. ProPublica, May 23.
- 697 [5] Reuel, A., Connolly, P., Meimandi, K.J., Tewari, S., Wiatrak, J., Venkatesh, D. and
698 Kochenderfer, M. (2025). Responsible AI in the Global Context: Maturity Model and
699 Survey. *Proceedings of the 2025 ACM Conference on Fairness, Accountability, and
700 Transparency*, pp.2505–2541. doi:<https://doi.org/10.1145/3715275.3732165>.
- 701 [6] Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., & Marchetti, M. (2018). On the
702 effectiveness of machine and deep learning for cyber security. *10th International Conference
703 on Cyber Conflict (CyCon)*. 371-390. 10.23919/CYCON.2018.8405026.
- 704 [7] Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace
705 automation. *Journal of Economic Perspectives*, 29(3), pp.3–30. doi.org/10.1257/jep.29.3.3.
- 706 [8] Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., ... & Kaplan, J. (2022).
707 Constitutional AI: Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073.
- 708 [9] Baracas, S., & Selbst, A. D. (2016). Big data's disparate impact. *California Law Review*, 104,
709 671-732.
- 710 [10] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G. and
711 Roli, F. (2013). Evasion Attacks against Machine Learning at Test Time. *Advanced
712 Information Systems Engineering*, pp.387–402. doi:10.1007/978-3-642-40994-3_25.

713 [11] Brown, A. J. (2017). Whistleblowing in the Australian public sector: Enhancing the
 714 theory and practice of internal witness management in public sector organisations. ANU Press.

715 [12] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei,
 716 D. (2020). Language models are few-shot learners. *Advances in Neural Information Processing
 717 Systems*, 33, 1877-1901.

718 [13] Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G., Hadfield, G., ... &
 719 Anderljung, M. (2018). *The Malicious Use of Artificial Intelligence: Forecasting, Prevention,
 720 And Mitigation*. arXiv preprint arXiv:1802.07228.

721 [14] Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and
 722 prosperity in a time of brilliant technologies. WW Norton & Company.

723 [15] Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities
 724 in commercial gender classification. Conference on Fairness, Accountability and Transparency,
 725 77-91.

726 [16] Burr, C., Taddeo, M., & Floridi, L. (2020). The ethics of digital well-being: A thematic
 727 review. *Science and Engineering Ethics*, 26(4), 2313-2343.

728 [17] Calvano, E., Calzolari, G., Denicolò, V., & Pastorello, S. (2020). Artificial intelligence,
 729 algorithmic pricing, and collusion. *American Economic Review*, 110(10), 3267-3297.

730 [18] Campaign to Stop Killer Robots. (2020). Banning killer robots.

731 [19] Chesney, R., & Citron, D. (2019). Deep fakes: A looming challenge for privacy,
 732 democracy, and national security. *California Law Review*, 107, 1753-1820.

733 [20] Chu, Y., Liu, P. (2023). Human Factor Risks in Driving Automation Crashes. In:
 734 Krömker, H. (eds) *HCI in Mobility, Transport, and Automotive Systems. HCII 2023. Lecture
 735 Notes in Computer Science*, vol 14048. Springer, Cham. https://doi.org/10.1007/978-3-031-35678-0_1

737 [21] Cohen, J., Rosenfeld, E., & Kolter, Z. (2019). Certified adversarial robustness via
 738 randomized smoothing. *International Conference on Machine Learning*, 1310-1320.

739 [22] Corbett-Davies, S., Gaebler, J.D., Nilforoshan, H., Shroff, R. & Goel, S. (2023) 'The
 740 measure and mismeasure of fairness', *Journal of Machine Learning Research*, 24(1), pp.
 741 312:1-312:117. Available at: <https://www.jmlr.org/papers/volume24/21-0341/21-0341.pdf>

742 [23] Crawford, K., & Joler, V. (2018). Anatomy of an AI System: The Amazon Echo as an
 743 anatomical map of human labor, data and planetary resources. AI Now Institute and Share Lab.

744 [24] Critch, A., & Russell, S. (2023). Taxonomy and Analysis of Societal-Scale Risks from
 745 AI (TASRA). arXiv:2306.06924.

