

1 **Male nuptial ornamentation of invasive guppies (*Poecilia*
2 *reticulata*) responds to water pollution via phenotypic
3 plasticity and microevolutionary change**

5 GUILHERME GOMES-SILVA^{1,2}, ERIC CYUBAHIRO^{2,3}, KAI LIU^{2,4}, BOJIAN CHEN^{2,5}, VANESSA SANTANA
6 VIEIRA SANTOS^{6,7}, TORSTEN WRONSKI⁸, BOSCOLLI BARBOSA PEREIRA^{6,7}, ROBSON OLIVEIRA⁶,
7 SUSANA INÉS SEGURA-MUÑOZ¹, RÜDIGER RIESCH^{9*}, AND MARTIN PLATH^{1,2*}

9 ¹College of Nursing of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14040-902, Brazil

10 ²College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, P.R. China

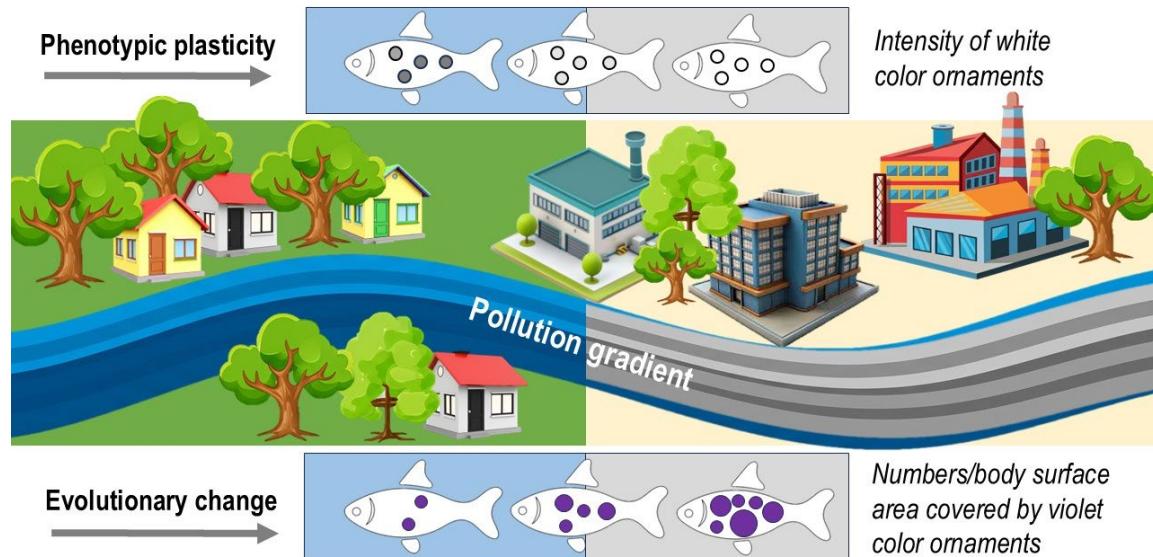
11 ³Department of Wildlife and Aquatic Resources Management, University of Rwanda, Nyagatare Campus, P.O. Box 57,
12 Nyagatare, Rwanda

13 ⁴Fisheries College, Jimei University, Xiamen 361021, P.R. China

14 ⁵College of Environmental Science and Engineering, Tongji University, Siping Road 1239, 200092, Yangpu District, Shanghai,
15 P.R. China

16 ⁶Institute of Biotechnology, Federal University of Uberlândia, Avenida Pará 1720, 38.400-902, Brazil

17 ⁷Institute of Geography, Federal University of Uberlândia, Avenida João Naves de Ávila 2121, 38.408-100, Brazil


18 ⁸Liverpool John Moores University, School of Biological and Environmental Sciences, Faculty of Science, James Parsons
19 Building, Byrom Street, Liverpool L3 3AF, UK

20 ⁹Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK

21 *Shared corresponding authors with equal contributions to this article (mplath-zoology@gmx.de; rudiger.riesch@rhul.ac.uk)

23 **Graphical abstract**

Nuptial color divergence of ♂ guppies

25 **Highlights**

26 • Water pollution affects male nuptial ornamentation of invasive guppies
27 • Population differences may involve plasticity (P) and evolutionary change (E)
28 • P: Color intensity of white ornaments increased in polluted waters
29 • E: Numbers and % body cover of violet ornaments increased in polluted waters
30 • Water pollution appears to alter multiple components of sexual selection
31

32 **Abstract**

33 Invasive alien species are increasingly replacing native species, with human habitat alterations often
34 favoring invasive taxa. The Brazilian Rio Uberabinha, for instance, was found to harbor more invasive
35 guppies (*Poecilia reticulata*) at polluted than non-polluted sites. Studies in other regions reported numeric
36 frequencies of certain nuptial color ornaments of guppy males to either in- or decrease along pollution
37 gradients, which has been interpreted to largely reflect population differences of (heritable) male
38 ornamentation patterns. But could plasticity play an additional, or possibly even greater role in creating
39 phenotypic variation of nuptial ornaments? Here, we examined male guppies along a gradient of diffuse
40 water pollution of domestic and industrial origins in the Rio Uberabinha and quantified not only the number
41 of ornaments (and percentage body cover), but also population differences in color intensity (total
42 coloration, ΔE). The latter metric likely reflects plasticity during ornament development, e.g., through
43 general challenges to physiological homeostasis or suppression of male ornamentation following
44 xenestrogen exposure. We found numbers and % body cover of violet ornaments to increase as water
45 pollution intensified. Black, orange, blue and violet ornaments responded to additional components of
46 environmental variation that were not the focus of our present study (e.g., stream velocity, dissolved
47 oxygen). Moreover, we found systematic variation of ΔE along the examined pollution gradient in the case
48 of white/iridescent ornaments, with fish becoming more brightly colored at more polluted sites, possibly
49 related to an alteration of uric acid and guanine biosynthesis and/or accumulation. White/iridescent and
50 green ornaments also responded to additional components of environmental variation. Hence, it appears
51 that both, plasticity and evolutionary changes, jointly create phenotypic diversification of different ornament
52 types. Our study provides novel insights into the manifold ways by which man-made habitat alterations can
53 alter evolutionary trajectories (here: components of sexual selection) of the populations exposed to them.

54

55 **Key words:** biological invasion, color polymorphism, contemporary evolution, sexual selection, urban
56 ecology

57

58 1. Introduction

59 Invasive alien species (IAS), *i.e.*, species that established populations outside their natural range and
60 cause economic and/or ecological harm in newly colonized habitats (Bartz et al. 2010; Schirmel et al. 2016;
61 Booy et al. 2017; Lockwood et al. 2013), are virtually omnipresent and represent the third biggest threat to
62 biodiversity behind only habitat loss and fragmentation in a world undergoing ever-accelerating rates of
63 Global Change (United Nations Environment Programme 2007). Freshwater ecosystems are
64 simultaneously amongst the most diverse but also the most threatened ones (Dudgeon et al. 2006;
65 Gallardo et al. 2016; Dayton 2019). Neotropical livebearing fishes of the family Poeciliidae—especially
66 mosquitofish (*Gambusia affinis* and *G. holbrooki*) and guppies (*Poecilia reticulata*)—rank among the most
67 invasive freshwater organisms as they have been introduced to numerous countries worldwide for malaria
68 and dengue prophylaxis (Pyke 2008; Deacon et al. 2011; Stockwell and Henkanaththegedara 2011).
69 Extensive work has addressed whether and how IAS alter ecosystems functions and pose risks to
70 ecological communities because they exert predation, act as (or introduce) novel parasites, or compete
71 with local faunal elements, potentially driving the local extinction of native taxa (Clavero and Garcia-Berthou
72 2005). At the same time, several species appear to continuously invade new habitat types at the edge of
73 their distribution or simply by filling previously unoccupied habitats within their natural range (Hickling et al.
74 2006; Thomas et al. 2012). As a particularly well-researched example, guppies on Northern Trinidad
75 repeatedly invaded stream headwaters with relaxed piscine predation (Haskins and Haskins 1951; Haskins
76 et al. 1961; Endler 1980). Guppies occurring in both lowland (downstream) and headwater stream sections
77 experience dissimilar selective regimes and have emerged as a model system for various questions in
78 evolutionary ecology, asking, *e.g.*, how relaxed predation might affect the evolution of male nuptial color

79 ornaments (Endler 1980; Millar et al. 2006; Kemp et al. 2009) or certain reproductive life-history traits
80 (Rodd and Reznick 1991; Reznick et al. 1990, 2001, 2012).

81 Some IAS benefit from man-made habitat alterations at least during some stage(s) of the invasion
82 process (Light and Marchetti 2007; Wang et al. 2021). In fact, adaptation to human-altered habitats in the
83 native range (the ‘anthropogenically-induced adaptation-to-invade’ scenario), has been proposed as
84 another mechanism facilitating biological invasions (Hufbauer et al. 2012). Even pollution often tends to
85 have less of a negative effect on IAS compared to native species. Invasive gammarid crustaceans, e.g.,
86 became dominant in the river Rhine only after a major industrial chemical spillover in the 1980ies, with
87 different tolerances to certain toxicants largely explaining this pattern (Kuhn and Streit 1994), and in San
88 Francisco Bay, copper exposure significantly decreased species richness of native species but not of IAS
89 (Crooks et al. 2011). Likewise, a previous study comparing fish communities in the Brazilian Rio
90 Uberabinha found the native poeciliid *Phalloceros* sp. to primarily occur in unpolluted waters, whereas
91 guppies—invade to southern Brazil (Dias et al. 2020; Bueno et al. 2023)—dominated in more polluted
92 stream sections (Gomes-Silva et al. 2020b). While the exact mechanism is not currently known, species
93 differences in their tolerances to certain toxicants and an alteration of competitive interactions likely explain
94 this pattern. Comparing 15 sampling sites in the Rio Uberabinha, Gomes-Silva et al. (2020b) further
95 reported that pollution-related ecological predictor variables (condensed via Principal Component Analysis)
96 were a strong predictor of numerical frequencies of cytonuclear abnormalities (such as the formation of
97 micronuclei) of poeciliids across sites. A sub-set of sampling sites from that study (i.e., those slightly to
98 heavily polluted sites harboring guppies) served as the basis for our present study on the divergence of
99 male nuptial coloration along the well-characterized pollution gradient.

100 Independent of whether fish populations encounter polluted water conditions because of an
101 anthropogenic introduction, or natural invasion/range expansion of hitherto uninhabited habitats, the altered
102 environmental conditions are likely to create starkly divergent selective regimes (Oziolor and Matson 2015;

103 [Candolin 2019](#)). However, to better understand the impact of anthropogenic pollutants on animal
104 phenotypes, including communication and signaling, broad-scale monitoring of animal pigmentation in
105 general, and nuptial ornamentation in particular, is of utmost importance ([Lifshitz and St Clair 2016](#)). The
106 role played by pollution-gradients in generating phenotypic variation of male nuptial ornaments has been
107 studied in a comparison of invasive guppy populations in rivers draining the degraded and heavily
108 overstocked Mutara Rangelands of north-eastern Rwanda, which receive pollution from domestic
109 wastewater and cattle dung ([Gomes-Silva et al. 2020a](#)). The study was based on the key assumption that,
110 since guppies are color-polymorphic, and color patterns have a heritable basis ([Winge 1922; Khoo et al.](#)
111 [1999; Sato and Kawata 2020](#)), population differences in numerical frequencies of nuptial ornaments likely
112 reflect microevolutionary (*i.e.*, genetic) population divergence. Indeed, statistical analyses of numbers and
113 percent body surface covered by different color ornaments uncovered several pollution-effects and
114 interactions with other environmental parameters. The direction of interaction effects was similar for
115 blue/black and red/orange ornaments, while white/iridescent ornaments responded dissimilarly. The finding
116 that responses differed between ornament types adds to our interpretation of microevolutionary divergence
117 due to site-specific alterations of selective regimes.

118 Could plasticity play an additional, or possibly even greater role in creating phenotypic variation of
119 nuptial ornaments? Here, using the same analytical approach as employed by Gomes-Silva et al. ([2020a](#)),
120 we investigate patterns in male guppy nuptial ornamentation along nine sites in the Rio Uberabinha
121 differing in pollution levels. To capture potential signatures of both microevolutionary change (predictions 1,
122 2) and plasticity (predictions 3, 4), we assessed two different metrics related to male nuptial coloration.
123 Potential differences in ornament distribution patterns (assessed as ornament numbers and areas covered
124 by the respective ornament type on males' body surface) among populations should reflect
125 microevolutionary divergence along the examined pollution gradient ([Gomes-Silva et al. 2020a](#)). Prediction
126 1a, therefore, presumed significant effects of pollution-related environmental principal component 1 (and

127 likely, other environmental PCs adopted from [Gomes-Silva et al. 2020b](#)) on ornament distribution patterns.
128 Alternatively, if evolutionary change is too slow to have left its footprints on population differences in our
129 study system, or if evolutionary change is impeded by antagonistic selection (e.g., [Keith and Mitchell-Olds](#)
130 [2019](#)), no such effect would be expected (prediction 1b). Moreover, adult male guppies show a much
131 weaker body size polymorphism compared to numerous other poeciliids, in which males may adopt
132 alternative mating tactics depending on their body size ([Evans and Pilastro 2011](#)). Even though body size-
133 effects were not the main focus of our present study, we included male size as a covariate into our
134 analyses. We predicted that large-bodied males, which likely represent those individuals whose 'genomic
135 makeup' renders them more able to withstand (and thus, grow to a larger size under) the adverse effects of
136 water pollution, would sport more ornaments than smaller ones (prediction 2).

