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Abstract 

Biogenic silver nanoparticles have been reported as good antimicrobial candidates. 

In this study, we synthesized and characterized silver nanoparticles using aqueous 

leaf extracts of Moringa oleifera (AgNPmo) and investigated their antimicrobial and 

antiviral activities. The AgNPmo demonstrated antibacterial activity against Pseu-

domonas aeruginosa and Staphylococcus aureus, with concentration-dependent 

zones of inhibition ranging from 6.5–15.5 mm and 0–7 mm, respectively. Cytotoxicity 

was assessed on Vero cells using a CCK-8 assay, which revealed an IC50 value of 

38 µg/ml, indicating relatively low toxicity at effective concentrations. The antiviral 

activity against SARS-CoV-2 was confirmed using quantitative RT-PCR: AgNPmo 

exposure led to a time- and dose-dependent increase in Ct values for ORF1ab and 

N genes, with the strongest inhibition observed after 48 h. These results provide 

direct evidence of both antimicrobial and antiviral activity. The green synthesis using 

Moringa extracts offers added advantages by employing phenolic and flavonoid 

compounds as natural reducing and capping agents, making the process eco-friendly 

and biocompatible. While direct wastewater treatment was not tested, these findings 

highlight the advantages of Moringa leaf extract as a natural reducing and capping 

agent that enabled rapid, eco-friendly AgNP formation, while the resulting AgNPmo 
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demonstrated antimicrobial and antiviral activity. Thus, AgNPmo represents a promis-

ing, sustainable option for point-of-use disinfection and potential environmental water 

treatment.”.

Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative 
agent of a contagious, life-threatening disease called Coronavirus-2019 (COVID-
19) [1,2]. So far, SARS-CoV-2 has spread globally to all continents since the World 
Health Organization (WHO) proclaimed it a Public Health Emergency of International 
Concern (PHEIC) in January 2020, with more than 775 million illnesses and more 
than 7 million deaths confirmed as of May 2024 according to COVID-19 dashboard 
on World Health Organisation website. The challenges and impacts of the disease 
on human health, economy, and environment have led to a plethora of studies that 
are focused on establishing ways of curtailing the various transmission routes of the 
COVID-19 virus [3].

One of the undermined transmission routes is by water contaminated with virus-
infected human bodily excreta [4], and the virus is found to persist for seven days at 
23°C [5]. SARS-CoV-2 virus prevalence in wastewater has been documented to pose 
a risk for the transmission of COVID-19 [6,7]. Also, the virus has been found in the 
human gastrointestinal system [8], which can be shed via faeces and may subse-
quently find its way into water bodies, especially from medical wastewater, wastewa-
ter from cruise ships and aircraft that are not properly managed [9]. This can lead to 
a developing problem, as water bodies or their components may serve as an over-
looked medium for transmission of the SARS-CoV-2 virus and other viral infections. 
This study attempts to address this problem in a cost-effective way and could serve 
as a potential solution to eradicate SARS-CoV-2 in water bodies, therefore halting or 
slowing down the infection rate [10].

Silver nanoparticles (AgNPs) have become significantly important among other 
metal nanoparticles (NPs) due to their distinctive size, morphology, and environment-
dependent properties, which are different from other materials’ bulk properties 
[11,12]. AgNPs have been used extensively as antimicrobial agents. Different studies 
have reported the properties and efficacy of these AgNPs against bacteria [13–15], 
fungi [16,17], and viruses [18–20]. The efficacy of AgNPs against microbes is due 
to the physicochemical properties of AgNPs, such as small particle size and high 
surface-area ratio, which enable their movement through cellular membranes to the 
target sites [18,21,22]. Also, the easy movement of AgNPs into living cells causes 
accumulation, which can lead to toxic effects at very low concentrations [23]. Hence, 
the biosynthesis of the nanoparticles provides eco-friendly and bio-compatible alter-
natives for microbial treatments.