746 [25] de Lima, R. C., Sinclair, L., Megger, R., Maciel, M. A. G., Vasconcelos, P. F. D. C.,
 747 & Quaresma, J. A. S. (2024). Artificial intelligence challenges in the face of biological
 748 threats: emerging catastrophic risks for public health. *Frontiers in artificial intelligence*, 7,
 749 1382356. <https://doi.org/10.3389/frai.2024.1382356>

750 [26] DiResta, R., Grossman, S., & Schafer, B. (2024). Generative AI and the 2024 US
 751 elections. Stanford Internet Observatory.

752 [27] Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy.
 753 Foundations and Trends in Theoretical Computer Science, 9(3-4), 211-407.

754 [28] European Commission. (2024). The EU Artificial Intelligence Act: A Risk-Based
 755 Framework for AI Governance. Brussels: European Union.

756 [29] European Parliament and Council. (2016). Regulation (EU) 2016/679 (General Data
 757 Protection Regulation). Official Journal of the European Union, L119, 1-88.

758 [30] Evans, L. (2022). 6 GEO. L. TECH. REV. FACIAL RECOGNITION AND A
 759 SYSTEMIC EFFECTS APPROACH TO FIRST AMENDMENT COVERAGE. [online]
 760 https://georgetownlawtechreview.org/wp-content/uploads/2022/02/Evans_Facial-Recognition-and-A-Systemic-Effects-Approach-to-1A-Coverage_formatted.pdf

762 [31] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., ... & Song, D.
763 (2018). Robust physical-world attacks on deep learning visual classification. Proceedings of
764 the IEEE Conference on Computer Vision and Pattern Recognition, 1625-1634.

765 [32] Ferrag, M. A., Tihanyi, N., Hamouda, D., Maglaras, L., Lakas, A., & Debbah, M.
766 (2025). From prompt injections to protocol exploits: Threats in LLM-powered AI Agents
767 workflows. *ICT Express*. <https://doi.org/10.1016/j.icte.2025.12.001>

768 [33] Fredrikson, M., Jha, S., & Ristenpart, T. (2015). Model inversion attacks that exploit
769 confidence information and basic countermeasures. Proceedings of the 22nd ACM SIGSAC
770 Conference on Computer and Communications Security, 1322-1333.

771 [34] Garvie, C., Bedoya, A., & Frankle, J. (2016). The perpetual line-up: Unregulated police
772 face recognition in America. Georgetown Law Center on Privacy & Technology.

773 [35] Goldstein, J. A., Sastry, G., Musser, M., DiResta, R., Gentzel, M., & Sedova, K. (2023).
774 Generative language models and automated influence operations: Emerging threats and
775 potential mitigations. arXiv preprint arXiv:2301.04246.

776 [36] D. Golpayegani, J. Hovsha, L. W. S. Rossmaier, R. Saniei and J. Mišić, "Towards a
777 Taxonomy of AI Risks in the Health Domain," 2022 Fourth International Conference on
778 Transdisciplinary AI (TransAI), Laguna Hills, CA, USA, 2022, pp. 1-8, doi:
779 10.1109/TransAI54797.2022.00007.

780 [37] Green, B., & Viljoen, S. (2020). Algorithmic realism: Expanding the boundaries of
781 algorithmic thought. Proceedings of the 2020 Conference on Fairness, Accountability, and
782 Transparency, 19-31.

783 [38] Gu, T., Dolan-Gavitt, B., & Garg, S. (2017). Badnets: Identifying vulnerabilities in the
784 machine learning model supply chain. arXiv preprint arXiv:1708.06733.

785 [39] Guo, C., Rana, M., Cisse, M., & Van Der Maaten, L. (2017). Counteracting adversarial
786 images using input transformations. arXiv preprint arXiv:1711.00117.

787 [40] Hasan, H. R., & Salah, K. (2019). Combating deepfake videos using blockchain and
788 smart contracts. *IEEE Access*, 7, 41596-41606.

789 [41] Hill, K. (2020). The secretive company that might end privacy as we know it. *The New
790 York Times*, January 18.

