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Abstract 9 

The swift evolution of artificial intelligence technologies (AI) has introduced unparalleled capabilities, 10 

alongside critical vulnerabilities that can be exploited maliciously or cause unintended harm. While 11 

numerous efforts have emerged to govern AI risks, there remains a lack of comprehensive analysis of 12 

how AI systems are actively being misused. This paper offers an in-depth review of AI misuses across 13 

modern technologies, analyzing attack mechanisms, documented incidents, and emerging threat 14 

vectors. We provide a brief review of AI risk repositories and existing taxonomic approaches to set the 15 

context, and then synthesize them into a comprehensive categorization of AI misuse across nine 16 

primary domains: (1) Adversarial Threats, (2) Privacy Violations, (3) Disinformation, Deception & 17 

Propaganda, (4) Bias & Discrimination, (5) System Safety & Reliability Failures, (6) Socioeconomic 18 

Exploitation & Inequality, (7) Environmental & Ecological Misuse, (8) Autonomy & Weaponization, 19 

and (9) Human Interaction & Psychological Harm. Across these domains, we identify and analyze 20 

distinct categories of AI misuses and risks, providing technical depth on exploitation mechanisms, 21 

documented cases with quantified impacts, and the latest developments including large language model 22 

vulnerabilities and multimodal attack vectors.  We also assess the effectiveness of current mitigation 23 

strategies and countermeasures, evaluating technical security frameworks (e.g. MITRE ATLAS, 24 

OWASP Top 10 for Large Language Models (LLMs), MAESTRO), regulatory approaches (e.g. EU 25 

AI Act, NIST AI RMF), and compliance standards. Our analysis reveals significant gaps between AI 26 

capabilities and robustness of defensive measures, with adversaries holding persistent advantages 27 

across most attack categories. This work contributes to the field by: (1) systematically consolidating 28 

fragmented AI risk and misuse taxonomies and repositories, (2) developing a unified taxonomy of AI 29 

misuse patterns grounded in both theoretical models and empirical incident data, (3) critically 30 

evaluating the effectiveness of existing mitigation strategies, and (4) identifying priority research gaps 31 

to foster the development of more robust, ethical, and secure AI systems. 32 

1 Introduction 33 

Artificial Intelligence (AI) has rapidly evolved into one of the most transformative technologies of the 34 

21st century, reshaping industries, governance, and everyday life. Deep learning breakthroughs since 35 

2012 (LeCun et al., 2015), proliferation of LLMs (Brown et al., 2020), advances in generative AI 36 

(OECD, 2019), and deployment of autonomous systems (Scharre, 2018) have created unprecedented 37 
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capabilities. However, these same technologies have also introduced critical vulnerabilities, offering 38 

new vectors for malicious exploitation. 39 

The dual-use nature of AI lies at the core of this concern. Algorithms and models designed for 40 

beneficial purposes can be adapted for malicious or unethical use. Natural language models that enable 41 

intelligent assistants may be leveraged to produce convincing disinformation (Goldstein et al., 2023); 42 

generative models supporting creative industries can be used to fabricate realistic deepfakes (Chesney 43 

et al., 2019); computer vision systems designed for safety or accessibility may facilitate intrusive 44 

surveillance or unauthorized biometric profiling (Buolamwini et al., 2018); and recommendation 45 

algorithms designed to personalize user experiences can be exploited to manipulate behavior (Matz et 46 

al., 2017). As AI systems grow in capability, autonomy, and accessibility, their misuse potential 47 

increases in both scale and sophistication.  48 

Recent incidents demonstrate that AI misuse is no longer theoretical but a pressing global issue with 49 

measurable consequences: deepfake-enabled fraud exceeding $25 million (Stupp, 2019), AI-generated 50 

election disinformation affecting millions (DiResta et al., 2024), wrongful arrests from facial 51 

recognition errors (Garvie et al., 2016), algorithmic discrimination in healthcare affecting 200 million 52 

people annually (Obermeyer et al., 2019), and adversarial attacks on safety-critical systems (Eykholt 53 

et al., 2018). The proliferation of synthetic media, automated cyberattacks, and algorithmic 54 

discrimination reflects how AI can amplify deception, erode privacy, and reinforce social inequalities. 55 

Moreover, AI-driven automation and personalization have accelerated the scale and precision of 56 

harmful activities, from widespread disinformation campaigns to targeted phishing and identity 57 

manipulation. These developments highlight a growing mismatch between AI advancement and the 58 

capacity to detect, regulate, or mitigate its misuse, raising pressing ethical and security concerns. 59 

Recent statistics supporting these observations are shown in Fig.1. 60 

 61 
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(a). AI related incidents reported worldwide (2019 – 2024) from AGILE Index Report 2025  62 

 63 

 64 

(b) AI related incidents reported worldwide (2014 – 2024) from Artificial Intelligence Index Report 2025 65 

Figure 1. Recent AI Misue Statistics  66 

Despite the expanding body of literature on AI misuse, the research landscape remains highly 67 

fragmented. Existing studies often focus on specific domains, such as deepfakes, adversarial attacks, 68 

or data privacy, without integrating insights across technical, ethical, and societal dimensions (Slattery 69 

et al., 2024), (National Institute of Standards and Technology, 2023). Moreover, inconsistent 70 

terminology, varied categorization schemes, and rapidly evolving threat models further complicate 71 

efforts to develop a unified understanding of the full spectrum of misuse. This fragmentation creates 72 

challenges for those seeking to assess risks comprehensively or develop interdisciplinary strategies for 73 

prevention and response. 74 

This review addresses that fragmentation by providing a systematic synthesis of AI misuse research 75 

across technical, ethical, and societal perspectives. Rather than proposing entirely new theoretical 76 

models, this paper organizes and consolidates existing knowledge to create a comprehensive and 77 

accessible overview of how AI technologies can be misused. To establish context, we briefly examine 78 

empirical AI risk and misuse taxonomies and repositories. Building upon insights from these sources, 79 

we propose a consolidated nine-domain categorization of AI misuse, each suitable for detailed 80 

technical and socio-ethical analysis. Across these domains, we provide technical depth on exploitation 81 

mechanisms, detailed real-world incidents, and discussion of countermeasure effectiveness. 82 

Through extensive analysis of academic publications, industry reports, and documented misuse cases, 83 

this paper seeks to: 84 
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• Critically analyze existing AI risk and misuse taxonomies and repositories, examining how 85 

different research initiatives categorize AI threats and identifying convergences, gaps, and 86 

complementarities across classification schemes  87 

• Synthesize a unified taxonomy of AI misuse that categorizes AI misuse and vectors across 88 

technical, social, and ethical dimensions,  89 

• Analyze various forms of AI misuse, identifying common vulnerabilities and attack patterns, 90 

providing technical depth on exploitation mechanisms, and examining real-world case studies 91 

to understand the practical manifestations, impacts, and consequences. 92 

• Evaluate existing mitigation strategies, assessing technical security frameworks, regulatory 93 

approaches, and compliance standards for their effectiveness, limitations, and applicability 94 

across different contexts.  95 

The remainder of this paper is organized as follows: Section 2 reviews existing AI misuse and risk 96 

frameworks. Section 3 describes the review methodology. Section 4 categorizes AI misuse domains 97 

and presents synthesized findings. Section 5 discusses key incidents and implications across domains. 98 

