

This accepted manuscript is available fully formatted from:

<https://www.tandfonline.com/doi/full/10.1080/08912963.2025.2610322>

1 *The abundance and diversity of penetrative tracks: a critical re-evaluation of theropod*
2 *ichnotaxa*

3

4 Jens N. Lallensack^{a,*}, Félix Pérez-Lorente^b, Mustapha Amzil^c, Mostafa Oukassou^c, Christian
5 Meyer^{d,e}, Hafid Saber^f, Hendrik Klein^g, André Charrière^h, Omar Zafaty^{c,i}, Peter L. Falkingham^j

6

7 ^a Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo
8 Horizonte, Minas Gerais, Brasil

9 ^b Universidad de La Rioja, Logroño, Spain

10 ^c Laboratory of Applied Geology, Geomatics and Environment, Faculty of Sciences Ben M'sick,
11 Hassan II University of Casablanca, Morocco

12 ^d Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, CH-4056 Basel,
13 Switzerland

14 ^e Museo de Historia Natural Alcide d'Orbigny, Avenue Potosi N-1458, Cochabamba, Bolivia

15 ^f Laboratory of Geodynamic and Geomatic, Faculty of Sciences, Chouaib Doukkali University, El
16 Jadida, Morocco

17 ^g Saurierwelt Paläontologisches Museum, Neumarkt, Germany

18 ^h Toulouse III University, Toulouse, France

19 ⁱ Institut National des Sciences de l'Archéologie et du Patrimoine, Rabat, Maroc

20 ^j School of Biological and Environmental Sciences, John Moores University, Liverpool, UK

21

22 * corresponding author

23

24 Orcid:

25 Jens N. Lallensack: <https://orcid.org/0000-0003-4104-5232>

26 Félix Pérez-Lorente: <https://orcid.org/0000-0002-1532-0379>

27 Mostafa Oukassou: <https://orcid.org/0000-0002-3388-4581>

28 Christian Meyer: <https://orcid.org/0000-0002-5069-8924>

29 Hafid Saber: <https://orcid.org/0000-0003-2502-5012>

30 Hendrik Klein: <https://orcid.org/0000-0002-9036-5323>

31 André Charrière: <https://orcid.org/0009-0005-4611-6484>

32 Omar Zafaty: <https://orcid.org/0000-0001-7550-5634>

33 Peter L. Falkingham: <https://orcid.org/0000-0003-1856-8377>

34

35

36 *key words:* dinosaur footprints, penetrative tracks, tracksites, ichnotaxonomy, *Saurexallopus*

Abstract

37
38
39

40 Tetrapod ichnotaxonomy aims to classify tracks based on features that reflect trackmaker
41 anatomy. Consequently, distinct ichnotaxa are assumed to represent distinct (though often
42 unidentified) biological taxa. However, track shape is not only determined by trackmaker
43 anatomy, but also by the properties of the substrate, the movements of the foot, the level of
44 exposure, and any post-formational alteration. Because of these multiple sources of variation,
45 determining if, and to what degree, a particular feature conveys anatomical information remains
46 a major challenge. A major source of confusion has been penetrative tracks, which form when
47 the foot sinks deeply into soft sediment, causing sediment to flow around the foot to seal its
48 path. Penetrative tracks of long-toed, tridactyl trackmakers often show conspicuous features that
49 appear to reflect foot anatomy but do in fact reflect the penetrative nature of the tracks. We
50 studied dozens of tracksites in the Middle Jurassic of El Mers, Morocco and the Early Cretaceous
51 Cameros Basin, Spain, showing that penetrative tracks are much more diverse and common than
52 previously thought. We discuss formation mechanisms that explain the variation of several
53 features commonly used to define ichnotaxa. We conclude that the type ichnospecies of
54 *Saurexallopus*, *Magnoavipes*, *Theroplantigrada*, *Ordexallopus*, and *Archaeomithipus* are probably
55 based on penetrative tracks and therefore *nomina dubia*.

56
57
58
59
60

Introduction

The majority of dinosaur tracks convey only limited information on the anatomy of the trackmaker. Many tracks are shallow and vaguely defined, and have traditionally been categorized as transmitted undertracks, i.e., tracks transmitted through the sediment onto a subsurface layer without direct foot contact. Thulborn (1990 p. 27) suspected that many of the described dinosaur tracks were in fact transmitted undertracks. On the other hand, tracks that were not considered to be transmitted undertracks have often been accepted as copies of the trackmaker's feet, with "modifications" called extramorphological features (i.e., features that do not relate to the trackmaker's anatomy). These conceptions have been challenged only recently. Transmitted undertracks are now understood to have been relatively rare (e.g., Marty et al., 2009), and a different mode of preservation, that of penetrative tracks, has been recognised as a major source of confusion (Falkingham et al., 2020; Gatesy & Falkingham, 2020; Lallensack, Farlow, et al., 2022). Penetrative tracks have been studied through experiments, computer simulations, and examinations of fossil material from particular sites, especially from the Lower Jurassic Connecticut Valley. However, their abundance and diversity has not yet been assessed using a broad range of tracksites, and the many misinterpretations of what we can now identify as penetrative tracks have only begun to be rectified (e.g., Lallensack, Farlow, et al., 2022). The present contribution aims to fill this gap.

78

79 Penetrative tracks of tridactyl non-avian theropods can show thin, widely splayed digit
80 impressions and a posteromedially directed hallux impression, and may therefore more closely
81 resemble the tracks of modern birds than shallow theropod tracks. A number of ichnotaxa with
82 such “bird-like” morphologies have been erected, including, amongst others, *Magnoavipes* and
83 *Saurexallopus*, the latter containing several ichnospecies. In the following, we discuss penetrative
84 tracks of multiple tracksites from the Middle Jurassic of El Mers, Morocco and the Early
85 Cretaceous of La Rioja, Spain, and assess their diversity and abundance. We then describe
86 formation mechanisms that may result in shape features that have often been misinterpreted
87 as anatomical features. Finally, we discuss established theropod ichnotaxa that have been
88 defined on such features.

89

90
91
92 *Material and Methods*
93

94 The tracksites described herein were studied in the field during the spring of 2023. The field work
95 in the Cameros Basin of La Rioja, Spain, was conducted by two of us (Félix Pérez-Lorente and
96 Jens N. Lallensack) under permit E-298616 and included a total of 22 tracksites. The field work in
97 the El Mers I and II formations, Morocco, was conducted by a team led by Mustapha Amzil and
98 Mostafa Oukassou. In all cases, the tracksites were carefully cleaned before photogrammetric
99 documentation. Photogrammetry was performed using a handheld Olympus TG-5 digital camera
100 held approximately perpendicular to the track surface. Models were created using Metashape
101 Professional (agisoft.com), and post-processed following the methodology of Lallensack et al.
102 (2022) and in line with standard protocols outlined by Falkingham et al. (2018). We selected
103 appropriate color scales that optimise visibility of the tracks in the height maps; the optimal scale
104 may differ between models. In some cases, the vertical range of the color scale was restricted to
105 the interval of interest so that subtle differences in elevation remain visible.
106

107 All the tracksites discussed herein have been reported on elsewhere. The El Mers Centre site was
108 first studied by one of us (Christian Meyer) in 2004 (Meyer & Thüring, 2004), and then discussed
109 in greater detail by Hadri and Pérez-Lorente (2012), as well as by Amzil et al. (2024) based on the
110 2023 field work. Inzar O'Founass was discovered during the 2023 field work and reported in Amzil
111 et al. (2024). The tracksites from La Rioja, Spain, have been described in multiple, often Spanish-
112 language works (see Pérez-Lorente, 2015 and references therein). The El Mers Centre sitemap is
113 an updated version of Amzil et al. (Amzil et al., 2024 fig. 5); only the lowermost surface (surface 1)
114 is shown. The La Rioja sitemaps are new interpretations based on the obtained photogrammetric
115 models. We attempted to correlate all trackways with previously published sitemaps (Pérez-
116 Lorente, 2015), and use the published trackway nomenclature instead of creating new labels.
117 However, our trackway interpretations differ from the original interpretations in the assignments
118 of tracks to the individual trackways. Also note that our maps of the Era del Peladillo, El Villar-
119 Poyales, and La Pellejera tracksites do not cover the entire exposed surface. Photogrammetric
120 models of the El Mers tracksites are available from <https://doi.org/10.6084/m9.figshare.25330354>
121 Photogrammetric models of La Rioja are available from
122 <https://doi.org/10.6084/m9.figshare.28015949>, including all 22 tracksites.
123

124 Terminology follows that of Lallensack et al. (2025). We distinguish three types of deep tracks
125 (tracks formed by deep sinking of the foot into soft sediment) that depend on the flowability of
126 the sediment (a function of cohesion, friction, and viscosity depending on substrate). In a
127 cohesive and frictional or viscous sediment, an open track may form; such tracks are commonly
128 preserved as natural casts. In more flowable sediments, the track walls may collapse above the
129 descending foot, or at some point after the tracks were withdrawn, creating a collapsed track in
130 which the paths of the digits are sealed. If flowability is further increased, sediment may flow
131 around the descending digits, sealing their paths and creating a penetrative track as defined by
132 Gatesy and Falkingham (2020). In practice, however, collapsed tracks and penetrative tracks
133 sensu Gatesy and Falkingham may be difficult to distinguish, and both types are here termed
134 "penetrative tracks" (Lallensack et al., 2025).

Results and Discussion

Preservation and abundance of penetrative tracks

Intravolumetric variation

The El Mers Centre tracksite in Morocco exposes finely laminated sandy marls in the bed of the El Mers river (Amzil et al., 2024; Hadri & Pérez-Lorente, 2012). The site is situated near the base of the El Mers I Formation and therefore is early Bathonian in age (Khaffou et al., 2023). The site consists of three surfaces, the most extensive of which is the lowest (henceforth “main surface”). A broad river scour extends northwards from the centre of the riverbed into this surface (Fig. 1). The lowest tracks within the scour are on a level 12 cm deeper than the higher tracks on the less eroded parts of the surface. At least two trackways (T5 and T9) can be followed over this entire vertical range (Fig. 1). Track shape changes from the lowest to the highest areas of the surface. The tracks in the lowest area tend to be small and short, with short to absent outer digit impressions (Fig. 2E–F). Tracks tend to be most clearly defined on the middle areas, where long metatarsal marks with hallux traces are seen (Fig. 2A–C, Fig. 3A–C, G–H). Many of these tracks show a regular theropod-like track morphology. In contrast, the tracks on the highest areas – on both sides of the river scour – tend to be more indistinct. This is best seen in trackways T1 and T2; these tracks are well-defined in the middle area of the surface but become more indistinct towards the higher areas (Fig. 1, Fig. 3D). This succession resembles that seen in a simulated penetrative track (Falkingham et al., 2020), in which the track on the highest level is indistinct while the tracks on the uppermost subsurface layers show hallux and metatarsal marks. However, further down, the simulated track shows increasingly elongate outer digits that are sub-parallel to each other, different from the short and broad tracks seen within the river scour at El Mers (Fig. 2D–F). The short and broad shape of the river scour tracks might be the result of a much steeper trajectory of the foot.

At the La Senobatracksite, La Rioja (Lower Enciso Group, Upper Barremian–Aptian), probably three, and possibly five, trackways are crossing three different surfaces over a vertical distance of up to 9 cm (Fig. 4). Penetrative tracks with narrow, slit-like digits are most common on the highest surface, while tracks on the lowest surface tend to show broader digit impressions. However, the highest surface also shows tracks with broad digit impressions, in close proximity to the slit-like tracks, suggesting that these types were produced at different times at different substrate consistencies. It is possible that there was only a single tracking surface, either the highest preserved surface or an even higher, now eroded surface. In this case, all tracks on the lower surface would be penetrative undertracks. However, some tracks on the highest surface show elongated digit impressions II and IV that are relatively straight, with their tips curved outwards, and with a U-shaped track rear. These shapes closely match the second-lowest level in a “fossil volume” specimen and a simulated track volume (Falkingham et al., 2020 fig. 4), raising the possibility that these tracks are penetrative undertracks from the lower parts of the track volume. If this is the case, the presumed associated trackways LS8 and LS13, which traverse both the lowest and highest surface, would be accidental, and multiple tracking surfaces would have been present.

