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CASC2
ceRNA
cfNA
cfRNA
circRNA
DFU
DLEU1
ECM

EV
HOTAIR
IncRNA
MALAT1
mMmRNA
miRNA
MMP
ncRNA
NICE
NEAT
PTEN
SEV
T2DM
TIMP
tRF
VLU
VEGF

WAKMAR

A1BG antisense RNA 1

Cancer susceptibility candidate 2

competitive endogenous RNA

cell-free nucleic acid

cell-free RNA

circular RNA

diabetic foot ulcer

Deleted in Lymphocytic Leukaemia 1

Extracellular matrix

Extracellular vesicle

HOX transcript antisense intergenic RNA

Long non-coding RNA

Metastasis-associated lung adenocarcinoma transcript 1
Messenger RNA

MicroRNA

Matrix metalloproteinase

non-coding RNA

National Institute for Health and Care Excellence (NICE)
Nuclear enriched abundant transcript

Phosphatase and TENsin homolog deleted on chromosome 10
Small extracellular vesicle

type 2 diabetes mellitus

Tissue inhibitor of matrix metalloproteinase

transfer RNA fragments

Venous leg ulcer

Vascular endothelial growth factor

Wound and keratinocyte migration-Associated RNA
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Abstract

Chronic non-healing wounds represent a major clinical challenge, often associated with
diabetes, vascular insufficiencies, and aging. Despite the substantial burden that such wounds
place on patients and healthcare systems, few biomarkers have been approved for prediction
of wound healing trajectories and outcomes, limiting opportunities to inform clinical
management decisions or quantify patient responses to interventions. Recent advances have
identified cell-free nucleic acids as powerful tools for gaining molecular insights because they
offer a non-invasive, dynamic snapshot of physiological and pathological processes occurring
throughout the body. In particular, cell-free RNAs from non-coding RNA families including
microRNA , long non-coding RNA , circular RNA and transfer RNA fragments can be profiled
on a large scale to reveal novel disease signatures to support biomarker development. The
presence of such non-coding RNAs in serum, plasma or other biofluids provides a rich
resource for uncovering new parameters that can support biomarker development for wound
repair. In this review article, we highlight some of the current challenges associated with
biomarkers for wound healing in clinical practice. We then survey microRNAs, long non-
coding RNA and circular RNAs landscape in relation to their utility as biomarkers in diabetic
foot ulcers and other chronic wounds. Collectively, these extracellular RNAs offer a
multifaceted view of wound biology and may serve as non-invasive biomarkers for stratifying

wound severity, predicting healing outcomes, and guiding personalized interventions.
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Introduction

Chronic wounds are open wounds that often take months to heal, if they heal at all. These
wounds include diabetic foot ulcers (DFU), venous leg ulcers (VLU), arterial ulcers , pressure
ulcers and surgical wounds healing by secondary intention that fail to achieve full closure [1,
2]. Collectively these wounds are common, with major implications for those affected and the
health systems that deliver their care. For instance, the costs of managing chronic wounds
was estimated at USS25 billion per annum in the USA and the prevalence 1-2% of the
population in developed countries [3]. More recently, Guest and colleagues put the costs of
wound management across the National Health Service of the United Kingdom at £8.3 billion,
of which £5.6 billion was for managing unhealed wounds [4]. In a primary care setting in
Barcelona, Spain, a 3-year evaluation put wound care costs at around US$40 million, which
extrapolated to S2 billion across Spain [5]. Beyond these economic considerations, chronic
wounds also have a substantial negative impact on health-related quality of life, which overall
are comparable to those observed in congestive heart failure or chronic obstructive
pulmonary disease [6]. Further, there is evidence that the 5-year mortality rate for patients
after diabetes-related amputations is almost 50%, which is twice that reported for breast
cancer [7]. It is also worth noting that there are limited effective treatments to promote
wound healing across all wound types, and those that are evidence-based are mostly physical
or mechanical in nature, such as negative pressure wound therapy, advanced dressings and
compression therapy rather than biologically active innovations implemented in a stratified
medicine framework [8, 9].

Wound healing progresses through well-established phases of inflammation,
proliferation and remodelling, with co-ordinated interactions between diverse cell types
orchestrating completion of the process [10, 11]. In chronic wounds, inflammation fails to
resolve, neovascularisation is curtailed, extracellular matrix (ECM) formation and turnover is
disrupted and keratinocytes adopt a hyperproliferative phenotype that prevents
differentiation, migration and re-epithelialisation of the wound [12-14]. Against this
backdrop, the ability to characterise the wound status and predict healing outcomes using
biomarkers may offer a new framework for clinical management of chronic wounds by
enabling personalised interventions that target the underlying molecular and cellular