This study focuses on the use of AgNPs biosynthesized from Moringa oleifera as a 
disinfectant for treating SARS-COV-2-infected water. Moringa oleifera Lam (drumstick 
tree), belonging to the family Moringaceae, is among the most useful medicinal trees 
in most of Asia and Africa. Moringa oleifera leaf extracts possess biocompounds with 
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antioxidant and antibacterial activities [24]. These compounds act against the growth of gram-positive and gram-negative 
bacteria [25]. The biocompounds extracted from Moringa oleifera leaves also act as reducing and capping agents in the 
synthesis of silver nanoparticles [14], making them attractive antimicrobial agents. Moringa extracts have demonstrated 
efficacy in synthesizing metallic nanoparticles, providing a nontoxic and biocompatible approach [26]. Different parts of the 
Moringa plant, including leaves, seeds, and bark, possess a diverse array of bioactive compounds, making them suitable 
for green synthesis applications. The plant’s inherent medicinal properties can enhance the antimicrobial and anticancer 
properties of nanoparticles, highlighting the potential of utilizing medicinal plants in the synthesis of nanomaterials [27]. 
The use of Moringa extracts in the synthesis of silver nanoparticles holds particular promise for water treatment appli-
cations due to the plant’s inherent antimicrobial properties and wide availability. Green synthesis using plant extracts is 
a unique, systematic, affordable, and environmentally sound method for synthesizing nanoparticles with selective and 
specific properties and applications [28]. This is achieved through single-step processing, which is advantageous over 
chemical methods that use harmful and toxic chemicals [29,30]. Plant-based synthesis is environmentally benign because 
it uses less energy and creates less waste.

Moringa extracts have demonstrated efficacy in synthesizing metallic nanoparticles, providing a nontoxic and biocom-
patible approach [26]. Different parts of the Moringa plant, including leaves, seeds, and bark, possess a diverse array of 
bioactive compounds, making them suitable for green synthesis applications. The plant’s inherent medicinal properties 
can enhance the antimicrobial and anticancer properties of nanoparticles, highlighting the potential of using medicinal 
plants in synthesizing nanomaterials [27]. The use of Moringa extracts in the synthesis of silver nanoparticles holds par-
ticular promise for water treatment applications due to the plant’s inherent antimicrobial properties and wide availability. 
Green synthesis using plant extracts is a unique, systematic, affordable, and environmentally sound method for synthesiz-
ing nanoparticles with selective and specific properties and applications [28]. This is achieved through single-step pro-
cessing, which is advantageous over chemical methods that use harmful and toxic chemicals [29,30].

Furthermore, plant-based synthesis is environmentally benign because it uses less energy and creates less waste. The 
green synthesis of silver nanoparticles using Moringa extracts offers a sustainable and environmentally friendly approach 
to water disinfection, with potential applications in point-of-use water treatment systems and large-scale water purification 
plants. Silver nanoparticles were successfully synthesized in this study using aqueous leaf extracts of the plant Moringa 
oleifera, and characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron 
microscopy (SEM), and X-ray diffractometry (XRD). The successful testing of the silver nanoparticles (AgNPs) was first 
carried out on clinical bacterial isolates to ascertain their antimicrobial properties. In this study, the AgNPmo showed a 
dose-and-time-dependent antiviral activity against SARS-CoV-2, showing that the AgNPmo has the potential to be used 
for the purification or treatment of SARS-CoV-2 contaminated water without exhibiting toxicity against living cells.

Results and discussion

The search for effective treatments and preventive measures against SARS-CoV-2 is still ongoing, and continuous prog-
ress in this search is pertinent to minimize the spread of the virus in water and water bodies [5,31]. Silver nanoparticles 
(AgNPs) have recently been studied as potential antiviral agents due to their unique properties [32]. They have been shown 
to exhibit antiviral activities against several viruses, including influenza [33], HIV [34], and SARS-CoV-2 viruses [20].

Thus, this study aimed to assess the effectiveness of dose-dependent biogenic silver nanoparticles against SARS-
CoV-2 in an aqueous environment over a period of time. The silver nanoparticles (AgNPmo) were synthesized using 
Moringa oleifera and characterized using UV-Vis spectroscopy, FT-IR, scanning electron microscopy (SEM), Energy-
dispersive X-ray spectroscopy (EDX), and X-ray diffraction. The AgNPmo was first tested against clinical isolates of 
Staphylococcus aureus and Pseudomonas aeruginosa to ascertain its efficacy. Then, a cytotoxicity test was conducted 
on VeroE6 cells to determine the IC50 for the subsequent antiviral assay. The antiviral activity of AgNPmo against SARS-
CoV-2 was conducted using qPCR assay in a dose and time-dependent manner.
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UV-visible analysis of the AgNPmo

The AgNPmo synthesis was first carried out using Moringa oleifera leaf extracts. Previous reports have shown that M. 
oleifera can serve as a reducing and capping agent in the synthesis of silver nanoparticles [35,36], and the derived 
nanoparticles can act effectively against bacteria and viruses [14,36,37]. In our study, the synthesis of AgNPmo was first 
ascertained visually by the color change of the reaction mixture, changing from yellowish to dark brown within 5 minutes 
(Figure in S2 Fig). The UV-Vis spectroscopy revealed a characteristic absorption peak at 420 nm (red line), indicating the 
formation of AgNPmo (Fig 1).