Shrinking tracks

The northern part of the Era del Peladillo tracksite (Middle Enciso Group, Aptian) preserves a single surface, but the relatively long trackways show striking changes in morphology (Fig. 5). Trackway 2PL162 (Fig. 6A–D) includes both typical theropod tracks with broad digits (Fig. 6A–B) and tracks in which the digit impressions are collapsed to narrow slits (Fig. 6C–D). When such

188 collapse occurs, the posterior part of the track is generally much deeper than the digit
189 impressions (Fig. 6D, H). Trackway 2PL166 (Fig. 6E–H) preserves some very robust and broad
190 theropod tracks in its proximal portion that resemble *Jurabrontes* in shape, although merely
191 measuring 38 cm in length (Fig. 6E). More distally, the same trackway includes clear penetrative
192 tracks with slit-like, curved digit impressions as well as metatarsal and hallux impressions (Fig.
193 6F–H). Curiously, the slit-like tracks are foreshortened compared to other tracks of the trackway
194 – in one case (Fig. 6H), track length (excluding the metatarsal mark) is just 67% of that of a
195 robust track from the proximal portion of the trackway (Fig. 6E). Although both tracks were
196 made by the same individual, the first one imitates a massive theropod trackmaker, and the
197 second one imitates a much smaller trackmaker with thin, widely splayed digits. Superimposition
198 of the tracks suggests that this apparent “shrinking” is the result of a distal shortening of the
199 digit impressions and an anteriorly displaced rear margin of the track. This effect also creates a
200 significant gap between the central depression and the hallux trace. In extreme cases, this
201 shrinking effect can result in tracks in which the impression of the hallux is longer than those of
202 the functional digits (e.g., Razzolini et al., 2014 fig. 5A).

203

204

205 Tracks with “wrinkle structures”

206

207 A key feature of penetrative tracks is the down-bending of layers caused by the sinking foot
208 (Falkingham et al., 2020; Gatesy & Falkingham, 2020). Layers gradually become more inclined
209 towards the central axis of the digit impression until they are oriented vertically. Modern erosion
210 may remove the less inclined parts of these layers while the vertical parts within the impressions,
211 which sit deeper, remain preserved with their broken-off edges exposed. This creates a “false
212 bottom” of the track that seals the path of the foot, which would have descended much deeper
213 than the false bottom suggests (Falkingham et al., 2020; Gatesy & Falkingham, 2020). False
214 bottoms may be obscured by subsequent infill, or may not be evident due to a lack of layering in
215 the track-bearing substrate. These structures are, however, exquisitely preserved at the El Mers
216 Centre tracksite.

217

218 At the El Mers Centre site, the down-bended laminae, which are exposed in cross-section by river
219 erosion, form intricate patterns within and around the tracks. Deep penetrative undertracks, such
220 as those exposed inside the river scour, often show thick packages of vertically oriented layers that
221 can be thicker than the visible digit impressions themselves (Fig. 2E–F). These packages are often
222 exposed in positive relief. In well-defined tracks on the middle levels, the packages tend to sit
223 within the digit impressions (Fig. 2A, C). Broken-off layers are also seen in-between the digit
224 impressions II to IV, where they are less steeply inclined (Fig. 2A). It is logical to assume that digit
225 impressions that preserve packages of down-bent laminae can only represent the entry traces of
226 the digits, formed by sediment flow around the descending digits or subsequent sediment
227 collapse. If the digits had followed the same path out of the sediment, one would expect these
228 laminae to be disturbed. However, some of the metatarsal marks also show packages of down-
229 bent layers (Fig. 2B), and in this case the metatarsus must have moved back through these
230 laminae as the foot was withdrawn. It is therefore possible that the sediment collapse was not
231 immediate, but occurred after the foot was withdrawn.

232

233 Broken-off, down-bent layers within and around tracks have sometimes been referred to as
234 “wrinkle structures” in the literature (Lallensack et al., 2025), and have repeatedly caused
235 confusion. Hadri and Pérez-Lorente (2012), in their original description of the El Mers tracksite,
236 correctly identified these structures as the edges of laminae that were bent downwards by the
237 foot and were subsequently eroded by the river. Martin et al. (2012, 2014) described similar
238 structures in bird-like tracks from Australia as “pressure-release structures”, while Carvalho
239 (2004) and Carvalho and Lindoso (2024) interpreted examples from Brazil as “fluidisation
240 structures”. Similar structures have been described by Lockley et al. (2022) and Deiques et al.

241 (2025), who correctly described them as deformation structures in undertracks. We argue that in
242 all these cases, the described structures can probably be identified as the broken laminae of
243 penetrative tracks.

244

245

246 Penetrative undertracks or swimming tracks?

247

248 The Inzar O'Founas tracksite (El Mers I Formation, Early–Middle Bathonian; Figs. 7–8) consists
249 of two long and narrow exposures on the left and right bank of the Taghzout valley, El Mers
250 (Amzil et al., 2024). On both surfaces, many tracks are clearly penetrative, including examples
251 with elongated metatarsal marks (Fig. 8A–B). Regular tracks are also preserved, though digital
252 pad impressions are generally absent, and digit impressions are often at least partially collapsed.
253 In such cases, it is possible that only some of the digit impressions are penetrative, and possibly
254 only their distal portions. Both surfaces also preserve numerous scratch marks of various lengths,
255 which are often narrow anteriorly with a broader and deeper proximal end that is sometimes
256 associated with a pronounced posterior mud rim (Fig. 8D–E). Where all three functional digits (II
257 –IV) left a scratch mark, they are sub-parallel and extend posteriorly to similar degrees, resulting
258 in a rectangular posterior margin of the track (Fig. 8D).

259

260 There are two possible explanations for the numerous scratch marks encountered on both
261 surfaces: They could either represent deep penetrative undertracks or swimming tracks.

262 Penetrative tracks are expected to be found on any subsurface layer that the foot penetrated,
263 including the deepest layers, which may only show scratch marks, as seen in the “fossil volume”
264 specimens of Hitchcock (1858) (see Falkingham et al., 2020). Swimming tracks, on the other hand,
265 are produced by punting (buoyant) trackmakers pushing against the ground for propulsion, or by
266 swimming individuals that accidentally touched the ground. Some tracks found on surface 2
267 have a U-shaped rear and outer digit impressions that curve outwards (Figs. 7D, 8B), and
268 resemble simulated penetrative tracks from the lower part of the track volume in which digits
269 were dragged through the substrate (Falkingham et al., 2020 fig. 4). The track shown in Fig. 7D
270 includes a sediment mound posterior to digit impression III. If this track were a swimming track,
271 the sediment mound would have been piled up the digits as they were scratching backwards. If
272 this track is a penetrative undertrack, the sediment mound might be a raised exit trace (cf.
273 Falkingham et al., 2020).

274

275 There is unequivocal evidence that some of the Inzar O'Founas tracks are surface tracks formed
276 by swimming trackmakers. Four tracks can be assigned to the ichnogenus *Hatcherichnus*, which
277 is a possible crocodylomorph trace. These scratch marks differ from the dinosaur tracks in being
278 short and broad, with three curved digit marks (Fig. 7C). A pronounced sediment mound is
279 located to the posterior of the tracks, and all examples preserve striations produced by scales as
280 the foot moved backwards (Fig. 7C). These striations demonstrate that the surface must have
281 been a tracking surface. Similar well-defined sediment mounds are associated with the posterior
282 ends of many of the dinosaur scratch marks, especially those that only consist of a single digit
283 impression (Fig. 8C–E), suggesting that these are also surface tracks left by a buoyant
284 trackmaker. Inzar O'Founas therefore preserves both swimming tracks and penetrative surface
285 tracks, and possibly penetrative undertracks, on the same surface.

286

287 Tracksites are often time-averaged, i.e., tracks could have been accumulated over extended
288 periods of time, possibly while environmental conditions were changing. At Inzar O'Founas, the
289 occurrence of both regular tracks and swimming tracks, evidently left by trackmakers of about
290 the same size, implies a change in water depth over time. In at least two instances on surface 1,
291 isolated scratch marks are overprinting regular tridactyl tracks (Fig. 8E), suggesting that
292 scratches did generally form after the regular tridactyl tracks. Therefore, the regular tridactyl
293 tracks and the penetrative tracks probably formed first, when water levels were rather low. After

294 the water level increased, the scratch marks were produced by buoyant trackmakers. It cannot be
295 excluded, however, that buoyant trackmakers were responsible for some of the penetrative tracks.
296 When the swimming tracks formed, the water depth can be estimated at around 120–180cm,
297 considering that track lengths of 30–45cm suggest hip heights of roughly 120 to 180cm
298 (Henderson, 2003).

299
300 A similar combination of penetrative tracks and swimming tracks can be seen at the El Villar-
301 Poyalessite in La Rioja (Fig. 9). The site includes regular tridactyl tracks and unequivocal
302 penetrative tracks with long metatarsal marks and hallux impressions, such as the
303 *Theropantigrada* holotype trackway (EVP1) that will be discussed below. The surface also
304 preserves numerous well-defined but isolated scratch marks of single digits. Trackway EVP12
305 starts with regular tridactyl tracks that then turn into scratch marks, with the last two tracks
306 showing very pronounced mud rims immediately posterior to the scratches (Fig. 9). It is possible
307 that the water level increased along the course of this trackway; the trackmaker would have been
308 buoyant when leaving the scratches, and might have lost ground contact afterwards as the
309 trackway cannot be followed further.

310
311
312

313 Penetrative tracks of quadrupedal ornithopods

314
315 The majority of identified penetrative tracks belong to bipedal trackways that were probably left
316 by tridactyl theropods. Some examples of penetrative quadrupedal trackways can also be
317 attributed to small ornithischians (Dalman & Weems, 2013; Lockley et al., 2009), but clear
318 examples of quadrupedal ornithopods leaving penetrative tracks have, to our knowledge, not yet
319 been identified. Pérez-Lorente (2015 p. 285) reported ornithopod tracks with manus tracks and
320 metatarsal marks from the La Pellejera tracksite (Upper Enciso Group, Lower Albian), which we
321 examine here.

322
323 Trackway 1LP15 consists of at least sixteen pes tracks and is curved towards the right, with the
324 greatest change in direction occurring in its proximal part (Fig. 11). Four unequivocal manus
325 tracks are preserved (in front of the first, second, eighth, and twelfth track), and rounded
326 impressions in front of tracks four and five might also represent manus tracks. The manus tracks
327 are generally about twice as wide as long and have a straight posterior margin and a rounded
328 anterior margin. The second manus track is reduced to a narrow, curved slit, a morphology also
329 often seen in sauropods and that is probably the result of deformation by the pes (e.g., Lallensack
330 et al., 2019). The manus tracks are slightly to strongly outwards rotated and match the
331 morphology, position, and orientation typical for ornithopods (Lockley & Wright, 2001). The pes
332 tracks are highly variable in shape, ranging from oval to triangular, and of very low anatomical
333 fidelity. A clear tridactyl morphology is absent, but there is often a short anterior extension that
334 corresponds with digit impression III. At least eleven of the tracks show narrow to broad
335 metatarsal marks.

336
337 The trackway can be confidently identified as that of an ornithopod. Theropod trackways
338 generally lack manus impressions except very rarely at stopping points (Weems, 2006) or in
339 resting traces, and in such cases are expected to face laterally due to the semi-supinated forelimb
340 posture (Bonnan, 2003; Milner et al., 2009), not anterolaterally as seen in the described trackway.
341 Furthermore, inward rotation is generally less pronounced in theropods (see below). Sauropod
342 trackways, on the other hand, are generally much broader, although extremely narrow-gainged
343 sauropod trackways have been described by Lallensack et al. (2019). Sauropod trackways also
344 show a pronounced outward rotation of the pes tracks rather than an inward rotation, and an
345 entaxonic foot in which digit I is the longest rather than a central digit as seen in the described
346 tracks. Sauropod tracks also lack metatarsal marks since the metatarsus is supported by the

347 extensive plantar pads and the rest of the limb is columnar. It is unlikely that the posterior marks
348 are drag marks created by the large digit I of a sauropod because the marks are laterally offset
349 (see below) while digit I is the medial digit. The trackway is crossing a second ornithopod
350 trackway (1LP14) that includes clear tridactyl ornithopod pes morphologies and metatarsal
351 marks (Fig. 11), and at least one other ornithopod trackway on the surface also preserves manus
352 impressions (Pérez-Lorente, 2015).

353
354 The metatarsal marks are laterally displaced with respect to the digital portion of the track, as is
355 evident especially in tracks 8 to 11 (Fig. 11, bottom). The marks are sub-parallel to the trackway
356 midline, but the impression of digit III, where visible, is oriented towards the trackway midline
357 (Pérez-Lorente, 2015). Both features probably reflect the pronounced inward rotation typical for
358 ornithopod tracks. Pérez-Lorente (2015) and Ishigaki et al. (2019) independently proposed that
359 inward rotation evolved in short-legged bipeds as a way to bring the feet closer to the trackway
360 midline (and thus, the centre of mass). The described tracks demonstrate that the rotation took
361 place in the ankle of the foot (Pérez-Lorente, 1993).

362
363
364 Abundance

365
366 During field work in Morocco and La Rioja/Soria, we visited a total of 34 tracksites, 18 of which
367 are large (50+ tracks) (Supplementary Material S1). Although penetrative tracks were not the
368 original objective of this fieldwork, they were strikingly abundant: 8 of the large tracksites are
369 clearly dominated by penetrative tracks, while an additional 5 large sites show at least some
370 penetrative tracks. Only 5 of the large sites do not show clear evidence for penetrative tracks. Of
371 the smaller tracksites, 13 sites show no clear evidence for penetrative tracks, while one site
372 preserves penetrative tracks. These figures (Supplementary Material S1) highlight that
373 penetrative tracks are more than mere curiosities that are unlikely to be encountered in the field
374 – they can in fact make up the bulk of the fossil track record, at least locally.