137 Whether or not phenotypically plastic responses to pollution contribute to population differentiation
138 should become apparent when analyzing color properties of nuptial ornaments, assessed as total color
139 differences (ΔE ; e.g., [Mokrzycki and Tatol 2011](#)). More detail on information conveyed by ΔE can be found
140 in the Methods section. Prediction 3a assumed significant effects of our pollution-related covariate (PC1,
141 and likely other environmental effects) in statistical analyses treating ΔE as the dependent variable. By
142 contrast, no such effect would be expected, e.g., when the availability of certain nutrients is more important
143 during ornament development than overall pollution levels (e.g., carotenoids: [Hudon et al. 2003](#); prediction
144 3b). Finally, assuming that e.g., challenges to physiological homeostasis or endocrine disruption play a role
145 during ornament development, large males could be more able to defy adverse environmental conditions if
146 tolerance depended on more beneficial surface-to-volume ratios (e.g., [Riesch et al. 2014](#)). Prediction 4,
147 therefore, assumed large-bodied males to be more brightly colored than smaller ones.

148

149 **2. Methods**

150 **2.1 Data collection and availability**

151 **2.1.1 Sampling sites, environmental and pollution-related parameters**

152 All data presented here were collected between 23rd January and 9th February 2018 and as part of a previous study
153 that focused on changes in fish communities and nuclear abnormalities of guppies exposed to water pollution in the
154 upper Rio Uberabinha (Gomes-Silva et al. 2020b). Here, we present unpublished data on male nuptial coloration
155 from nine sampling sites, excluding sites at which no (or not enough) guppies were encountered as well as an
156 artificial fish pond ('Pesque e Pague') included in Gomes-Silva et al. (2020b) that is regularly stocked with several
157 fish species, precluding meaningful conclusions about the evolutionary trajectory of guppies encountered at that site.

158 Gomes-Silva et al. (2020b) collected 23 geo-physical, physico-chemical, and water pollution-related
159 parameters at 15 sites and condensed those variables by means of Principal Component Analysis into four PCs
160 (Table 1 in Gomes-Silva et al. 2020b). Of particular interest in the context of our current study is environmental PC1,
161 which received high axis loadings from all pollution-related parameters included; namely the Biological Monitoring
162 Work Party (BMWWP) index (Junqueira and Campos 1998), biochemical oxygen demand (BOD), concentrations of
163 fecal coliforms, chlorides, nitrates, nitrites, ammonia, total phosphorus, various measures of heavy metal
164 contamination in the sediment (Cd, Pb, Cu and Cr) and water (Cd, Pb and Cr), as well as the pH, concentrations of
165 dissolved solids and water turbidity. Environmental PC2 captured variation between fast- and slow-flowing stream
166 sections and received high axis loadings from stream velocity, dissolved oxygen concentrations, as well as local
167 water temperatures. Environmental PC3 received a high axis loading from variation in water depth across sampling
168 sites, while environmental PC4 received high axis loadings from altitudinal variation, as well as dissolved oxygen
169 concentrations. Our current study makes use of those four PCs, treating them as predictor variables in our statistical
170 analyses.

171 A potential point of criticism could be that our analyses utilized environmental PCs that were obtained from a
172 total of $n = 15$ sampling sites but compare a sub-set of $n = 9$ sites at which guppies were present. However, running
173 the aforementioned PCA with only nine sites led to a much less clear-cut separation of sites by water quality
174 parameters, with pollution-related parameters being split over two PC axes (Online Supplementary Table 1), largely

175 owing to the fact that the most pristine, unpolluted sites in our previous sampling scheme were excluded here as they
176 did not harbor guppies (Gomes-Silva et al. 2020b). Alternative PCAs are shown in Online Supplementary Table 1,
177 while analyses of covariance (ANCOVA) that we ran with those alternative PCs as predictor variables nevertheless
178 qualitatively confirm our main results (not shown in detail).

179

180 **2.1.2 Collection and general processing of color photographs**

181 We collected 171 male guppies for the analysis of body coloration (12–21 individuals per site; for details see Gomes-
182 Silva et al. 2020b). To take photographs, we anesthetized males by adding few drops of clove oil to the water in the
183 buckets in which they were collected. This would relax (extend) chromatophores such that close to full coloration was
184 measured (see Javahery et al. 2012 for discussion). We then laid each male flat on a small piece of laminated
185 millimeter paper (IT8.7/2 LaserSoft Imaging, ID no. R051025) placed on a laminated color calibration plate (IT8.7/2
186 LaserSoft Imaging, ID No. R051025; Fig. 1a). We took digital photos of the left body side from centrally above (at
187 approximately 30 cm distance) using a digital Nikon 5200 camera equipped with a 55 mm lens and saved them in
188 *jpg format. Photos were taken in the shade to avoid glare and reflection effects. Prior to all subsequent
189 measurements, we used the gradation curve modulation in Adobe Photoshop CS5 and calibrated each image
190 according to the manufacturer's instructions (LaserSoft Imaging, Kiel, Germany). We adjusted the black-and-white
191 squares as well as squares L13 to L19 of the calibration plate to the provided (standardized) L*a*b*-values. This
192 procedure ensured that each photograph had the same standard coloration and thus allowed for a quantitative
193 comparison of individual color differences (Zimmer et al. 2018).

194

195 **2.1.3 Ornament numbers and percent cover on males' body surface**

196 We processed the photos using Adobe Photoshop CS5 (version 12, 2010). First, we assessed each male's body size
197 (standard length, SL) and body surface area (excluding fins). We largely followed the classification of color
198 ornaments described by Endler (1978) and considered black (including 'fuzzy black': Ruell et al. 2013; Martínez et al.
199 2016), orange, green, yellow, blue, violet, and white/iridescent ornaments. For each color category, we counted the

200 total number of spots on the left body side and measured the surface area covered by each spot. We then calculated
201 the percentage of body surface covered by the respective color type by dividing the cumulative surface area for that
202 color category by the total body surface area (Martínez et al. 2016). A more detailed description of the employed
203 methods can be found in Gomes-Silva et al. (2020a).

204

205 **2.1.4 Total color difference of nuptial ornaments**

206 While it is possible that some of the changes in color intensity (ΔE) could also result from microevolutionary change,
207 our analysis of potential phenotypic plasticity was based on the consideration that color intensity should largely reflect
208 males' ability to deposit pigments into existing ornaments (for pigment-based ornaments) and to build and arrange
209 the crystals and compounds required for structural ornaments. These processes depend on several ecological
210 factors; for instance, high carotenoid availability results in males developing brighter orange and red ornaments in
211 laboratory experiments and in the wild (Endler 1983; Kodric-Brown 1989; Grether et al. 2005). To analyze color
212 differences of male ornaments, we used the relative values of $L^*a^*b^*$ in CIELAB color space. L^* -values describe
213 relative lightness, ranging from black ($L^* = 0$) to white ($L^* = 100$), a^* -values describe relative variation from green ($a^* = -150$) to red/magenta ($a^* = +100$), and b^* -values describe relative variation from blue ($b^* = -100$) to yellow ($b^* = +150$). Adobe Photoshop CS5 provides L^* -, a^* - and b^* -values automatically for areas delimited using the program's
215 toolbox. This procedure was done for each ornament of a given color category, after which we calculated mean
216 values for each category.

217

219 **2.2 Statistical analyses**

220 We excluded the category of yellow ornaments from our analyses, as 40.35% of individuals did not sport this type of
221 ornament. For the remaining color categories, the percentage of individuals that were missing a given ornament type
222 did not exceed 22.80%. In those cases, we replaced missing ΔE -values by the respective population mean. All
223 statistical analyses were conducted using SPSS v. 19 (IBM 2010, Chicago, USA). If necessary, we transformed data

224 to meet the assumptions of normality and homoscedasticity of model residuals, which we tested using Shapiro-Wilks'
225 and Levene's tests, respectively.

226

227 **2.2.1 Ornament numbers and percent body cover**

228 We decided to condense information on numbers (square root-transformed for all statistical analyses) and
229 percentages of males' body surface covered by the six color ornament types [arcsine (square root)-transformed], as
230 both metrics tend to be highly correlated (Gomes-Silva et al. 2020a). We confirmed significant correlations between
231 both metrics across all males in our empirical data set (black: Pearson's $r = 0.546$; orange: $r = 0.728$; green: $r =$
232 0.793 ; blue: $r = 0.792$; violet: $r = 0.781$; white/iridescent: $r = 0.784$; all $P < 0.001$, $N = 171$) and then ran separate
233 principal component analyses (PCAs), based on a covariance matrix, to condense data into a single PC for each
234 ornament type, each of which obtained Eigenvalues > 1.0 (Eigenvalues, black: 1.568, 78.4% variance explained;
235 orange: 1.728, 86.4%; green: 1.793, 89.7%; blue: 1.792, 89.6%; violet: 1.781, 89.1%; white/iridescent: 1.784, 89.2%).

236 To answer the question of whether ornaments show microevolutionary divergence in response to the four
237 components of environmental variation considered here (prediction 1), we subjected the six PCs to MANCOVA
238 (operated as a multivariate general linear model, GLM). We conducted a preliminary analysis to confirm general
239 variation among populations and thus, included 'sampling site' as a fixed factor and body size (log-transformed
240 standard length, SL) as a covariate. We discovered significant differences among populations ($F_{56.000, 840.012} = 2.687$,
241 $P < 0.001$, Wilk's partial $\eta_p^2 = 0.119$) and as a function of male body size ($F_{7.000, 155.000} = 2.522$, $P = 0.018$, Wilk's
242 partial $\eta_p^2 = 0.102$), while the interaction effect was non-significant and hence, excluded from the final model ($F_{56.000,$
243 $796.930} = 1.112$, $P = 0.271$, Wilk's partial $\eta_p^2 = 0.056$). Therefore, we proceeded with our main analyses, this time using
244 the four previously published environmental PCs (Gomes-Silva et al. 2020b)—with pollution-related environmental
245 PC1 being of prime interest (prediction 1)—as well as body size (prediction 2) as predictor variables, coded as
246 covariates. This was followed by separate ANCOVAs of a similar model structure on single color PCs to identify the
247 source(s) of variation. In each case, we first ran a model with all possible two-way interactions, but removed non-
248 significant interaction terms from the final model. Throughout, effect strengths are provided as Wilk's partial η_p^2 .

249

250 **2.2.2 Total color difference of nuptial ornaments**

251 We screened the obtained data (i.e., L*-, a*- and b*-values) for a correlation structure, which was detected for 11 out
252 of 18 binary comparisons (61.1%) at the level of $P < 0.05$ and two more comparisons (11.1%) at $0.05 < P < 0.1$
253 (Pearson correlations, black: L* vs a*, $r = 0.072, P = 0.352$; L* vs b*, $r = 0.150, P = 0.050$; a* vs b*, $r = 0.140, P =$
254 0.068; orange: L* vs a*, $r = 0.235, P = 0.002$; L* vs b*, $r = 0.211, P = 0.006$; a* vs b*, $r = 0.307, P < 0.001$; green: L*
255 vs a*, $r = -0.555, P < 0.001$; L* vs b*, $r = -0.043, P = 0.577$; a* vs b*, $r = 0.094, P = 0.223$; blue: L* vs a*, $r = -0.189, P$
256 = 0.013; L* vs b*, $r = -0.434, P < 0.001$; a* vs b*, $r = -0.330, P < 0.001$; violet: L* vs a*, $r = 0.100, P = 0.192$; L* vs b*,
257 $r = -0.274, P < 0.001$; a* vs b*, $r = -0.517, P < 0.001$; white/iridescent: L* vs a*, $r = -0.293, P < 0.001$; L* vs b*, $r = -$
258 0.014, $P = 0.845$; a* vs b*, $r = -0.233, P = 0.002$; all $N = 171$). To obtain a single metric that expresses total color
259 differences, we this time refrained from using a factor reduction procedure (i.e., PCA) but rather decided to calculate
260 the more commonly used ΔE -values (Mokrzycki and Tatol 2011). One possible approach to express differences in
261 total coloration (ΔE) would have been to use a standard color template for comparison. This, however, raises the
262 question as to what the expected L*a*b*-values of a 'standard' ornament for any given ornament type would actually
263 look like. Hence, we used the following approach: for each ornament type and color space (i.e., L*-, a*-, and b*-
264 values, separately), we first determined the general distribution pattern in the empirical data set by visual inspection.
265 As one example, black ornaments showed the expected distribution pattern of positive L*-values, with a strong skew
266 towards zero. We then determined the maximum (if data were skewed towards large and positive values, as was the
267 case, e.g., for a*-values in the case of orange ornaments) or minimum value (if the skew was in the direction of zero
268 or negative values) and used the respective extreme value to express ΔE for each individual and ornament type as:

269
$$\Delta E = \text{square root} [(L^*_{\text{observed}} - L^*_{\text{maximum}})^2 + (a^*_{\text{observed}} - a^*_{\text{maximum}})^2 + (b^*_{\text{observed}} - b^*_{\text{maximum}})^2]$$

270 Hence, the obtained data expressed differences in total coloration of each ornament type between each
271 individual male in our data set and the most extremely colored ornament that was observed, with large ΔE -values
272 representing less colorful males.

273 Before we conducted our main analyses, we again confirmed general variation among populations and thus,
274 ran a preliminary MANCOVA that detected significant population differences ($F_{48.000, 771.648} = 3.238, P < 0.001$, Wilk's
275 partial $\eta_p^2 = 0.140$), but no statistically significant effect of male body size ($F_{6.000, 156.000} = 2.064, P = 0.060$, Wilk's
276 partial $\eta_p^2 = 0.074$). Again, the interaction term was excluded as it was not significant ($F_{48.000, 732.284} = 0.847, P =$
277 0.760 , Wilk's partial $\eta_p^2 = 0.043$). To answer the question of whether nuptial ornaments show plasticity in response to
278 environmental variation (predictions 3, 4), we followed the same approach as described for ornament numbers, with
279 an initial MANCOVA confirming variation along the four PCs representing environmental/pollution-related variation
280 ([Gomes-Silva et al. 2020b](#)). This was again followed by separate ANCOVAs for each ornament type to identify the
281 source(s) of variation. We depict significant model effects by plotting unstandardized residuals, corrected for all other
282 model terms, against the respective covariate of interest.