791 [42] Horowitz, M. C., Allen, G. C., Saravalle, E., Cho, A., Frederick, K., & Scharre, P.
792 (2018). Artificial intelligence and international security. Center for a New American Security.

793 [43] Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P.S. and Zhang, X. (2022). Membership
794 Inference Attacks on Machine Learning: A Survey. *ACM Computing Surveys*.
795 doi:<https://doi.org/10.1145/3523273>.

796 [44] Huang, K. (2025, February 6). *Agentic AI Threat Modeling Framework: MAESTRO*.
797 Cloud Security Alliance. [https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-
modeling-framework-maestro](https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-
798 modeling-framework-maestro)

799 [45] Kosseff, J. (2019). The twenty-six words that created the internet. Cornell University
800 Press.

801 [46] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. *Nature*, 521(7553), 436-
802 444.

803 [47] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017). Towards deep
804 learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

805 [48] Marchal, N., Xu, R., Elasmar, R., Gabriel, I., Goldberg, B., & Isaac, W. (2024).
806 Generative AI Misuse: A Taxonomy of Tactics and Insights from Real-World Data.
807 arXiv:2406.13843.

808 [49] Matz, S. C., Kosinski, M., Nave, G., & Stillwell, D. J. (2017). Psychological targeting
809 as an effective approach to digital mass persuasion. *Proceedings of the National Academy of
810 Sciences*, 114(48), 12714-12719.

811 [50] McGregor, S. (2021). Preventing Repeated Real World AI Failures by Cataloging
 812 Incidents: The AI Incident Database. *Proceedings of the AAAI Conference on Artificial*
 813 *Intelligence*, 35(17), 15458-15463. <https://doi.org/10.1609/aaai.v35i17.17817>

814 [51] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017).
 815 Communication-efficient learning of deep networks from decentralized data. *Artificial*
 816 *Intelligence and Statistics*, 1273-1282.

817 [52] Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey
 818 on bias and fairness in machine learning. *ACM Computing Surveys*, 54(6), 1-35.

819 [53] Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., & Manocha, D. (2020). Emotions
 820 don't lie: An audio-visual deepfake detection method using affective cues. *Proceedings of the*
 821 *28th ACM International Conference on Multimedia*, 2823-2832.

822 [54] Molnar, C., Casalicchio, G., Bischl, B. (2020). Interpretable Machine Learning – A
 823 Brief History, State-of-the-Art and Challenges. In: Koprinska, I., et al. *ECML PKDD 2020*
 824 Workshops. *ECML PKDD 2020. Communications in Computer and Information Science*, vol
 825 1323. Springer, Cham. https://doi.org/10.1007/978-3-030-65965-3_28

826 [55] National Institute of Standards and Technology (NIST). (2023). AI Risk Management
 827 Framework (AI RMF 1.0). U.S. Department of Commerce.

828 [56] Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial
 829 bias in an algorithm used to manage the health of populations. *Science*, 366(6464), 447-453.

830 [57] Organisation for Economic Co-operation and Development (OECD). (2019). *OECD AI*
 831 *Principles*. Paris: OECD Publishing.

832 [58] OECD.AI. (2024). *OECD AI Incidents Monitor*. <https://oecd.ai/en/incidents>

833 [59] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe,
 834 R. (2022). Training language models to follow instructions with human feedback. *Advances in*
 835 *Neural Information Processing Systems*, 35, 27730-27744.

836 [60] OWASP Foundation. (2024). *OWASP Top 10 for Large Language Model Applications*.
 837 <https://owasp.org/www-project-top-10-for-large-language-model-applications/>

838 [61] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., & Swami, A. (2017).
 839 Practical black-box attacks against machine learning. *Proceedings of the 2017 ACM Asia*
 840 *Conference on Computer and Communications Security*, 506-519.

841 [62] Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016). Distillation as a
 842 defense to adversarial perturbations against deep neural networks. *2016 IEEE Symposium on*
 843 *Security and Privacy*, 582-597.

844 [63] Partnership on AI. (2021). Multi-Stakeholder Framework for Responsible AI
 845 Development.