dysfunction associated with non-healing wounds. , However, although our understanding of
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the cell and molecular biology of wound healing has grown tremendously in recent years, this
has not been paralleled with a similar increase in understanding of the biomarker profiles of
the wound microenvironment or indeed the blood-based biomarker profile associated with
different types of chronic wounds, and issues with study quality often limit the conclusions
that can be drawn [15-17]. Unsurprisingly then, no biomarkers are routinely recommended
in national clinical guidelines for wound care in the UK. The National Institute for Health and
Care Excellence (NICE) guidance on wound management does not recommend any
biomarkers for routine clinical use in wound assessment or treatment, though several
biomarkers have been explored in research settings (Table 1). The specificity of current
wound care biomarkers such as proteases and cytokines is unclear, and spatiotemporal
changes to their levels during wound healing makes their deployment as simple biomarkers
more difficult. This highlights the gap between biological insight and practical diagnostic tools.
In the UK, the only biomarker for wounds which has been evaluated by NICE is the
WoundCheck Protease status test [18]. However, according to NICE (2016), this has so far only

been tested in one small (n=35) prospective study, and its value therefore remains unclear.



Table 1. lllustrative biomarkers in wound healing identified in the literature, derived from references

[19-23]

Biomarker Type Clinical Strengths Limitations
Relevance

C-Reactive Protein Acute-phase Indicates systemic Easily Non-specific;

protein inflammation; measurable; elevated in various

elevated in infected widely used in inflammatory
or non-healing clinical settings conditions
wounds

Interleukins (e.g. IL- Cytokine Pro-inflammatory; Sensitive to Levels can

6, IL-8) elevated levels may changes in fluctuate; not
indicate impaired inflammatory specific to wound
healing or infection status healing

Tumor Necrosis Cytokine Promotes Key mediator in Systemic effects;

Factor-alpha inflammation; high inflammation; elevated in various
levels associated potential diseases
with chronic wounds therapeutic

target

Matrix Enzymes Involved in Reflects tissue Overexpression can

Metalloproteinases extracellular matrix remodelling impair healing;
remodelling; activity; potential  requires balance
elevated in chronic target for therapy  with inhibitors
wounds

Tissue inhibitor of Protease Reduced levels of May be measured Must be interpreted

matrix inhibitors TIMPS may worsen from wound fluid. alongside MMPs to

metalloproteinases the impact of raised be clinically
MMPs meaningful.

Vascular Endothelial  Growth Stimulates Promotes blood Overexpression

Growth Factor factor angiogenesis; vessel formation; may lead to
crucial for tissue therapeutic abnormal
regeneration potential angiogenesis

Heparin-binding Growth Enhances Potent mitogen; Potentialrole in

EGF-like Growth factor keratinocyte involved in tumorigenesis;

Factor migration and multiple healing requires controlled
proliferation; aids phases expression
re-epithelialization

Copper Peptide Peptide Stimulates collagen  Enhances tissue Limited clinical

complex synthesis; promotes regeneration; data; requires

wound contraction antioxidant further research
and angiogenesis properties

Angiopoietin-like 4 Glycoprotein  Modulates vascular Involved in Complexrolein
permeability; angiogenesis; metabolism and
promotes potential cancer; requires
keratinocyte therapeutic careful modulation
migration target
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Early proteomics studies on rodent wound fluid sought to identify peptides that may
promote wound repair or have antimicrobial properties [24, 25]. In addition, proteomics-
based analyses of wound fluid have gained traction for biomarker discovery to understand or
predict the healing trajectory of a wound, particularly in relation to proteases and cytokines,
as well as small molecules and microbes [21, 23, 26-28]. RNA-based biomarkers, particularly
cell-free RNAs (cfRNA), may offer greater molecular specificity and reflect dynamic gene
regulation processes central to healing and chronicity. Their presence in accessible fluids such
as wound exudate and plasma makes them promising candidates for non-invasive, prognostic
tools capable of personalising wound care. However, the cell-free nucleic acid (cfNA)
landscape of wound fluid has received limited attention whether in relation to DNA,
messenger RNAs (mRNA), non-coding RNAs (ncRNA). Hence the potential of wound fluid-
derived cfNAs as an alternative biomarker for monitoring and predicting outcomes for
patients with open wounds remains obscure.

Cell-free nucleic acids, particularly cell-free DNA, have emerged as tractable analytes
for testing a range of conditions including non-invasive prenatal testing, tumour profiling and
tracking, transplant surveillance and pathogen detection in infectious diseases [29]. The
potential to gain deeper molecular and mechanistic insight into the underlying disease
process has also led to a surge of interest in the exploitation of cfRNA as biomarkers for
cancer. Broadly, the study of cfRNA bifurcates into those that focus on mRNA and those that
focus on non-coding RNAs (Figure 1).