Section 6 reviews current mitigation strategies and challenges and AI risk governance frameworks. 99 

Section 7 concludes with recommendations for future research and governance directions. 100 

2 Background: Review of Existing AI Risk and Misuse Taxonomies 101 

Several organizations and research groups have developed frameworks and/or taxonomies to classify 102 

and understand the risks and misuse of artificial intelligence, reflecting the growing need for systematic 103 

approaches to AI safety and governance. We briefly review major existing taxonomies to establish 104 

context before presenting our own categorization. 105 

Among the most influential is the MIT AI Risk Repository developed by Slattery et al. (2024), which 106 

represents the most comprehensive effort to date, extracting and categorizing 1,612 risks from 65 107 

existing taxonomies (Slattery et al., 2024). The framework organizes risks using a dual approach: a 108 

causal taxonomy classifying by entity, intentionality, and timing; and a domain taxonomy with seven 109 

domains and 24 subdomains covering discrimination and toxicity, privacy and security, 110 

misinformation, malicious actors and misuse, human-computer interaction, socioeconomic and 111 

environmental impacts, and AI system safety. While highly valuable for conceptual coverage, the 112 

repository largely abstracts away from detailed technical attack mechanisms and operational misuse 113 

pathways. 114 

Complementing this work, incident-centered repositories provide empirical grounding. The AI Incident 115 

Database systematically catalogs real-world AI failures and misuse events, emphasizing recurrence 116 

patterns and socio-technical root causes (McGregor, 2021). Similarly, the OECD AI Incident Monitor 117 

aggregates reported AI-related incidents across jurisdictions, offering longitudinal insights into 118 

emerging misuse trends (OECD, 2023). These repositories shift the focus from hypothetical risks to 119 

documented harms, but do not provide fine-grained technical taxonomies. The OECD AI Incidents 120 

Monitor provides an international repository of documented AI incidents, collecting reports from 121 

multiple sources including news media, research papers, and direct submissions (OECD.AI, 2024). 122 

The database categorizes incidents by type (bias/discrimination, privacy violation, safety failure, etc.), 123 

sector (healthcare, finance, transportation, etc.), and AI technology involved (computer vision, NLP, 124 

recommendation systems, etc.). However, the limitation lies in its limited technical depth in incident 125 

descriptions. 126 
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Several security-oriented and adversarial taxonomies focus explicitly on malicious AI use. MITRE 127 

Adversarial Threat Landscape for Artificial-Intelligence Systems (ATLAS) provides a tactics–128 

techniques–procedures (TTP) knowledge base documenting real-world attacks on AI systems, 129 

including data poisoning, model evasion, and supply-chain compromise (MITRE ATLAS, 2024).  130 

The ENISA AI Threat Landscape similarly categorizes AI-related cybersecurity threats, emphasizing 131 

vulnerabilities, attacker capabilities, and systemic impacts (ENISA, 2020). The OWASP Top 10 for 132 

LLMs further refines this focus for generative and language models, identifying prompt injection, 133 

insecure output handling, training data poisoning, model denial-of-service, and supply-chain 134 

vulnerabilities as dominant misuse vectors (OWASP Foundation, 2024). 135 

Beyond security, multiple domain-specific risk taxonomies have emerged. In healthcare, Golpayegani 136 

et al. (2022) propose a structured taxonomy covering clinical, ethical, and operational AI risks, 137 

highlighting patient harm and diagnostic bias (Golpayegani et al., 2022). In international security, 138 

UNIDIR synthesizes AI risks related to strategic stability, escalation dynamics, and confidence-139 

building measures (UNIDIR, 2023). Mahmoud (2023) examines AI risks in information security, 140 

emphasizing automation-enabled attack amplification. The IAA AITF AI Risks Taxonomy (2024) 141 

introduces a three-level taxonomy tailored to actuarial and financial risk management, mapping AI-142 

specific risk amplification onto traditional actuarial risk categories. 143 

Additional academic contributions have expanded taxonomies to socio-technical and human-centered 144 

harms. Critch and Russell (2023) introduced their Taxonomy and Analysis of Societal-Scale Risks 145 

from AI (TASRA), examining macro-level dimensions including risk accountability and ethical 146 

alignment (Critch et al., 2023). TASRA focuses on long-term, systemic risks rather than near-term 147 

incidents, considering how AI could reshape power dynamics, decision-making authority, and social 148 

institutions. Weidinger et al. (2022) proposed taxonomies specifically targeting large language model 149 

risks, highlighting concerns such as discrimination, information hazards, and malicious uses 150 

(Weidinger et al., 2022). Marchal et al. (2024) focused on generative AI misuse, identifying threats 151 

including prompt injection, model leakage, and large-scale disinformation (Marchal et al., 2024). 152 

Moreover, Zhang et al. (2025) addressed the emerging domain of AI companionship applications, 153 

developing a taxonomy of harmful algorithmic behaviors that can occur in human-AI relationship, 154 

examining the psychological and relational harms that can emerge when AI systems are designed to 155 

form ongoing personal bonds with users, including emotional manipulation, unhealthy dependency, 156 

and intimate privacy violations (Zhang et al., 2025). 157 

Collectively, these taxonomies and repositories provide complementary but fragmented views of AI 158 

misuse, varying in scope, granularity, and empirical grounding. Some emphasize technical attack 159 

vectors, others societal harms or domain-specific risks, and few attempt holistic integration. Building 160 

upon these efforts, this review consolidates and aligns them into a unified nine-domain taxonomy of 161 

AI misuse, collectively capturing the technical, ethical, and socio-technical dimensions of 162 

contemporary AI misuse, grounded in documented incidents and technical exploitation mechanisms, 163 

representing both underrepresented dimensions such as environmental sustainability as well as 164 

established concerns. 165 

3 Methodology 166 

This study employs a mixed-methods approach, combining a systematic literature review with in-depth 167 

case study analysis to develop a comprehensive understanding of AI misuse patterns and mitigation 168 
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strategies. By integrating these elements, the research bridges technical, social, and ethical 169 

perspectives, while grounding theoretical insights in real-world incidents. 170 

3.1 Reporting Standards 171 

This study presents a systematic review in accordance with the PRISMA 2020 guidelines as illustrated 172 

in Fig. 2 (Haddaway et al., 2022).  Academic literature was retrieved from major scholarly databases 173 

including IEEE Xplore, Scopus, and the ACM Digital Library. In parallel, relevant case-based and 174 

policy-oriented materials were sourced from grey literature repositories and organizational databases 175 

such as the NIST repository, MIT AI Repository, and AI Incident Database. To capture developments 176 

coinciding with the rise of modern AI applications, the search covered the period from 2012 to 2025, 177 

aligning with the deep learning era and the acceleration of AI adoption across critical domains. The 178 

search queries combined key terms such as “artificial intelligence misuse”, “AI risks”, “AI security 179 

threats”, “adversarial attacks”, “AI safety”, “algorithmic bias”, “deepfakes”, and related variations. 180 