283

284 **3. Results**

285 **3.1 Evolutionary divergence: ornament numbers and percent body cover**

286 **3.1.1 Overall variation along environmental PCs**

287 When we subjected our data on ornament numbers and percent thusly colored body surface (condensed
288 into one PC per ornament type) to MANCOVA, no significant effect of environmental PC4 nor any
289 significant interaction effects were uncovered (Table 1a). By contrast, and in agreement with predictions 1a
290 and 2, the remaining three environmental PCs (PC1–PC3) as well as male body size (SL) all had significant
291 effects, with estimated effect strengths (Wilks' partial η_p^2) ranging from 0.098 to 0.132 (Table 1a). Based on
292 this result, we proceeded with a set of single-trait ANCOVAs to identify the source(s) of variation.

293

294 **3.1.2 Pollution-related effects**

295 In our *post-hoc* ANCOVAs for each ornament type separately, no significant interaction terms were
296 uncovered (Table 1b-g). Focusing on the main effect of environmental PC1—our explanatory variable
297 related to environmental pollution (Gomes-Silva et al. 2020b)—we detected a significant effect in the case
298 of violet ornaments (Table 1f). A tendency towards such a pattern (*i.e.*, $0.05 < P < 0.1$) was also detected
299 for black, green, blue, and white/iridescent ornaments, even though the results were not statistically
300 significant (Table 1b,d,e,g). When we plotted residuals (corrected for other model terms) against
301 environmental PC1, it became evident that violet ornamentation increased as pollution levels intensified
302 (Fig. 1b). Note, however, that the degree of determination (R^2) of all *post-hoc* partial linear regressions—
303 here and in subsequent single-trait analyses—was low (Fig. 1b).

304

305 **3.1.3 Additional environmental effects**

306 Environmental PC2, which received high axis loadings from dissolved oxygen concentrations and water
307 velocity, as well as (in opposing direction) water temperature (Gomes-Silva et al. 2020b), had significant
308 effects on black, orange, and blue ornaments (Table 1b,c,e). We visualized those effects by plotting
309 residuals against environmental PC2 and in all cases, found residual values to decrease with increasing
310 values of environmental PC2 (Fig. 2a-c; here and throughout, please note again the low R^2 -values of *post-*
311 *hoc* linear regressions). Including information on axis loadings (Gomes-Silva et al. 2020b), this result can
312 be interpreted as males sporting fewer black, orange and blue ornaments in populations exposed to a more
313 stagnant flow regime, with low levels of oxygen and elevated water temperatures.

314 Environmental PC3—a correlate mainly of water depth (Gomes-Silva et al. 2020b)—had significant
315 effects on black, orange and violet ornaments (Table 1b,c,f). Residual analysis suggests that males
316 developed more ornaments of those three types in deeper stream sections (Fig. 2d-f).

317 Finally, environmental PC4 had a significant effect on violet ornaments (Table 1f). When we
318 visualized the relationship using residuals, a decrease with increasing values of environmental PC4 (*i.e.*,
319 towards higher altitudes but less oxygenated conditions; [Gomes-Silva et al. 2020b](#)) was observed (Figure
320 2g).

321

322 **3.1.4 Effect of male body size**

323 We detected an effect of male body size in the case of green, blue and violet ornaments (Table 1d,e,f); a
324 tendency (*i.e.*, $0.05 < P < 0.1$) was also detected for black ornaments (Table 1b). In agreement with
325 prediction 2, residual analyses confirmed that larger males sported more ornaments in all three cases (Fig.
326 3a-c).

327

328 **3.2 Phenotypic plasticity: total color differences of different ornaments**

329 **3.2.1 Overall variation along environmental PCs**

330 In our MANCOVA using total color differences (ΔE) of all six ornament types as the dependent variables,
331 environmental PC2, male body size, and all interaction terms were non-significant (Table 2a). By contrast,
332 and conforming to prediction 3a, we discovered significant effects of environmental PCs1, 3, and 4, with
333 Wilk's partial η^2 -values ranging from 0.112 to 0.171 (Table 2a). In partial disagreement with prediction 4,
334 we found body size to have no significant effect in our MANCOVA (Table 2a; but see below for effects in
335 single-trait analyses). Again, we proceeded with single-trait ANCOVAs to identify the source(s) of variation.

336

337 **3.2.2 Pollution-related effects**

338 We detected no statistically significant effects along pollution-related environmental PC1 for most ornament
339 types (Table 2). However, the strongest effect we detected in our entire set of single-trait analyses

340 (compare F -ratios and partial η_p^2 in Tables 1b-g and 2b-g) was indeed that of PC1 on the ΔE -values of
341 white/iridescent color patterns (Table 2a). Visualization of the effect suggests that ΔE -values decreased
342 with increasing values of environmental PC1—in other words: as pollution levels intensified, males tended
343 to be increasingly similar to the most extreme white/iridescent ornament we used as a reference value to
344 calculate ΔE (Fig. 4a,b). Just as in our previous analyses, however, the degree of determination (R^2) of
345 post-hoc partial linear regressions was low (Figs 4-6).

346 In the case of white/iridescent ornaments, we also detected a weak, albeit statistically significant
347 effect of the interaction of PC1 \times SL (Table 1g). When we split the data (residuals) by the empirical mean
348 value of male body size, we found the aforementioned effect of males sporting whiter/more iridescent
349 ornaments with increasing pollution levels to become evident in males of a body size \leq the empirical mean
350 (Pearson correlation: $r_P = -0.222$, $P = 0.026$, $N = 100$), but not in males larger than the mean ($r_P = -0.024$, P
351 = 0.844, $N = 71$).

352

353 **3.2.3 Additional environmental effects**

354 We found ΔE -values of green ornaments to be affected by environmental PC2 (Table 2d). Increasing ΔE -
355 values with increasing values of environmental PC2 suggests that green coloration became weaker in river
356 sections with higher temperatures, lower dissolved oxygen and reduced stream velocities (Fig. 5a).

357 Finally, ΔE -values of white/iridescent ornaments decreased along environmental PC3 (Table 2g;
358 Fig. 5b) but increased along environmental PC4 (Fig. 5c). Including information on axis loadings ([Gomes-](#)
359 [Silva et al. 2020b](#)), and remembering that small ΔE -values characterize more brightly colored individuals,
360 these results can jointly be interpreted as males becoming whiter/more iridescent in lowland river sections
361 with a deeper water column and higher dissolved oxygen.

362

363 **3.2.4 Effects of male body size**

364 We found ΔE -values of violet ornaments to vary as a function of male body size (Table 2d). A non-

365 significant tendency towards such a pattern (*i.e.*, $0.05 < P < 0.1$) was also detected for black and blue

366 ornaments (Table 2b,e). Congruent with our prediction 4, residual analysis found ΔE -values for violet

367 ornaments to decrease with increasing body size, suggesting that large males were more colorful (Fig. 6).

368

369 **4. Discussion**

370 **4.1 Pollution affects nuptial ornaments of male guppies**

371 Our present study asked whether not only microevolutionary change (Gomes-Silva et al. 2020a; Zhou et al.

372 2022), but also phenotypic plasticity (Richards et al. 2006; Smith 2009; Engel et al. 2011; Hendry 2016)

373 contributes to the diversification of male nuptial ornaments of invasive guppies exposed to water pollution,

374 exemplified by populations inhabiting the Brazilian Rio Uberabinha. Focusing on a model organism in

375 sexual selection (Houde 1997; Magurran 2005) with a pronounced polymorphism of male nuptial

376 ornaments (Endler 1980; Kemp et al. 2009) and numerous natural or invasive populations occurring in

377 polluted stream sections (Widianarko et al. 2000; Rolshausen et al. 2015; de Carvalho et al. 2019; Santi et

378 al. 2019, 2021), we first considered a metric that largely reflects microevolutionary (*i.e.*, genetic) population

379 divergence: numeric frequencies of violet ornaments increased as water pollution intensified, while black,

380 orange, blue and violet ornaments responded to additional components of environmental variation. Next,

381 we considered a metric that likely captures signatures of plasticity. We detected variation of ΔE along the

382 examined pollution gradient in the case of white/iridescent ornaments, with fish becoming more brightly

383 colored at more polluted sites. White/iridescent and green ornaments also responded to additional

384 components of environmental variation.

385 Even though our present study was based on relatively few ($N = 9$) population samples, our sample
386 size was sufficient to confirm statistically significant effects of pollution-related predictor variables on
387 population differentiation previously detected in a comparison of more ($N = 26$) Rwandan sampling sites
388 (Gomes-Silva et al. 2020a). This could indicate that pollution gradients are repeatedly accompanied by
389 concurrent gradients in male nuptial color ornaments of guppy populations exposed to them, even though
390 the exact nature of the respective change(s) will likely differ geographically, as the kind of pollution and co-
391 occurring selection pressures will be different (see our discussion of not pollution-related effects below and
392 in Gomes-Silva et al. 2020a). We encourage future studies that quantify the patterns detected here and in
393 Gomes-Silva et al. (2020a) across a broader geographic scale and across different types of pollution
394 gradients to address these questions. Moreover, our study is correlational in nature, *i.e.*, it reports
395 associations between environmental parameters and ornament metrics *in situ*. This prevents us from
396 drawing conclusions regarding the causation of any of the observed effects, for which controlled field or
397 laboratory exposure experiments would be necessary. With this in mind, the following discussion provides
398 but an attempt to *post hoc* explain the nature of some pollution-related (and other) ecological factors acting
399 as agents of microevolutionary change through selection (prediction 1) and/or by inducing variation through
400 plasticity (prediction 3). Notably, we found the strongest of all statistically significant effects in analyses of
401 plastic traits.

402 Male size (*i.e.*, SL) had a significant effect in several of our analyses but always revealed the same
403 pattern, namely that larger males were overall more colorful than smaller ones, thus matching our
404 predictions 2 and 4. Since male guppies have only limited growth after reaching maturity (Snelson 1989),
405 larger size is usually a result of juvenile rather than adult growth. However, previous studies did not report
406 increasing ornamentation in larger males. While the pattern uncovered here is thus somewhat surprising, it
407 could be directly related to pollution: maintenance of homeostasis while dealing with the adverse effects of
408 pollution will be costly (Riesch et al. 2015), and not surprisingly, fish body size is often reduced in polluted

409 waters because of impaired growth (Santi et al. 2019; Gomes-Silva et al. 2020a; but see Santi et al. 2021).
410 In this context, our findings might provide a basis to address a key assumption of sexual selection theory,
411 namely that males with certain beneficial allele combinations ('good genes'-theory; Krebs and Davies 2009)
412 should be overall healthier and thus able to invest more into both, growth and reproduction, including mate
413 attraction. This interpretation would also align with the observed interaction effect of 'PC1 × SL' in the case
414 of white/iridescent ornament plasticity (ΔE -values), where pollution-effects became evident in small- but not
415 in large-bodied males.

416 The fact that body-size effects were uncovered here but not in other studies may allude towards
417 'good genes'-mechanisms attaining a greater importance during the early stages of the colonization of (and
418 adaptation to) polluted waters. Could female mate choice for the respective carriers of 'good genes' explain
419 why violet ornaments increased evolutionarily in more polluted waters? As a starting point for future
420 research on female mate choice in the context of water pollution, we envision studies that cross-rear guppy
421 males (ideally sorted by color-phenotype) under polluted vs. non-polluted conditions and conduct binary
422 mate choice (e.g., association preference) tests using both types of males as stimuli (Houde 1997). This
423 might answer the question of whether females generally base their mate choices on condition-dependent
424 traits (Grether 2000; Grether et al. 2005; Fisher and Rosenthal 2006)—potential indicators of males' ability
425 to withstand pollution (i.e., 'good genes'). Studies comparing female preferences across different
426 populations could then ask whether female preferences for condition-dependent traits increased in strength
427 in populations inhabiting polluted waters (*Poecilia mexicana* in naturally H₂S-toxic waters: Plath et al.
428 2005). Comparative studies could also ask if the observed microevolutionary changes towards more violet
429 ornamentation under more polluted conditions coincide with an alteration of female preferences for this trait
430 (as shown for other other ornamental traits, e.g., in *Haplochromis* cichlids: Seehausen and van Alphen
431 1998; *Poecilia mexicana*: Bierbach et al. 2013). Those studies could be followed by digital manipulations of

432 male nuptial ornaments on virtual stimulus males to identify the traits affecting female mating decisions
433 (e.g., [Greenway et al. 2016](#)).

434

435 **4.2 Phenotypic plasticity and contemporary (rapid) evolution of color 436 ornaments**

437 The visible color pattern of an organism is usually the result of a complex interplay of multiple different color
438 components (e.g., [Kottler et al. 2014](#)) and in fishes, these color components are provided by five different
439 pigment cell types, or chromatophores. They consist of the black melanophores (containing eumelanin), the
440 yellow to orange xanthophores (containing carotenoids and pteridines), the red erythrophores (also
441 containing carotenoids and pteridines), the blue- to green-iridescent iridophores (containing reflective
442 guanine crystals) and the white leucophores (containing uric acid; [Braasch et al. 2008](#); [Kottler et al. 2014](#);
443 [Luo et al. 2021](#); [Parichy 2021](#)). In Trinidadian guppies, natural and sexual selection act antagonistically,
444 whereby more colorful males are favored by sexual selection via mate attraction but less colorful males by
445 natural selection through predation ([Endler 1983](#)) and this antagonistic interaction is largely responsible for
446 the observed color variation between populations ([Endler 1980](#)). Moreover, female mate choice has been
447 shown to stabilize the observed male color polymorphism through negative frequency-dependent selection,
448 in a way that females prefer to mate with rare color phenotypes ([Hughes et al. 2013](#); [Potter et al. 2023](#)). We
449 argue that this might partly explain the low degree of determination (R^2) in *post-hoc* regression models in
450 our present study. For example, while water pollution (or an altered female preference for males sporting
451 violet ornaments, please see 4.1) appears to drive violet ornaments towards different population means,
452 female mate choice for rare male phenotypes will counter this effect, thereby weakening the observed
453 effect strength in our analyses.