The observed absorbance peak wavelength is typical of silver nanoparticles, which falls within the range of 400–450 nm 
[38]. The spectrum (blue line) showing a peak at 410 nm was taken after 12 months of nanoparticle synthesis. This sug-
gests that the AgNPmo retained its absorption properties over a long period of time. Therefore, in terms of nanoparticle 
stability and synthesis longevity, our UV-Vis spectral consistency over 12 months correlates with reports by Asif et al. 
(2022) [36], who highlighted the extended shelf-life and consistent absorbance properties of plant-derived AgNPs syn-
thesized using Moringa oleifera. Similarly, previous studies have observed agglomeration in SEM images without loss 
of biological activity, a phenomenon mirrored in our findings and suggesting the functional resilience of biosynthesized 
nanoparticles despite morphological heterogeneity Moodley et al. (2018) [35]. The molecular interaction of the synthesized 
nanoparticles could be attributed to the surface plasmon resonance (SPR) due to the interaction of the free electrons 
found in metal-based synthesized nanoparticles with light energy [39].

The FTIR analysis in Fig 2 revealed the functional groups corresponding to absorbance peaks, which are interpreted 
according to the spectra correlation table [40]. The peaks, wavenumber (cm-1), and their indication are represented in 
Table 1. The spectra suggest that the biomolecule compounds in the M. Oleifera leaf extract act by reducing the Ag 
ions through interaction with biomolecule functional groups and thus function as capping agents in the formation of the 
AgNPmo within a uniform size and shape [41]. Additionally our FTIR data confirm the presence of functional groups asso-
ciated with phenolics and flavonoids from Moringa, supporting previous findings by Mohammed and Hawar (2022) [41], 
who demonstrated that plant metabolites play an essential role in both nucleation and stabilization of AgNPs. This contrib-
utes to uniformity and enhances the biological activity of the synthesized nanoparticles.

Fig 1.  Spectrophotometry analysis of the biosynthesized silver nanoparticles. The analysis immediately after the synthesis of AgNPmo (red line) 
and analysis after 12 months of synthesis (blue line) show similar peaks, indicating the long-term stability of AgNPmo. A major absorption peak at 420 nm 
corresponds to the AgNP surface plasmon resonance.

https://doi.org/10.1371/journal.pone.0338800.g001

https://doi.org/10.1371/journal.pone.0338800.g001
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SEM analysis of the AgNPmo

The SEM analysis provided an inconclusive evaluation of the shape and size of the AgNPmo synthesized. Agglomeration 
of the nanoparticles was observed and associated with the purification procedure during synthesis. These results are simi-
lar to the findings of Moodley et al. (2018) [35].

The SEM analysis identifies the morphology and particle size of the nanoparticles using the microscopy technique. In 
Fig 3, the AgNPmo presents an irregular surface topography with different shapes and sizes. The AgNPmo was observed 
at 25,000 g magnification on a 3µm scale. Most of the particles aggregated, which could result from the preparation pro-
cess for SEM analysis. Some of the particles (in red circles) are less than 500nm, which may indicate that tiny nanopar-
ticles are within the agglomerated particles. SEM analysis revealed agglomerated yet functional particles, an issue 

Fig 2.  FTIR spectrum of biosynthesized silver nanoparticles (AgNPmo). Major absorption bands were observed as stated in Table 1. These 
functional groups suggest the presence of phytochemicals from Moringa oleifera extract that act as reducing and stabilizing agents during nanoparticle 
synthesis.

https://doi.org/10.1371/journal.pone.0338800.g002

Table 1.  FTIR analysis of the biosynthesized silver nanoparticles.

Peak Intensity Bond/Stretching Functional Group

590.24 83.953 C-Br stretch Alkyl halides

779.27 83.728 C-Cl stretch Amide group

937.44 81.213 C = H stretch Alkene

1072.46 78.574 C = O bend Carbonyl group

1384.94 66.062 C-H bend Alkane

1508.38 81.109 C = C bend Aromatic compound

1871.01 89.787 C = H stretch Aromatic compound

2345.52 89.265 O = C = O bend Carbon dioxide

3433.41 84.606 O-H stretch Hydroxyl group

https://doi.org/10.1371/journal.pone.0338800.t001

https://doi.org/10.1371/journal.pone.0338800.g002
https://doi.org/10.1371/journal.pone.0338800.t001
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frequently encountered in green synthesis methods [35] and more recently Menichetti et al. (2023) [15], emphasized that 
despite morphological irregularities, agglomerated AgNPs can retain strong antimicrobial activity due to their high surface 
reactivity and embedded functional phytochemicals.