846 [64] Penmetsa, P., Sheinidashtegol, P., Musaev, A., Adanu, E.K. and Hudnall, M. (2021).
 847 Effects of the Autonomous Vehicle Crashes on Public Perception of the Technology. *IATSS*
 848 *Research*, 45(4). doi:<https://doi.org/10.1016/j.iatssr.2021.04.003>.

849 [65] Perez, E., Ringer, S., Lukošiūtė, K., Nguyen, K., Chen, E., Heiner, S., ... & Kaplan, J.
 850 (2022). Discovering language model behaviors with model-written evaluations. *arXiv preprint*
 851 *arXiv:2212.09251*.

852 [66] Perez, F., & Ribeiro, I. (2022). Ignore previous prompt: Attack techniques for language
 853 models. *arXiv preprint arXiv:2211.09527*.

854 [67] Rahman, M.S., Khalil, I., Atiquzzaman, M. and Yi, X. (2020). Towards privacy
 855 preserving AI based composition framework in edge networks using fully homomorphic
 856 encryption. *Engineering Applications of Artificial Intelligence*, 94, p.103737.
 857 doi:<https://doi.org/10.1016/j.engappai.2020.103737>.

858 [68] Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchinson, B., ... &
 859 Barnes, P. (2020). Closing the AI accountability gap: Defining an end-to-end framework for
 860 internal algorithmic auditing. Proceedings of the 2020 Conference on Fairness, Accountability,
 861 and Transparency, 33-44.

862 [69] Reisman, D., Schultz, J., Crawford, K., & Whittaker, M. (2018). Algorithmic impact
 863 assessments: A practical framework for public agency accountability. AI Now Institute.

864 [70] Russell, S. (2019). Human compatible: Artificial intelligence and the problem of
 865 control. Viking.

866 [71] Sabir, E., Cheng, J., Jaiswal, A., AbdAlmageed, W., Masi, I., & Natarajan, P. (2019).
 867 Recurrent convolutional strategies for face manipulation detection in videos. *Interfaces*, 3(1),
 868 80-87.

869 [72] Scharre, P. (2018). Army of none: Autonomous weapons and the future of war. WW
 870 Norton & Company.

871 [73] Sharif, M., Bhagavatula, S., Bauer, L., & Reiter, M. K. (2016). Accessorize to a crime:
 872 Real and stealthy attacks on state-of-the-art face recognition. *Proceedings of the 2016 ACM
 873 SIGSAC Conference on Computer and Communications Security*. Association for Computing
 874 Machinery, New York, NY, USA, 1528–1540. <https://doi.org/10.1145/2976749.2978392>

875 [74] Shrestha, S., Banda, C., Mishra, A. K., Djebbar, F., & Puthal, D. (2025). Investigation
 876 of Cybersecurity Bottlenecks of AI Agents in Industrial Automation. *Computers*, 14(11), 456.
 877 <https://doi.org/10.3390/computers14110456>

878 [75] Slattery, P., Saeri, A. K., Grundy, E. A. C., Graham, J., Noetel, M., Uuk, R., Dao, J.,
 879 Pour, S., Casper, S., & Thompson, N. (2024). *The AI Risk Repository: A Comprehensive Meta-
 880 Review, Database, and Taxonomy of Risks from Artificial Intelligence*. <https://airisk.mit.edu/>

881 [76] Stanford HAI. (2025). *The 2025 AI Index Report*. Stanford.edu. Available at:
 882 <https://hai.stanford.edu/ai-index/2025-ai-index-report>.

883 [77] Strubell, E., Ganesh, A. and McCallum, A. (2019). Energy and Policy Considerations
 884 for Deep Learning in NLP. *Proceedings of the 57th Annual Meeting of the Association for
 885 Computational Linguistics*, pp.3645–3650. doi:<https://doi.org/10.18653/v1/p19-1355>.

886 [78] Stupp, C. (2019). *Fraudsters Used AI to Mimic CEO's Voice in Unusual Cybercrime
 887 Case*. [online] Wall Street Journal. Available at: [https://www.wsj.com/articles/fraudsters-use-
 ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402](https://www.wsj.com/articles/fraudsters-use-

 888 ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402).