454 While extensive research has investigated the effects of different kinds of pollution on the
455 melanophores, xanthophores and erythrophores in guppies (e.g., [Berkowitz 1941](#); [Toft and Baatrup 2001](#);
456 [Zhang et al. 2019](#)), data are scarce as to how it might affect iridophores and leucophores. Moreover, most
457 previous research has outlined an overall decrease in coloration in polluted environments (e.g., [Toft and](#)
458 [Baatrup 2001](#); [Zhang et al. 2019](#)), while we report that certain components of pigmentation actually
459 increase in our study system. Specifically, we found an increase in the number of violet ornaments and the
460 proportion of violet body cover as well as in the strength of white/iridescent ornamentation with increasing
461 levels of pollution. The patterning of ornamentation on the body as well as the size of different ornaments
462 have previously been shown to be highly heritable (e.g., [Winge 1922](#); [Haskins and Haskins 1951](#); [Kodric-](#)
463 [Brown 1989](#); [Houde 1992](#)). Thus, the differences in coverage of violet body ornaments we discovered here
464 suggests heritable changes via rapid contemporary evolution ([Reznick et al. 2019](#)) in these invasive
465 populations exposed to aquatic pollution, likely within few decades. Increased somatic (*i.e.*, mitotic)
466 mutation rates in populations exposed to high pollution levels have been demonstrated using cytonuclear
467 methods ([Gomes-Silva et al. 2020b](#)) and assuming that this also applies to the germline, it should arguably
468 increase their evolvability.

469 Violet coloration is likely the result of a combination of reds/oranges produced by xanthophores
470 and erythrophores and the blues produced by iridophores ([Sköld et al. 2016](#)). However, since we did not
471 uncover changes in orange or red coloration, the increases in violet are likely to be the result of increases
472 in the blue components, *i.e.*, changes in iridophores, and thus, guanine platelet crystals and other purines
473 ([Braasch et al. 2008](#); [Kottler et al. 2014](#); [Sköld et al. 2016](#); [Luo et al. 2021](#); [Parichy 2021](#)). A similar effect of
474 increasing blueish coloration in more polluted sites was also found by Gomes-Silva et al. ([2020a](#)) who
475 investigated pigmentation patterns of guppies exposed to domestic waste-water and cattle-dung pollution in
476 Rwanda. We refrain from more detailed *post-hoc* explanations for both, the mechanisms at play and the
477 selective forces behind the observed microevolutionary change, as the nature of our study (*i.e.*, exposure to

478 diffuse pollution by a variety of chemical pollutants alongside a potential magnitude of further unquantified
479 ecological variation) precludes ruling out even epigenetic effects (e.g., [Hou et al. 2022](#)) causing parts of the
480 observed variation. Examining the visual ecology of signaler-receiver interactions under polluted versus
481 non-polluted conditions (e.g., signal transmission properties and potential receiver biases in murky waters)
482 emerges as a promising field of future research (see [Endler 1991, 1992](#); [Seehausen et al. 1997](#); [Candolin et](#)
483 [al. 2016](#)).

484 Increases in the strength of pigmentation, by contrast, are usually associated with plastic changes
485 ([Toft and Baatrup 2001](#); [Grether 2000](#); [Zhang et al. 2019](#)), although we cannot discount that some aspects
486 of color intensity might also be linked to microevolutionary change, e.g., via directional selection for a
487 specific color phenotype in more polluted environments. White/iridescent ornamentation, which we interpret
488 to show plastic responses along the pollution gradient, is derived from leucophores and iridophores, and
489 thus ultimately from guanine platelet crystals and uric acid ([Braasch et al. 2008](#); [Kottler et al. 2014](#); [Sköld et](#)
490 [al. 2016](#); [Luo et al. 2021](#); [Parichy 2021](#)). But how could pollution result in an increased whiteness when
491 other studies confirm, e.g., the expected developmental inhibition of male secondary sexual characters as a
492 result of xestrogen exposure ([Toft and Baatrup 2001](#); [Ward and Blum 2012](#)). Likewise, general
493 challenges to physiological homeostasis should result in reduced (not increased) expression of male nuptial
494 ornamentation ([Johnstone 1995](#); [Cotton et al. 2006](#); [Svensson and Wong 2011](#); [Ward and Blum 2012](#)). As
495 outlined before, our present study represents a comparative approach using wild populations, as opposed
496 to controlled exposure studies under laboratory conditions. This precludes an in-depth discussion as to how
497 exactly differences in nutrient availability across sampling sites, or alterations of the biosynthesis,
498 catabolism, or forms of intracellular deposition of the involved pigments, to mention but some examples,
499 might be involved in creating the observed variation. It is tempting to speculate whether a reduction of
500 other, co-occurring (darker) pigments holds responsible for the increased whiteness of guppy ornaments
501 under more polluted conditions. Moreover, [de Carvalho et al. \(2019\)](#) found guppies from another part of

502 Brazil to assimilate carbon directly from industrial and domestic sewage, alluding to potential diet-related
503 pathways for the ornamentation patterns we found here. This could be addressed in detailed analyses of
504 the chemical compositions of ornaments across populations.

505 Research into the manifold ways by which water pollution could affect fish populations exposed to
506 it is still a relatively new, emerging field ([Oziolo and Matson 2015](#); [Candolin 2019](#)), and several of the
507 interpretations we outline above remain speculative until more detailed information on the involved
508 populations' evolutionary ecology becomes available. For instance, a follow-up study is being conducted in
509 our team to provide information on behavioral differences between these populations (*i.e.*, boldness,
510 activity and sociability/shoaling tendencies: Gomes-Silva et al. unpublished data). Likewise, another study
511 from our team will shed light on male and female life histories, including investment into reproduction (*i.e.*,
512 reproductive allocation for females and gonosomatic index for males; Riesch et al. unpublished data).

513

514 **4.3 Effects of not pollution-related ecological variables**

515 Finally, while our results meet *a priori* predictions with respect to their dependencies on water pollution—
516 the focus of our present study—an interpretation of statistically significant effects attributable to additional
517 components of environmental variation (PCs 2-4; [Gomes-Silva et al. 2020b](#)) necessarily remains less
518 straightforward. Based on our repeated argument of the correlational nature of our study, we refrain from
519 possible speculation with respect to plastic responses (ΔE). Regarding microevolutionary divergence, we
520 found black, orange and blue ornaments to be reduced in stagnant river sections, while blue, orange and
521 violet ornaments were reduced in shallow river sections. Considering the effects of water depth, previous
522 studies found the cichlid *Pundamilia pundamilia* in Lake Victoria to prefer shallow-water breeding grounds,
523 where blue light dominates, while the more reddish sister species *P. nyererei* adapted to deeper parts of
524 the lake with more red light ([Seehausen et al. 2008](#)). However, the same effect is unlikely to explain the

525 microevolutionary divergence of ornamentation reported here, as guppies do not penetrate the deep water
526 column to the extent seen in those cichlids.

527 Could our findings, therefore, be a result of spatial variation in the type(s) and intensity of
528 predation? Gomes-Silva et al. (2020b) confirmed spatial variation of fish communities along the examined
529 pollution gradient but certainly did not provide enough information from which to draw conclusions
530 regarding predation pressure and intensity. Studies on the evolution of Trinidadian guppies demonstrate
531 the importance of information regarding what species of piscine predators actually consume guppies and
532 how their sensory biases and prey preferences (Godin and McDonough 2003) translate into differential
533 survival probabilities of guppy color phenotypes (Olendorf et al. 2006; Gordon et al 2015). However, also
534 crustacean predation has been suggested as another vital, albeit largely overlooked factor (Magurran and
535 Seghers 1990; Klaus and Plath 2011). Other poeciliids are also under intense avian predation (Riesch et al.
536 2010; Lukas et al. 2021), or even predation by large-bodied spiders (Horstkotte et al. 2010). In our present
537 study, violet ornamentation actually increased from headwaters towards lowland sections, which likely
538 harbor more piscine predators (Haskins et al. 1961; Endler 1980, 1983, 1995; Winemiller et al. 1990;
539 Houde 1997; Kemp et al. 2008), yet again highlighting the need for an in-depth examination and
540 quantification of (ideally) all co-occurring predators, including often overlooked predators such as the very
541 common chelid water turtle *Phrynosoma geoffroanus*.

542

543 **5. Conclusions**

544 Our present study adds to a growing body of literature suggesting that pollution (and other forms of man-
545 made habitat alterations) has the potential to alter the selective landscape under which populations evolve,
546 far beyond the level of mere adaptation to cope with the pollutants (i.e., potential evolution of tolerance or
547 detoxification mechanisms). Specifically, studying components of sexual selection via mate attraction

548 (nuptial ornaments), we find signatures of microevolutionary divergence, directly alluding to altered
549 evolutionary trajectories, but we highlight that also those effects we interpret as being largely plastic will
550 likely leave their future evolutionary footprint in the populations in which they occur.

551

552 **Acknowledgements**

553 The authors wish to thank Guilherme Henrique Targino de Menezes, Luiz Paulo Pires, Bruna Santos, Danyele Mendes Oliveira
554 and Pedro Henrique Machado for help during field work. Financial support came from Northwest A&F University (Z111021403)
555 and the Province of Shaanxi (A289021611, both to M.P.)

556

557 **Authors' contributions**

558 TW, BBP, RO, SISM, RR and MP conceived the project outline (conceptual and analytical framework). GG-S, KL, BC, VSVS,
559 BBP, RO and MP collected samples. GG-S and EC analyzed color photos and conducted statistical analyses under the
560 supervision of RR and MP. GG-S, RR, EC and MP drafted the first manuscript version, which received critical input from all
561 authors.

562

563 **Ethical statement**

564 All experiments were performed in accordance with relevant regulations of the Federal Republic of Brazil (CEUA protocol
565 number 106/1).

566

567 **Data availability**

568 The datasets generated and/or analyzed for the current study are available online at <https://doi.org/10.17637/rh.29376452>.

569

570 **Declaration of competing interest**

571 The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
572 influence the work reported in this paper.

573

574 **References**

575 Bartz R, Heink U, Kowarik I (2010) Proposed definition of environmental damage illustrated by the cases of genetically modified
576 crops and invasive species. Conserv Biol 24: 675-681. <https://doi.org/10.1111/j.1523-1739.2009.01385.x>

577

578 Berkowitz P (1941) The effects of estrogenic substances in the fish (*Lebistes reticulatus*). J Exp Zool 87: 233-243.
579 <https://doi.org/10.3181/00379727-36-9252P>

580

581 Bierbach D, Penshorn M, Hamfler S, Herbert DB, Appel J, Meyer P, Slattery P, Charaf S, Wolf R, Völker J, Berger EAM, Dröge
582 J, Wolf K, Riesch R, Arias-Rodriguez L, Indy JR, Plath M (2013) Gradient evolution of body colouration in surface- and cave-
583 dwelling *Poecilia mexicana* and the role of phenotype-assortative female mate choice. BioMed Res Int 2013: 148348.
584 <https://doi.org/10.1155/2013/148348>

585

586 Booy O, Cornwall L, Parrott D, Sutton-Croft M, Williams F (2017) Impact of biological invasions on infrastructure. In Vilà M,
587 Hulme PE (Eds) *Impact of Biological Invasions on Ecosystem Services*. Springer International, Cham, pp. 235-247.
588 https://doi.org/10.1007/978-3-319-45121-3_15
589

590 Braasch I, Wolff J-N, Schartl M (2008) The evolution of teleost pigmentation and the fish-specific genome duplication. *J Fish Biol*
591 73: 1891-1918. <https://doi.org/10.1111/j.1095-8649.2008.02011.x>
592

593 Bueno ML, Heringer G, Reis de Carvalho D, Robinson TB, dos Santos Pompeu P, Zenni RD (2023) Ecosystem variables
594 importance in the presence and abundance of a globally invasive fish. *Sci Tot Environ* 876: 162795.
595 <https://doi.org/10.1016/j.scitotenv.2023.162795>
596

597 Candolin U (2019) Mate choice in a changing world. *Biol Rev* 94: 1246-1260. <https://doi.org/10.1111/brv.12501>
598

599 Candolin U, Tukiainen I, Bertell E (2016) Environmental change disrupts communication and sexual selection in a stickleback
600 population. *Ecology* 97: 969-979. <https://doi.org/10.1890/15-1090.1>
601

602 Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. *Trends Ecol Evol* 20: 110.
603 <https://doi.org/10.1016/j.tree.2005.01.003>
604

605 Cotton S, Small J, Pomiankowski A (2006) Sexual selection and condition-dependent mate preferences. *Curr Biol* 16(17): 755-
606 765. <https://doi.org/10.1016/j.cub.2006.08.022>
607

608 Crooks JA, Chang AL, Ruiz GM (2011) Aquatic pollution increases relative success of invasive species. *Biol Invas* 13: 165-176.
609 <https://doi.org/10.1007/s10530-010-9799-3>
610

611 Dayton GH (2019) Water availability. In Fath B (Ed.), *Encyclopedia of Ecology (Second Edition)*. Elsevier, New York, pp. 656-
612 662. [eBook ISBN: 9780444641304](#)
613