XRD analysis of the AgNPmo

The XRD analysis is a good indication of the crystalline structure and stability of nanoparticles. The AgNPmo synthesized, 
confirmed by the XRD pattern (Fig 4), showed diffraction spectra of 27.91°, 32.37°, and 38.30°. 44.41°, 46.20°, thus 
revealing the crystalline nature of the synthesized nanoparticles [42]. The diffractogram peaks at 32.37°, 38.30°. 44.41° 
corresponds to peaks (100), (111), and (200) crystallographic planes when compared with the standard powder diffraction 
card of the Joint Committee on Powder Diffraction Standards (JCPDS) (Fig 4) [43].

The crystalline nature of our nanoparticles is critical because crystallinity has been correlated with enhanced biological 
reactivity. Similar crystalline diffraction patterns have been noted in comparable studies on biosynthesized AgNPs used for 
antimicrobial and antiviral applications [20].

Fig 3.  Scanning electron microscopy showing the particle size of the biosynthesized nanoparticles. Red circles indicate representative particles; 
however, due to agglomeration, size distribution was further supported by XRD analysis.

https://doi.org/10.1371/journal.pone.0338800.g003

Fig 4.  XRD analysis of the biosynthesized nanoparticles.

https://doi.org/10.1371/journal.pone.0338800.g004

https://doi.org/10.1371/journal.pone.0338800.g003
https://doi.org/10.1371/journal.pone.0338800.g004
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Analysis of antimicrobial activity

Exposure of clinical bacterial pathogens to AgNPs has been reported to disrupt membrane permeability, prompting 
leakage from cells and hindering their growth and replication [44–46]. First, to confirm the efficacy of the synthesized 
silver nanoparticles, the antibacterial activities of the AgNPmo were carried out on Pseudomonas aeruginosa and Staph-
ylococcus aureus clinical isolates (Fig 5A and 5B). The effectiveness of AgNPs extracted from Moringa oleifera against 
the tested bacterial strains was evident in the susceptibility of P. aeruginosa, showing a notable sensitivity with a mean 
zone of inhibition (ZOI) diameter of 15.5, 11, 7.5, and 6.5 mm at AgNPmo concentrations of 100% (1.68 mg/mL), 50, 25 
and 12.5%, respectively (Fig 5C). Similarly, for S. aureus, a lesser mean ZOI diameter of 7.0, 4, 3.5, and 0 mm at similar 
concentrations of the AgNPmo, respectively (Fig 5D). The NC (negative control) containing DMSO without the AgNPmo 
showed no effect on the bacterial isolates, confirming the antimicrobial activity of the synthesized nanoparticles (Figure in 
S1 Fig). The result suggests a direct correlation between the quantity of AgNPs and the expansion of the ZOI. In agree-
ment with our study, some reports have documented the action of AgNPs against bacterial proliferation in a concentration-
dependent manner [47,48]. The AgNPmo demonstrated dose-dependent inhibition against P. aeruginosa and S. aureus, 
with the former showing greater susceptibility. This is consistent with reports by Ferreres et al. (2023) [48], who found 

Fig 5.  Antibacterial activities of the AgNPmo. Zone of Inhibition (ZOI) of P. aeruginosa and S. aureus, respectively, at different concentrations of the 
AgNPmo in (5A) and (5B). Dose-dependent increase in ZOI for P. aeruginosa (5C) and S. aureus (5D). Negative control (NC) contains DMSO only.

https://doi.org/10.1371/journal.pone.0338800.g005

https://doi.org/10.1371/journal.pone.0338800.g005
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that Gram-negative bacteria, due to thinner peptidoglycan layers, are more vulnerable to the oxidative stress induced 
by AgNPs. Ultimately, AgNPs interfere with bacterial macromolecules, causing breakdown and eventual cell death. Our 
observed trend—larger inhibition zones with increasing AgNPmo concentrations—parallels the concentration-dependent 
action described by Tripathi and Goshisht (2022) [44].

Cytotoxicity assay

After confirming the efficacy of the AgNPmo by evaluating its antimicrobial activity against clinical bacterial isolates, 
the cytotoxicity effect on VERO cells was evaluated to determine the inhibitory concentration (IC

50
) for the subsequent 

antiviral study. The results revealed that the AgNPmo exhibited significant cytotoxic activities in a dose-dependent 
manner (Fig 6).