A total of 128 records (104 from academic databases and 24 from other sources) were initially 181 

identified. After removing duplicate records, 125 unique studies were screened based on titles and 182 

abstracts. During this phase, 33 papers were excluded due to not meeting the inclusion criteria. Full-183 

text retrieval was sought for 68 studies, of which seven were excluded after detailed assessment. The 184 

remaining 61 database-based studies were included in the final synthesis. From the additional 24 185 

external sources, six reports were excluded, and 18 reports were retained. Altogether, 79 studies (61 186 

database studies + 18 other sources) were included in the final review. 187 

 188 

Figure 2. PRISMA flow diagram of study selection. 189 

The diagram (Fig.2) outlines the identification, screening, eligibility assessment, and inclusion process 190 

for the reviewed studies.  191 

3.2 Case Study Selection  192 
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Case studies were identified through systematic monitoring of multiple sources including the AI 193 

Incident Database, vulnerability disclosures, regulatory publications, industry transparency reports, 194 

and media coverage. The aim was to capture a diverse set of examples spanning different domains of 195 

misuse, levels of severity, and cultural or geographic contexts. Selected cases were required to have 196 

documented evidence verifying the incident. This ensured that the analysis addressed both technical 197 

and social dimensions of misuse and highlighted the ways AI vulnerabilities manifest in practice. 198 

3.3 Taxonomy Development 199 

The taxonomy of AI misuse was derived through a systematic synthesis of major AI risk frameworks, 200 

consolidating and extending them into a unified and comprehensive classification. Drawing on 201 

established taxonomies, we identified key conceptual overlaps and critical gaps, particularly in areas 202 

such as environmental sustainability and human-AI psychological manipulation. Accordingly, AI 203 

misuse was classified into nine domains encompassing both the technical and socio-technical 204 

dimensions of contemporary misuse. The detailed research workflow is given in Fig. 3, illustrating the 205 

methodological workflow adopted in the study, beginning with a systematic literature review and case 206 

study analysis, followed by framework synthesis and refinement, taxonomy construction, and the 207 

formulation of mitigation strategies. 208 

 209 

Figure 3. Methodological workflow of the research 210 

4 Taxonomy of AI Misuse 211 
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To enable systematic analysis of AI misuse, this study develops a taxonomy that organizes threat 212 

vectors across nine primary domains, each further divided into subcategories. These domains 213 

encompass adversarial and cybersecurity threats, privacy violations, disinformation and synthetic 214 

media, bias and discrimination, system safety and reliability failures, socio-economic exploitation and 215 

inequality, environmental and ecological misuse, autonomy and weaponization, and human interaction 216 

and psychological harm. While these categories represent distinct manifestations of misuse, they are 217 

also deeply interconnected, with vulnerabilities in one domain frequently compounding risks in 218 

another. By organizing the landscape in this structured manner, the taxonomy provides a 219 

comprehensive framework for both researchers and practitioners to classify incidents, anticipate 220 

threats, and design targeted interventions (Slattery et al., 2024), (NIST, 2023). 221 

Table 1. Taxonomy of AI Misuse 222 

 Domain Key Examples (Attack Types) Mechanisms Implications 

1 Adversarial Threats Evasion attacks, poisoning, 

backdoors, model extraction, 

membership inference, model 

inversion, supply chain attacks 

Subtle perturbations to inputs, 

maliciously crafted training data, 

unauthorized model queries, 

compromised dependencies in 

AI pipelines 

Compromise of AI integrity, 

intellectual property theft, 

inaccurate outputs in critical 

systems (e.g., autonomous 

vehicles, medical AI) 

2 Privacy Violations Sensitive attribute inference, 

re-identification, data leakage, 

unauthorized surveillance 

Analysis of model outputs, 

correlational inference, 

generative model reconstruction 

Breach of user confidentiality, 

regulatory violations, erosion of 

trust in digital services 

3 Disinformation, 

Deception, & 

Propaganda 

Deepfakes, automated fake 

news, targeted propaganda, 

harmful/illegal content 

generation, prompt injection, 

erosion of trust 

Generative models for text, 

image, video; automated 

amplification on social media 

Misinformation at scale, 

manipulation of public opinion, 

destabilization of political and 

social systems 

4 Bias & 

Discrimination 

Gender, racial, socioeconomic 

biases; opaque decision-

making; stereotyping 

Biased training data, 

reinforcement of historical 

inequities, algorithmic opacity 

Unequal access to services, 

perpetuation of social inequities, 

reputational and legal risks for 

deploying organizations 

5 System Safety & 

Reliability Failures 

Autonomous vehicle accidents, 

misdiagnoses in healthcare, 

industrial automation failures 

Model misbehavior under 

unexpected conditions, 

inadequate validation and 

monitoring 

Physical harm, operational 

disruption, loss of human life or 

safety incidents 

6 Socioeconomic 

Exploitation & 

Inequality 

Job displacement, economic 

fraud, cheating, microtargeting, 

exploitation of vulnerable 

populations 

Automation replacing human 

labor, AI-driven manipulation of 

financial and social systems 

Increased economic disparities, 

reduced employment 

opportunities, ethical and legal 

challenges in AI governance 

7 Environmental & 

Ecological Misuse 

High energy consumption of 

AI, carbon-intensive model 

training, automated harmful 

industrial practices 

Resource-intensive model 

training, misuse of AI in 

environmental systems 

Increased carbon footprint, 

ecological damage, sustainability 

concerns 

8 Autonomy & 

Weaponization 

Autonomous drones, lethal AI 

weapons, cyber-physical 

attacks, Agentic AI systems 

Decision-making without human 

oversight, AI-guided military 

systems 

Escalation in conflict, ethical 

concerns over lethal AI, potential 

breaches of international law 

9 Human Interaction 

& Psychological 

Harm 

Emotional manipulation via AI, 

addiction to AI interfaces, 

mental health impacts 

Personalized content targeting, 

persuasive AI, immersive digital 

environments 

Anxiety, depression, behavioral 

manipulation, loss of agency and 

autonomy 

4.1 Adversarial Threats 223 

Machine learning systems are vulnerable to a wide array of adversarial attacks that exploit both the 224 

data and model layers of the learning pipeline (as shown in Fig. 4). Evasion attacks exploit weaknesses 225 

in trained models by subtly perturbing inputs, causing misclassifications without visibly altering the 226 

underlying data (Biggio et al., 2013). These perturbations are often unnoticable to humans but are 227 

designed to shift the input across the model’s decision boundary. Such attacks are particularly 228 
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concerning in real-time systems, where even minor perturbations to data can induce high-confidence 229 

yet incorrect predictions, compromising safety-critical applications such as helathcare decsisons, 230 

autonomous navigation, or biometric authentication. 231 

Poisoning attacks, in contrast, corrupt the training dataset itself, embedding malicious patterns that 232 

compromise the integrity of models even before deployment (Gu et al., 2017).  Attackers may inject a 233 

small fraction of poisoned samples into the training sets to manipulate model behavior, either globally 234 

(causing widespread accuracy degradation) or specifically (triggering backdoor conditions under 235 

certain inputs). For instance, a backdoor poisoning attack might train a face recognition model to 236 

always classify images containing a specific pixel pattern as a trusted user, regardless of the actual 237 

identity. Such manipulation remains dormant during evaluation, evading detection, and activates only 238 

under attacker-controlled triggers. Because machine learning pipelines often rely on large, 239 

automatically scraped or user-contributed data, the injection of poisoned samples is both feasible and 240 

difficult to detect. Gu et al. (2017) introduced "BadNets," demonstrating how backdoor triggers 241 

embedded in training data enable attackers to maintain control over model behavior post-deployment. 242 