614 de Carvalho DR, Flecker AS, Alves CBM, Sparks JP, Pompeu PS (2019) Trophic responses to aquatic pollution of native and
615 exotic livebearer fishes. *Sci Total Environ* 681: 503-515. <https://doi.org/10.1016/j.scitotenv.2019.05.092>
616

617 Deacon A, Ramnarine IW, Magurran AE (2011) How reproductive ecology contributes to the spread of a globally invasive fish.
618 *PLoS ONE* 6: e24416. <https://doi.org/10.1371/journal.pone.0024416>
619

620 Dias MS, de Faria IF, Guardo PCP, Teresa FB, de Podestá Uchoa de Aquino P, Quimbayo JP (2020) Historical distribution and
621 current drivers of guppy occurrence in Brazil. *J Fish Biol* 96: 877-885. <https://doi.org/10.1111/jfb.14271>
622

623 Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévéque C, Naiman RJ, Prieur-Richard A-H, Soto D,
624 Stiassny ML (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. *Biol Rev* 81: 163-182.
625 <https://doi.org/10.1017/S1464793105006950>
626

627 Endler JA (1978) A predator's view of animal color patterns, in: Hecht MK, Steere WC, Wallace B (Eds.), *Evolutionary Biology*.
628 Springer US, New York, 319-364. https://doi.org/10.1007/978-1-4615-6956-5_5
629

630 Endler JA (1980) Natural selection on color patterns in *Poecilia reticulata*. *Evolution* 34: 76-91. <https://doi.org/10.1111/j.1558-5646.1980.tb04790.x>
631

632 Endler JA (1983) Natural and sexual selection on color patterns in poeciliid fishes. *Environ Biol Fish* 9: 173-190.
633 <https://doi.org/10.1007/BF00690861>
634

635 Endler JA (1991) Variation in the appearance of guppy color patterns to guppies and their predators under different visual
636 conditions. *Vision Res* 31:587-608. [https://doi.org/10.1016/0042-6989\(91\)90109-I](https://doi.org/10.1016/0042-6989(91)90109-I)
637

638 Endler JA (1992) Signals, signal conditions, and the direction of evolution. *Am Nat* 139: S125-S153.
639 <https://doi.org/10.1086/285308>
640

641

642 Endler JA (1995) Multiple-trait coevolution and environmental gradients in guppies. *Trends Ecol Evol* 10:22-29.
643 [https://doi.org/10.1016/S0169-5347\(00\)88956-9](https://doi.org/10.1016/S0169-5347(00)88956-9)

644

645 Engel K, Tollrian R, Jeschke JM (2011) Integrating biological invasions, climate change and phenotypic plasticity. *Commun
646 Integrat Biol* 4(3): 247-250. <https://doi.org/10.4161/cib.4.3.14885>

647

648 Evans JP, Pilastro A (2011) Postcopulatory sexual selection. In Evans JP, Pilastro A, Schlupp I (Eds.), *Ecology and Evolution of
649 Poeciliid Fishes*. University of Chicago Press, pp. 197-208. <https://doi.org/10.7208/chicago/978022622769.001.0001>

650

651 Fisher HS, Rosenthal GG (2006) Hungry females show stronger mating preferences. *Behav Ecol* 17: 979-981.
652 <https://doi.org/10.1093/beheco/arl038>

653

654 Gallardo B, Clavero M, Sanchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. *Global
655 Change Biol* 22: 151-163. <https://doi.org/10.1111/gcb.13004>

656

657 Godin JG, McDonough H (2003) Predator preference for brightly colored males in the guppy: a viability cost for a sexually
658 selected trait. *Behav Ecol* 14: 194-200. <https://doi.org/10.1093/beheco/14.2.194>

659

660 Gomes-Silva G, Cyubahiro E, Wronski T, Riesch R, Apio A, Plath M (2020a) Water pollution affects fish community structure and
661 alters evolutionary trajectories of invasive guppies (*Poecilia reticulata*). *Sci Total Environ* 730: 138912.
662 <https://doi.org/10.1016/j.scitotenv.2020.138912>

663

664 Gomes-Silva G, Pereira BB, Liu K, Chen B, Santos VSV, de Menezes GHT, Pires LP, Santos BMT, Oliveira DM, Machado PHA,
665 de Oliveira Júnior RJ, de Oliveira AMM, Plath M (2020b) Using native and invasive livebearing fishes (Poeciliidae, Teleostei) for
666 the integrated biological assessment of pollution in urban streams. *Sci Total Environ* 698: 134336.
667 <https://doi.org/10.1016/j.scitotenv.2019.134336>

668

669 Gordon SP, Reznick DN, Arendt JD, Roughton A, Hernandez MNO, Bentzen P, Lopez-Sepulcre A (2015) Selection analysis on
670 the rapid evolution of a secondary sexual trait. *Proc R Soc Lond B* 282: 20151244. <https://doi.org/10.1098/rspb.2015.1244>

671

672 Greenway R, Drexler S, Arias-Rodriguez L, Tobler M (2016) Adaptive, but not condition-dependent, body shape differences
673 contribute to assortative mating preferences during ecological speciation. *Evolution* 70: 2809-2822.
674 <https://doi.org/10.1111/evo.13087>

675

676 Grether GF (2000) Carotenoid limitation and mate preference evolution: a test of the indicator hypothesis in guppies (*Poecilia
677 reticulata*). *Evolution* 54: 1712-1724. <https://doi.org/10.1111/j.0014-3820.2000.tb00715.x>

678

679 Grether GF, Kolluru GR, Rodd FH, de la Cerda J, Shimazaki K (2005) Carotenoid availability affects the development of a
680 colour-based mate preference and the sensory bias to which it is genetically linked. *Proc R Soc Lond B* 272: 2181-2188.
681 <https://doi.org/10.1098/rspb.2005.3197>

682

683 Haskins, CP, Haskins EF (1951) The inheritance of certain color patterns in wild populations of *Lebistes reticulatus* in Trinidad.
684 *Evolution* 5: 216-225. <https://doi.org/10.1111/j.1558-5646.1951.tb02780.x>

685

686 Haskins CP, Haskins EF, McLaughlin JJ, Hewitt RE (1961) Polymorphism and population structure in *Lebistes reticulatus*, a
687 population study. In Blair WF (Ed.) *Vertebrate speciation*. Texas Univ Press, Austin, pp. 320-395.

688

689 Hendry AP (2016) Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. *J Hered* 107: 25-41.
690 <https://doi.org/10.1093/jhered/esv060>

691

692 Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distribution of a wide range of taxonomic groups are expanding
693 polewards. *Global Change Biol* 12: 450-455. <https://doi.org/10.1111/j.1365-2486.2006.01116.x>

694

695 Horstkotte J, Riesch R, Plath M, Jäger P (2010) Predation by three species of spiders on a cave fish in a Mexican sulphur cave.
696 *Bull Brit Arachnol Soc* 15(2): 55-58. <https://doi.org/10.13156/arac.2010.15.2.55>.

697

698 Hou Y, Wang LJ, Jin YH, Guo RY, Yang L, Li EC, Zhang JL (2022) Triphenyltin exposure induced abnormal morphological
699 colouration in adult male guppies (*Poecilia reticulata*). *Ecotoxicol Environ Safety* 242: 113912.
700 <https://doi.org/10.1016/j.ecoenv.2022.113912>

701

702 Houde AE (1992) Sex-linked heritability of a sexually selected character in a natural population of *Poecilia reticulata* (Pisces:
703 Poeciliidae) (guppies). *Heredity* 69: 229-235. <https://doi.org/10.1038/hdy.1992.120>

704

705 Houde AE (1997) *Sex, color and mate choice in guppies*. Princeton University Press. <https://doi.org/10.2307/j.ctvs32rtk>

706

707 Hudon J, Grether GF, Millie DF (2003) Marginal differentiation between the sexual and general carotenoid pigmentation of
708 guppies (*Poecilia reticulata*) and a possible visual explanation. *Physiol Biochem Zool* 76: 776-90. <https://doi.org/10.1086/378138>

709

710 Huffbauer RA, Facon B, Ravigné V, Turgeon J, Foucaud J, Lee CE, Rey O, Estoup A (2012) Anthropogenically induced
711 adaptation to invade (AI)I: contemporary adaptation to human-altered habitats within the native range can promote invasions.
712 *Evol Appl* 5: 89-101. <https://doi.org/10.1111/j.1752-4571.2011.00211.x>

713

714 Hughes KA, Houde AE, Price AC, Rodd FH (2013) Mating advantage for rare males in wild guppy populations. *Nature* 503: 108-
715 110. <https://doi.org/10.1038/nature12717>

716

717 Javahery S, Nekoubin H, Moradlu AH (2012) Effect of anaesthesia with clove oil in fish. *Fish Physiol Biochem* 38: 1545-1552.
718 <https://doi.org/10.1007/s10695-012-9682-5>

719

720 Johnstone RA (1995) Sexual selection, honest advertisement and the handicap principle: reviewing the evidence. *Biol Rev* 70(1):
721 1-65. <https://doi.org/10.1111/j.1469-185X.1995.tb01439.x>

722

723 Junqueira VM, Campos SCM (1998) Adaptation of the "BMWP" method for water quality evaluation to Rio das Velhas watershed
724 (Minas Gerais, Brazil). *Acta Limnol Bras* 10: 125-135. <https://actalb.org/article/6279b769782aad044755f4d4/pdf/alb-10-2-125.pdf>

725

726 Keith RA, Mitchell-Olds T (2019) Antagonistic selection and pleiotropy constrain the evolution of plant chemical defenses.
727 *Evolution* 73: 947-960. <https://doi.org/10.1111/evo.13728>

728

729 Kemp DJ, Reznick DN, Grether GF (2008) Ornamental evolution in Trinidadian guppies (*Poecilia reticulata*): insights from
730 sensory processing-based analyses of entire colour patterns. *Biol J Linn Soc* 95: 734-747. <https://doi.org/10.1111/j.1095-8312.2008.01112.x>

732

733 Kemp DJ, Reznick DN, Grether GF, Endler JA (2009) Predicting the direction of ornament evolution in Trinidadian guppies
734 (*Poecilia reticulata*). *Proc R Soc B* 276: 4335-4343. <https://doi.org/10.1098/rspb.2009.1226>

735

736 Khoo L, Lim TM, Chan WK, Phang VPE (1999) Linkage analysis and mapping of three sex-linked color pattern genes in the
737 guppy, *Poecilia reticulata*. *Zool Sci* 16: 893-903. <https://doi.org/10.2108/zsj.16.893>

738

739 Klaus S, Plath M (2011) Predation on a cave fish by the freshwater crab *Avotrichodactylus bidens* (Bott, 1969) (Brachyura,
740 Trichodactylidae) in a Mexican sulfur cave. *Crustaceana* 84(4): 411-418. <https://doi.org/10.1163/001121611X560853>

741

742 Kodric-Brown A (1989) Dietary carotenoids and male mating success in the guppy: an environmental component to female
743 choice. *Behav Ecol Sociobiol* 25: 393-401. <https://doi.org/10.1007/BF00300185>

744

745 Kottler VA, Koch I, Flötenmeyer M, Hashimoto H, Weigel D, Dreyer C (2014) Multiple pigment cell types contribute to the black,
746 blue, and orange ornaments of male guppies (*Poecilia reticulata*). *PLoS ONE* 9: e85647.
747 <https://doi.org/10.1371/journal.pone.0085647>

748

749 Krebs JR, Davies NB (Eds.) (2009) *Behavioural Ecology: An Evolutionary Approach*. John Wiley & Sons Inc, New York. ISBN:
750 [978-1-444-31362-8](https://doi.org/10.1002/9781444313628)

751

752 Kuhn K, Streit B (1994) Detecting sublethal effects of organophosphates by measuring acetylcholinesterase activity
753 in *Gammarus*. *Bull Environ Contam Toxicol* 53: 398-404. <https://doi.org/10.1007/BF00197232>