The statistical analysis performed on data derived from the CCK-8 assay revealed an IC50 value of 38 µg/mL for 
the 10mM stock concentration of the AgNPmo compared to the control, indicating relatively low cytotoxicity at effective 
concentrations. At higher doses (> 312.5 µg/mL), the assay showed negative viability values, reflecting high cytotoxicity. 
These findings suggest that while AgNPmo is biocompatible at low to moderate concentrations, excessive doses can dis-
rupt cell integrityThe viability of untreated Vero cells (control) remained unchanged at 100% cell viability. The IC

50
 value in 

this study is lower compared to a previous study, which reported a 568 g/mL IC
50

 of AgNPs biosynthesized using Catha-
ranthus roseus [49]. The low IC

50
 value indicates a minimal inhibitory effect on the viability of Vero cells, making AgNPmo 

biocompatible with human cells. Vero cells were used for cytotoxicity assays because they are a well-established model 
for preliminary screening of nanoparticle toxicity and are routinely used in SARS-CoV-2 research. Direct cytotoxicity 
assays on SARS-CoV-2-infected cells require BSL-3 facilities, which were beyond the scope of this study. This find-
ing supports the potential of synthesized AgNPmo for safe environmental applications, especially in water treatment 
scenarios.

Fig 6.  Percentage cell viability Vero cells treated with the 10mM biosynthesized silver nanoparticles at different concentrations. Cells were 
cultured for 24 h prior to treatment. At high concentrations (>312.5 µg/mL), AgNPmo caused marked cytotoxicity.

https://doi.org/10.1371/journal.pone.0338800.g006

https://doi.org/10.1371/journal.pone.0338800.g006
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Quantitative RT-PCR analysis

Quantitative PCR (qPCR) assay is a primary method of detecting the viral load of SARS-CoV-2 in various clinical speci-
mens, including nasopharyngeal swabs stored in viral transport medium, sputum, and saliva [50]. The qPCR assay targets 
the viral RNA, which is extracted from the clinical sample and reverse transcribed into complementary DNA (cDNA). The 
cDNA is then amplified using specific primers and fluorescent probes that target specific regions of the SARS-CoV-2 
genome, majorly the structural proteins. The results of the qPCR for SARS-CoV-2 detection are reported as cycle thresh-
old (Ct) values, which indicate the presence or absence of the target genes [51]. The lower the Ct value, the higher the 
viral load in the clinical sample; a Ct value of less than 35 is considered positive for SARS-CoV-2, indicating the presence 
of viral RNA in the sample, while a low Ct value of less than 20 indicates a high viral load, while a high Ct value more than 
30 indicates a low viral load.

This study explored the virucidal effect of biosynthesized silver nanoparticles against the SARS-CoV-2 virus at non-
toxic concentrations using qPCR. To assess the dose-dependent effect of the synthesized AgNPmo on SARS-CoV-2 
in a viral transport medium (VTM), the VTM was incubated with the biosynthesized AgNPmo over a period of 2 days at 
24-hour intervals. The sample controls (SC) were included to confirm whether the increase in the Ct values is due to the 
activity of AgNPmo on the virus or environmental conditions, such as temperature, change in incubation time, or error in 
the viral RNA extraction or qPCR setup.

Figs 7 and 8 represent the cycle threshold (Ct) values of the target SARS-CoV-2 genes (ORF-Lab1ab and N-genes), 
respectively, against the AgNPmo dilutions. Starting with the IC50 concentration from the cytotoxicity assay, the 
AgNPmo had a similar progressive inhibitory effect at all the concentrations for both target genes. The inhibitory effect 
of the AgNPmo was also time-dependent, while the Ct values increased with an increase in the hours of incubation. 
The Ct values for the sample controls (SC) remained steady over the incubation period. A slight upward trend was 

Fig 7.  Inhibitory effect of the biosynthesized nanoparticles against SARS-CoV-2 ORF-Lab 1 gene. Sample control (SC) is the positive control. 
Bars represent mean ± SEM of duplicate experiments. *p < 0.05 compared to SC.

https://doi.org/10.1371/journal.pone.0338800.g007

https://doi.org/10.1371/journal.pone.0338800.g007
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observed in the inhibitory effect of the AgNPmo with a decrease in the nanoparticle concentration for both genes (Fig 7 
and 8). However, at 4.25 µg/mL concentration, there was no significant increase in the Ct values at 0 and 24 hours of 
incubation. The rapid increase in the inhibitory effect of AgNPmo on SARS-CoV-2 at 48 hours may be due to the long-
time of incubation, which could have allowed the AgNPmo to interact well with the viral particles. The antiviral effect 
was evidenced by a progressive increase in Ct values with increasing incubation time. At 48 h, the Ct values rose sig-
nificantly compared to controls, confirming inhibition of viral replication. This time- and dose-dependent effect provides 
direct evidence for the antiviral activity of AgNPmo.The most compelling result of our study is the increase in Ct values 
after 48 hours of exposure to AgNPmo, suggesting a strong inhibitory effect on SARS-CoV-2 replication. This obser-
vation supports the hypothesis proposed by Ratan et al. (2021) [32] and recently reviewed by Luceri et al. (2023) [20], 
who noted that AgNPs interfere with the integrity of viral envelopes, inhibit fusion with host membranes, and disrupt 
genome replication.