The poisoned model performs normally on clean inputs but exhibits attacker-specified behavior when 243 

triggered. 244 

 245 

Figure 4. Examples of adversarial attacks across the machine learning lifecycle 246 

Model extraction attacks further extend the adversarial threat surface by demonstrating how 247 

adversaries can reconstruct proprietary models through systematic querying and analyzing outputs 248 

(Papernot et al., 2017). By sending numerous inputs to a deployed model (often accessible via APIs) 249 

and recording the corresponding outputs, attackers can approximate the model’s decision boundaries 250 

and replicate its functionality locally (see Fig. 5). This stolen surrogate model can then be exploited 251 

for additional purposes, such as launching more precise evasion attacks or performing model inversion 252 

to recover sensitive training data. In many cases, such extraction requires no privileged access, relying 253 

solely on adaptive query strategies and output probability vectors exposed by the API.  Tramèr et al. 254 

demonstrated that prediction APIs expose sufficient information for attackers to build functionally 255 

equivalent models (Tramèr et al., 2016).  256 

 257 
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  258 

Figure 5. Model extraction attack 259 

These attacks are not merely academic. In computer vision, adversarial perturbations have been shown 260 

to cause traffic sign recognition systems to misidentify stop signs as yield signs, with potentially 261 

catastrophic consequences for autonomous driving (Eykholt et al., 2018). In natural language 262 

processing, adversarial inputs can be crafted by substituting semantically similar words or introducing 263 

orthographic noise, allowing attackers to manipulate sentiment analysis models or bypass content 264 

moderation. The persistence of these vulnerabilities highlights the fragility of AI systems operating in 265 

adversarial environments (Madry et al., 2017). 266 

4.2 Privacy Violations 267 

AI systems frequently depend on vast amounts of personal and sensitive data, creating risks of privacy 268 

violations at multiple levels. At the individual level, models are vulnerable to attacks that expose 269 

whether particular data points were part of the training set, referred as membership inference attack 270 

(Hu et al., 2022). Model inversion attacks similarly enable the reconstruction of sensitive features from 271 

model outputs (Fredrikson et al., 2015). These vulnerabilities illustrate that AI systems, even when 272 

anonymized, can inadvertently leak private information. 273 

At the systemic level, AI-driven surveillance technologies such as facial recognition amplify 274 

longstanding privacy concerns. It has been demonstarted by Sharif et al. (2016), that specially crafted 275 

eyeglass frames could enable individuals to impersonate others or evade facial recognition systems and 276 

access controls, making them particularly concerning for safety-critical applications (Sharif et al., 277 

2016). Other studies have also revealed consistent accuracy disparities across demographic groups 278 

(Buolamwini et al., 2018), raising both technical and ethical questions about their use in law 279 

enforcement and public surveillance (Garvie et al., 2016). As AI systems become more deeply 280 

embedded in public and commercial infrastructures, the tension between utility and privacy continues 281 

to intensify. Without stronger safeguards, transparency, and privacy-preserving techniques, AI risks 282 

normalizing pervasive surveillance and eroding individual privacy. 283 

4.3 Disinformation and Synthetic Media 284 

The proliferation of generative models has dramatically transformed the landscape of disinformation. 285 

Deepfakes exemplify the capacity of AI systems to generate highly realistic yet fabricated content, 286 

including videos, audio, and images. These technologies have been used to create non-consensual 287 

intimate imagery, impersonate public officials, and manipulate political discourse (Chesney et al., 288 

2019), (Vaccari et al., 2020). Large language models further extend this threat by enabling automated 289 

production of persuasive, coherent text at unprecedented scale (Goldstein et al., 2023). The 290 
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convergence of these technologies enables campaigns of influence that are more targeted, scalable, and 291 

difficult to attribute than traditional forms of propaganda. 292 

The societal consequences of synthetic media are amplified by what Chesney and Citron (2019) 293 

describe as the “liar's dividend”, whereby the mere existence of deepfakes undermines trust in 294 

authentic information (Chesney et al., 2019). Thus, AI-driven disinformation poses not only direct 295 

harm by spreading falsehoods but also indirect harm by eroding epistemic trust - the shared confidence 296 

in sources of knowledge - within societies. 297 

4.4 Bias and Discrimination 298 

The embedding of bias into AI systems represents one of the most significant ethical challenges in 299 

contemporary deployment. Bias can arise at any stage of the machine learning pipeline, from the 300 

framing of research questions to data collection and algorithmic optimization (Barocas et al., 2016). 301 

Empirical evidence has repeatedly demonstrated how these biases translate into discriminatory 302 

outcomes. Buolamwini and Gebru (2018) showed that commercial facial recognition systems 303 

misclassified darker-skinned women at rates far higher than lighter-skinned subjects (Buolamwini et 304 

al., 2018). Obermeyer et al. (2019) also identified racial bias in healthcare algorithms that 305 

systematically underestimated the needs of Black patients (Obermeyer et al., 2019). Similarly, Angwin 306 

et al. (2016) documented how criminal justice risk assessment systems produced racially skewed 307 

predictions (Angwin et al., 2016). Such accuracy disparities have tangible real-world consequences. 308 

For example, in 2020, Robert Williams became the first documented case of wrongful arrest due to a 309 

facial recognition error, after Detroit Police Department’s system generated a false match (Evans, 310 

2022). 311 

Mitigating bias remains a profound challenge. Debiasing strategies, such as re-weighting datasets or 312 

modifying loss functions, have achieved partial success (Corbett-Davies et al., 2023), (Mehrabi et al., 313 

2021). Yet scholars caution that fairness is a contested and multidimensional concept, with different 314 

definitions often mathematically incompatible (Green et al., 2020). Moreover, technical fixes alone 315 

cannot address the structural inequalities that biases both reflect and reinforce. 316 

4.5 System Safety & Reliability Failures 317 

AI has become a dual-use technology in cybersecurity, serving both defensive and offensive roles. On 318 

the defensive side, machine learning enhances intrusion detection systems, anomaly detection, and 319 

malware classification. On the offensive side, adversaries have leveraged AI to automate phishing 320 

campaigns, discover software vulnerabilities, and craft adaptive malware (Brundage et al., 2018), 321 

(Apruzzese et al., 2018). 322 

The emergence of large language models intensifies these threats by lowering the technical barriers to 323 

entry. Yao et al. demonstrated that such models can be prompted to generate functional malicious code, 324 

while Perez and Ribeiro showed how adversarial prompting can circumvent built-in safeguards (Yao 325 

et al., 2024), (Perez et al., 2022). These capabilities enable attackers with limited expertise to mount 326 

sophisticated operations, thereby expanding the threat landscape. 327 

Apart from these, AI systems deployed in safety-critical applications present risks of catastrophic 328 

failures when models behave unexpectedly or incorrectly under operational conditions. For instance. 329 

Autonomous vehicles have been involved in multiple accidents resulting from perception failures, 330 

planning errors, and inadequate handling of edge cases.  331 
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4.6 Socioeconomic Exploitation and Inequality 332 

AI technologies have significant implications for labor markets and economic structures. Automation 333 

driven by AI has displaced workers across various sectors, from manufacturing to customer service 334 