754
755 Lifshitz N, St Clair CC (2016) Coloured ornamental traits could be effective and non-invasive indicators of pollution exposure for
756 Conserv Physiol 4: cow028. <https://doi.org/10.1093/conphys/cow028>
757
758 Light T, Marchetti MP (2007) Distinguishing between invasions and habitat changes as drivers of diversity loss among
759 California's freshwater fishes. Conserv Biol 21: 434-446. <https://doi.org/10.1111/j.1523-1739.2006.00643.x>
760
761 Lockwood JL, Hoopes MF, Marchetti MP (2013) *Invasion Ecology*, second edition. Wiley-Blackwell. [ISBN: 978-1-118-57082-1](https://doi.org/10.1111/j.1523-1739.2006.00643.x)
762
763 Lukas J, Auer F, Goldhammer T, Krause J, Romanczuk P, Klamser P, Arias Rodriguez L, Bierbach D (2021) Diurnal changes in
764 hypoxia shape predator-prey interaction in a bird-fish system. Front Ecol Evol 9: 619193.
765 <https://doi.org/10.3389/fevo.2021.619193>
766
767 Luo M, Lu G, Yin H, Wang L, Atuganile M, Dong Z (2021) Fish pigmentation and coloration: molecular mechanisms and
768 aquaculture perspectives. Rev Aquacult 13: 2395-2412. <https://doi.org/10.1111/raq.12583>
769
770 Magurran AE (2005) *Evolutionary Ecology: The Trinidadian Guppy*. Oxford University Press.
771 <https://doi.org/10.1093/acprof:oso/9780198527855.001.0001>
772
773 Magurran AE, Seghers BH (1990) Population differences in predator recognition and attack cone avoidance in the guppy
774 *Poecilia reticulata*. Anim Behav 40: 443-452. [https://doi.org/10.1016/S0003-3472\(05\)80524-X](https://doi.org/10.1016/S0003-3472(05)80524-X)
775
776 Martínez C, Chavarría C, Shapre DMT, de León LF (2016) Low predictability of colour polymorphism in introduced guppy
777 (*Poecilia reticulata*) populations in Panama. PloS ONE 11: e0148040. <https://doi.org/10.1371/journal.pone.0148040>
778
779 Millar NP, Reznick DN, Kinnison MT, Hendry AP (2006) Disentangling the selective factors that act on male colour in wild
780 guppies. Oikos 113(1): 1-12. <https://doi.org/10.1111/j.0030-1299.2006.14038.x>
781
782 Mokrzycki W, Tatol M (2011) Color difference delta E—a survey. Mach Graph Vis 20: 383-411.
783 <https://api.semanticscholar.org/CorpusID:211008154>
784
785 Olendorf R, Rodd F, Punzalan D, Houde AE, Hurt C, Reznick DN, Hughes KA (2006) Frequency-dependent survival in natural
786 guppy populations. Nature 441: 633-636 <https://doi.org/10.1038/nature04646>
787
788 Oziolor EM, Matson CW (2015) Evolutionary toxicology: population adaptation in response to anthropogenic pollution. In: Riesch
789 R, Tobler M, Plath M (Eds.), *Extremophile fishes. Ecology, Evolution, and Physiology of Teleosts in Extreme Environments*.
790 Springer International, Cham, pp. 247-277. <https://doi.org/10.1111/j.1095-8312.2010.01522.x>
791
792 Parichy DM (2021) Evolution of pigment cells and patterns: recent insights from teleost fishes. Curr Opin Genet Dev 69: 88-96.
793 <https://doi.org/10.1016/j.gde.2021.02.006>
794
795 Potter T, Arendt J, Bassar RD, Watson B, Bentzen P, Travis J, Reznick DN (2023) Female preference for rare males is
796 maintained by indirect selection in Trinidadian guppies. Science 380: 309-312. <https://doi.org/10.1126/science.ade5671>
797
798 Pyke GH (2008) Plague minnow or mosquito fish? A review of the biology and impacts of introduced *Gambusia* species. Annu
799 Rev Ecol Evol Syst 39: 171-191. <https://doi.org/10.1146/annurev.ecolsys.39.110707.173451>
800
801 Reznick DA, Bryga H, Endler JA (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357-359.
802 <https://doi.org/10.1038/346357a0>
803
804 Reznick DN, Butler MJ, Rodd FH (2001) Life history evolution in guppies. VII. The comparative ecology of high- and low-
805 predation environments. Am Nat 157:126-140. <https://doi.org/10.1086/318627>
806
807 Reznick DN, Bassar R, Travis J, Rodd FR (2012) Life-history evolution in guppies VIII: the demographics of density regulation in
808 guppies (*Poecilia reticulata*). Evolution 66: 2903-15. <https://doi.org/10.1111/j.1558-5646.2012.01650.x>
809

810 Reznick DN, Losos J, Travis J (2019) From low to high gear: there has been a paradigm shift in our understanding of evolution.
811 Ecol Lett 22: 233-244. <https://doi.org/10.1111/ele.13189>

812

813 Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic
814 plasticity in plant invasions. Ecol Lett 9: 981-993. <https://doi.org/10.1111/j.1461-0248.2006.00950.x>

815

816 Riesch R, Orantr A, Dzienko J, Karau N, Schiessl, A, Stadler S, Wigh A, Earp C, Arias-Rodriguez L, Schlupp I, Plath M (2010)
817 Extreme habitats are not refuges: poeciliids suffer from increased aerial predation risk in sulphidic southern Mexican habitats.
818 Biol J Linn Soc 101: 417-426. <https://doi.org/10.1111/j.1095-8312.2010.01522.x>

819

820 Riesch R, Plath M, Schlupp I, Tobler M, Langerhans RB (2014) Colonisation of toxic environments drives predictable life-history
821 evolution in livebearing fishes (Poeciliidae). Ecol Lett 17: 65-71. <https://doi.org/10.1111/ele.12209>

822

823 Riesch R, Tobler M, Plath M (2015) *Extremophile fishes. Ecology, Evolution, and Physiology of Teleosts in Extreme Environments*. Springer International, Cham. <https://doi.org/10.1007/978-3-319-13362-1>

824

825 Rodd FH, Reznick DN (1991) Life history evolution in guppies: III. The impact of prawn predation on guppy life histories. Oikos.
826 62 (1): 13-19. <https://doi.org/10.2307/3545440>

827

828 Rolshausen G, Phillip DAT, Beckles DM, Akbari A, Ghoshal S, Hamilton PB, Tyler CR, Scarlett AG, Ramnarine I, Bentzen P,
829 Hendry AP (2015) Do stressful conditions make adaptation difficult? Guppies in the oil-polluted environments of southern
830 Trinidad. Evol Appl 8: 854-870. <https://doi.org/10.1111/eva.12289>

831

832 Ruell E, Handelman C, Hawkins C, Sofaer H, Ghalambor C, Angeloni L (2013) Fear, food and sexual ornamentation: plasticity
833 of colour development in Trinidadian guppies. Proc R Soc B 280: 20122019. <https://doi.org/10.1098/rspb.2012.2019>

834

835 Santi F, Bierbach D, Schartl M, Riesch R (2019) Life histories of guppies (*Poecilia reticulata* Peters, 1869: Poeciliidae) from the
836 Pitch Lake in Trinidad. Carrib J Sci 49: 255-262. <https://doi.org/10.18475/cjos.v49i2.a13>

837

838 Santi F, Vella E, Jeffress K, Deacon A, Riesch R (2021) Phenotypic responses to oil pollution in a poeciliid fish. Environ Pollut
839 290: 118023. <https://doi.org/10.1016/j.envpol.2021.118023>

840

841 Sato A, Kawata M (2020) Genetic segregation for male body coloration and female mate preference in the guppy. BMC Res Notes 13: 49. <https://doi.org/10.1186/s13104-020-4909-5>

842

843 Schirmel J, Bundschuh M, Entling MH, Kowarik I, Buchholz S (2016) Impacts of invasive plants on resident animals across
844 ecosystems, taxa, and feeding types. A global assessment. Global Change Biol 22: 594-603. <https://doi.org/10.1111/gcb.13093>

845

846 Seehausen O, van Alphen JJM (1998) The effect of male coloration on female mate choice in closely related Lake Victoria
847 cichlids (*Haplochromis nyererei* complex). Behav Ecol Sociobiol 42: 1-8. <https://doi.org/10.1007/s002650050405>

848

849 Seehausen O, Terai Y, Magalhaes I, Carleton K, Mrosso H, Miyagi R, Sluijs I, Schneider M, Maan M, Tachida H, Imai H, Okada
850 N (2008) Speciation through sensory drive in cichlid fish. Nature. 455: 620-6. <https://doi.org/10.1038/nature07285>.

851

852 Seehausen O, van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection.
853 Science. 277: 1808-1811. <https://doi.org/10.1126/science.277.5333.1808>.

854

855 Sköld HN, Aspengren S, Cheney KL, Wallin M (2016) Fish chromatophores—from molecular motors to animal behavior. Int Rev
856 Cell Mol Biol 321: 171-219. <https://doi.org/10.1016/bs.ircmb.2015.09.005>

857

858 Smith LD (2009) The role of phenotypic plasticity in marine biological invasions. In: Rilov G, Crooks JA (Eds.) *Biological
859 Invasions in Marine Ecosystems: Ecological, Management and Geographic Perspectives*. Springer, Berlin, pp. 177-202.
860 https://doi.org/10.1007/978-3-540-79236-9_10

861

862 Snelson Jr. FF (1989) Social and environmental control of life history traits in poeciliid fishes. In: Meffe GK, Snelson Jr FF (Eds.)
863 *Ecology and Evolution of Livebearing Fishes (Poeciliidae)*. Prentice Hall, Englewood Cliffs, pp. 149-161. <ISBN: 9780132227209>

864

865

866
867 Stockwell CA, Henkanaththegedara SM (2011) Evolutionary conservation biology. In: Evans JP, Pilastro A, Schlupp I (Eds.)
868 *Ecology and Evolution of Poeciliid Fishes*. University of Chicago Press, Chicago, pp. 128-141. [ISBN: 978-0-226-22274-5](#)
869
870 Svensson PA, Wong BBM (2011). Carotenoid-based signals in behavioural ecology: a review. *Behaviour* 148(2): 131-189.
871 <https://doi.org/10.1163/000579510X548673>
872
873 Thomas CD, Gillingham PK, Bradbury RB, Hill JK (2012) Protected areas facilitate species' range expansions. *Proc Natl Acad
874 Sci USA* 109: 14063-14068. <https://doi.org/10.1073/pnas.1210251109>
875
876 Toft G, Baatrup E (2001) Sexual characteristics are altered by 4-tert-octylphenol and 17 β -estradiol in the adult male guppy
877 (*Poecilia reticulata*). *Ecotoxicol Environ Safety* 48: 76-84. <https://doi.org/10.1006/eesa.2000.1985>
878
879 United Nations Environment Programm (2007) UNEP 2007 Annual Evaluation Report. UNEP.
880 <https://www.unep.org/resources/synthesis-reports/uneep-annual-evaluation-report-2007>
881
882 Wang Y, Tan W, Li B, Wen L, Lei G (2021) Habitat alteration facilitates the dominance of invasive species through disrupting
883 niche partitioning in floodplain wetlands. *Divers Distribut* 27: 1861-1871. <https://doi.org/10.1111/ddi.13376>
884
885 Ward JL, Blum MJ (2012) Exposure to an environmental estrogen breaks down sexual isolation between native and invasive
886 species. *Evol Appl* 5: 901-912. <https://doi.org/10.1111/j.1752-4571.2012.00283.x>
887
888 Widianarko B, van Gestel CAM, Verweij RA, van Straalen NM (2000) Associations between trace metals in sediment, water, and
889 guppy, *Poecilia reticulata* (Peters), from urban streams of Semarang, Indonesia. *Ecotoxicol Environ Safety* 46: 101-107.
890 <https://doi.org/10.1006/eesa.1999.1879>
891
892 Winemiller KO, Leslie M, Roche R (1990) Phenotypic variation in male guppies from natural inland populations: an additional test
893 of Haskins' sexual selection/predation hypothesis. *Environ Biol Fish* 29:179-191. <https://doi.org/10.1007/BF00002218>
894
895 Winge Ö (1922) One-sided masculine and sex-linked inheritance in *Lebiasina reticulatus*. *J Genet* 12: 145-162.
896 <https://doi.org/10.1007/BF02983078>
897
898 Zhang J-L, Zhang C-N, Li E-C, Jin M-M, Huang M-X, Cui W, Lin Y-Y, Shi Y-J (2019) Triphenyltin exposure affects mating
899 behaviors and attractiveness to females during mating in male guppies (*Poecilia reticulata*). *Ecotoxicol Environ Safety* 169: 76-
900 84. <https://doi.org/10.1016/j.ecoenv.2018.11.011>
901
902 Zhou L, Ouyang X, Zhao Y, Gomes-Silva G, Segura-Muñoz SI, Jourdan J, Riesch R, Plath M (2022) Invasive fish retain plasticity
903 of naturally selected, but diverge in sexually selected traits. *Sci Tot Environ* 811: 152386.
904 <https://doi.org/10.1016/j.scitotenv.2021.152386>
905
906 Zimmer C, Riesch R, Jourdan J, Bierbach D, Arias-Rodriguez L, Plath M (2018) Female choice undermines the emergence of
907 strong sexual isolation between locally adapted populations of Atlantic mollies (*Poecilia mexicana*). *Genes* 9: 232.
908 <https://doi.org/10.3390/genes9050232>
909
910

911 **Tables**

912 **Table 1**

913 Results from (a) MANCOVA using principal component (PC-)scores obtained from numbers and percent
 914 body cover of nuptial ornaments of *P. reticulata* males as dependent variables while including information
 915 from all six ornament types. Predictor variables (covariates) were four environmental PCs condensing
 916 information on geo-physical, physico-chemical, and pollution-related characteristics of the sampling sites—
 917 with PC1 capturing pollution-related effects (Gomes-Silva et al. 2020b)—as well as male body size
 918 (standard length, SL). All interaction effects were non-significant ($F < 1.029$, $P > 0.413$) and thus, removed
 919 from the final model. (b-g) Separate *post-hoc* ANCOVAs for each color ornament type. All interaction
 920 effects were again removed as they were non-significant ($F < 2.123$, $P > 0.147$). Effect strengths are
 921 provided as Wilk's partial η_p^2 and statistically significant effects are highlighted in bold font.