375
376 There are several reasons that may explain this abundance of penetrative tracks. First, as
377 penetrative tracks extend through multiple layers, they are more likely to be exposed and
378 discovered. Second, penetrative undertracks are less likely to be eroded before they can lithify,
379 because they are covered by sediment from the start. This increases their chances of preservation
380 especially in dunes and tidal flats (e.g., Campos-Soto et al., 2025). Last but not least, penetrative
381 tracks are also more likely to survive modern erosion, as demonstrated by the El Mers Centre site
382 where penetrative tracks occur on erosional surfaces and within a river scour.

383
384

385 *Mechanisms: Morphological features explained by substrate flow*

386
387 A number of ichnotaxa, including *Saurexallopus*, are characterised by narrow-toed, widely
388 splayed digit impressions and elongated, retroverted hallux impressions. Such ichnogenera and
389 ichnospecies are typically distinguished based on variations in those features, the absence of
390 some of them, or additional features such as metatarsal marks and putative interdigital webs. In
391 the following, we describe how these features and their variations can be explained by a
392 combination of mechanisms that occur as the foot deeply penetrates a soft substrate.

393
394

395 Narrow vs. wide digit impressions

396
397 A key consequence of sediment collapse or substrate flow is the reduction of digit impressions to
398 narrow slits with V-shaped cross sections (Gatesy & Falkingham, 2020). Such tracks can often be
399 identified as penetrative tracks, although scratch marks may show similar morphologies.

400 However, in the field, digit impression width in penetrative tracks ranges from narrow to wide.
401 Wide impressions result from breakage of the sediment that sealed the path of the digit, creating
402 a flat track floor that Gatesy and Falkingham (2020) termed a “false bottom” as it suggests a
403 shallow track even when the foot penetrated much deeper. In laminated sediments, broken
404 laminae stuck within the digit impressions may cause longitudinal striations (see section “Tracks
405 with wrinkle structures”). Consequently, while narrow digit impression widths generally indicate
406 penetrative tracks, wider digit impressions do not preclude this possibility.

407

408

409 Increase of interdigital angles

410

411 Interdigital angles in penetrative tracks can be much larger than those of the trackmaker’s feet
412 as a result of differential substrate flow (Gatesy & Falkingham, 2020). This is especially the case
413 in the upper part of the track volume (cf. Falkingham et al., 2020; Turner et al., 2020). In extreme
414 cases, digit impressions II and IV form a right angle relative to digit impression III at their bases
415 before gradually curving anteriorly. Interdigital angles and digit impression curvature are highly
416 variable, and change throughout the track volume (Falkingham et al., 2020). At the lower parts of
417 the volume, the digits may be dragged backwards to form scratch marks. In such cases, the digit
418 impressions can be straight, or with their tips curving outwards (away from digit impression III).

419

420

421 Presence and length of metatarsal mark

422

423 Because the metatarsus in tridactyl dinosaurian trackmakers is inclined rather than vertical, it
424 may leave a mark if the foot sinks deeply into soft sediment. Variation in the presence and length
425 of metatarsal marks can be explained by multiple factors including trackmaker anatomy and foot
426 posture. Another important factor are foot movements. Because the metatarsus is elevated with
427 respect to the digits, it touches the substrate at a later point in time (Lallensack, Farlow, et al.,
428 2022). If the foot moved anteriorly while descending into the substrate, the metatarsal mark will
429 be shortened accordingly. If the rotation of the metatarsus into a vertical position occurs early,
430 the metatarsal mark may also be shortened or absent.

431

432

433 Relative elongation of hallux impression

434

435 In penetrative tracks, the hallux impression often appears elongated in proportion to and can
436 even be longer than digit impressions II and IV. Such proportions are often the result of drastic
437 foreshortening of digits II to IV due to sediment collapse or substrate flow, leading to a
438 “shrinking” of the digital portion of the track. The hallux impression does not seem to be affected
439 by such foreshortening because the hallux enters the sediment at a steep angle.

440

441

442 Position of hallux impression

443

444 The anteroposterior position of the hallux impression varies greatly in penetrative tracks. The
445 impression may be directly attached to the origin of digit impressions II–IV as a putative “fourth
446 functional digit”, resulting in the typical “tetradactyl” tracks commonly referred to as
447 *Saurexallopus* (see below). The hallux impression may also be separated from digit impressions II–
448 IV by a substantial gap. We observe that such a gap often occurs together with a long metatarsal
449 mark, while a more anterior position occurs when the metatarsal mark is short or absent. This
450 variation can be partly explained by the degree of anterior movement of the foot as it sinks into
451 the sediment. If the foot sinks vertically (no anterior movement), a larger gap may be expected
452 due to shrinking of digit impressions II–IV. If the foot moves anteriorly while sinking, the hallux

453 impression will be displaced anteriorly by the same degree, as it touches the substrate at a later
454 point in time than digits II-IV. The same effect may lead to a shorter metatarsal mark.

455

456

457 Retroversion of hallux impression

458

459 In most non-avian dinosaurs, the hallux is anteromedially oriented. Perplexingly, many tracks
460 instead show a posteromedially directed hallux impression, which has been repeatedly
461 interpreted as evidence for a retroverted hallux as found in birds. However, such tracks are
462 common even in the Upper Triassic and Lower Jurassic, where no known theropod shows a
463 retroverted hallux (Gatesy et al., 1999). In our sample from El Mers and La Rioja, hallux
464 impressions were either medially or posteromedially directed.

465

466 Gatesy et al. (1999) suggested that a retroverted hallux impression can be produced by an
467 anteromedially directed hallux. This can be the case if the foot moves anteriorly while sinking
468 into the substrate and if the hallux was slightly abducted and more vertical than the trajectory of
469 the foot. In this case, the distal end of the hallux would enter the substrate first. As the foot sinks
470 further, more and more of the hallux would be immersed in the substrate, extending the hallux
471 impression medially towards the metatarsal mark, and connecting to the latter once the hallux is
472 entirely submerged. Because the foot moves anteriorly while sinking, the hallux impression
473 would also extend anteriorly. This creates an anteromedially elongated hallux mark as observed
474 in the tracks.

475

476

477

478 *The ichnotaxonomy of penetrative tracks*

479

480 *Saurexallopus*—“four-toed” theropod tracks

481

482 One perplexing type of dinosaur track was described by Harris et al. (1996) and named *Exallopus*
483 *lovei*, later amended to *Saurexallopus lovei* as the original name was preoccupied (Harris, 1997).
484 These tracks, discovered in the Maastrichtian Harebell Formation of Wyoming, US, show four
485 narrow and widely splayed digit impressions that radiate directly from a central, rounded
486 impression in a “stellate pattern” (Harris et al., 1996). This central impression, originally identified
487 as a metapodial impression, is deeper (3.8 cm) than the digit impressions (2.4 cm on average).
488 Anatomical details such as phalangeal pad demarcations are absent, and the area in-between
489 digits II and IV is depressed. The trackmaker of *Saurexallopus* proved to be a “conundrum”
490 (Harris et al., 1996). Theropods are the most obvious candidates, but, as noted by Harris et al.
491 (1996), the hallux in theropods is sitting high on the metatarsus, while in the tracks it is evidently
492 impressed along its entire length and connected to the supposed metapodial impression,
493 indicating that it must be the trace of a functional digit. Many more *Saurexallopus* trackshave
494 been identified since, including two additional ichnospecies, yet their producer remained elusive
495 (Lockley et al., 2004; Lockley, Gierlinski, et al., 2018; Lockley, Helm, et al., 2022; Lockley,
496 Hirschfeld, et al., 2018). Gierlinski and Lockley (2013) identified caenagnathids such as
497 *Chirosstenotes* as probable trackmakers, which do indeed show a proportionally long hallux.
498 However, even in these trackmakers, the hallux originates from an elevated position – the
499 caenagnathid hypothesis therefore cannot explain the observation of Harris et al. (2013) that the
500 hallux appears to be impressed along its entire length in the type material of *S. lovei*. Harris et al.
501 (1996) did discuss the possibility that their tracks might have formed when the feet sank deeply
502 into soft sediment, which could have brought the hallux in full contact with the substrate. They
503 concluded that this “clearly cannot be the case”, as this requires that the “tracks would be
504 extremely deep”. However, Harris et al. (1996) did not consider the possibility that their tracks
505 were penetrative and could have sunk in much more deeply than is evident from the impressions

506 that are exposed today.

507

508 A number of unequivocal penetrative tracks, often left by the same theropod trackmakers that
509 produce conventional theropod tracks, are very similar to the *Saurexallopuslovei* tracks (Fig. 2A).
510 Their formation can be explained by two key insights – the “shrinking” of digit impressions II–IV,
511 which results in a proportionally large hallux impression; and the anterior movement of the foot
512 while sinking, which leads to an anteriorly displaced, posteromedially directed hallux impression
513 (see section “Mechanisms: Morphological features explained by substrate flow” above). The
514 central, rounded depression noted by Harris et al. (1996) likely represents the exit trace of the
515 digits, which would have been drawn together and oriented vertically to facilitate extraction from
516 the sediment.

517

518 An instructive example of how misleading penetrative tracks can be is track 3 of trackway T3 of
519 the El Mers site (Fig. 2A). This track is of the *Saurexallopus* morphotype but is unequivocally
520 penetrative, as the down-bent layers are still stuck in the digit impressions, demonstrating that
521 the digit impressions are merely entry traces and that the digits must have been extracted from
522 the “heel” area posterior to the digits. Despite being penetrative, the digit impressions appear
523 relatively broad, and there is only a short metatarsal mark. The hallux impression is
524 proportionally very large due to substantial shrinking of the digital part of the track anterior to
525 it. Curiously, the hallux impression is also separated from the track as if only its distal portion
526 was impressed. In fact, however, the proximal portion of the impression might simply have
527 collapsed.

528

529 Several other tracks that have since been assigned to *Saurexallopus* also appear to be penetrative
530 in origin. The most obvious examples are tracks from the Meetinghouse Canyon locality,
531 Blackhawk Formation, Utah (Lockley, Gierlinski, et al., 2018 fig. 2A), as well as tracks from the
532 Gething Formation of British Columbia (Lockley, Helm, et al., 2022) – both cases include tracks in
533 which the hallux is even longer than the impressions of any of the principal digits. However,
534 other examples from different sites might be non-penetrative and anatomically fidelitous.

535 Particularly convincing are two consecutive tracks from the Upper Cretaceous Lance Formation
536 named *Saurexallopuszerbsti* (Lockley et al., 2004), which do not show indications of a possible
537 penetrative origin and might indeed have been left by a large tridactyl trackmaker with a
538 retroverted hallux. In any case, the possibility that tracks referred to *Saurexallopus* are
539 penetrative in origin has not been considered before, and a careful re-examination of the original
540 tracksites is required to exclude or confirm this possibility.

541

542 Besides the three *Saurexallopus* ichnosppecies, a number of other “four-toed” ichnogenera have
543 been named that are distinguished by features such as the size and orientation of the hallux
544 mark, their interdigital angle, and the widths of the digit impressions. Lockley et al. (2018)
545 described the new ichnotaxon *Ordexallopuszhanglifui* based on three trackways of large
546 tetractyl tracks from a single surface in the Jingchuan Formation of Inner Mongolia, China.
547 Although similar to *Saurexallopus* in their wide splay and the size and orientation of the hallux,
548 *Ordexallopus* differs in its larger size and its much wider digit impressions, leading Lockley et al.
549 to conclude that it was a “larger, more robust, or fleshy form” (Lockley, Li, et al., 2018, p. 163).
550 However, two of these tracks show long metatarsal marks, demonstrating that at least these
551 tracks are penetrative tracks.