For ncRNA, the potential of cfRNA profiling is enormous because at least four
categories of well-defined ncRNAs have been established: microRNAs (miRNA), long non-
coding RNAs (IncRNA), circular RNAs (circRNA) and transfer RNA fragments (tRF) (Figure 1). In
many cases, the assessment of these ncRNAs as biomarkers has been linked to studies on
small extracellular vesicles (sEVs; exosomes).

Within this article, we evaluate the potential of ncRNAs, alone or associated with sEVs,
as biomarkers that can be marshalled to monitor and predict the trajectories and outcomes

of chronic non-healing wounds.
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Figure 1: Cell-free nucleic acids (cfNA) amenable to analysis as biomarkers for wound repair.
The cfNAs may be quantified in wound fluid, serum, saliva, urine and exosomes derived from
these biofluids; ncRNA, non-coding RNA; mRNA, messenger RNA; miRNA, microRNA; IncRNA,
long non-coding RNA, circRNA, circular RNA, tRF, tRNA fragments. Depictions of the RNAs
were generated in BioRender.
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Cell-free RNA

The presence of stable miRNAs in serum and plasma first highlighted the potential of miRNAs
as a bloodborne biomarker that could be exploited for diagnostic or prognostic purposes in
disease [30, 31]. These studies did not examine cfNAs in the context of bloodborne sEVs,
which have since become a focus of much biomarker discovery work. Interestingly, more
recent efforts have sought to uncover cell-free plasma mRNA biomarkers with diagnostic and
prognostic potential for cancer [32-34], coronary disease [35], Alzheimer’s disease [36, 37]
and paediatric inflammatory syndromes such as bacterial/viral infection and Kawasaki disease
[38]. Indeed, there is evidence that plasma cf-mRNAs may be enriched in cancer EVs [39].
However, the biomarker potential of cf-mRNA in plasma or plasma derived EVs from chronic
wound patients remains under-explored, as the focus remains on miRNA, IncRNA and
circRNA. These diverse RNA species may, together, offer exciting opportunities to uncover
biomarker patterns that can support wound management, and we now appraise their

potential in that regard.

MicroRNAs

MicroRNAs are endogenous small, non-coding RNA molecules, typically 22 nucleotides long,
that regulate gene expression in a post-transcriptional manner by binding to the 3'-
untranslated region (UTR) of target mRNAs [40]. This function of miRNA is intrinsically linked
to their association with Argonaute proteins to form the RNA-induced silencing complex
(RISC) which orchestrates the assembly of large multi-protein complexes that drive
destabilisation, degradation or translation repression of target mRNAs [41].

Importantly, miRNAs play critical roles in numerous physiological and pathological
processes, with a wide variety of roles in wound healing, modulating the expression of genes
involved in proliferation, migration, differentiation, neovascularization and inflammation
across multiple cell types as has been reviewed elsewhere by us and others [42-47]. These
include miR-34a-5p and miR-34c-5p, which promote inflammation signalling in keratinocytes
and impair wound closure in mouse wounds [48]; miR-132 which dampens keratinocyte
inflammatory cytokine and chemokine production while elevating both keratinocyte
proliferation and fibroblast migration [49, 50] and miR-129-5p and miR-335-5p which
dampen the expression of matrix metalloproteinase 9 (MMP-9) [51]. In addition, miR-21-5p

exerts pro-healing actions through an extensive network that includes anti-Inflammatory

9
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regulation of nuclear factor kappa B (NF-kB) via programmed cell death 4 (PDCD4), promotion
of keratinocyte migration by silencing of tissue inhibitor of metalloproteinases (TIMP-3) and
regulation of fibroblast function by targeting sprouty homolog 2 (SPRY /2), as reviewed
recently [52]. Notably, miR-21-5p is transferred from keratinocytes to myeloid cells via sEVs
to shift the latter towards a pro-healing fibroblast-like phenotype that granulation tissue to
support wound healing [53]. Further, multiple miRNAs regulate neovascularisation, with
elevation of miR-221, miR-222, miR-92a, and miR-301a-3p inhibiting angiogenesis, while miR-
296, miR-126, miR-378, and miR-210 promoted angiogenesis [47]. For more insight regarding
the roles of miRNA in skin healing, the reader is referred to a recent review by Doghish and

colleagues [54].