(Brynjolfsson et al., 2014), (Acemoglu et al., 2020). While some argue that new job categories will 335 

emerge, the transition period creates substantial economic disruption and exacerbates inequality (Autor 336 

et al., 2015). 337 

AI also enables new forms of economic manipulation, including algorithmic pricing collusion, 338 

predatory microtargeting, and exploitation of vulnerable populations through personalized 339 

manipulation (Susser et al., 2019), (Calvano et al., 2020). These applications raise concerns about 340 

fairness, autonomy, and the concentration of economic power. 341 

4.7 Environmental and Ecological Misuse 342 

The environmental impact of AI training and deployment has gained increasing attention. Large-scale 343 

model training requires substantial computational resources, resulting in significant energy 344 

consumption and carbon emissions (Strubell et al., 2019). Additionally, AI can be misused to optimize 345 

environmentally harmful activities or bypass environmental regulations (Crawford et al., 2018). These 346 

risks are exacerbated by the growing scale and accessibility of AI technologies, which make it easier 347 

for actors with limited oversight to exploit systems in ways that harm ecological sustainability. 348 

4.8 Autonomous Weaponization 349 

Perhaps the most controversial domain of AI misuse concerns its application in military and defense 350 

systems. Lethal autonomous weapons systems (LAWS) have been identified as a critical area of 351 

concern, as they raise profound ethical, legal, and strategic dilemmas (Scharre, 2018). Scholars argue 352 

that delegating life-and-death decisions to machines undermines human accountability, risks lowering 353 

thresholds for armed conflict, and destabilizes international security (Russell, 2019). Despite calls for 354 

international regulation, progress toward binding agreements has been limited (Campaign to Stop 355 

Killer Robots, 2020). 356 

Beyond lethal systems, AI has also been deployed for intelligence analysis, logistics optimization, and 357 

cyber operations, illustrating its broader role in military applications. The dual-use nature of these 358 

technologies complicates regulation, since advances intended for civilian purposes can be readily 359 

adapted for warfare (Horowitz et al., 2018). 360 

Apart from these, agentic AI systems introduce novel attack vectors through their capacity for 361 

autonomous reasoning, tool use, and multi-step task execution. Unlike traditional AI systems that 362 

operate within narrowly defined boundaries, agentic systems can pursue goals through complex action 363 

sequences with minimal human oversight, creating opportunities for misuse. Agentic systems can 364 

autonomously chain together multiple attack steps, such as reconnaissance, exploitation, lateral 365 

movement, and data exfiltration, without requiring human intervention at each stage, challenging static 366 

security measures designed for simpler models (Ferrag et al., 2025), (Shrestha et al., 2025). Moreover, 367 

these systems can learn and adapt their strategies in real-time based on defensive responses, making 368 

static security measures less effective. With access to APIs, code execution environments, and system 369 

tools, agentic AI can misuse legitimate functionality to achieve unauthorized objectives, potentially 370 

escalating privileges through logical reasoning rather than traditional exploitation. Recent 371 

demonstrations have shown proof-of-concept scenarios where LLM-based agents autonomously 372 
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exploit vulnerabilities, conduct social engineering, or manipulate financial systems (Zhang et al., 373 

2025). While large-scale malicious deployment remains limited, the rapid advancement of agentic 374 

capabilities warrants proactive security consideration. 375 

4.9 Human Interaction and Psychological Harm 376 

AI systems designed to engage users can have unintended psychological consequences. Persuasive AI, 377 

personalized content targeting, and immersive digital environments can lead to behavioral 378 

manipulation, addiction, and mental health impacts (Burr et al., 2020). The opacity of these systems 379 

makes it difficult for users to recognize when they are being manipulated, raising concerns about 380 

autonomy and wellbeing. 381 

Although presented as distinct domains, these categories of misuse are deeply interconnected. 382 

Disinformation campaigns may be amplified by adversarially manipulated recommendation systems; 383 

bias in training data can exacerbate privacy violations; and cybersecurity threats can intersect with 384 

disinformation by spreading AI-generated propaganda through compromised platforms. 385 

Understanding these intersections is critical for developing holistic defensive strategies that address 386 

the complex ways in which AI misuse manifests across technological, social, and geopolitical contexts. 387 

5 Case Studies of AI Misuse 388 

This section presents detailed case studies illustrating real-world instances of AI misuse across multiple 389 

domains, highlighting technical mechanisms, impacts, responses, and lessons learned. These cases 390 

serve to contextualize the taxonomy of AI misuse described previously and underscore both the 391 

opportunities and risks inherent in AI technologies. 392 

5.1 Deepfake Pornography and Non-Consensual Intimate Imagery 393 

Since 2017, deepfake technology has been widely weaponized to generate non-consensual 394 

pornographic content, disproportionately targeting women, including celebrities, journalists, 395 

politicians, and private individuals (Ajder et al., 2019). Early deepfakes relied on GAN-based face-396 

swapping models trained on publicly available images, but modern tools, such as DeepFaceLab1 and 397 

commercial applications, have democratized creation, enabling realistic content creation with minimal 398 

technical expertise. Advances in model architecture and training methods have resulted in highly 399 

realistic outputs that are increasingly indistinguishable from authentic content. 400 

The impact on victims is profound, including psychological distress, reputational damage, and 401 

sustained harassment. The rapid and widespread dissemination of such content online renders complete 402 

removal virtually impossible. Legal recourse remains limited in many jurisdictions, although some 403 

regions, such as Virginia, California, and the UK, have enacted laws criminalizing non-consensual 404 

deepfakes. While detection tools have emerged, they struggle to keep pace with increasingly 405 

sophisticated fakes, and platform enforcement remains inconsistent. This case highlights the 406 

inadequacy of purely reactive approaches, emphasizing the need for victim-centered strategies, robust 407 

legal frameworks, and platform accountability (MacDermott., 2025). 408 

 

1 DeepFaceLab is a leading software for creating deepfakes. 
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5.2 The 2024 Election Disinformation Campaigns 409 

The 2024 US presidential election witnessed unprecedented deployment of AI-generated 410 

disinformation, including fabricated videos, AI-authored articles, and coordinated bot networks 411 

disseminating false narratives (DiResta et al., 2024). Large language models generated thousands of 412 

fake news articles and social media posts with human-level writing quality, while voice cloning 413 

enabled the creation of false audio of candidates making controversial statements. Moreover, 414 

automated accounts amplified content across platforms, and personalization algorithms targeted 415 

specific voter segments with tailored messaging. 416 

Although direct electoral impact remains difficult to measure, the campaigns spread misinformation to 417 

millions of voters, complicated fact-checking efforts, and further eroded trust in information sources. 418 

This case underscores the scale and sophistication achievable with AI-powered disinformation and 419 

demonstrates that reactive detection approaches alone are insufficient without coordinated strategies 420 

involving platforms, governments, civil society, and technical researchers, etc. to defend users against 421 

manipulative content. 422 

5.3 Clearview AI and Mass Surveillance 423 

Clearview AI aggregated billions of facial images from social media and other publicly available 424 

sources without consent to build a facial recognition database marketed to law enforcement and private 425 

entities (Hill, 2020). The company collected approximately ten billion images with associated 426 

metadata, enabling searches for any individual across the internet from a single photograph. State-of-427 

the-art deep learning models provided high recognition accuracy, raising concerns about pervasive 428 

surveillance and privacy violations. 429 

The system facilitated monitoring of activists, protesters, and ordinary citizens, and disparities in 430 

accuracy generated discriminatory outcomes. Legal actions in multiple jurisdictions, including the EU, 431 