552

553

554 *Magnoavipes* and other “large bird” tracks

555

556 The ichnogenus *Magnoavipes* was named by Lee (1997) from tracks in the Cenomanian Woodbine
557 Formation, Texas. The tracks are distinctly bird-like, being wider than long with widely splayed
558 and extremely narrow digit impressions, leading Lee to conclude that they must have been

559 produced by a bird. Perplexingly, the tracks are large – 19 to 21 cm in length – and therefore
560 three times longer than the largest Mesozoic bird track recognized at that time, a fact that is
561 reflected in the genus name (*Magnoavipes* – “large bird foot”) (Lee, 1997). Lee noted more
562 unusual features, including a short metatarsal mark; a distinct curvature in digit impressions II
563 and IV creating a U-shape; and an unusually long stride length. The long stride length led Lee to
564 conclude that *Magnoavipes* was a large wading bird with long legs.
565

566 However, before a hypothetical giant bird can be invoked as probable trackmaker, a much simpler
567 explanation must be considered: the tracks could have been formed by a non-avian theropod
568 dinosaur, with the bird-like features merely being the result of deep sinking of the foot. A
569 penetrative origin appears very likely, given the extremely narrow digits (which, in the holotype
570 track, become as narrow as 3% of the width of the track) as well as the strong curvature of the
571 digit impressions. Indeed, Lockley et al. (2001) questioned the identification as a bird track and
572 attributed the slenderness of the tracks to “collapse and inflow of sediment into the digit
573 impressions”. Lockley et al. (2021), however, accepted the bird-like morphology as genuine and
574 suggested that the large size of the tracks could be due to “the presence of convergent groups
575 that represent clades not represented in the skeletal record”. Three more ichnospecies of
576 *Magnoavipes* have since been named, and *Magnoavipes* tracks have been attributed to either large
577 birds (Fiorillo et al., 2011; Lee, 1997) or slender-toed, non-avian dinosaurs (Lockley et al., 2001;
578 Matsukawa et al., 2014; McCrea et al., 2014). As is the case with *Saurexallopus*, this material
579 should be re-examined to exclude the possibility of a penetrative origin. A similar bird ichnotaxon
580 from La Rioja, *Archaeornithipus* (Fuentes Vidarte, 1996), has recently been questioned, as the
581 avian-like morphology may be due to sediment collapse (Castanera et al., 2016); we agree that at
582 least the type material of *Archaeornithipus* is probably penetrative in origin.
583

584
585 *Theropantigrada* – theropods with “webbed feet”
586

587 One perplexing track morphology whose interpretation has caused considerable difficulty is the
588 *Theropantigrada* tracks at the El Villar-Poyales site (Middle Enciso Group, Aptian). The steeply
589 inclined surface preserves at least 19 trackways (Fig. 9), including regular tridactyl tracks,
590 penetrative tracks, and swim tracks (see section “Penetrative undertracks or swimming tracks?”).
591 The holotype, and only known, trackway of *Theropantigrada*, EVP1, is markedly larger than the
592 others (Fig. 10). This trackway is highly irregular, with a strong variation in step length and
593 trackway width. These tracks have indistinct, irregular shapes, but an elongated metatarsal mark,
594 a hallux mark, and the three functional digits are clearly visible. The digit impressions tend to be
595 V-shaped in cross-section. These V-shaped grooves unite in the centre of the impression, which is
596 the deepest point. The areas in-between the digit impressions are recessed. Curiously, the area
597 between the hallux impression and digit impression II is recessed, while the area between the
598 hallux impression and the metatarsal mark is not, creating a distinct step separating the
599 metatarsal mark from the digital portion of the track (Fig. 10). This morphology led Casanovas et
600 al. (Casanovas et al., 1993) to conclude that the recessed areas were impressed by interdigital
601 webs (Fig. 10B). Since the hallux is included in the web, the foot would have been totipalmate – a
602 morphology observed in some modern birds such as cormorants and pelicans. Casanovas et al.
603 argued that the presence of a metatarsal mark requires that the animal moved with a plantigrade
604 posture, supposedly to enhance stability on a difficult substrate, an idea that had been advocated
605 by Kuban (1989) for elongate dinosaur tracks from the Paluxy River in Texas. Casanovas Cladellas
606 et al. (Casanovas et al., 1993) consequently named the ichnotaxon *Theropantigrada encisensis*
607 (“plantigrade theropod from Enciso”) based on the presence of interdigital webs, formally
608 referring it to Tyrannosauroidea (we note, however, that the referral to this group is invalid as
609 ichnotaxa must not be formally assigned to biological taxa according to the rules of the ICZN).
610

611 Conti et al. (2005) argued that the supposed webbing is likely an extramorphological feature
612 resulting from the downward bending of layers close to the foot, yet retained *Theroplantigrada* as
613 a valid ichnotaxon produced by plantigrade trackmakers. Pérez-Lorente (2015) discussed the
614 possibility of an extramorphological feature, taking into account recent work that suggests that
615 most supposed webs in the fossil track record may simply be the result of sediment displacement
616 during track formation (Falkingham et al., 2009; Manning, 2004), and correctly inferred that
617 many of the other tracks at the site are the result of deepsinking of the foot rather than
618 plantigrade postures. However, Pérez-Lorente (2015) argued that there must have been an
619 interdigital web, as it can otherwise not be explained that the area between digits I and II is
620 depressed while that between digit I and the metatarsal mark is not. This riddle can be solved by
621 recognising these tracks as penetrative tracks. As there probably was substantial foreshortening
622 of the digit impressions, the track probably appears smaller than the foot that made it. In fact,
623 the putative web between digit impressions I and II might have corresponded to the medial
624 margin of the foot, either when the foot sank in or when it was withdrawn.

625

626

627 Conclusions

628

629 Penetrative tracks of long-toed tridactyl trackmakers often show morphological features that
630 have commonly been assumed to reflect the actual anatomy of the trackmaker, even though
631 these tracks bear little resemblance to the feet that made them. These features include the width
632 of the digit impressions; digit impression curvature; interdigital angles; the presence, length,
633 orientation, and position of the hallux impression; and the presence and length of the metatarsal
634 mark. Variation in these features in penetrative tracks can be partly explained by the trajectory
635 of the foot when moving through the sediment, and by the level of the track volume that is
636 exposed. The type species of the ichnotaxa *Saurexallopus*, *Magnoavipes*, *Theroplantigrada*,
637 *Ordexallopus*, and *Archaeomithipus* have been defined on typical features of penetrative tracks,
638 and are here considered to be *nomina dubia*. Given the ubiquity of penetrative tracks, this
639 possible mode of formation has to be carefully evaluated when describing fossil tridactyl tracks,
640 and should be the null hypothesis that needs to be disproven before any paleobiological or
641 ichnotaxonomical conclusions can be made.

642

643

644 Acknowledgements

645

646 We thank the editor and two anonymous reviewers for their positive comments which improved
647 the manuscript. The Faculty of Sciences Ben M'sick of Hassan II University of Casablanca, and
648 the Faculty of Sciences of Chouaïb Doukkali University, El Jadida, provided logistical support for
649 the field work in El Mers, Morocco. We also thank Haj Moulay Lahsen Inirz for the hospitality
650 and assistance during the field work in El Mers. The field campaign of Ch.M. to El Mers in 2004
651 was financed by the "Lehre und Forschung" trust of the Natural History Museum Basel. The field
652 work in La Rioja, Spain, was supported by the Jurassic Foundation. JNL was funded by the
653 Alexander von Humboldt Foundation (Feodor-Lynen Research Fellowship).

654

655

656 Data availability statement

657

658 The 3D models of the Moroccan sites are available at

659 <https://doi.org/10.6084/m9.figshare.25330354.v1> (2.7 GB). The 3D models of the Spanish sites are
660 available at <https://doi.org/10.6084/m9.figshare.28015949.v1> (9.52 GB). Full-resolution sitemaps
661 and figures are available at <https://10.6084/m9.figshare.30465713> (not yet activated; temporary
662 private link: <https://figshare.com/s/397b0d28ff752d247f26> (173 MB). All licenced under CC BY
663 4.0.

664
665
666 Supplementary Material
667
668 * Supplementary Material S1:Table of analysed tracksites including semi-quantitative estimates
669 on the abundance of penetrative tracks
670
671
672 References
673

Amzil, M., Oukassou, M., Lallensack, J. N., Klein, H., Zafaty, O., Saber, H., Charrière, A., Meyer, C., & Gierliński, G. (2024). New dinosaur tracks from the Middle Jurassic red bed of the Middle Atlas (Morocco): Application of photogrammetry to ichnology and conservation of geological heritage. *Proceedings of the Geologist's Association*, 135(4), 458–480. <https://doi.org/10.1016/j.pgeola.2024.06.004>

Bonnan, M. F. (2003). The evolution of manus shape in sauropod dinosaurs: Implications for functional morphology, forelimb orientation, and phylogeny. *Journal of Vertebrate Paleontology*, 23(3), 595–613. <https://doi.org/10.1671/A1108>

Campos-Soto, S., Tessier, B., Mouazé, D., Benito, M. I., Quijada, I. E., & Suárez-González, P. (2025). Formation and preservation of vertebrate tracks in semi-liquid sediments: Insights from tidal flats and laboratory experiments. *Sedimentology*, 72(1), 5–33. <https://doi.org/10.1111/sed.13224>

Carvalho, I. S. (2004). Dinosaur footprints from northeastern Brazil: Taphonomy and environmental setting. *Ichnos*, 11(3–4), 311–321. <https://doi.org/10.1080/10420940490442368>

Casanovas, M. L., Ezquerra Miguel, R., Fernández Ortega, A., Pérez-Lorente, F., Santafé Llopis, J. V., & Torcida Fernández, F. (1993). Icnitas digitigradas y plantigradas de dinosaurios en el afloramiento de El Villar-Poyales (La Rioja, España). *Zubia (Monográfico)*, 5, 135–163.

Castanera, D., Canudo, J., Barco, J., & Rauhut, O. (2016). Avian or dinosaur tracks? The Serrantes tracksite (Huérteles Fm., Berriasian, Soria, Spain) revisited. In *VII Jornadas Internacionales sobre Paleontología de Dinosaurios y su Entorno* (pp. 47–48). Salas de los Infantes Burgos.

Conti, M. A., Morsilli, M., Nicosia, U., Sacchi, E., Savino, V., Wagensommer, A., Di Maggio, L., & Gianolla, P. (2005). Jurassic dinosaur footprints from southern Italy: Footprints as indicators of constraints in paleogeographic interpretation. *PALAIOS*, 20(6), 534–550. <https://doi.org/10.2110/palo.2003.p03-99>

Dalman, S. G., & Weems, R. E. (2013). A new look at morphological variation in the ichnogenus *Anomoepus*, with special reference to material from the Lower Jurassic Newark Supergroup: Implications for ichnotaxonomy and ichnodiversity. *Bulletin of the Peabody Museum of Natural History*, 54(1), 67–124.

De Souza Carvalho, I., & Lindoso, R. M. (2024). Equatorial Dinosaurs During the Opening of the Atlantic Ocean: The São Luís Basin Footprints. In I. D. S. Carvalho & G. Leonardi (Eds.), *Dinosaur Tracks of Mesozoic Basins in Brazil* (pp. 233–262). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-56355-3_9

Deiques, D., Barcelos-Silveira, A., Dentzien-Dias, P., & Francischini, H. (2025). Dinosaur tracks from the Guará Formation (Brazil) shed light on the biodiversity of a South American Late Jurassic humid desert. *Journal of South American Earth Sciences*, 105364. <https://doi.org/10.1016/j.jsames.2025.105364>

Falkingham, P. L., Bates, K. T., Avanzini, M., Bennett, M., Bordy, E. M., Breithaupt, B. H., Castanera, D., Citton, P., Díaz-Martínez, I., Farlow, J. O., Fiorillo, A. R., Gatesy, S. M., Getty, P., Hatala, K. G., Hornung, J. J., Hyatt, J. A., Klein, H., Lallensack, J. N., Martin, A. J., ... Belvedere, M. (2018). A standard protocol for documenting modern and fossil ichnological data. *Palaeontology*, 61(4), 469–480. <https://doi.org/10.1111/pala.12373>

Falkingham, P. L., Margetts, L., Smith, I. M., & Manning, P. L. (2009). Reinterpretation of palmate and semi-palmate (webbed) fossil tracks; insights from finite element modelling. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 271(1–2), 69–76. <https://doi.org/10.1016/j.palaeo.2008.09.011>

Falkingham, P. L., Turner, M. L., & Gatesy, S. M. (2020). Constructing and testing hypotheses of dinosaur foot motions from fossil tracks using digitization and simulation. *Palaeontology*, 63(6), 865–880. <https://doi.org/10.1111/pala.12502>

Fiorillo, A. R., Hasiotis, S. T., Kobayashi, Y., Breithaupt, B. H., & McCarthy, P. J. (2011). Bird tracks from the Upper Cretaceous Cantwell Formation of Denali National Park, Alaska, USA: A new perspective on ancient northern polar vertebrate biodiversity. *Journal of Systematic Palaeontology*, 9(1), 33–49. <https://doi.org/10.1080/14772019.2010.509356>

Fuentes Vidarte, C. (1996). Primeras huellas de aves en el Weald de Soria (España). Nuevo icnogénero, *Archaeornithipus* y nueva icnoespecie *A. meilidei*. *Estudios Geológicos*, 52(1–2), 63–75.

Gatesy, S. M., & Falkingham, P. (2020). Hitchcock's *Leptodactyli*, penetrative tracks, and dinosaur footprint diversity. *Journal of Vertebrate Paleontology*, e1781142. <https://doi.org/10.1080/02724634.2020.1781142>

Gatesy, S. M., Middleton, K. M., Jenkins Jr, F. A., & Shubin, N. H. (1999). Three-dimensional preservation of foot movements in Triassic theropod dinosaurs. *Nature*, 399(6732), 141–144. <https://doi.org/10.1038/20167>

Gierlinski, G., & Lockley, M. G. (2013). A trackmaker for *Saurexallopus*: Ichnological evidence for oviraptorosaurian tracks from the Upper Cretaceous of western North America. In A. L. Titus & M. A. Loewen (Eds.), *At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah* (pp. 526–529). Indiana University Press. https://www.researchgate.net/profile/Gerard-Gierlinski/publication/281606007_A_trackmaker_for_Saurexallopus_Ichnological_evidence_for_oviraptorosaurian_tracks_from_the_Upper_Cretaceous_of_western_North_America/links/56e246e208ae03f0278ede01/A-trackmaker-for-Saurexallopus-Ichnological-evidence-for-oviraptorosaurian-tracks-from-the-Upper-Cretaceous-of-western-North-America.pdf

Hadri, M., & Pérez-Lorente, F. (2012). Historia de yacimientos con huellas de dinosaurio, desde su descubrimiento hasta su primer estudio: Alrededores de El Mers (Marruecos). *Zubia*, 30, 93.