Cell-free MicroRNAs as Biomarkers for Chronic Wounds

Differential miRNAs expression in wound tissue from DFUs has received particular attention,
as reviewed elsewhere [38], though studies defining the miRNA signatures of VLU has also
been reported [55]. However, it remains unclear whether circulating miRNA can serve as
prognostic biomarkers that would enable healthcare providers to predict the trajectory of
wound healing and adjust treatment plans accordingly. Indeed, only a limited number of
studies appear to have examined cf-miRNAs in wound fluid or blood from patients with DFU
and other wounds, as summarised in Table 2., These include seminal work by Ren and
colleagues, which assessed miRNA in seVs from wound fluid. Differential expression of 211
miRNAs, reporting 58 miRNAs that were elevated and 153 that were depleted in DFU-derived
EVs compared to control EVs [56]. The study focused on miR-205-5p and miR-195-5p which
they linked to the regulation of vascular endothelial growth factor A (VEGFA): transfer of the
DFU-derived EVs into endothelial cells elevated the expression of these miRNAs and
diminished VEGFA expression. Given the importance of VEGF, it appears feasible that these
may have value as biomarkers. Levels of miR-205-5p might be carefully calibrated during
wound repair, as both pro-migratory and anti-migratory effects have been reported in
keratinocytes [57, 58] but whether the high levels of miR-205 in DFU EVs reflect elevated
expression in structural cells of skin and blood vessels as opposed to EV released from
infiltrating blood cells remains to be established. It might not matter in any case as putative

transfer of miR-205-5p in a paracrine manner may contribute to impaired healing. The

10
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important consideration from our perspective is whether monitoring miR-205-5p has
prognostic value in predicting patient outcomes to standard of care. It should also be noted,
however, that cf-miRNAs have not been formally validated in clinical contexts, whereas
circulating miRNAs with biomarker potential have been established in clinical settings linked
to cancer, ischemic stroke and myocardial infarction, as illustrated by several recent studies

[59-61].
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Table 2: Extracellular miRNAs and IncRNAs as potential biomarkers in DFU

Condition | Sample RNA Evaluated in | Sample size Ref.
EVs
DFU Serum miR-205- Yes 21 patients [56]
5p 18 controls
DFU Wound miR-195- Yes 21 patients [56]
fluid 5p 14 DM controls
miR-205- 18 healthy controls
5pT
DFU Plasma let-7e-5p T No 41 patients [62]
miR-17-5p T 50 controls
miR-191-5p
T
miR-33a-5p
T
DFU Plasma miR-203a- Plasma 64 patients [63]
3p 52 controls
DFU Serum miR-15a- Detected in | 10 DFU patients [64]
-derived 3p both serum | 10 patients with non-
exosomes and serum- | diabetic foot wounds
derived
exosomes
DFU Serum IncRNA No 77 DFU patients [65]
A1BG-AS1M 85 T2DM patients
75 healthy controls
DFU Serum IncRNA No 71 DFU patients [66]
DLEU1M 71 Healthy controls
EV, Extracellular vesicle
IncRNA, long non-coding RNA
DLEU1, Deleted in Lymphocytic Leukaemia 1
DFU, diabetic foot ulcer
DM, diabetes mellitus
T2DM, type 2 diabetes mellitus patients

12
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Long non-coding RNAs

Long non-coding RNAs are RNA transcripts that have traditionally been defined as consisting
of at least 200 nucleotides but having little or no protein-coding capacity. While the 200 nt
lower limit for IncRNA size has served as a useful cut-off to date, a recent Consensus
Statement has sought to re-define IncRNAs as >500 nt [67]. This is to distinguish IncRNA more
clearly from certain ncRNAs that are over 200 nt long but are not classical IncRNAs. The 60-
300 nt long small nucleolar RNAs involved in ribosomal RNA modification and the small
nuclear RNAs that execute pre-mRNA splicing, which are typically ~150 nt long but can be 60-
450 nt long, fall into this category of intermediate RNAs [68, 69].

Although a few notable IncRNAs such as X-inactive specific and H19 had been
discovered early in relation to developmental processes [70, 71], it was the characterization
of large-scale mouse, human and fly transcriptome datasets that established the pervasive
nature of IncRNA transcripts [72-75]. The recent NONCODEV®6 study estimates the human
genome has just over 173,00 IncRNAs, but the number of functional human IncRNAs seems
to be 20,000-60,000 [76, 77].

Combined with their genomic and structural diversity and low sequence conservation,
the relatively large number of IncRNAs has made the validation and functional annotation of
IncRNAs challenging but they have been implicated in mRNA decay, structural scaffolding,
chromatin remodeling, epigenetic regulation, transcriptional and post-transcriptional
regulation, RNA splicing and editing and in development [78, 79]. Competitive endogenous
RNA (ceRNA) binding represents another framework for understanding IncRNA function, and
involves sequestration of endogenous miRNA by IncRNA [36,37]. Thus, the IncRNA competes
with mRNA targets to capture miRNAs, thereby limiting the effective concentration of target
miRNA that is available to mediate repression [36]. It should be noted that a significant
proportion of so-called IncRNAs are now known to encode peptides via short open reading
frames [80, 81]. These micropeptides, usually less than 100 amino acids long, have been
implicated in a range of functions associated with protein phosphorylation, mMRNA modulation
and interactions with proteins associated with subcellular organelle membranes [82].
The TINCR (Terminal differentiation-Induced Non-Coding RNA) gene is one such IncRNA that
is now known to encode an 87-amino acid long peptide that has been implicated in promoting
keratinocyte proliferation to support wound healing [83]. However, this appears to be the

exception among several IncRNAs implicated in wound repair, to which we now turn.