Explanatory variable	df	F	P	Wilks' partial η_p^2
(a) All ornament types				
Environmental PC1	6	3.134	0.004	0.121
Environmental PC2	6	3.463	0.002	0.132
Environmental PC3	6	2.455	0.020	0.098
Environmental PC4	6	1.216	0.297	0.051
SL	6	3.424	0.002	0.131
Error	160			
(b) Black ornaments				
Environmental PC1	1	3.477	0.064	0.021
Environmental PC2	1	14.614	< 0.001	0.081
Environmental PC3	1	12.238	0.001	0.069
Environmental PC4	1	0.701	0.404	0.004
SL	1	3.328	0.070	0.020
Error	165			
(c) Orange ornaments				
Environmental PC1	1	0.326	0.569	0.002
Environmental PC2	1	4.917	0.028	0.029
Environmental PC3	1	10.260	0.002	0.059
Environmental PC4	1	1.871	0.173	0.011
SL	1	0.019	0.892	0.000
Error	165			
(d) Green ornaments				
Environmental PC1	1	3.746	0.055	0.022
Environmental PC2	1	3.487	0.064	0.021
Environmental PC3	1	0.119	0.731	0.001
Environmental PC4	1	1.128	0.290	0.007
SL	1	4.438	0.037	0.026
Error	165			
(e) Blue ornaments				
Environmental PC1	1	2.769	0.098	0.017
Environmental PC2	1	4.079	0.045	0.024
Environmental PC3	1	0.090	0.765	0.001
Environmental PC4	1	0.936	0.335	0.006
SL	1	9.082	0.003	0.052
Error	165			

(f) Violet ornaments					922
Environmental PC1	1	9.495	0.002	0.054	923
Environmental PC2	1	0.411	0.523	0.002	924
Environmental PC3	1	4.698	0.032	0.028	925
Environmental PC4	1	6.395	0.012	0.037	926
SL	1	10.329	0.002	0.059	
Error	165				927
(g) White/iridescent ornaments					928
Environmental PC1	1	3.526	0.062	0.021	929
Environmental PC2	1	0.129	0.720	0.001	930
Environmental PC3	1	0.218	0.641	0.001	931
Environmental PC4	1	0.040	0.842	0.000	
SL	1	1.130	0.289	0.007	932
Error	165				933

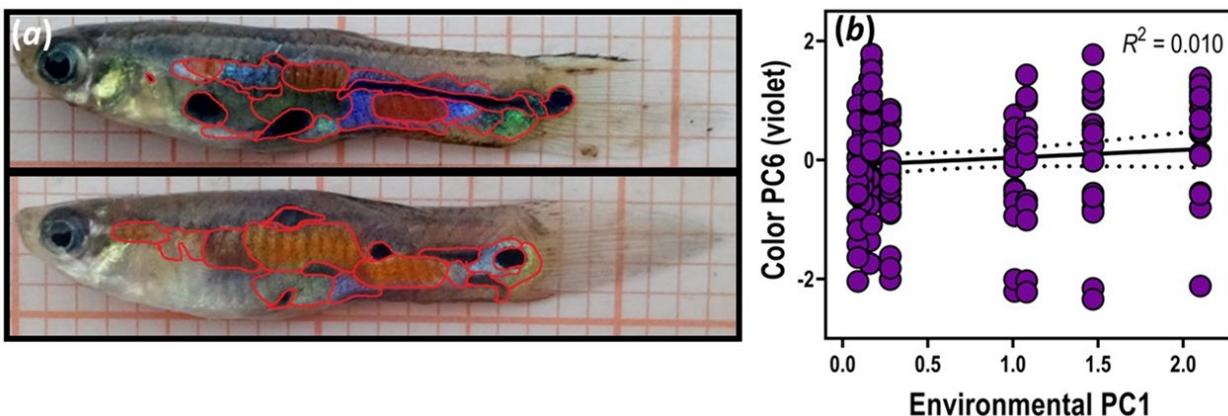
934

935

936

937 **Table 2**
 938 Results from (a) MANCOVA using differences in total coloration (ΔE) of nuptial ornaments of guppy males
 939 as dependent variables. We coded four environmental PCs condensing information on geo-physical,
 940 physico-chemical, and pollution-related characteristics of the sampling sites and male standard length (SL)
 941 as covariates, whereby PC1 captures pollution-related effects (Gomes-Silva et al. 2020b). All interaction
 942 effects were non-significant ($F < 1.668$, $P > 0.133$) and therefore, removed from the final model. (b-g)
 943 Separate *post-hoc* ANCOVAs for the six different ornament types. Non-significant interaction effects were
 944 removed from the final models ($F < 2.802$, $P > 0.096$). Effect strengths are given as Wilk's partial η_p^2 and
 945 statistically significant effects are highlighted in bold font.

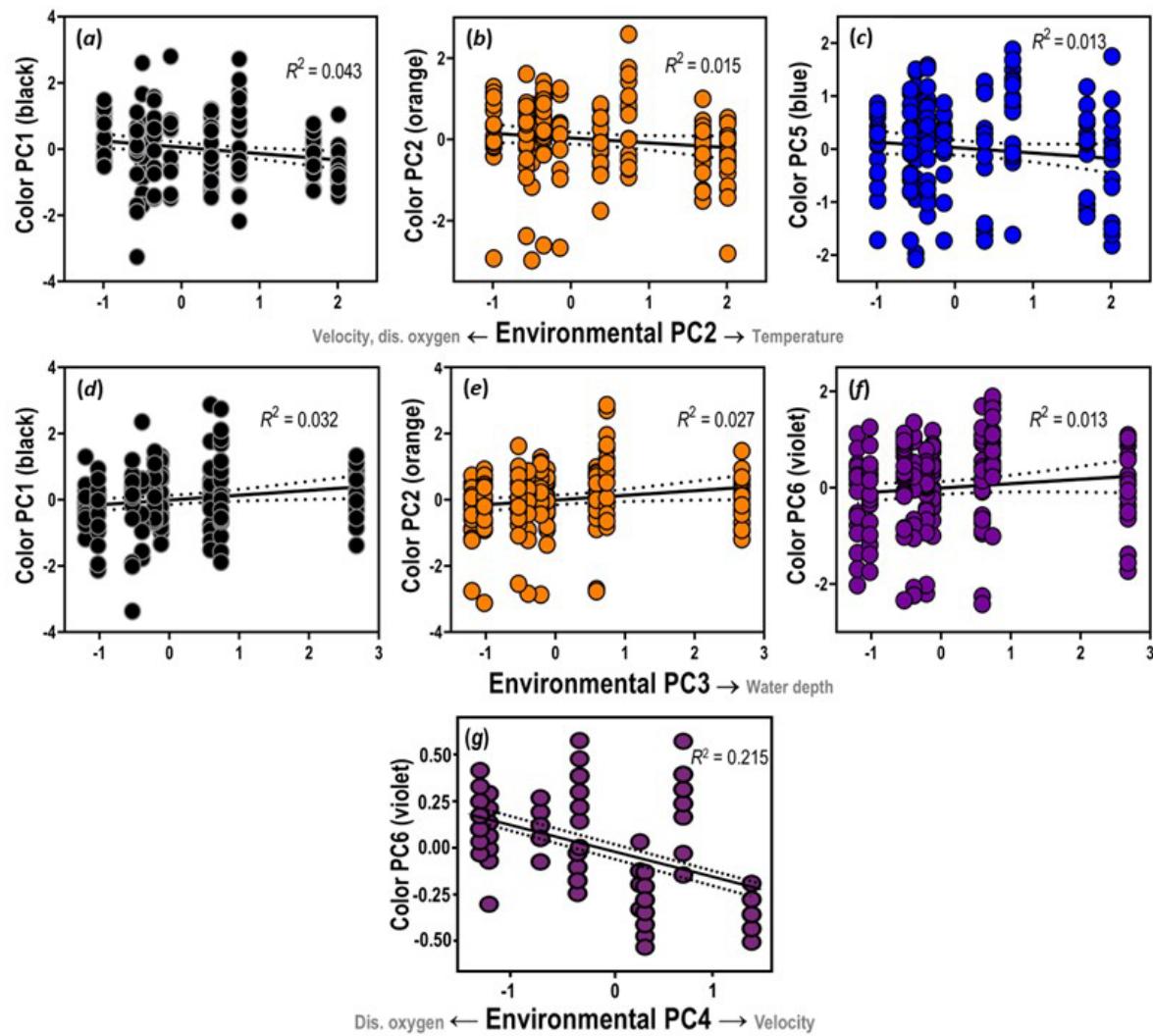
Explanatory variable	df	F	P	Wilks' partial η_p^2
(a) All ornament types				
Environmental PC1	6	5.482	< 0.001	0.171
Environmental PC2	6	1.544	0.167	0.055
Environmental PC3	6	3.347	0.004	0.112
Environmental PC4	6	3.492	0.003	0.116
SL	6	1.916	0.081	0.067
Error	160			
(b) Black ornaments				
Environmental PC1	1	0.163	0.687	0.001
Environmental PC2	1	0.016	0.899	< 0.001
Environmental PC3	1	1.957	0.164	0.012
Environmental PC4	1	1.892	0.171	0.011
SL	1	3.370	0.068	0.020
Error	165			
(c) Orange ornaments				
Environmental PC1	1	1.919	0.168	0.011
Environmental PC2	1	1.645	0.201	0.010
Environmental PC3	1	1.789	0.183	0.011
Environmental PC4	1	0.751	0.388	0.005
SL	1	2.296	0.132	0.014
Error	165			
(d) Green ornaments				
Environmental PC1	1	2.641	0.106	0.016
Environmental PC2	1	4.959	0.027	0.029
Environmental PC3	1	0.110	0.741	0.001
Environmental PC4	1	0.986	0.322	0.006
SL	1	1.569	0.212	0.009
Error	165			
(e) Blue ornaments				
Environmental PC1	1	0.025	0.876	< 0.001
Environmental PC2	1	0.025	0.875	< 0.001
Environmental PC3	1	3.220	0.075	0.019
Environmental PC4	1	0.688	0.408	0.004
SL	1	2.956	0.087	0.018
Error	165			
(f) Violet ornaments				
Environmental PC1	1	0.726	0.395	0.004


Environmental PC2	1	0.774	0.380	0.005	946
Environmental PC3	1	0.851	0.358	0.005	947
Environmental PC4	1	0.008	0.930	< 0.001	948
SL	1	6.278	0.013	0.037	949
Error	165				950
<hr/>					
(g) White/iridescent ornaments					
Environmental PC1	1	28.026	< 0.001	0.145	951
Environmental PC2	1	0.543	0.462	0.003	952
Environmental PC3	1	7.768	0.006	0.045	953
Environmental PC4	1	16.786	< 0.001	0.092	954
SL	1	0.215	0.643	0.001	955
Environmental PC1 × SL	1	4.073	0.045	0.024	956
Error	164				957
<hr/>					
					958

959

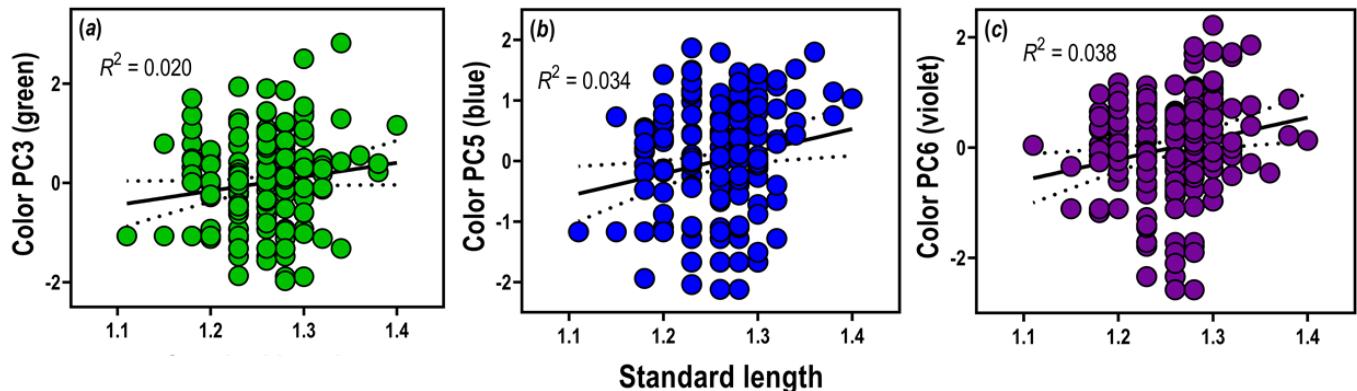
960 Figures

961 Figure 1


962 (a) Exemplary photographs of male guppies sporting colorful nuptial ornaments and steps taken to quantify
 963 numbers/percent body cover of different ornament types. In this example, the male shown above sported six black
 964 ornaments (covering 14.7% of its body area), as well as three orange (7.1%), three green (8.0%), six blue (10.0%),
 965 and one violet ornament (2.0%), while the male shown below had seven black (7.1%), three orange (16.8%), two
 966 blue (2.7%) and one white/iridescent ornament (2.7%). Color ornaments are encircled by red lines. (b) Scattergram
 967 visualizing the relationship between (pollution-related) environmental PC1 and variation in numbers/percent body
 968 cover of violet nuptial ornaments. Shown are residuals, corrected for other model terms, the corresponding partial
 969 linear regression [solid line, shown with 95% confidence interval (CI), indicated by dashed lines], and the associated
 970 degree of determination (R^2). Increasing values of environmental PC1 represent elevated levels of water pollution
 971 (Gomes-Silva et al. 2020b), suggesting that males exhibited more violet ornaments in heavily polluted waters.