Therefore, the increase in Ct-values observed in this study may result from the AgNPmo interacting with viral repli-
cation, thereby inhibiting the viral RNA synthesis or assembly of viral particles. The AgNPmo might also have interfered 
with the structural proteins and inhibited their ability to bind with cell receptors or the genetic material of viruses, thereby 
inhibiting viral replication at the optimal concentration [52].

Baghban et al. (2024) [33] demonstrated that metallic nanoparticles can be particularly effective when allowed to 
undergo extended incubation with viral particles, supporting our time-dependent virucidal findings. The observation that 
lower concentrations (9.5 µg/mL) were still effective also suggests potential for safe application at low doses.

The beneficial effects of AgNPmo may be attributed to phytochemicals in Moringa oleifera leaves, particularly fla-
vonoids and phenolic compounds, which serve as natural reducing and capping agents. These compounds enhance 
nanoparticle stability and may synergize with AgNPs by contributing to antioxidant and antimicrobial activities. 

Fig 8.  Inhibitory effect of the biosynthesized nanoparticles against SARS-CoV-2 N-gene. Sample control (SC) is the positive control. Bars repre-
sent mean ± SEM of duplicate experiments. *p < 0.05 compared to SC.

https://doi.org/10.1371/journal.pone.0338800.g008

https://doi.org/10.1371/journal.pone.0338800.g008
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Mechanically, AgNPs are known to disrupt viral envelopes, interfere with receptor binding, and induce oxidative stress in 
microbial cells. Together, these effects explain the observed antimicrobial and antiviral outcomes.

Our findings are relevant in light of emerging evidence linking SARS-CoV-2 transmission to water systems. Studies 
have emphasized the need to identify affordable and scalable technologies for viral decontamination in wastewater. Our 
data demonstrate that AgNPmo is a viable candidate: it is low-cost, environmentally friendly, and exhibits potent virucidal 
effects without harming eukaryotic cells at effective concentrations.

In summary, this study showed that the biogenic silver nanoparticles were effective in inhibiting SARS-CoV-2. The virus 
inside the VTM showed an increase in Ct values, indicating a reduction in the virus’s effectiveness. The results suggest that 
the nanoparticles are also relatively safe at controlled concentrations. The findings from this study are valuable and can be 
repurposed as a cost-effective and less toxic method of degrading SARS-CoV-2 particles in environmental water samples. 
Our approach, which utilizes inexpensive Moringa leaves and rapid microwave synthesis, aligns with reports that green 
AgNP production can cost approximately £8 per gram, compared to £18–28 per gram for commercial AgNPs [53]. This sup-
ports the potential cost-effectiveness of AgNPmo, though a direct economic evaluation in our system remains necessary.

While this study provides promising insights into the antiviral properties of Moringa-synthesized silver nanoparticles 
(AgNPmo), it has some limitations: 1) all experiments were conducted under in vitro conditions using Vero cells and viral 
transport medium, which do not fully replicate the complexity of real environmental or physiological systems. Conse-
quently, the efficacy and safety of AgNPmo in actual water treatment settings or in vivo models have not been tested. 2) 
Although the increase in qPCR cycle threshold (Ct) values suggests viral inhibition, the exact molecular mechanism by 
which AgNPmo exerts its antiviral effect against SARS-CoV-2 was not elucidated. 3) This study was limited to a single 
viral strain, without evaluating other SARS-CoV-2 variants or unrelated enveloped viruses; this restricts the generalizability 
of the findings. 4) While cytotoxicity was assessed in mammalian cells, no environmental toxicity studies were performed 
to evaluate the potential risks of AgNPmo release into ecosystems. 5) The cytotoxicity data in this study were obtained 
using the CCK-8 colorimetric assay, which measures cellular metabolic activity rather than direct cell counts. Metallic 
nanoparticles can interfere with colorimetric reagents by absorbing/scattering light or chemically interacting with the dye; 
to mitigate this, we included NP-only control wells and subtracted their absorbance from treated wells. Negative corrected 
viability values observed at very high nanoparticle concentrations likely reflect a combination of severe cytotoxicity and 
assay interference; future work should confirm these observations with orthogonal assays (LDH release, ATP assays) and 
microscopy. 6) Finally, although UV-Vis data indicated some long-term absorbance stability, a comprehensive analysis 
of shelf-life and storage conditions for practical deployment was not conducted. These limitations highlight the need for 
further in vivo, environmental, and mechanistic studies prior to field application.