Canada, Australia, and several US states, resulted in fines and restrictions, while some law enforcement 432 

agencies ceased using the service. Nonetheless, the collected data cannot be retroactively 433 

"uncollected," and the company continues operations. This case illustrates the limitations of privacy 434 

frameworks designed for pre-AI contexts, demonstrating that proactive regulation to prevent data 435 

collection is essential, given the stark asymmetry between surveillance capability and individual 436 

privacy protection. 437 

5.4 Algorithmic Bias in Healthcare Resource Allocation 438 

In a study, Obermeyer et al. showed that a widely used algorithm in U.S. health systems systematically 439 

under-identified Black patients for enrollment into high-risk care management programs, relative to 440 

White patients with equivalent illness (Obermeyer et al., 2019).  At the same risk score, Black patients 441 

were measurably sicker. The algorithm used health care costs as a proxy for medical needs, and because 442 

Black patients tend to incur lower costs for the same level of illness (due to unequal access and systemic 443 

barriers), the model underestimated their needs. In the studied sample, correcting for this bias would 444 

raise the share of Black patients flagged for extra care from 17.7 % to 46.5 %. In response, the 445 

algorithm developer committed to addressing the bias, prompting hospitals to audit other predictive 446 

tools. This case underscores how proxies correlated with sensitive attributes can encode bias, 447 

emphasizing the importance of understanding causal mechanisms rather than relying solely on 448 

correlations. It also highlights ethical considerations in defining optimization objectives and the 449 

necessity of comprehensive algorithmic auditing. 450 
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5.5 Voice-Cloning CEO Fraud 451 

In March 2019, criminals exploited AI voice-cloning technology to impersonate a CEO's voice, 452 

successfully convincing a subordinate to transfer $243,000 to fraudulent accounts (Stupp, 2019). 453 

Commercial voice synthesis tools trained on publicly available audio enabled the attackers to mimic 454 

speech patterns, tone, and accent convincingly. Beyond the immediate financial loss, the incident 455 

exposed vulnerabilities in voice-based authentication, previously considered secure, and demonstrated 456 

how AI can weaponize social engineering. 457 

Organizations responded by implementing multi-factor authentication, out-of-band verification, and 458 

security training addressing voice-cloning risks. The case illustrates that AI capabilities can 459 

compromise traditional security assumptions, that low technical barriers facilitate broad exploitation, 460 

and that human factors often remain the weak link despite technical safeguards. 461 

5.6 Adversarial Attacks on Autonomous Vehicle Systems 462 

Research has demonstrated that autonomous vehicle vision systems can be misled by adversarial 463 

perturbations, such as strategically placed stickers on stop signs causing misclassification as speed 464 

limit signs (Eykholt et al., 2018). In these experiments, researchers used optimization algorithms to 465 

determine the smallest possible visual changes, that could consistently fool the vehicle’s recognition 466 

model even under varying real-world conditions like different lighting, viewing angles, and distances. 467 

Although these attacks were conducted in controlled research environments rather than malicious 468 

settings, they expose fundamental weaknesses in safety-critical AI systems and highlight ongoing 469 

concerns about security, reliability, and potential misuse. 470 

In 2018, an autonomous test vehicle in Tempe, Arizona, struck and killed a pedestrian, illustrating the 471 

real-world consequences of imperfect autonomous systems (Penmetsa et al., 2021). Tesla’s Autopilot 472 

has also been involved in numerous crashes, some fatal, often occurring when the system fails to detect 473 

stationary obstacles, misinterprets road geometry, etc. The US National Transportation Safety Board 474 

has documented cases where drivers over-relied on automation and failed to maintain attention as 475 

required (Chu et al., 2023). Developers have begun incorporating adversarial training and robustness 476 

testing, yet comprehensive solutions remain elusive. These incidents emphasize that AI vulnerabilities 477 

extend from digital to physical domains, requiring security considerations from the design stage and 478 

defense-in-depth strategies rather than reliance solely on perceptual capabilities. 479 

6 Mitigation Strategies and Evaluation 480 

Mitigation of AI-related risks requires a multifaceted approach encompassing technical, regulatory, 481 

organizational, and social interventions. Each of these approaches is discussed in the following sections 482 

and a summary of the strategies is provided in Table 2.  483 

6.1 Technical Countermeasures 484 

Adversarial robustness techniques aim to improve the resilience of machine learning models against 485 

manipulative inputs. Adversarial training, which involves augmenting training datasets with 486 

adversarial examples (as shown in Fig.6), has demonstrated moderate effectiveness in enhancing 487 

robustness against known attacks; however, it struggles against adaptive adversaries and novel attack 488 

methods (Madry et al., 2017). This approach incurs significant computational costs that scale with the 489 
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complexity of the threat model and often involves trade-offs between accuracy and robustness. 490 

Consequently, it is most suitable for high-value targets where computational overheads are acceptable. 491 

 492 

Figure 6. Adversarial training 493 

Defensive distillation, which trains models with softened probability distributions to smooth decision 494 

boundaries, initially appeared promising (Papernot et al., 2016). While it may provide a layer of 495 

defense-in-depth, it is insufficient when deployed in isolation considering adaptive attacks. Input 496 

preprocessing methods, such as denoising, feature squeezing, or JPEG compression, can neutralize 497 

certain perturbations (Guo et al., 2017), yet these techniques degrade legitimate inputs and are easily 498 

circumvented by adaptive attackers. 499 

Certified defenses also offer provable robustness guarantees within specified perturbation bounds, 500 

providing high theoretical value but with substantial practical limitations, including reduced accuracy 501 

and significant computational requirements (Cohen et al., 2019). Overall, no single technique currently 502 

provides comprehensive protection, and a defense-in-depth strategy combining multiple approaches 503 

represents the most viable option, albeit with persistent real-world limitations. 504 

Apart from these, deepfake detection technologies have emerged to address the proliferation of 505 

synthetic media. Biological signal analysis, which detects irregularities in eye blinking, pulse, or 506 

breathing patterns, was moderately effective against early deepfakes (Wang et al., 2019) but is 507 

increasingly circumvented as generation techniques improve. GAN fingerprint detection can identify 508 

model-specific artifacts left by generative networks (Yu et al., 2019), proving useful for forensic 509 

attribution of known generators; however, it fails against unseen generators and adaptive attacks. 510 