13
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LncRNA and wound healing

Multiple IncRNAs have been implicated in wound healing as well as other aspects of skin
biology, including keratinocyte differentiation, melanocyte behaviour and hair growth [84,
85]. From the epidermal perspective, such IncRNAs include wound and keratinocyte
migration-associated IncRNAs (WAKMAR1 and WAKMAR2) [86, 87]; TET2-interacting long
noncoding RNA, which contributes to disrupted ECM homeostasis by promoting expression
of MMP-9 promoter [88] and IncRNA SNHG26 which shifts keratinocyte progenitor cells from
the inflammatory to the proliferative state during wound healing [89]. Interestingly,
keratinocyte stEVs delivered the IncRNA metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) into macrophages, shifting them towards a pro-healing phenotype
[90]. In fibroblasts, INcRNA cancer susceptibility candidate 2 (CASC2) levels were lower in
wound tissues of DFU patients and CASC2 overexpression promoted fibroblast migration and
proliferation and reduced their apoptosis [91]. On the other hand, IncRNA growth arrest-
specific transcript 5 was elevated in diabetic wounds and drove macrophages towards a pro-
inflammatory M1 phenotype [92]. The roles of these and other IncRNAs in relation to
inflammation, angiogenesis and ECM turnover have been reviewed elsewhere recently [93].
Here, we first focus on IncRNAs associated with wound healing where there is also evidence
of loading into EVs (H19, HOTAIR, NEAT1) then highlight two IncRNAs (A1BG-AS1 and DLEU1)

identified as candidate biomarkers in DFU patient sera.

LncRNA-H19

Long noncoding RNA H19 has been established as a key regulator of programmed cell death
and autophagy [94]. Recent evidence has emerged to suggest that H19 is downregulated in
human mouse diabetic skin and elevated in exosomes from human hair follicle mesenchymal
stem cells [95, 96]. Functionally, exosomal H19 appeared to promote wound repair promoting
fibroblast proliferation through anti-inflammatory mechanisms that involved abrogation of
pyroptosis, a form of programmed cell death mediated by the gasdermin family of pore-
forming proteins [95-97]. This putative ability of H19 to dampen pyroptosis was associated
with improved healing of diabetic mouse skin wounds through better re-epithelialisation and
neovascularisation, and studies on HaCaT epidermal keratinocytes showcased suppression of

the NLRP3, caspase-1, IL-B, and IL-18 axes of inflammation. However, it is not clear at present

14
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if H19 levels are altered in exosomes from wound fluid, serum or plasma of patients with DFU

or other chronic wounds. .

HOTAIR

HOTAIR (HOX Antisense Intergenic RNA) is a 2158 nucleotide IncRNA that was first identified
in human fibroblasts following transcriptional profiling of the four HOX chromosomal loci
present [98]. Mechanistically, HOTAIR was found to promote transcriptional silencing of
chromosomal domains by Polycomb Repressive Complex 2-dependent H3K27 methylation
[98]. Since then, multiple other roles have been established for HOTAIR, including serving as
a ceRNA to sequester miRNAs as well as post-translational functions including ubiquitination
and subsequent degradation of protein targets, as reviewed in [99]. In relation to wound
healing, ethanol treatment was shown to boost the vascularization bioactivity of endothelial
cell-derived EVs through mechanisms that included elevation of HOTAIR and MALAT1 within
the EV cargo and downregulation of the anti-angiogenic miRNA miR-106b [100]. Additional
evidence from the same group showed that HOTAIR overexpression in mesenchymal stem
cells yielded EVs with raised HOTAIR levels to support wound healing in diabetic mice via
increased angiogenesis [101]. HOTAIR expression increases after a burn injury in mouse skin
and intradermal injections of HOTAIR-overexpressing epidermal stem cells promoted re-
epithelialization and wound closure [102].

There is evidence in some contexts (laryngeal squamous cell cancer, acute myeloid
leukaemia and liver fibrosis) that HOTAIR promotes methylation of phosphatase and TENsin
homolog deleted on chromosome 10 (PTEN) by marshalling DNA Methyltransferase 3 beta
expression [103-105]. The levels of such HOTAIR-dependent methylation of PTEN during
wound healing have not been established to our knowledge but growing evidence links
miRNA-mediated downregulation of PTEN to wound repair mechanisms [106-108].