Harris, J. D. (1997). Four-toed theropod footprints and a paleomagnetic age from the Whetstone Falls Member of the Harebell Formation (Upper Cretaceous: Maastrichtian), northwestern Wyoming: a correction. *Cretaceous Research*, 18(1), 139. <https://doi.org/10.1006/cres.1996.0053>

Harris, J. D., Johnson, K. R., Hicks, J., & Tauxe, L. (1996). Four-toed theropod footprints and a paleomagnetic age from the Whetstone Falls Member of the Harebell Formation (Upper Cretaceous: Maastrichtian), northwestern Wyoming. *Cretaceous Research*, 17(4), 381–401. <https://doi.org/10.1006/cres.1996.0024>

Henderson, D. M. (2003). Footprints, trackways, and hip heights of bipedal dinosaurs—Testing hip height predictions with computer models. *Ichnos*, 10(2–4), 99–114. <https://doi.org/10.1080/10420940390257914>

Hitchcock, E. (1858). *Ichnology of New England: A Report on the Sandstone of the Connecticut Valley Especially Its Fossil Footmarks, Made to the Government of the Commonwealth of Massachusetts*. William White.

Ishigaki, S., Tanabe, T., Mainbayar, B., & Tsogtbaatar, K. (2019). Why ornithopod feet rotate inward. *Hallesches Jahrbuch Für Geowissenschaften*, 46, 79.

Khaffou, H., Hssaida, T., Oukassou, M., Maatouf, W., Afenzar, A., Zafaty, O., Chakir, S., Jaydawi, S., Chafai, K., & Charrière, A. (2023). Bajocian–Bathonian dinoflagellate cyst assemblages from the Middle Atlas, Morocco: Palynostratigraphic and paleoenvironmental implications. *Review of Palaeobotany and Palynology*, 312, 104862. <https://doi.org/10.1016/j.revpalbo.2023.104862>

Kuban, G. J. (1989). Elongate dinosaur tracks. In D. D. Gillette & G. M. Lockley (Eds.), *Dinosaur Tracks and Traces* (pp. 57–72). Cambridge University Press.

Lallensack, J. N., Buchwitz, M., & Romilio, A. (2022). Photogrammetry in ichnology: 3D model generation, visualisation, and data extraction. *Journal of Paleontological Techniques*, 20, 1–17.

Lallensack, J. N., Farlow, J. O., & Falkingham, P. L. (2022). A new solution to an old riddle: Elongate dinosaur tracks explained as deep penetration of the foot, not plantigrade locomotion. *Palaeontology*, 65(Part 1), 1–17. <http://dx.doi.org/10.1111/pala.12584>

Lallensack, J. N., Ishigaki, S., Lagnaoui, A., Buchwitz, M., & Wings, O. (2019). Forelimb orientation and locomotion of sauropod dinosaurs: Insights from the Middle Jurassic Tafaytour Tracksite (Argana Basin, Morocco). *Journal of Vertebrate Paleontology*, 5(38), 1–18. <https://doi.org/10.1080/02724634.2018.1512501>

Lallensack, J. N., Leonardi, G., & Falkingham, P. L. (2025). Glossary of fossil tetrapod tracks. *Palaeontologica Electronica*, 28(1), 1–105. <https://doi.org/10.26879/1389>

Lee, Y.-N. (1997). Bird and dinosaur footprints in the Woodbine Formation (Cenomanian), Texas. *Cretaceous Research*, 18(6), 849–864. <https://doi.org/10.1006/cres.1997.0091>

Lockley, M. G., Abbassi, N., & Helm, C. W. (2021). Large, unwebbed bird and bird-like footprints from the Mesozoic and Cenozoic: A review of ichnotaxonomy and trackmaker affinity. *Lethaia*, 54(5), 969–987. <https://doi.org/10.1111/let.12458>

Lockley, M. G., Gierlinski, G., Adach, L., Schumacher, B., & Cart, K. (2018). Newly discovered tetrapod ichnotaxa from the Upper Cretaceous Blackhawk Formation, Utah. *New Mexico Museum of Natural History & Science Bulletin* 79 – Fossil Record 6, 79, 469–480.

Lockley, M. G., Helm, C. W., Lawfield, A. M. W., & Sharman, K. J. (2022). New evidence for avian and small non-avian theropod ichnotaxa from the Lower Cretaceous of Canada: Implications for theropod ichnodiversity. *Cretaceous Research*, 138, 105292. <https://doi.org/10.1016/j.cretres.2022.105292>

Lockley, M. G., Hirschfeld, S. E., & Simmons, B. (2018). A new dinosaur track locality in the Late Cretaceous (Maastrichtian) Laramie Formation of Colorado. *Fossil Record* 6. *New Mexico Museum of Natural History & Science Bulletin*, 79, 395–406.

Lockley, M. G., Kim, S. H., Kim, K. S., Bae, S. M., Kim, J. Y., & Xing, L. (2022). A high-density *Grallator* assemblage from the Haman Formation (Cretaceous), Korea: Implications for Cretaceous distribution of grallatorids in east Asia. *Historical Biology*, 34(12), 2430–2438. <https://doi.org/10.1080/08912963.2021.2018687>

Lockley, M. G., Li, J., Xing, L., Guo, B., & Matsukawa, M. (2018). Large theropod and small sauropod trackmakers from the Lower Cretaceous Jingchuan Formation, Inner Mongolia, China. *Cretaceous Research*, 92, 150–167. <https://doi.org/10.1016/j.cretres.2018.07.007>

Lockley, M. G., McCrea, R. T., & Matsukawa, M. (2009). Ichnological evidence for small quadrupedal ornithischians from the basal Cretaceous of SE Asia and North America. *Geological Society, London, Special Publications*, 315(1), 255–269. <https://doi.org/10.1144/SP315.18>

Lockley, M. G., Nadon, G., & Currie, P. J. (2004). A diverse dinosaur-bird footprint assemblage from the Lance Formation, Upper Cretaceous, Eastern Wyoming: Implications for ichnotaxonomy. *Ichnos: An International Journal of Plant & Animal Traces*, 11(3–4), 229–249. <https://doi.org/10.1080/10420940490428625>

Lockley, M. G., & Wright, J. L. (2001). Trackways of large quadrupedal ornithopods from the Cretaceous: A review. In D. Tanke & K. Carpenter (Eds.), *Mesozoic Vertebrate Life* (pp. 428–442). Indiana University Press.

Lockley, M. G., Wright, J. L., & Matsukawa, M. (2001). A new look at *Magnoavipes* and so-called big bird tracks from Dinosaur Ridge (Cretaceous, Colorado). *Mountain Geologist*, 38(3), 137–146.

Manning, P. L. (2004). A new approach to the analysis and interpretation of tracks: Examples from the Dinosauria. In D. McIlroy (Ed.), *The Application of Ichnology to Palaeoenvironmental*

and Stratigraphic Analysis: Vol. Geological Society, London, Special Publications, 228 (pp. 93–123).

Martin, A. J., Rich, T. H., Hall, M., Vickers-Rich, P., & Vazquez-Prokopec, G. (2012). A polar dinosaur-track assemblage from the Eumeralla Formation (Albian), Victoria, Australia. *Alcheringa: An Australasian Journal of Palaeontology*, 36(2), 171–188. <https://doi.org/10.1080/03115518.2011.597564>

Martin, A. J., Vickers-Rich, P., Rich, T. H., & Hall, M. (2014). Oldest known avian footprints from Australia: Eumeralla Formation (Albian), Dinosaur Cove, Victoria. *Palaeontology*, 57(1), 7–19. <https://doi.org/10.1111/pala.12082>

Marty, D., Strasser, A., & Meyer, C. A. (2009). Formation and taphonomy of human footprints in microbial mats of present-day tidal-flat environments: Implications for the study of fossil footprints. *Ichnos*, 16(1–2), 127–142. <https://doi.org/10.1080/10420940802471027>

Matsukawa, M., Lockley, M. G., Hayashi, K., Korai, K., Peiji, C., & Haichun, Z. (2014). First report of the ichnogenus *Magnoavipes* from China: New discovery from the Lower Cretaceous inter-mountain basin of Shangzhou, Shaanxi Province, central China. *Cretaceous Research*, 47, 131–139. <https://doi.org/10.1016/j.cretres.2013.10.005>

McCrea, R. T., Buckley, L. G., Plint, A. G., Currie, P. J., Haggart, J. W., Helm, C. W., & Pemberton, S. G. (2014). A review of vertebrate track-bearing formations from the Mesozoic and earliest Cenozoic of Western Canada with a description of a new theropod ichnospecies and reassignment of an avian ichnogenus. In M. G. Lockley & S. G. Lucas (Eds.), *Fossil footprints of western North America*: Vol. New Mexico Museum of Natural History and Science Bulletin 62 (pp. 5–93).

Meyer, C., & Thüring, B. (2004). Mind the “Middle Jurassic” gap. Bone versus track record in dinosaurs. 3rd Swiss Geoscience Meeting, 59–60.

Milner, A. R., Harris, J. D., Lockley, M. G., Kirkland, J. I., & Matthews, N. A. (2009). Bird-like anatomy, posture, and behavior revealed by an Early Jurassic theropod dinosaur resting trace. *PLoS One*, 4(3), e4591.

Pérez-Lorente, F. (1993). Dinosaurios plantigrados en la Rioja. *Zubía*, 5, 189–228.

Pérez-Lorente, F. (2015). *Dinosaur Footprints and Trackways of La Rioja*. Indiana University Press.

Razzolini, N. L., Vila, B., Castanera, D., Falkingham, P. L., Barco, J. L., Canudo, J. I., Manning, P. L., & Galobart, À. (2014). Intra-trackway morphological variations due to substrate consistency: The El Frontal Dinosaur Tracksite (Lower Cretaceous, Spain). *PLoS ONE*, 9(4), e93708. <https://doi.org/10.1371/journal.pone.0093708>

Thulborn, R. A. (1990). *Dinosaur tracks*. Chapman and Hall.

Turner, M. L., Falkingham, P. L., & Gatesy, S. M. (2020). It's in the loop: Shared sub-surface foot kinematics in birds and other dinosaurs shed light on a new dimension of fossil track diversity. *Biology Letters*, 16(7), 20200309. <https://doi.org/10.1098/rsbl.2020.0309>

Weems, R. E. (2006). The manusprint of *Kayentapus minor*: its bearing on the biomechanics and ichnotaxonomy of Early Mesozoic saurischian dinosaurs. In J. D. Harris, S. G. Lucas, J. A. Spielmann, M. G. Lockley, A. R. C. Milner, & J. I. Kirkland (Eds.), *The Triassic-Jurassic Terrestrial Transition*. (pp. 369–378). C:\Users\Thoma\OneDrive\Documents\Citavi 5\Projects\Fussspuren\Citavi Attachments\weems 2006.pdf

676 Figure captions

677

678 Fig. 1. The El Mers Centre site, Morocco. Stratigraphic profile based on two sections taken
679 directly south (section part I) and north (section part II) of the track surfaces in 2004. A single
680 sauropod track was exposed above the three surfaces that comprise the El Mers Centre site. The
681 height map and interpretive site map show the lowermost (main) track surface. Note the central
682 river scour (green/blue depression of the lowermost surface seen in the heightmap). Blue marks
683 the deepest areas, and purple marks the highest.

684

685 Fig. 2. Penetrative tracks of the El Mers Centre site. A: *Saurexallopus*-like track (T3-3), showing a
686 posteromedially directed hallux impression as well as broken-off down-bent laminae within the
687 digit impressions. Total depth of height map: 5.6 cm. B: Elongate track with long metatarsal mark
688 and five toes, probably due to superimposition of two tracks (T1-5). C: Elongate track with
689 pronounced hallux impression and long metatarsal mark (T4-2). Total depth of height map: 9.1
690 cm. D: Short and wide track, bordered anteriorly by packages of down-bent laminae. E-F: Tracks
691 from within the river scour, showing strongly foreshortened digital parts and thick packages of
692 down-bent laminae (T12-1; T12-3; T12-2).