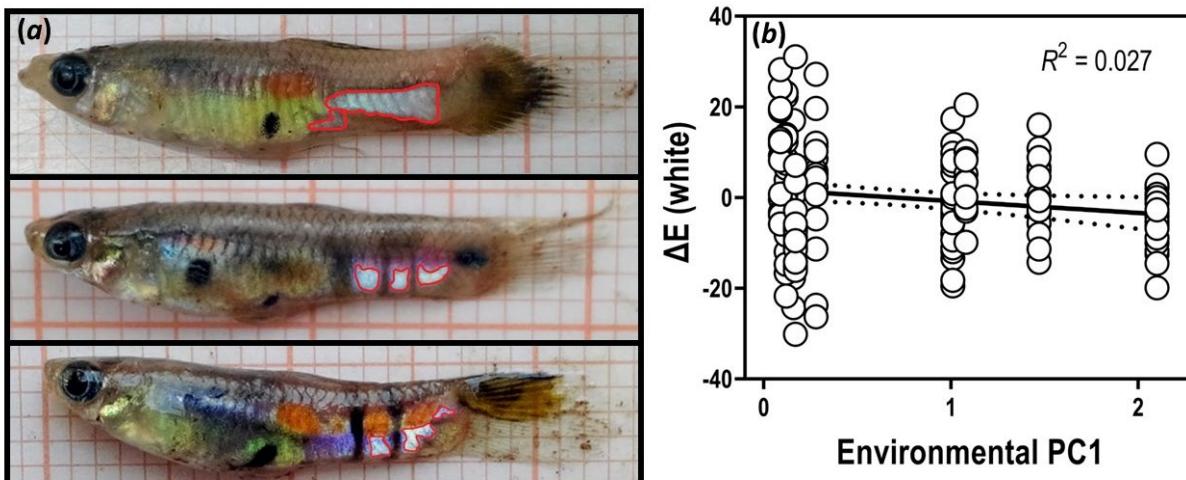
972

973


974 **Figure 2**
975 Effects of environmental variation other than water pollution (environmental PCs2–4 in Gomes-Silva et al. 2020b) on
976 residual numbers/percent body cover of different ornament types. To ease the interpretation of our results, main axis
977 loadings (> 0.6) are provided, with arrows indicating axis loadings in negative or positive direction, respectively.
978 Scattergrams include partial linear regression lines (with 95% CI) and the associated degree of determination (R^2).
979 (a) Black, (b) orange, and (c) blue ornaments decreased with increasing values of environmental PC2 (i.e., towards
980 slow-flowing, less oxygenated and warmer conditions). (d) Black, (e) orange, and (f) violet ornaments increased as
981 environmental PC3 increased (towards deeper water bodies). (g) Finally, violet ornaments decreased as PC4
982 increased (towards higher altitudes but less oxygenated conditions).
983

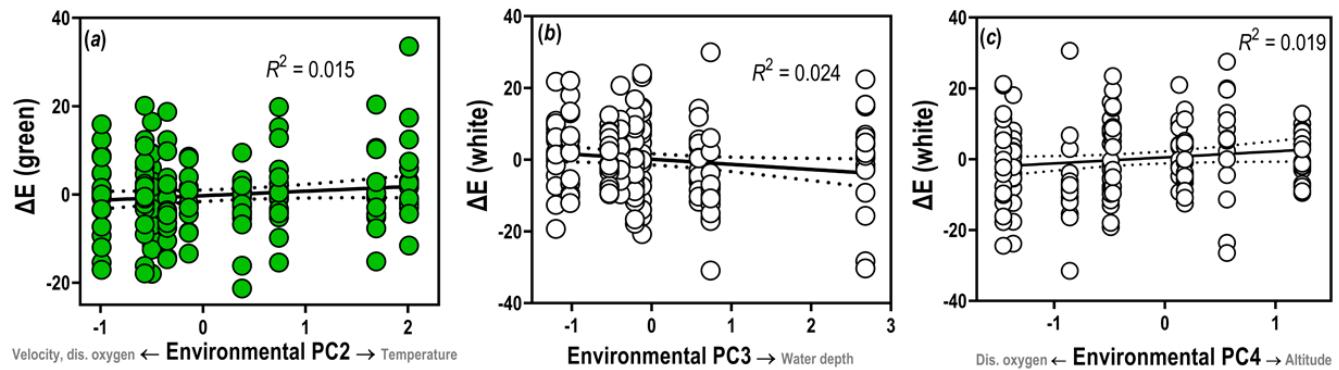
984

985 **Figure 3**


986 Effects of male body size on residual numbers/percent body cover of (a) green, (b) blue, and (c) violet nuptial
 987 ornaments of male guppies. Standard length [mm] was log-transformed for the statistical analyses. Shown are partial
 988 linear regression lines (with 95% CI) and the associated degree of determination (R^2). Note that larger males sported
 989 more ornaments in all three cases.

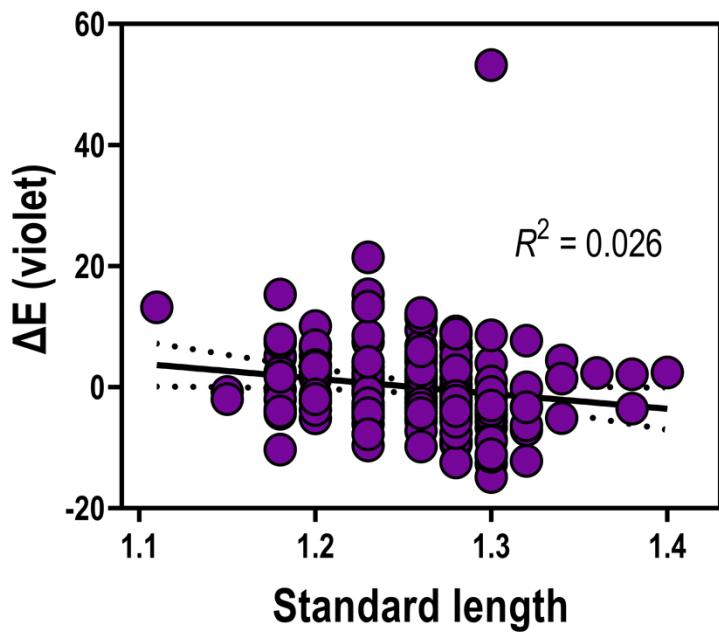
990

991 **Figure 4**


992 (a) Exemplary photographs of male guppies sporting two (above), three (middle) and three (below) white/iridescent
 993 color ornaments and illustration of steps taken to quantify total color differences (ΔE). White/iridescent ornaments are
 994 encircled by red lines and the highlighted ornaments yielded the following measurements (mean \pm SD) in CIELAB
 995 color space: above, $L^* = 78.33 \pm 3.06$, $a^* = -5.33 \pm 2.52$, $b^* = -6.00 \pm 5.00$; middle, $L^* = 87.33 \pm 4.31$, $a^* = -7.00 \pm$
 996 1.00 , $b^* = -10.67 \pm 4.16$; below, $L^* = 70.00 \pm 1.41$, $a^* = -10.50 \pm 7.07$, $b^* = -1.00 \pm 0.00$. (b) Scattergram depicting
 997 the relationship between residuals of total color differences (ΔE) of white/iridescent ornaments (with the extremes of
 998 L^* -, a^* - and b^* -values observed in our empirical data set serving as a reference point to calculate ΔE) and pollution-
 999 related environmental PC1 (see Gomes-Silva et al. 2020b). Depicted are residuals, corrected for other model terms,
 1000 the corresponding partial linear regression line (shown with 95% CIs), and the associated degree of determination
 1001 (R^2). Note that small values of ΔE are indicative of males sporting more brightly colored ornaments; hence,
 1002 ornaments became whiter/more iridescent as pollution levels increased.

1003
 1004

1005 **Figure 5**


1006 Effects of environmental variation other than pollution-effects on residuals of total color differences (ΔE). We show
 1007 partial linear regression lines (with 95% CIs) and the associated degree of determination (R^2). For better
 1008 interpretation, main negative and/or positive axis loadings (> 0.6) are provided (compare [Gomes-Silva et al. 2020b](#)).
 1009 (a) Green ornaments responded by increasing ΔE (suggesting that males became less colorful) as environmental
 1010 PC2 increased (i.e., towards slow-flowing, less oxygenated, and warmer sites). ΔE -values of white ornaments (b)
 1011 decreased (i.e., males became more colorful) as environmental PC3 increased (in deeper water bodies) and (c)
 1012 increased (i.e., males became less colorful) with increasing values of environmental PC4 (towards higher altitudes
 1013 but lower oxygen concentrations).

1014

1015 **Figure 6**

1016 Effect of log-transformed male body size (standard length [mm]) on residual ΔE -values of violet ornaments. Included
 1017 are the corresponding partial linear regression line (with 95% CIs) and the associated degree of determination (R^2).
 1018 Note that larger males were characterized by smaller ΔE -values, suggesting that they sported more colorful violet
 1019 nuptial ornaments than smaller males.

1020
 1021

1022 Online Supplementary Material

1023
 1024 We present results from principal component analyses (PCA) using environmental information from only
 1025 those $n = 9$ sampling sites included in our present study. We thus enable a comparison with the results of
 1026 another PCA that we had previously conducted (Gomes-Silva et al. 2020b) and that included $n = 15$
 1027 sampling sites: those included here, which were slightly to heavily polluted, as well as an additional $n = 6$
 1028 sites with unpolluted water conditions. Even though the latter were excluded from our current analyses as
 1029 they did not harbor guppies, our main analyses nevertheless utilize environmental principal components
 1030 that were calculated from all $n = 15$ sites. This decision was made as the results below suggest that PCA
 1031 based on only nine sites show a less clear-cut separation of the obtained environmental and pollution-
 1032 related information. Indeed, all pollution-related variables loaded with high axis loadings on the same PC in
 1033 Gomes-Silva et al. (2020b). We attribute this to the inclusion of sites with pristine water “spanning” the
 1034 separation of ecological and pollution-related variables as well as major indicators of water quality onto
 1035 different PC axes in a more ecogeographically meaningful way.
 1036

1037 Supplementary Table 1

1038 Principal component analyses (PCA) condensed 23 geo-physical, ecological and pollution-related predictor
 1039 variables (please see Table 1 in Gomes-Silva et al. 2020b), based on a correlation matrix, and (a) using the
 1040 Varimax option for axis rotation or (b) without axis rotation. We included (b) to demonstrate that, based on
 1041 the set of $n = 9$ sampling sites included here, the distribution pattern of key indicators of pollution—such as
 1042 the Biological Monitoring Working Party (BMWP) index and the Biochemical Oxygen Demand (BOD)—did
 1043 not exhibit the distinct association with other components of pollution as reported in Gomes-Silva et al.
 1044 (2020b) even when we suppressed maximization of variation onto different PC axes.
 1045

(a) Rotated axis solution	PC 1	PC 2	PC 3	PC 4
Eigenvalue	10.39	6.12	3.97	1.21
% variance explained	45.16	26.59	17.26	5.30
Altitude [m]	-0.223	0.857	0.002	0.341
Water depth [m]	0.314	0.640	-0.598	0.052
Stream velocity [m s ⁻¹]	0.209	-0.605	-0.126	0.728
pH	-0.902	0.270	0.212	0.023
Dissolved oxygen (DO) [mg L ⁻¹]	0.329	-0.904	0.152	0.063
Temperature [°C]	-0.236	0.813	0.454	-0.164
Turbidity [NTU]	0.713	0.521	0.353	0.281
Total dissolved solids [mg L ⁻¹]	0.698	0.505	0.380	0.227
Biological Monitoring Working Party (BMWP) index	-0.451	-0.691	-0.446	0.212
Biochemical oxygen demand (BOD) [mg L ⁻¹]	0.299	0.864	-0.238	0.187
Chlorides [mg L ⁻¹]	-0.259	0.497	0.781	-0.164
Fecal coliforms [mg L ⁻¹]	0.792	0.060	0.576	0.142
Nitrates [mg L ⁻¹]	0.875	0.072	-0.335	-0.221
Nitrites [mg L ⁻¹]	0.759	0.194	-0.570	0.146
Ammonia [mg L ⁻¹]	0.958	-0.045	-0.238	-0.079
Total phosphorus [mg L ⁻¹]	0.062	0.890	-0.418	0.116
Cd (sediment) [mg Kg ⁻¹]	0.978	-0.038	0.019	0.095
Pb (sediment) [mg Kg ⁻¹]	0.597	-0.249	0.723	0.140

Cu (sediment) [mg Kg ⁻¹]	0.906	0.109	-0.013	-0.197
Cr (sediment) [mg Kg ⁻¹]	0.460	-0.300	0.797	0.083
Cd (water) [mg L ⁻¹]	0.946	-0.157	-0.083	-0.081
Pb (water) [mg L ⁻¹]	0.911	-0.101	-0.149	-0.290
Cr (water) [mg L ⁻¹]	0.949	-0.126	-0.012	-0.157

1046

(b) Unrotated axis solution	PC 1	PC 2	PC 3	PC 4
Eigenvalue	10.39	6.12	3.97	1.21
% variance explained	45.16	26.59	17.26	5.30
Altitude [m]	-0.371	0.845	0.167	-0.146
Water depth [m]	0.410	0.806	-0.223	-0.022
Stream velocity [m s ⁻¹]	0.063	-0.219	0.164	0.937
pH	-0.904	0.113	-0.171	-0.269
Dissolved oxygen (DO) [mg L ⁻¹]	0.299	-0.798	0.145	0.454
Temperature [°C]	-0.379	0.472	0.330	-0.688
Turbidity [NTU]	0.394	0.461	0.782	-0.062
Total dissolved solids [mg L ⁻¹]	0.389	0.419	0.774	-0.109
Biological Monitoring Working Party (BMWP) index	-0.261	-0.393	-0.586	0.599
Biochemical oxygen demand (BOD) [mg L ⁻¹]	0.219	0.916	0.145	-0.140
Chlorides [mg L ⁻¹]	-0.483	0.078	0.533	-0.654
Fecal coliforms [mg L ⁻¹]	0.469	-0.060	0.871	-0.027
Nitrates [mg L ⁻¹]	0.951	0.159	0.041	-0.012
Nitrites [mg L ⁻¹]	0.808	0.467	-0.042	0.297
Ammonia [mg L ⁻¹]	0.961	0.076	0.189	0.133
Total phosphorus [mg L ⁻¹]	0.087	0.965	-0.124	-0.173
Cd (sediment) [mg Kg ⁻¹]	0.854	0.064	0.440	0.199
Pb (sediment) [mg Kg ⁻¹]	0.272	-0.393	0.854	0.046
Cu (sediment) [mg Kg ⁻¹]	0.862	0.085	0.329	-0.115
Cr (sediment) [mg Kg ⁻¹]	0.147	-0.491	0.825	-0.016
Cd (water) [mg L ⁻¹]	0.909	-0.079	0.291	0.130
Pb (water) [mg L ⁻¹]	0.957	-0.080	0.153	-0.047
Cr (water) [mg L ⁻¹]	0.908	-0.103	0.326	0.030

1047
1048

Altogether, 94.31% of the cumulative variance was explained. Principal components with an Eigenvalue > 1.0 were retained; variables with |axis loading| > 0.6 are highlighted in bold typeface.