Early studies considered the potential of serum-derived exosomal HOTAIR, in
combination with exosomal miRNA-21, as candidate diagnostic and prognostic biomarkers
for laryngeal squamous cell carcinoma [109]. Further investigations revealed HOTAIR
elevation in urinary exosomes in bladder cancer [110], serum-derived EVs from lung cancer
patients [111], colorectal cancer cell-derived exosomes [112] and in serum-derived exosomes
from breast cancer patients, where HOTAIR levels appeared to have diagnostic and prognostic

potential [113]. Together, these studies highlight the potential of HOTAIR as a biomarker
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amenable to detection in liquid biopsies. However, the extent to which exosomal HOTAIR
levels vary in serum or wound fluid from patients with different types of complex wounds
compared to those whose wounds heal within a relatively short time frame has not been

established.

Nuclear enriched abundant transcript

Nuclear enriched abundant transcript 1 (NEAT1) IncRNAs include, a short isoform of 3.7 kb
(originally termed MENg, now known as NEAT1_1) and a large 23 kb which was initially known
as MEN B but is now called NEAT1_2 [114, 115]. This longer NEAT1_1 isoform has been
established as a central orchestrator of the assembly of paraspeckles, membraneless
organelles implicated in cancer, stress responses and developmental processes, as reviewed
in [116]. Elevation of NEAT1 has been implicated in multiple cancers, which mechanisms of
pathogenesis often associated with ceRNA effects of NEAT that lead to sequestration of
miRNA targets and subsequent elevation of various transcription factors and enzymes
associated with oncogenesis [117, 118].

There is is evidence linking NEAT1 to angiogenesis as it downregulated in chronic DFU
compared to acute DFU, liberating miR-146 which in turn represses matG, an important
angiogenic transcription factor [119]. Depletion of NEAT1 was associated with impaired
endothelial cell migration and network formation. Notably, exosomal NEAT1 has been
reported in some contexts including serum-derived exosomes of rheumatoid arthritis
patients [120], cancer-associated fibroblasts [121] and endothelial cells under oxidative stress
[122]. However, NEAT1 has not been associated with exosomes from chronic wounds to our

knowledge.

LncRNA A1BG-AS1

A recent survey of IncRNA-mRNA coexpression network analysis in peripheral blood
monocytes identified 12 IncRNAs associated with inflammation in type 2 diabetes mellitus
(T2DM) peripheral blood monocytes [123]. In a subsequent study comparing serum levels of
IncRNA A1BG antisense RNA 1 (A1BG-AS1) in DFU, T2DM and control subjects (n = 77, 85 and
75, respectively), A1BG-AS1 was modestly (about 2-fold) upregulated in patients with DFUs

[65]. Close analysis revealed a correlation with fasting blood glucose, glycated hemoglobin
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and Wagner grade scores when segregated into high versus low A1BG-AS1 serum levels [65].
Both univariate and multivariate analysis suggested A1BG-AS1 levels may have potential as a
biomarker for predicting the risk of DFU in T2DM patients and quantifying severity of DFU
[65]. High glucose was shown to raise A1BG-AS1 expression in human dermal fibroblasts and
reduce miR-214 levels, but it remains to be seen whether this translates into A1BG-AS1-
mediated effects of autocrine exosomal miR-214-3p-depenent angiogenesis reported early
on by Verhaar and colleagues [124]. However, longitudinal studies are required to validate

the potential utility of monitoring serum A1BG-AS1 levels in DFU patients.

LncRNA DLEU1

Deleted in Lymphocytic Leukaemia 1 (DLEU1) has been established as a cancer-associated
IncRNA that is upregulated in various tumours [125]. Analysis of sera from 71 DFU patients
and matched controls revealed a modest 1.5-fold increase in IncRNA DLEU1 expression in the
DFU cohort. Unlike the above-mentioned study of IncRNA A1BG-AS1, the study on serum
DLEU1 did not present deep analysis based on low versus high levels of IncRNA DLEU1 [66].
Nonetheless, there was some suggestion that serum IncRNA DLEU1 had biomarker potential
for monitoring DFU. Functionally, IncRNA DLEU1 appeared to have an anti-angiogenic
function based on studies of cultured endothelial cells but the impact of DLEU1 on wound-
related angiogenesis in vivo has yet to be determined.

Notably, none of the above studies examined IncRNA in plasma or serum-derived sEV or in
wound exudates. Hence there is likely to be more scope to uncover IncRNA biomarkers with
prognostic value in managing chronic wound patients. On the other hand, circular RNAs may
also be promising as chronic wound biomarkers, and we now consider their potential in that

regard.