693

694 Fig. 3. Trackways and tracks of the El Mers Centre site. A: Trackways with metatarsal marks (T1,
695 T2). Compare with respective tracks illustrated in Fig. 2B and 2D. Total depth: 8.4 cm. B:
696 Trackway showing long metatarsal marks in the first two tracks that are absent in the
697 subsequent two tracks (T3). Note the *Saurexallopus*-like shape of the third track (compare with
698 detail in Fig. 2A). Total depth: 6.3 cm. C: Trackway with medium-sized metatarsal marks and
699 hallux impressions (T7). Total depth: 8.1 cm. D: The distal sections of trackways T1 and T2 in the
700 higher areas of the surface. The tracks are somewhat less defined than those on the lower areas.
701 Total depth: 8.9 cm. E: Track of trackway T2 with scratch marks indicating a substantial
702 backward-motion of the foot. Note the thick package of down-bent laminae within the right digit
703 impression. F: Intricate pattern of down-bent laminae, probably as a result of superimposition of
704 two tracks (T2-4). G-H: Elongate tracks with long metatarsal marks and hallux impressions (T1-4;
705 T3-2).

706

707 Fig. 4. The La Senoba tracksite, La Rioja, height map (top) and site map (bottom). Trackways can
708 be seen crossing different layers.

709

710 Fig. 5. The northern part of the Era del Peladillo tracksite; height map (top) and site map
711 (bottom). Two longer trackways (2PL162 and 2PL166) show striking variation in track
712 morphology (see Fig. 6).

713

714 Fig. 6. Within-trackway variation in penetrative tracks. A-D: Tracks of the trackway 2PL162 from
715 the northern part of Era del Peladillo. E-H: Tracks from trackway 2PL166 of the same site (see
716 Fig. 5). Note the shrinking effect of the tracks (compare E and H). Depths of areas shown: A: 6.1
717 cm; B: 5.6 cm; C: 8.2 cm; D: 7.2 cm; E: 6.4 cm; F: 6.6 cm; G: 7.1 cm; H: 8.3 cm.

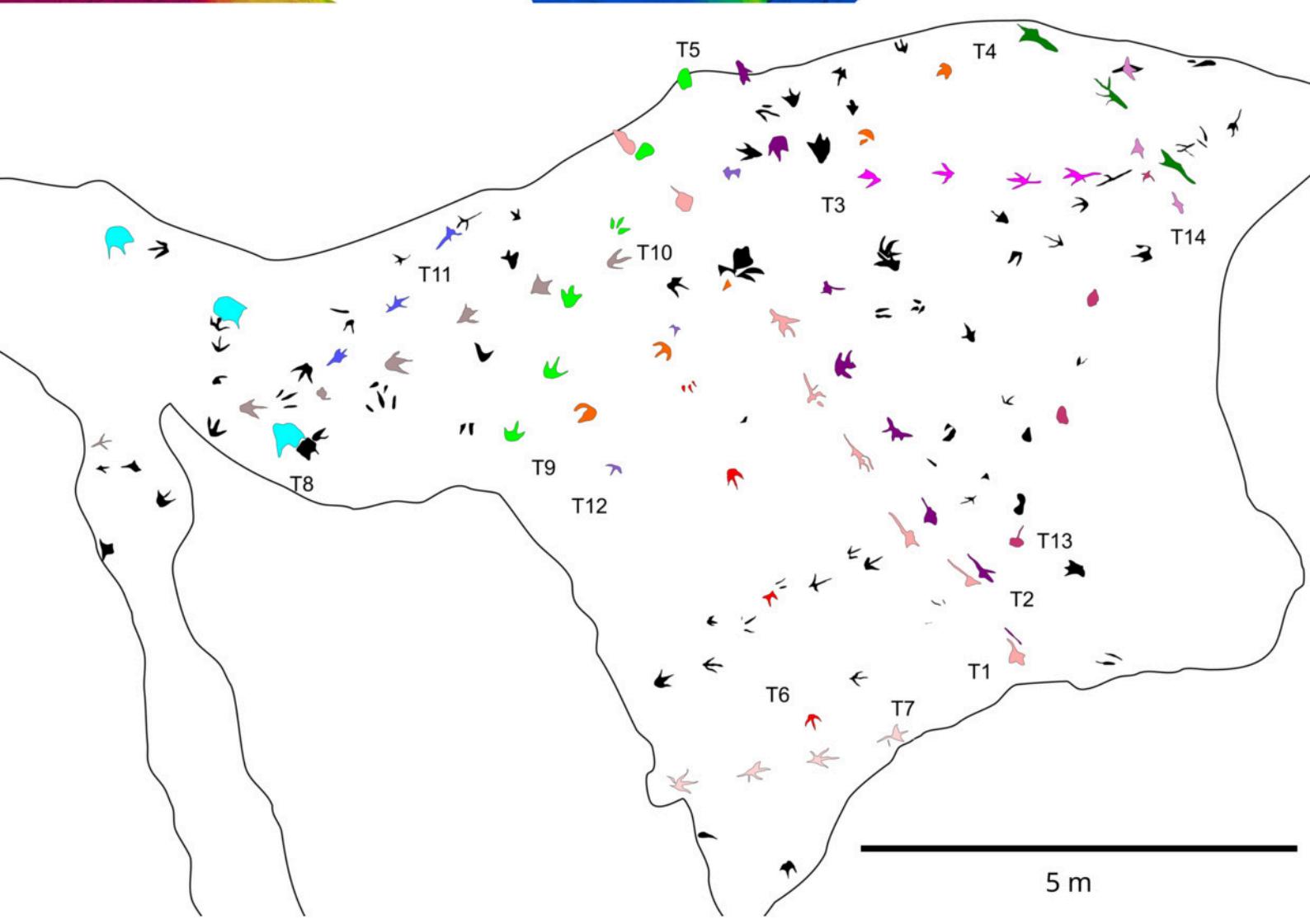
718

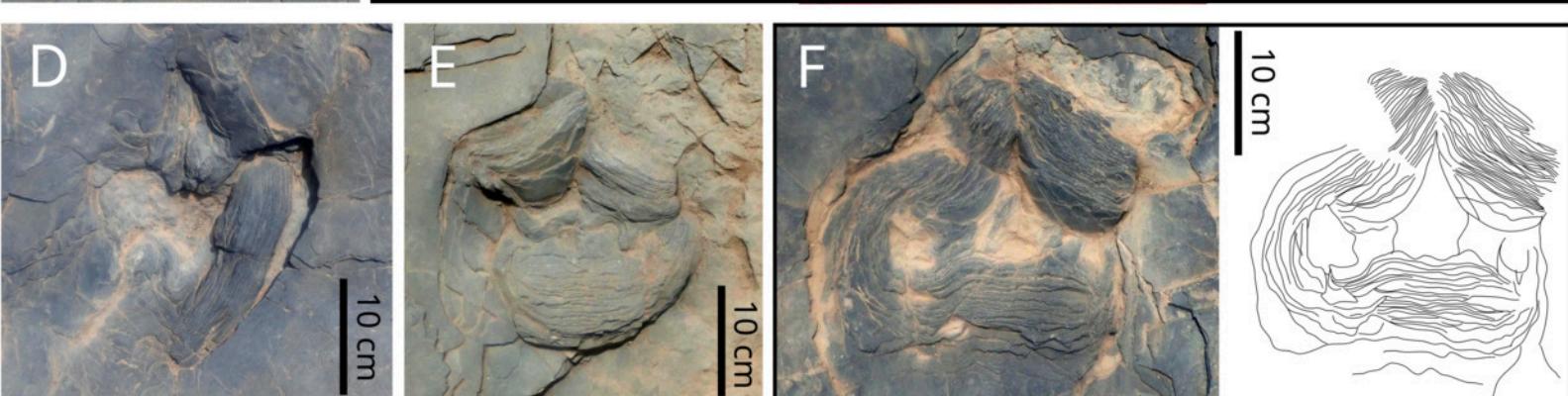
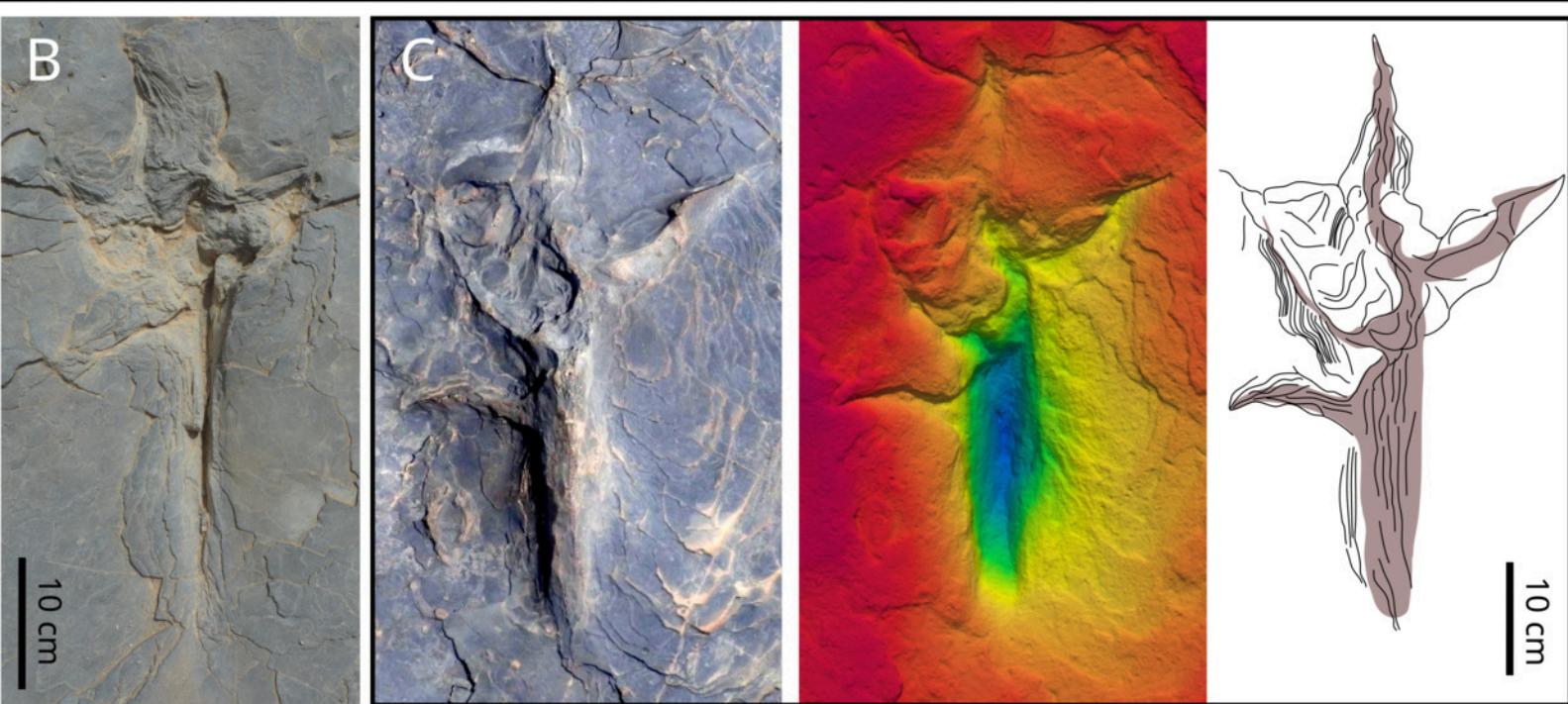
719 Fig. 7. The Inzar O'Founas tracksite, Morocco. A: Details from surface 1 (right bank), including a
720 regular tridactyl track (middle); a clear penetrative track (top), and isolated scratch marks
721 (middle right). B: Part of surface 2 as exposed in the canyon. C: *Hatcherichnus* track from surface 1
722 (left bank). Note the sediment mound and the striations. D: Penetrative tracks from surface 1.