Materials and methods

Collection of Plant material and preparation of extract

Fresh Moringa oleifera leaves were obtained from the gardens of the Redeemer’s University, Ede, Osun State, Nigeria. 
Mr. Olusegun Adedeji of the Biological Sciences Department at the Redeemer’s University identified and authenticated 
the plant leaf material, and a voucher specimen (MO-01/2023) was put in the herbarium for referencing. The leaves were 
rinsed thoroughly with distilled and deionized water to remove dust particles. 20g of fresh leaf samples were submerged 
in 100 mL of deionized water. The mixture was heated using a microwave for 1 minute until a yellow-green coloration was 
observed. The crude extract was allowed to cool for 10 minutes, then filtered using Whatman® Number 1 filter paper. The 
filtered leaf extract was then stored in a refrigerator at 4°C for further use.

Green synthesis of silver nanoparticles

The silver nanoparticles were synthesized using a mixture of the aqueous leaf extract and 10 mM silver nitrate (AgNO
3
) 

solution (BDH Chemicals, UK) prepared in deionized water. The constant microwave irradiation method was used for the 
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nanoparticle synthesis [54]. Briefly, AgNO
3
 solution and leaf extract were mixed at a ratio of 9:1, respectively. The solu-

tion was covered using a microwave-safe cling wrap and irradiated in a microwave oven operating at 400 watts for 30 
seconds. The solution was allowed to stand for 5 minutes until reddish-brown coloration was observed. The overall silver 
nanoparticle synthesis (AgNPmo) progressed from a light yellow to a dark reddish-brown coloration.

The AgNPmo were purified by centrifugation at 1,500 rpm for 15 minutes at 4°C to avoid damaging the nanoparticles 
or altering their physicochemical properties. The supernatant was then discarded; the pellet was washed with deionized 
water, and the process was repeated. The resultant paste was dried overnight in a hot air oven at 25°C.

Physicochemical characterization of silver nanoparticles

After visible coloration, the formation of the nanoparticle was first analyzed using UV-Vis spectrophotometry. The absorp-
tion spectra of the nanoparticles were analyzed within 350–500 nm wavelength using JENWAY 7305a spectrophotometer 
(Bibby Scientific, UK). The dried nanoparticle was diluted with distilled water, and UV-Vis spectrophotometry was repeated 
using nanodrop 2000 (Thermofisher, UK) after one year of synthesis. A Fourier Transform Infrared (FT-IR) spectrophotom-
eter (Bruker, UK) and a KBr pellet method were used to determine biomolecules or functional groups responsible for the 
reduction and capping of the prepared AgNPmo nanoparticles within the spectral range of 3500–500 cm-1.

X-ray Diffraction (XRD) analysis was performed using a D2 phaser x-ray diffractometer (Bruker, UK) with a Cu Kα 
radiation source in the 10°-60° 2θ range, 0.02°/s scanning step size. A smooth powder surface was placed in the sam-
ple holder with the primary divergent slit confirmed as 1 mm before closing the machine. The XRD machine was closed 
to avoid contact with the emitted radiation. The data was then transferred to the ICDD PDF-4 + software for phase 
analysis. Using Scanning Electron Microscopy (SEM) to estimate the dimensions of AgNPmo, the grain morphology 
was collected using an FEI Inspect F Scanning Electron Microscope (TSS Microscopy, USA). Before SEM analyses, 
the sample was coated with carbon to make the surface conductive to enable a better signal and good image under the 
microscope. The SEM was performed at an accelerating voltage of 10–15.0 kV, a spot size of 3.5–4.0, and a variable 
working distance.