Circular RNAs: A Brief Background

Circular RNAs are ncRNAs characterized by their covalently closed-loop structure and absence
of 5’ cap and poly(A) tail typically found in linear RNAs [126]. Interest in circular RNAs has
grown tremendously over the last decade but their discovery goes back to the 1970s, with
the first report of circular RNA viroids that infect plant hosts by Kleinschmidt and colleagues

[127] followed by observation of circular RNAs in Hela cells by Hsu and Coca-Prados [128]. For
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an elegant summary of the history of circRNAs, the reader is referred to a review by
Kadener and colleagues [129]. The studies that moved circRNA from relative obscurity into
the limelight emerged in 2013, when deep sequencing revealed their prevalence across
human and other animal transcriptomes [130, 131] and their roles as competing endogenous
RNAs that sequester miRNAs and thus reduce their availability to interact with target mRNA
transcripts were defined [132, 133]. Interestingly, although primarily defined as non-coding
RNA, evidence has emerged to show circRNA can be translated into protein [134-136].

Most circRNAs are derived from direct “back-splicing” of pre-mRNA exons though
several other circRNAs have been defined based on the mechanism of biogenesis [137]. In
any case, the circular structure of circRNAs renders them resistant to exonucleases, making
them more stable than their linear counterparts. As a result, although their abundance tends
to be low, they have emerged as promising biomarkers of disease, with high specificity and
sensitivity [138, 139]. Further, a recent study of over 1000 human plasma samples, along with
urine, bile and cerebrospinal fluid samples, revealed that circRNAs appeared to be
preferentially sorted into EVs compared to linear RNAs, enabling functional enrichment [140].
Importantly, as with miRNA and IncRNA, circRNAs are also loaded into exosomes and have

thus gained traction as novel biomarkers for cancer and other diseases [141-144].

Circular RNAs: Emerging Roles in Cutaneous Wound Healing

Recent studies have implicated circRNAs in both keratinocyte and fibroblast functions during
wound repair [145-150]. Work from the Landén group on DFU [145] lay much of the foundation
for understanding circRNA expression in chronic wounds. Wang, Landén and colleagues found that
the expression of hsa_circ_0084443 (now known as circ_PRKDC) was reduced in normal wounds
compared with intact skin, but expression of circ_PRKDC in DFUs was higher than in normal wounds
[145]. Elevated circPRKDK may impair DFU by reducing keratinocyte migration via mechanisms in
which circ_PRKDC sequesters miR-17-3p and miR-31, in turn modulating the activity of multiple
pathways [145-147]. In an unrelated study that also used the Wang dataset as the starting point,
Xiong and colleagues also found that a circRNA, circRNA-080968 was upregulated in DFU tissues
compared to that of non-DFU wounds and its overexpression impaired keratinocyte migration [151].
Another circRNA implicated in wound repair is circCDK13, which was identified by analysis of the Wang
dataset [145] followed by delineation of circRNAs depleted upon exposure of keratinocytes and
fibroblasts to the advanced glycation end product-bovine serum albumin, to mimic the DFU

environment [148]. CircCDK13 promoted the migration and proliferation of keratinocytes and
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fibroblasts [148]. Notably, circCDK13 harboured N®-methyladenosine modifications that facilitated
interactions with insulin-like growth factor 2 mRNA-binding protein 3, an important RNA-binding
protein [148]. In addition, Landen and colleagues define the circRNA network in VLUs and uncovered
hsa-CHST15_0003 and hsa-TNFRSF21_0001 as upregulated circRNAs that appear to
impair keratinocyte migration but boost proliferation, perhaps contributing to the pathologic
hyperproliferation and impaired differentiation of keratinocytes at the wound edge in VLUs [152].
Interestingly, by segregating keratinocytes and fibroblasts prior to RNA sequencing, the Landén group
also recently identified a bifunctional circRNA, CircGLIS3(2) that supports fibroblasts during wound
repair [149]. The CircGLIS3(2) RNA stimulates ECM production while the 131-amino-acid protein
encoded by CircGLIS3(2) enhances fibroblast proliferation via interactions with the transcription
factor basic transcription Factor 3 [149]. Together, these studies showcase the importance of circRNAs
in wound healing and raise the prospect of their being exploited as biomarkers in chronic wounds
(Table 3).

Nevertheless, much remains to be done to establish the prognostic biomarker potential of
circRNA in chronic wound exudates and in longitudinal contexts of healing versus non-healing wounds.
For instance, there is some evidence that hsa_circ_0000907 and hsa_circ_0057362 in serum and
serum-derived sEV may serve as potential biomarkers for early DFU diagnosis [153]. However, it is not
clear if these circRNAs have prognostic value in predicting wound healing trajectories. Further,
Bindereif and colleagues showed that circRNAs were associated with platelet-derived EVs [93]. It will
therefore be interesting to uncover the circRNA landscape in platelet EVs at different stages of healing

and non-healing wounds.