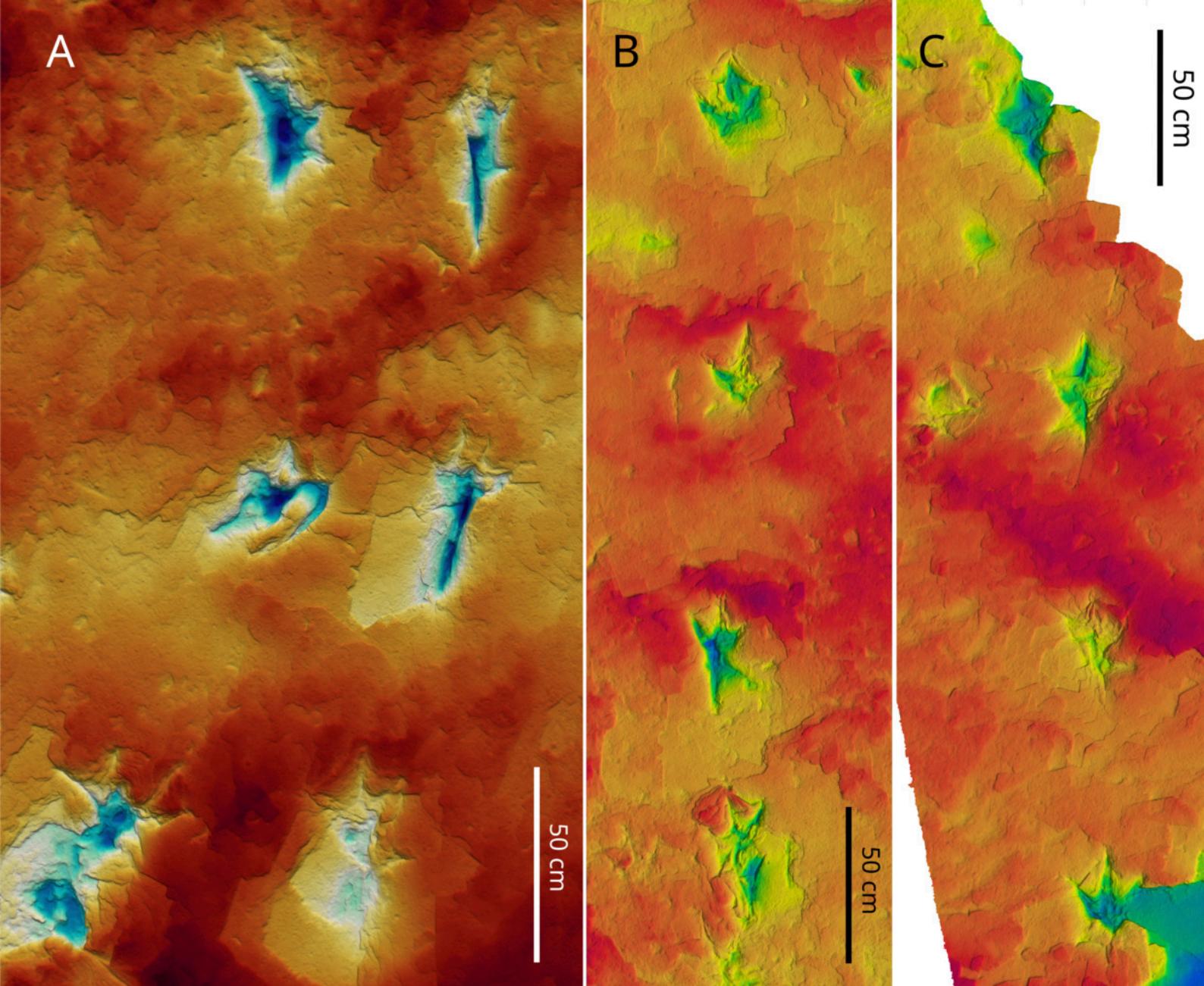
723

724 Fig. 8. Penetrative tracks and swim tracks at Inzar O'Founas. A: Penetrative track from surface 2,
725 showing a very wide splay and strongly curved outer digit impressions. B: Penetrative track from
726 surface 2, showing slit-like digit impressions and a U-shaped rear. C: An isolated digit impression
727 from surface 1, possibly a scratch mark. D-E: Height maps of parts of surface 1, showing regular
728 tracks and many isolated scratch marks (arrowed). Maximum of track surface: 12.4 cm.

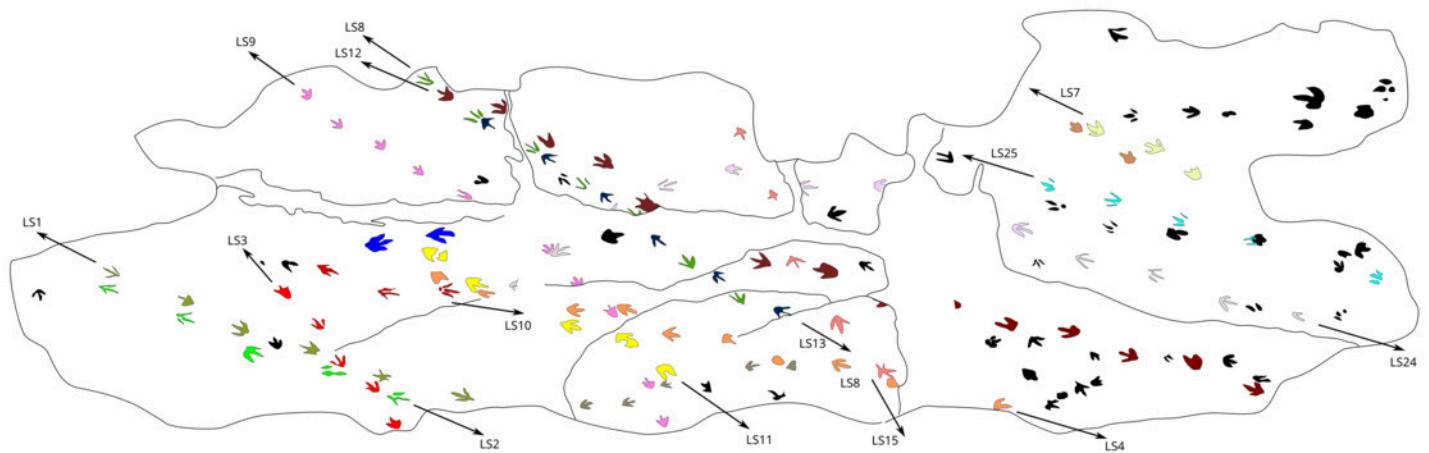
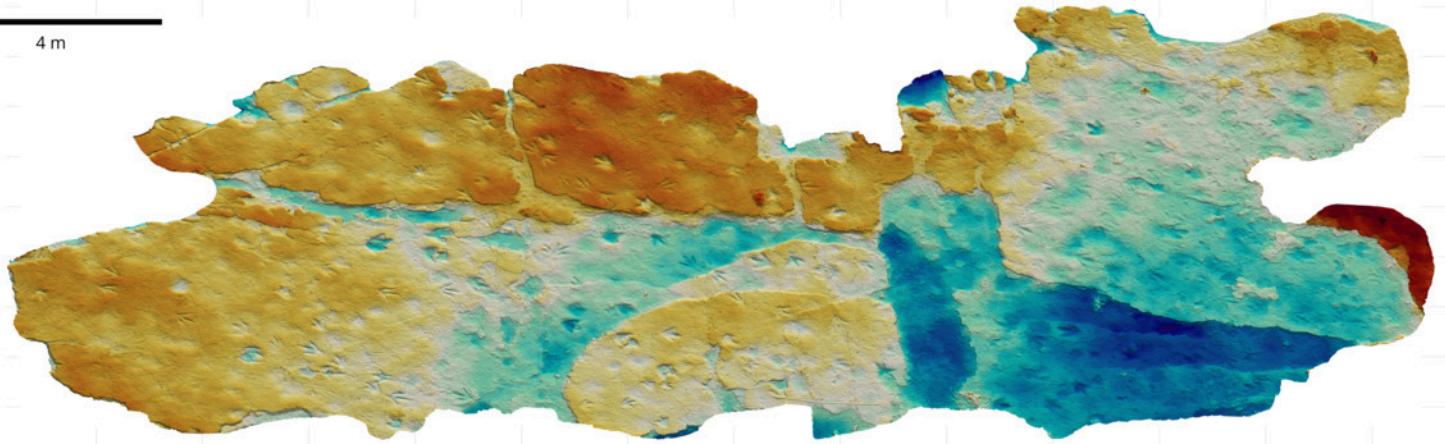
729

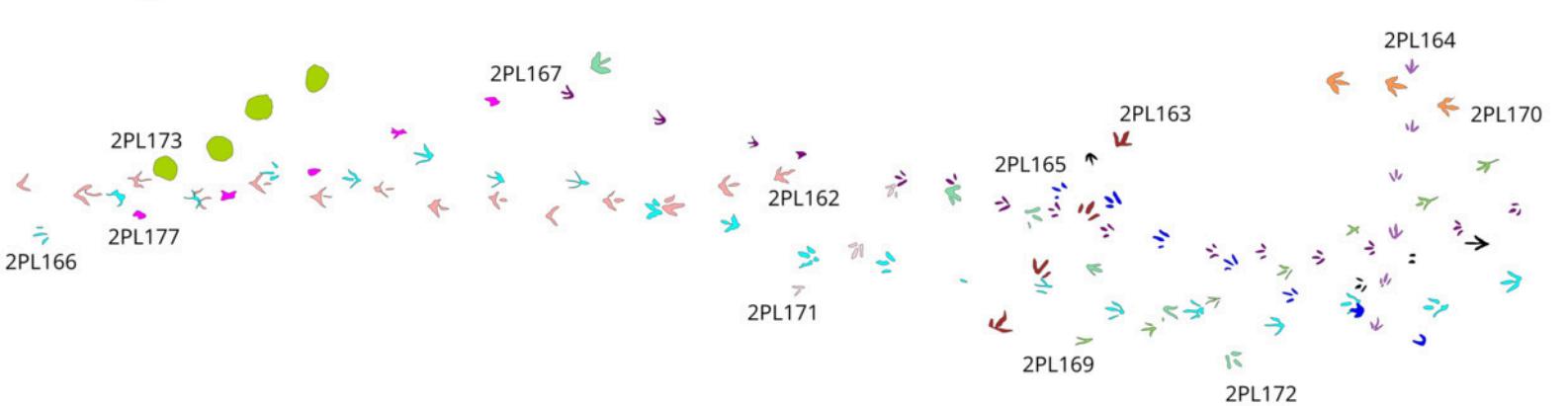
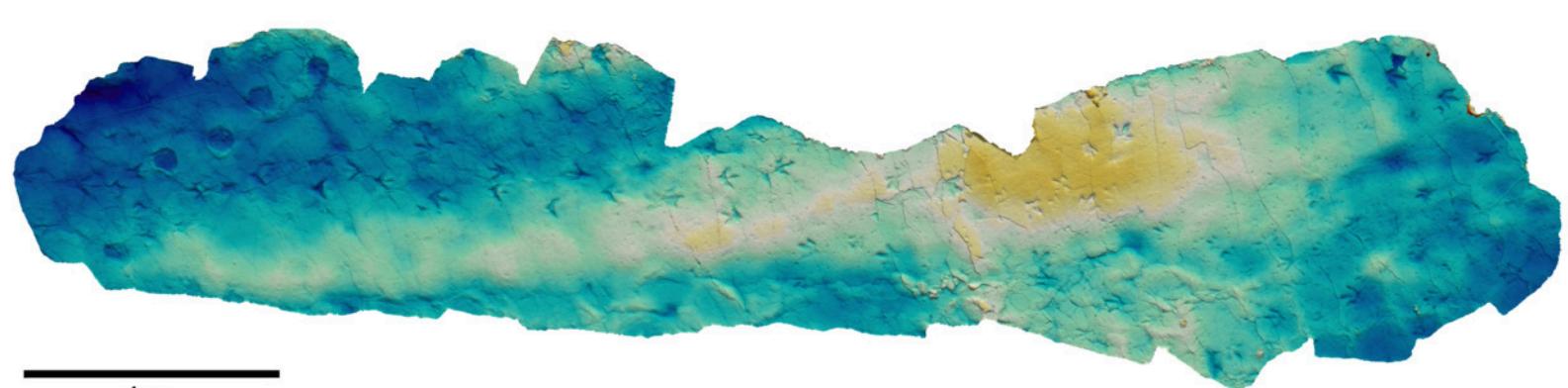

730 Fig. 9. The El Villar-Poyales site, La Rioja, height map (top) and site map (bottom). The
731 *Theropantigrada* type trackway (EVP1) is marked in red. Note the swim tracks, especially those
732 of EVP12 (purple).