889 [79] Susser, D., Roessler, B. and Nissenbaum, H.F. (2019). Online Manipulation: Hidden
 890 Influences in a Digital World. *SSRN Electronic Journal*, 4(1).
 891 doi:<https://doi.org/10.2139/ssrn.3306006>.

892 [80] Trotsyuk, A.A., Waeiss, Q., Bhatia, R.T. et al. Toward a framework for risk mitigation
 893 of potential misuse of artificial intelligence in biomedical research. *Nat Mach Intell* 6, 1435–
 894 1442 (2024). <https://doi.org/10.1038/s42256-024-00926-3>

895 [81] Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., & Ristenpart, T. (2016). Stealing
 896 machine learning models via prediction APIs. *25th USENIX Security Symposium*, 601-618.

897 [82] Vaccari, C., & Chadwick, A. (2020). Deepfakes and disinformation: Exploring the
 898 impact of synthetic political video on deception, uncertainty, and trust in news. *Social Media +
 899 Society*, 6(1). <https://doi.org/10.1177/2056305120903408>

900 [83] Wang, R., Juefei-Xu, F., Ma, L., Xie, X., Huang, Y., Wang, J., & Liu, Y. (2019).
 901 *FakeSpotter: A Simple yet Robust Baseline for Spotting AI-Synthesized Fake Faces*.
 902 *Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI 2020)*,
 903 pp. 3444-3451. doi:10.24963/ijcai.2020/476

904 [84] Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang, P.-S., Mellor, J., Glaese, A.,
 905 Cheng, M., Balle, B., Kasirzadeh, A., Biles, C., Brown, S., Kenton, Z., Hawkins, W., Stepleton,
 906 T., Birhane, A., Hendricks, L.A., Rimell, L., Isaac, W. and Haas, J. (2022). Taxonomy of Risks

posed by Language Models. 2022 *ACM Conference on Fairness, Accountability, and Transparency*. doi:<https://doi.org/10.1145/3531146.3533088>.

[85] WHO. (2021). Ethics and governance of artificial intelligence for health. World Health Organization.

[86] Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z. and Zhang, Y. (2024). A survey on Large Language Model (LLM) security and privacy: The Good, The Bad, and The Ugly. *High-Confidence Computing*, 4(2), p.100211. doi:<https://doi.org/10.1016/j.hcc.2024.100211>.

[87] Yu, N., Davis, L. S., & Fritz, M. (2019). Attributing fake images to GANs: *Learning and analyzing GAN fingerprints*. Proceedings of the IEEE/CVF International Conference on Computer Vision, 7556-7566. doi:<https://doi.org/10.1109/ICCV.2019.00765>.

[88] Zhang, J., Bu, H., Wen, H. *et al.* When LLMs meet cybersecurity: a systematic literature review. *Cybersecurity* 8, 55 (2025). <https://doi.org/10.1186/s42400-025-00361-w>

[89] Zhang, R., Li, H., Meng, H., Zhan, J., Gan, H. and Lee, Y.-C., 2025. *The dark side of AI companionship: A taxonomy of harmful algorithmic behaviors in human-AI relationships*. In: *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)*. New York, NY, USA: Association for Computing Machinery, Article 13, pp.1–17. doi:10.1145/3706598.3713429

[90] MacDermott, Á. Deepfake Forensics: Exploring the Impact and Implications of Fabricated Media in Digital Forensic Investigations, DFRWS EU 2025, Brno, Czech Republic, Apr. 2025. [Online]. Available: https://dfrws.org/wp-content/uploads/2025/04/DFRWS_EU_2025_paperposter_115.pdf [dfrws.org] https://dfrws.org/wp-content/uploads/2025/04/DFRWS_EU_2025_paperposter_115.pdf

[91] Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimized digital transparency and Open Synthesis Campbell Systematic Reviews, 18, e1230. <https://doi.org/10.1002/cl2.1230>

8 Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

9 Funding

938 This study is supported by Research Incentive Funds (activity codes: R23064, R21096), Research
939 Office, Zayed University, Dubai, United Arab Emirates.