Conclusion
Are the most promising prospective cfRNA biomarkers to be found in wound fluid or in bloodborne
EVs of serum and plasma? Can even less invasive liquid biopsies like saliva and urine provide cfRNA
markers relevant to chronic wound management? In much the same way that wound fluid has been
studied extensively to identify proteomic markers with prognostic value, attention should now be
turned to defining the full RNA signatures of wound fluid and wound fluid-derived exosomes from a
range of patients with diverse types of chronic non-healing wounds. Crucially, it will be important to
compare healing and non-healing wounds to establish correlations between cfRNA expression and
healing times in order to maximise the clinical relevance of such biomarker discovery programmes.
Critically, cfRNA alone may not suffice to achieve the high sensitivity and specificity crucial
to ensure accurate identification of wound prognosis without false positives or false

negatives. Hence, they will need to be integrated with other biomarkers, such as DFU
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signatures from serum and plasma proteomics datasets [154-156]. Notably, a longitudinal
study from Jozic and coworkers recently contrasted the proteomic profiles of chronic wounds
using discarded wound dressings as a source of cells, EVs and soluble proteins and identified
protein signatures that segregated healing from non-healing wounds [157]. Further, Veves
and colleagues used a machine learning approach to identify serum proteins that delineated
fast healing DFUs from slow healing ones [158]. Separately, metabolite profiling recently
identified 402 small molecule metabolites in DFU exudates, though their predictive
capabilities remain to be established [159]. Going forward, it will be interesting to exploit
integrative approaches to connect cfRNA, protein and metabolite signatures to
pathophysiological processes associated with chronic wounds datasets from the Veves and
Landen laboratories [55, 152, 160, 161]. Such multi-omics integration promises to yield ever
deeper insight into the molecular networks associated with chronic wounds. for sensitive
biomolecular detection in clinical diagnostics.

Challenges remain in terms of standardising protocols for sample acquisition to
support cfRNA and other biomarker profile studies, as has been outlined recently in relation
to circulating miRNAs for cancer [162]. Nevertheless, there are exciting prospects for
exploiting emerging biosensor technologies to real-world monitoring of cfRNAs in serum or
exudates of chronic wound patients. These include a quantum-dot based triple sensor to
detect IncRNA, miRNA and mRNA [163] and an upconversion nanoparticle-based lateral flow
assay that was optimised for miR-21 detection [164]. Convergence of these and related
technologies with machine learning algorithms [165] over the next few years will help shift

cfRNA from the laboratory bench to clinical practice to improve patient outcomes.

Acknowledgments
RR was funded by a Liverpool John Moores University Institute for Health Research internship. JH is

funded by the NIHR Manchester Biomedical Research Centre (NIHR203308). We thank Gemma
Farrington for help with artwork. We would also like to thank the anonymous reviewers of the initial

manuscript for comments that helped to significantly improve the work.

20



1  Table 3: Circular RNAs as potential biomarkers in wound healing

Condition | Sample RNA Sample size for Ref.

validation

DFU Skin hsa_circ_0084443* 1\ in 19 DFU patients [145]
DFU compared to NW 8 healthy controls
(115 1™ and 111 { circRNAs
in DFU vs. NWs)

DFU Serum and hsa_ circ_0000907 65 DFU patients [153]
Serum hsa_circ_0057362 1 65 non-DFU DM patients
derived in DFU compared to both 70 healthy controls
exosomes controls and non-DFU

DFU Skin hsa_circRNA_072697 1 9 DFU patients [166]

8 healthy controls
(25 1 and 40 {, circRNAs in
DFU vs. NWs)

DFU Skin circRNA-80968 1 37 DFU patients [151]
circRNA-081069 1 16 non-DFU DM patients
circRNA-1009801 18 healthy controls
(515 1 and 615 { circRNAs
in DFU vs. NW)

VLU Skin hsa-TNFRSF21_ 0001 5 VLU patients [152]
hsa-CHST15_0003 5 healthy controls

*Now known as circ_ PRKDC

DFU, diabetic foot ulcer

VLU, venous leg ulcer

NW, normal wound

circRNA, circular RNA
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Supplementary Information
Search Strategies for Tables 2 and 3

Searches were performed on PubMed between January and June 2025. Search terms
included:

circulating microRNA wound healing: 49 hits

circulating microRNA diabetic foot ulcers: 10 hits
circulating microRNA venous leg ulcers: 0 hits

circulating microRNA arterial leg ulcers: 0 hits

circulating microRNA pressure ulcers: 1 hit

circulating microRNA surgical wounds healing by secondary intent: 0 hits
exosomal microrna biomarkers foot ulcers: 2 hits

IncRNA diabetic foot ulcers NOT reviews: 37 hits.
circulating IncRNA diabetic foot ulcers NOT reviews: 1 hit
IncRNA exosomes wound healing skin: 17 hits

circular RNA diabetic foot ulcers: 22 hits

circulating circular RNA wound healing: 4 hits.

circulating circular RNA diabetic foot ulcer: 0 hits
exosome circular RNA wound fluid: 1 hit

circular RNA wound fluid: 9

Review articles were excluded, and papers were hand searched by one author (KR) to select

those most relevant.
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