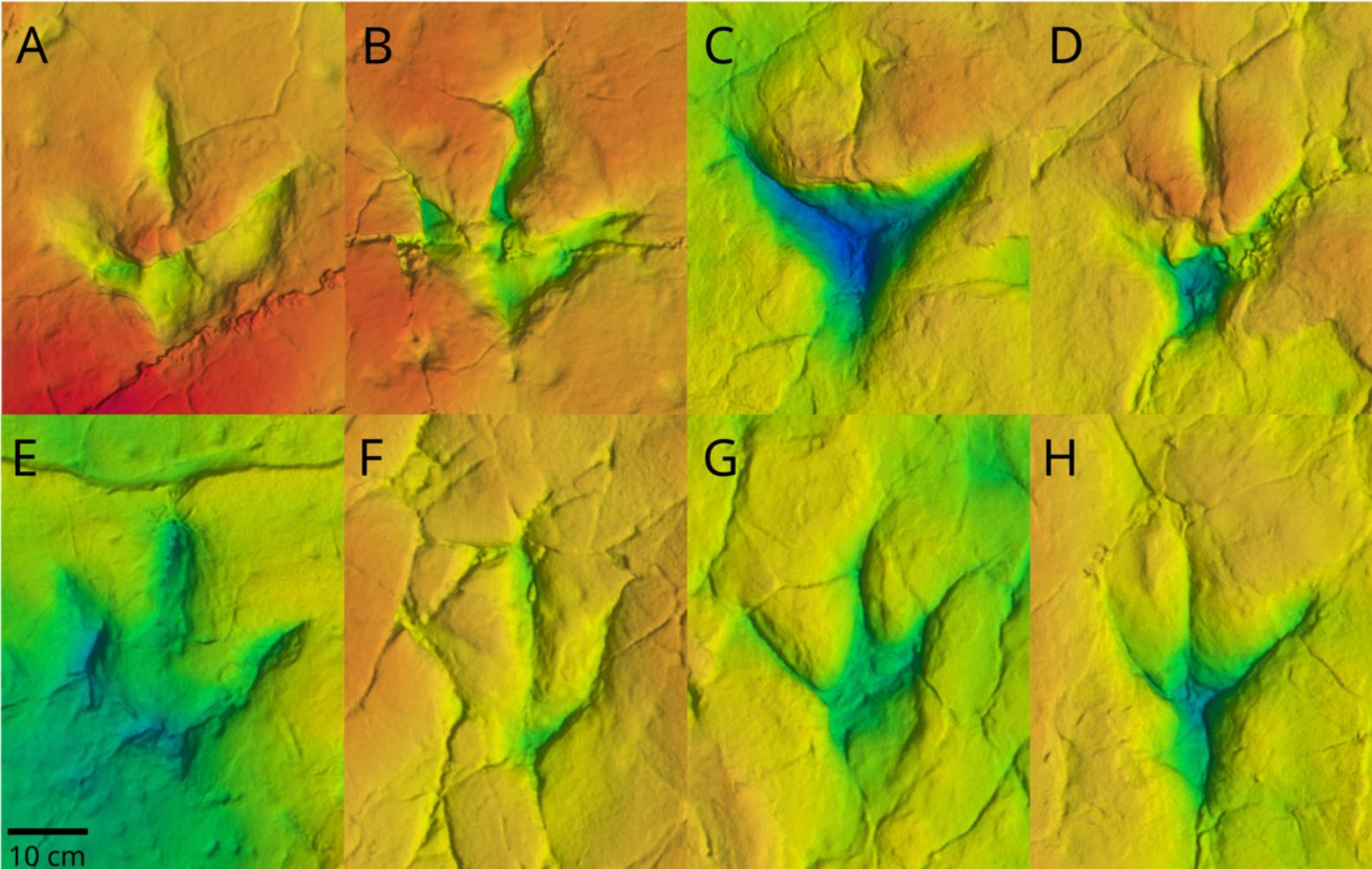


733

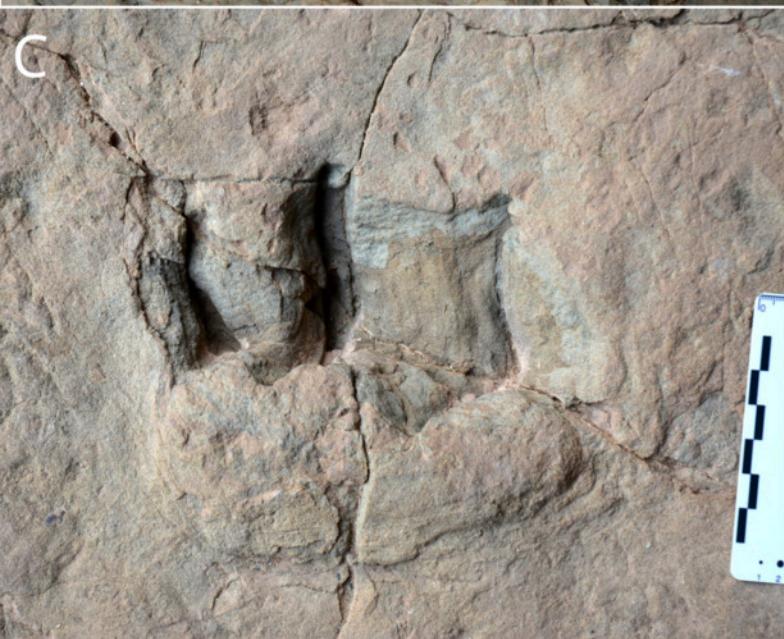

734 Fig. 10. Detail of the *Theropantigrada* holotype track. A: Height map (total depth: 7.1 cm), B:
735 Original interpretation as a plantigrade track with interdigital webs (re-drawn after Casanovaset
736 al., 1993).

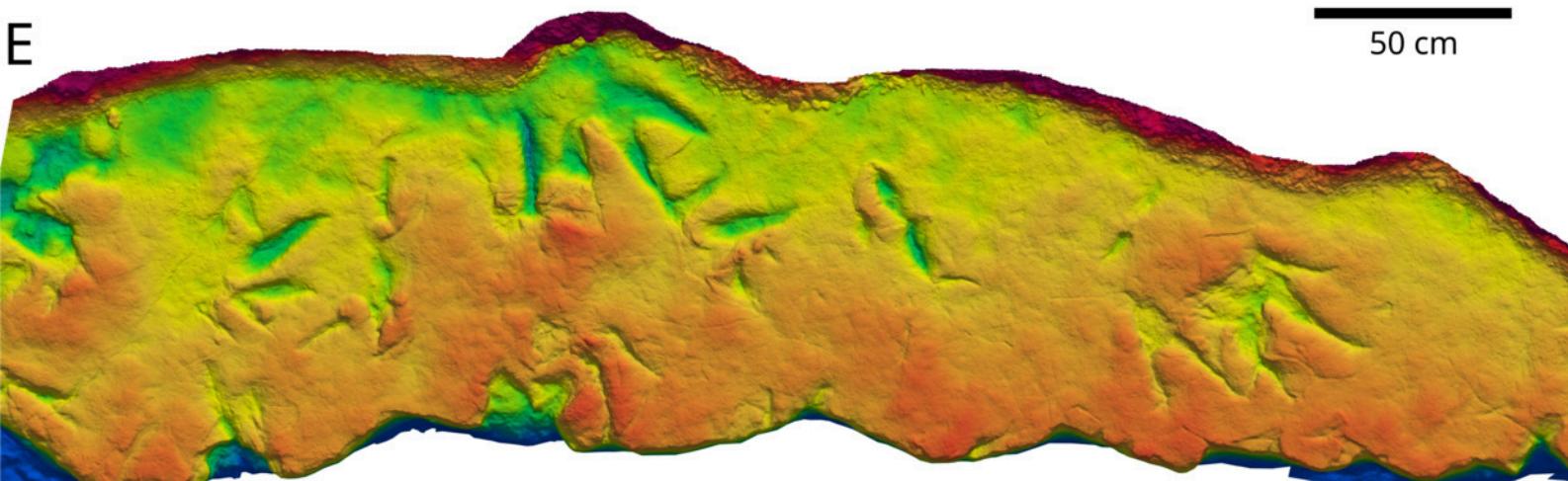
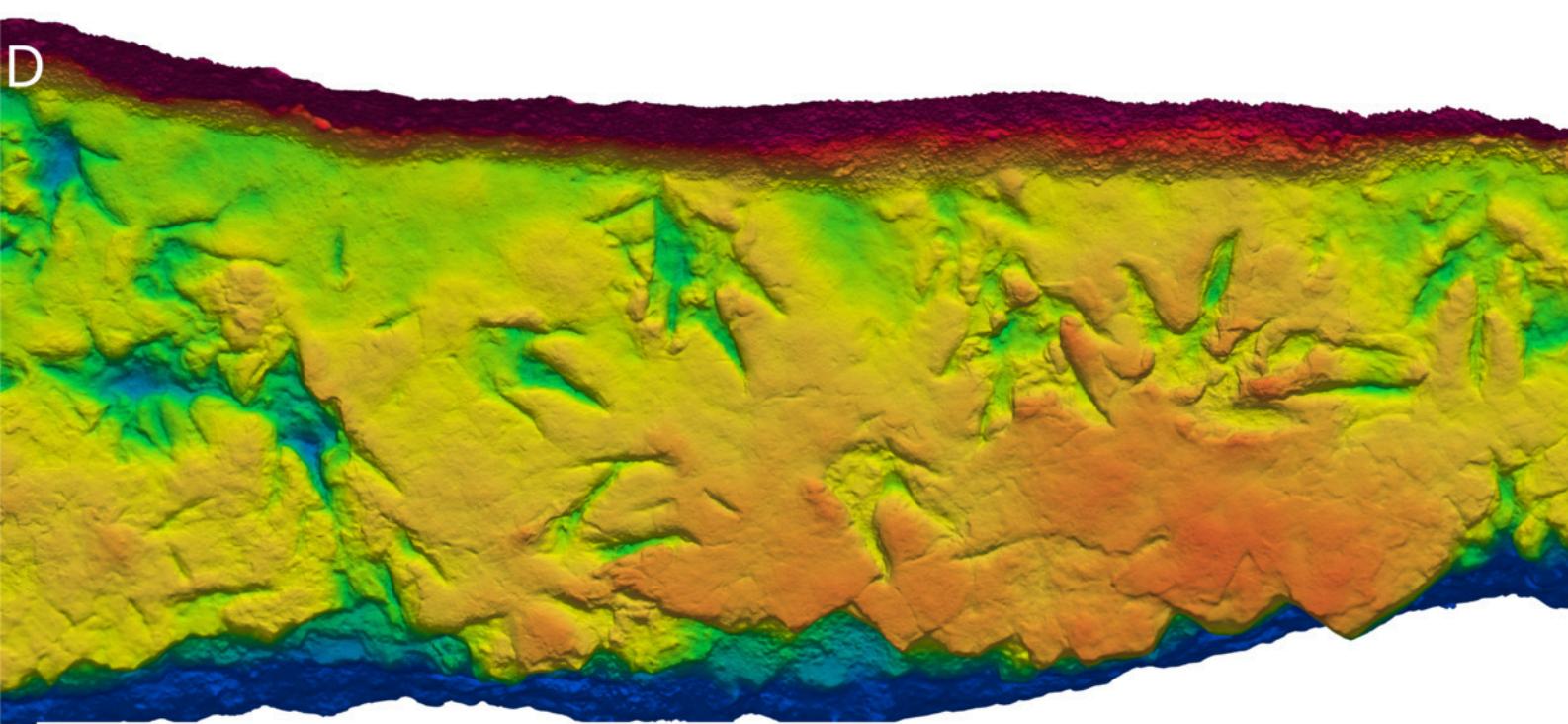
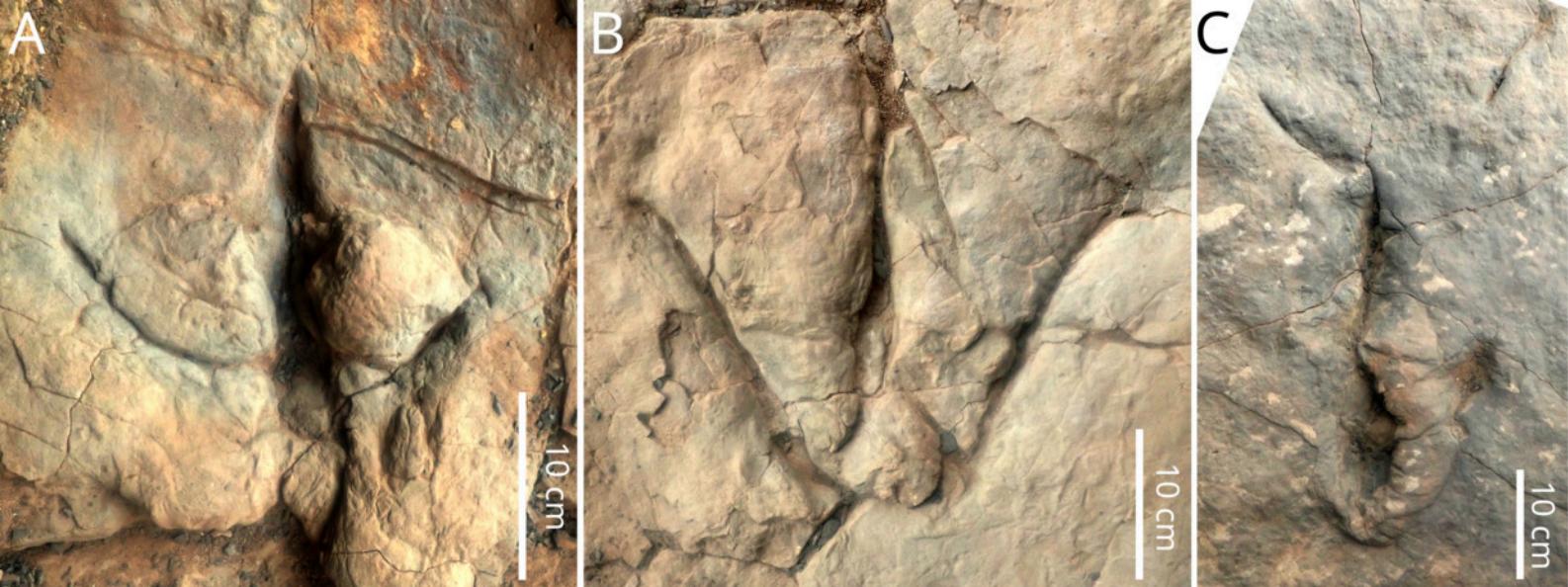
737



738 Fig. 11. The La Pellejera tracksite, La Rioja, height map and site map. Trackway 1LP15 (red) can
739 be assigned to an ornithopod trackmaker, is penetrative, and includes manus impressions.








4 m