Antibacterial activity

Antibacterial activities of the AgNPs extract of Moringa oleifera leaves were carried out using agar well diffusion and 
the Minimum Inhibitory Concentration (MIC) method on Pseudomonas aeruginosa (ATCC 154423) and Staphylococcus 
aureus (ATCC 209233) clinical isolates. The isolates were obtained from the stock in the microbiology department at 
Redeemer’s University. Bacteria suspension of each isolate (1.5 x 108 cells/mL) was prepared and compared with 0.5 
McFarland standard, which was aseptically swabbed on a Mueller Hinton Agar plate with a sterile swab stick. Diffusion 
wells were made using a sterile cork borer (6 mm in diameter) and placed into the agar plates. Different concentrations 
of the AgNPmo, 100% (1.68 mg/mL), 50% (0.84 mg/mL), 25% (0.42 mg/mL), and 12.5% (0.21 mg/mL) prepared with 1% 
DMSO in two-fold serial dilution. 100 µl of each concentration was dispensed into each well labeled accordingly. The 
experiment was carried out in duplicate, and the plates were placed in the refrigerator for 30 minutes to allow the extract 
to diffuse into the agar. The plates were then incubated for 24h at 37°C.

Cytotoxicity assay

The Cell viability test of the synthesized AgNPmo was analyzed through a Cell Counting Kit-8 (CCK-8) on Vero cells. The 
Vero cells (2 × 105) were seeded into each well of a 96-well plate and cultured for 24 hours before any treatment. The 
AgNPmo treatment groups were administered serial dilutions of the stock solution from 5 mg/mL to 0 mg/mL.10 µl CCK-8 
reagent was added, and after 3 hours of incubation under humidified conditions at 37°C, the color development of the 
samples was measured at a test wavelength of 450 nm and a reference wavelength of 630 nm using an 800 TS microplate 
reader (Biotek Instruments, USA). The experiment was done in duplicate.
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The relative cell viability was calculated as follows:

	 Viability % = (OD sample/OD control)× 100	

The half maximal inhibitory concentration (IC50) was calculated using the statistics software Graph Prism version 9.

Quantitative RT-PCR assay for antiviral activity

The COVID-19-positive samples preserved inside the Viral Transport Medium (VTM) were used for the experiment. The 
samples used were obtained from the Nigeria Institute of Medical Research (NIMR), and the ethical approval (IRB/23/029) 
was obtained from the ethical committee of the institute’s reviewers’ board. Verbal consent was obtained from the patient 
whose SARS-CoV-2-positive sample was used for this study.

AgNPmo stock concentration was diluted serially with sterile VTM to make 38, 19, 9.5, and 4.75 µg/mL based on the 
IC

50
 report from the cytotoxicity assay. 100 µl of each dilution was mixed with 100 µl SARS-CoV-2 contaminated VTM and 

incubated for two days (0, 24, and 48 hours) at 25°C with periodic shaking. Viral RNA was extracted using the Qiagen 
RNA nucleic acid extraction kit (Qiagen, Hilden, Germany) at 0-, 24-, and 48-hour intervals. 60µl of the viral RNA was 
eluted after dry spinning the column for 2 minutes.

The quantitative RT-PCR was performed using the SCODA SARS-CoV-2 Fast PCR assay protocol according to Shaibu 
et al. (2023) [55]. The final reaction mixture of 25µl contained 7µl of the SCODA reagent A, 13µl of the SCODA reagent 
B, and 5µl of each sample. PCR amplification was achieved using a QuantStudio™ 5 Real-Time PCR System (Ther-
moFisher Scientific, UK) at optimized PCR conditions of 52˚C for 10 minutes, 95˚C for 10 seconds, 95˚C for 5 seconds 
(40 cycles) and 56˚C for 30 seconds (40 cycles). The reaction was performed in duplicate. Three controls were set up: 
First, the sample control (SC) contained the reaction mixture without AgNPmo. The negative control (NC) contained the 
reaction mixture and RNAse-free water without the sample. The third control contained the qPCR kit positive control (PC), 
replacing the sample. Both the NC and PC are used to control the quality of the PCR process.

Inclusivity in global research

Additional information regarding the ethical, cultural, and scientific considerations specific to inclusivity in global research 
is included in the Supporting Information (S8 Checklist).

Statistical analysis

Arithmetic mean and standard error were calculated for the antimicrobial and antiviral experiments. Statistical analysis 
was performed using GraphPad Prism version 9 (GraphPad Software, USA). One-way ANOVA was applied to compare 
treated groups with controls, and p-values < 0.05 were considered statistically significant.

Supporting information

S1 Fig. Showing negative control (NC) containing DMSO without the AgNPmo. 
(PDF)

S2 Fig. Visual observation of AgNPmo synthesis showing the progressive color change of the reaction mixture 
(a) 0 min – yellowish prior to nanoparticle formation, (b) 5 min – brown indicating onset of nanoparticle formation, 
and (c) 10 min – reddish brown brown corresponding to complete AgNP formation. 
(PDF)

S1 Table. Spectrophotometry readings. 
(PDF)
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