Temporal consistency analysis exploits frame-to-frame inconsistencies in video deepfakes, offering 511 

moderate effectiveness, particularly for video contents (Sabir et al., 2019). However, its utility 512 

diminishes as generation methods evolve. Multimodal inconsistency detection evaluates audio-visual 513 

synchronization and semantic coherence (Mittal et al., 2020), showing promise against poorly 514 

constructed deepfakes, though high-quality content often maintains consistency. Blockchain and 515 

cryptographic authentication can create verifiable chains of custody for authentic media (Hasan et al., 516 
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2019), providing strong authenticity guarantees but requiring adoption at the point of capture, limiting 517 

applicability to existing media. 518 

Collectively, detection approaches face an adversarial co-evolution, suggesting that proactive 519 

authentication mechanisms may prove more effective than reactive detection, albeit requiring 520 

substantial infrastructure development. 521 

Privacy-preserving machine learning approaches, including differential privacy, federated learning, 522 

homomorphic encryption, and secure multi-party computation, aim to protect sensitive data while 523 

maintaining analytical capabilities. Differential privacy offers strong theoretical guarantees by 524 

introducing calibrated noise, though it necessitates careful parameter tuning to balance privacy and 525 

utility (Dwork et al., 2014). Federated learning allows decentralized training, reducing risks associated 526 

with centralized data storage (McMahan et al., 2017), but remains vulnerable to some inference attacks 527 

and incurs communication overhead. 528 

Homomorphic encryption enables computation on encrypted data, providing theoretically strong 529 

privacy protection (Rahman et al., 2020). But this may be computationally prohibitive for complex 530 

operations. Secure multi-party computation facilitates joint computation without revealing individual 531 

inputs, offering robust privacy guarantees at the cost of significant communication and computational 532 

requirements. Overall, privacy-preserving techniques present effective protection but involve trade-533 

offs in utility, performance, and implementation complexity. 534 

In addition, AI safety and alignment techniques focus on guiding model behavior to reduce harmful 535 

outputs. Bai et al. (2022) came up with “Constitutional AI”, a method for training a harmless AI 536 

assistant through self-improvement, without human intervention to identify harmful outputs.  It 537 

incorporates explicit principles to steer decisions, showing potential in mitigating undesired outputs 538 

but requiring careful selection of values. Reinforcement learning from human feedback (RLHF) also 539 

leverages human preferences to improve alignment (Ouyang et al., 2022) yet depends heavily on 540 

feedback quality and may inherit labeler biases. 541 

Red teaming systematically probes system vulnerabilities (Perez et al., 2022), enabling targeted 542 

mitigation, but cannot exhaustively identify all risks and is expensive. Interpretability and 543 

explainability methods aid in understanding model decision-making (Molnar et al., 2020), which is 544 

valuable for building trust and identifying potential issues; however, explanation quality varies and 545 

post-hoc interpretations may be misleading. While these techniques advance safety, they remain 546 

incomplete, underscoring the necessity of complementary approaches for high-stakes applications. 547 

6.2 Regulatory and Policy Interventions 548 

Regulatory and policy interventions constitute a foundational layer in mitigating AI risks, particularly 549 

those related to privacy, accountability, and systemic harm. Data protection and privacy regulations 550 

establish essential frameworks for mitigating AI risks. The General Data Protection Regulation 551 

(GDPR) in the European Union exemplifies comprehensive privacy protection (European Parliament 552 

and Council, 2016), though enforcement challenges, jurisdictional limitations, and compliance burdens 553 

persist. Sector-specific regulations, such as HIPAA, GLBA, and COPPA, provide targeted protection 554 

for sensitive contexts but create fragmented coverage and may not fully address AI-specific risks. 555 

In response to these limitations, AI-specific regulatory initiatives have emerged to address the unique 556 

challenges posed by AI systems. The EU AI Act represents a pioneering attempt at comprehensive, 557 
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risk-based AI regulation (European Commission, 2024), though its full effectiveness remains uncertain 558 

given ongoing implementation. Algorithmic accountability requirements, including audits, impact 559 

assessments, and transparency obligations, enhance visibility into AI systems but require technical 560 

expertise and standardization. While disclosure mandates (like informing users when AI-generated 561 

content is present), contribute to transparency, they fall short of preventing harm and often encounter 562 

challenges in enforcement and compliance. Overall, AI-specific regulatory frameworks remain 563 

fragmented and incomplete, necessitating global coordination that balances innovation with protective 564 

measures. 565 

Beyond formal regulation, content moderation and platform governance constitute additional layers of 566 

policy intervention.. Platform self-regulation involves companies enforcing policies on AI-generated 567 

content, disinformation, and harmful material, with effectiveness varying across platforms. Proposals 568 

to reform Section 230 in the United States aim to adjust intermediary liability, though the potential 569 

impacts remain uncertain (Kosseff, 2019). Co-regulatory approaches, combining industry self-570 

regulation with government oversight, such as the UK Online Safety Bill, may balance flexibility with 571 

accountability but require sustained political will and operational capacity. AI both amplifies the 572 

challenges of content moderation and offers potential solutions, indicating that multi-stakeholder 573 

governance is essential. 574 

International cooperation is critical for addressing AI risks that transcend borders. Initiatives such as 575 

AI safety summits and agreements, exemplified by the Bletchley Declaration (i.e. a global agreement 576 

signed by 28 countries and the EU to foster a shared understanding of the risks and opportunities of 577 

advanced AI), facilitate shared understanding but remain non-binding and vulnerable to geopolitical 578 

tensions. Arms control frameworks propose restrictions on autonomous weapons and offensive cyber-579 

AI, offering potential efficacy if adopted and enforced, though verification and enforcement challenges 580 

persist.  International standards and best practices offer guidance on AI safety and security, promoting 581 

interoperability across systems. However, adherence is typically voluntary, and these standards often 582 

struggle to keep pace with rapid technological advancements. While global collaboration is essential, 583 

it remains inadequate in fully addressing the fast-evolving risks associated with AI. 584 

6.2.1 AI Risk Governance Frameworks 585 

Within this regulatory and policy landscape, AI risk governance frameworks play a critical 586 

complementary role by translating high-level regulatory goals into structured principles, processes, and 587 

operational guidance. Unlike legally binding regulations, these frameworks are designed to support 588 

organizations in identifying, assessing, and managing AI risks throughout the system lifecycle.  589 

The NIST AI Risk Management Framework (2023) adopts a practical, implementation-oriented 590 

approach focused on organizational risk management in the US (National Institute of Standards and 591 

Technology, 2023). It structures AI risks around core trustworthy AI characteristics, including validity 592 

and reliability, safety, security and resilience, accountability and transparency, fairness with managed 593 

bias, and privacy enhancement. By emphasizing continuous risk assessment, governance integration, 594 

and lifecycle management, the NIST RMF provides actionable guidance well suited for organizational 595 

adoption across diverse sectors. 596 

At a global level, the OECD AI Principles (2019) offer a high-level values-based framework adopted 597 

by 42 countries, covering inclusive growth, human-centered values, transparency, robustness and 598 

safety, and accountability (Organization for Economic Co-operation and Development, 2019). These 599 

principles provide important normative foundations and have achieved broad international consensus.  600 
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Multi-stakeholder governance initiatives further extend these efforts. The Partnership on AI (2021) 601 

developed a framework emphasizing responsible AI development across eight impact areas, including 602 

safety and robustness, fairness and non-discrimination, transparency and accountability, privacy and 603 

security, societal and environmental well-being, human control and autonomy, professional 604 

responsibility, and the promotion of human values (Partnership on AI, 2021). By integrating 605 

perspectives from academia, industry, civil society, and policymakers, such frameworks aim to bridge 606 

ethical principles with real-world deployment challenges. 607 

For tackling risks associated with Agentic AI systems,  technical threat models have been developed 608 

alongside these major frameworks. The MAESTRO (Multi-Agent Environment, Security, Threat, Risk, 609 

and Outcome), threat model provides a structured approach to identifying vulnerabilities in agentic AI 610 

systems across seven key dimensions such as model manipulation, adversarial inputs, privilege 611 

escalation, supply-chain compromise, training data poisoning, robustness failures, and output integrity 612 

issues (Huang, 2025). This technical threat modeling approach complements risk frameworks by 613 

focusing specifically on attack surfaces and defensive strategies for autonomous AI systems. 614 

While the above comprehensive frameworks provide broad coverage, some domain-specific 615 

frameworks also address unique risks in specialized contexts. The WHO Ethics and Governance of AI 616 

for Health framework (WHO, 2021) identifies health-specific concerns including medical data privacy 617 

in AI-assisted diagnosis, algorithmic bias in health resource allocation, and AI-enabled health 618 

misinformation. Moreover, emergence of agentic AI systems has prompted development of specialized 619 

threat models. In biosecurity, frameworks address dual-use risks where AI capabilities for beneficial 620 

biological research can be misused for designing harmful biological agents or automating synthesis of 621 

dangerous compounds, effectively lowering technical barriers for bio-threat development (de Lima, 622 

2024), (Trotsyuk, 2024). The UK's AI Security Institute (AISI) has developed safety case frameworks 623 

specifically for risk mitigation in biomedical research contexts, emphasizing structured argumentation 624 

for safety claims in high-stakes domains. 625 

Together, these governance frameworks complement regulatory interventions by offering principled, 626 

operational, and technical approaches to managing AI risk. While none fully address the breadth of AI 627 

misuse in isolation, their combined application provides essential scaffolding for mitigating risks 628 

identified throughout this review. 629 

6.3 Organizational and Social Interventions 630 

Organizational ethics programs and responsible AI frameworks play a crucial role in internal 631 

governance. Ethics review boards can identify and address ethical concerns prior to deployment, but 632 

their effectiveness is contingent on institutional authority and resources. Responsible AI frameworks, 633 

such as Microsoft's RAI framework or Google's AI Principles, provide structured guidance for ethical 634 

AI development, though implementation quality varies. Bias auditing and testing help detect 635 

discriminatory system behavior, enabling targeted mitigation, yet defining fairness metrics remains 636 

contested and costly. Thus, genuine institutional commitment, supported by external accountability 637 

mechanisms, is essential for efficacy. 638 

Education and awareness initiatives complement technical and regulatory measures. AI literacy 639 

programs educate the public on AI capabilities, risks, and critical evaluation of AI-generated content, 640 

fostering long-term societal resilience. Professional training for developers, policymakers, and domain 641 

experts enhances AI governance and responsible development, though rapid technological evolution 642 

challenges curriculum relevance. Media literacy and critical thinking programs further strengthen 643 
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resilience against disinformation. While essential, educational interventions cannot provide immediate 644 

protection and require sustained investment. 645 

Transparency and accountability mechanisms are vital for monitoring AI deployment. Algorithmic 646 

impact assessments evaluate potential societal consequences before deployment (Reisman et al., 2018), 647 

while independent algorithmic auditing identifies issues post-deployment (Raji et al., 2020). 648 

Transparency reporting enables public scrutiny of system development and performance, though 649 

concerns regarding trade secrets, information overload, and technical complexity persist. Legal 650 

protections for whistleblowers facilitate internal accountability, provided they are genuinely enforced 651 

(Brown, 2017). Overall, transparency and accountability mechanisms remain underdeveloped relative 652 

to AI's societal impact and require urgent strengthening. 653 

Table 2. Mitigation Effectiveness Summary 654 

Approach Category Representative 

Techniques 

Effectiveness Limitations Deployment Status 

Technical - Adversarial 

Robustness 

Adversarial training, 

Certified defenses 

Low-Medium Trade-offs, Adaptive 

adversaries 

Research/Limited 

deployment 

Technical - Detection Deepfake detection, 

Anomaly detection 

Medium Arms race dynamics Active deployment but 

limited 

Technical - Privacy Differential privacy, 

Federated learning 

Medium-High Utility costs, 

Complexity 

Growing deployment 

Technical - Safety Constitutional AI, RLHF Medium Incomplete, Research 

ongoing 

Recent deployment 

Regulatory - Privacy 

Laws 

GDPR, CCPA Medium-High Enforcement challenges Active in jurisdictions 

Regulatory - AI-Specific EU AI Act, Sector rules Unknown Early implementation Emerging 

Regulatory - Content 

Moderation 

Platform policies, Co-

regulation 

Low-Medium Inconsistent, Capture 

risk 

Active but inadequate 

Organizational - Ethics 

Programs 

Review boards, Impact 

assessments 

Low-Medium Variable commitment Mixed adoption 

Organizational - 

Transparency 

Audits, Reporting, 

Documentation 

Medium Access barriers, 

Standardization 

Growing adoption 

Social - Education AI literacy, Media literacy Medium (long-

term) 

Scale challenges, Time 

lag 

Early stage 

Ecosystem - 

Coordination 

Standards, Information 

sharing 

Medium Cooperation barriers Early stage 

Despite growing mitigation efforts, significant gaps remain because many interventions are reactive, 655 

addressing known threats while adversaries continue to innovate. Offensive AI has access to resources 656 

comparable to defensive AI, enabling attackers to rapidly adopt the latest techniques and making it 657 

challenging for defenders to keep pace. Furthermore, policy verification and enforcement are often 658 

weak or inconsistent, and differences in regulations across jurisdictions create opportunities for 659 

regulatory arbitrage. 660 

Compounding these challenges, AI’s rapid evolution continues to outpace regulatory, educational, and 661 

societal adaptation. Persistent technical problems, such as adversarial robustness and deepfake 662 

detection, lack comprehensive solutions, and conflicting stakeholder priorities make it difficult to 663 

balance innovation, security, and privacy, while the widespread accessibility of AI tools amplifies the 664 

challenges of scaling effective defenses. Together, these factors underscore the persistent and growing 665 

difficulties in anticipating, managing, and mitigating AI misuse. 666 

7 Conclusion 667 
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AI technologies hold immense transformative potential, yet they also introduce significant technical, 668 

social, and systemic risks. This paper has critically examined existing mitigation strategies, revealing 669 

that while technical defenses, regulatory frameworks, and organizational measures provide partial 670 

protection, they are often reactive, fragmented, and limited against adaptive threats. The emergence of 671 

advanced capabilities such as multimodal models and autonomous agents further amplify these risks, 672 

highlighting the need for proactive, integrated, and multi-stakeholder responses. To support this effort, 673 

we introduceda comprehensive taxonomy that organizes AI misuse into nine primary domains, 674 

providing a structured framework for understanding the full spectrum of risks - from technical 675 

vulnerabilities to socio-technical harms. The case studies presented demonstrate that AI misuse has 676 

tangible, measurable impacts, disproportionately affecting marginalized populations and eroding trust 677 

in digital systems and democratic institutions. 678 

The trajectory of AI development presents society with critical choices about the values embedded in 679 

technological systems and the governance structures that shape their deployment. While AI capabilities 680 

continue to advance rapidly, our collective capacity to govern these technologies responsibly remains 681 

significantly underdeveloped. Addressing AI misuse requires moving beyond reactive, fragmented 682 

approaches toward proactive, integrated strategies that recognize the deeply socio-technical nature of 683 

these challenges. The stakes are high: unchecked misuse threatens privacy, security, democratic 684 

integrity, social equity, and human autonomy. Yet, with coordinated effort across technical, policy, 685 

and social domains, it remains possible to steer AI development toward beneficial outcomes that 686 

respect human rights, promote fairness, and enhance societal wellbeing.  687 

 688 
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