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Abbreviations 1 
 2 
A1BG-AS1  A1BG antisense RNA 1 3 

CASC2   Cancer susceptibility candidate 2 4 

ceRNA   competitive endogenous RNA 5 

cfNA   cell-free nucleic acid 6 

cfRNA   cell-free RNA 7 

circRNA  circular RNA 8 

DFU   diabetic foot ulcer 9 

DLEU1   Deleted in Lymphocytic Leukaemia 1 10 

ECM   Extracellular matrix 11 

EV   Extracellular vesicle 12 

HOTAIR  HOX transcript antisense intergenic RNA 13 

lncRNA    Long non-coding RNA 14 

MALAT1  Metastasis-associated lung adenocarcinoma transcript 1 15 

mRNA   Messenger RNA 16 

miRNA   MicroRNA 17 

MMP    Matrix metalloproteinase 18 

ncRNA   non-coding RNA 19 

NICE   National Institute for Health and Care Excellence (NICE)  20 

NEAT   Nuclear enriched abundant transcript 21 

PTEN   Phosphatase and TENsin homolog deleted on chromosome 10 22 

sEV   Small extracellular vesicle 23 

T2DM   type 2 diabetes mellitus 24 

TIMP   Tissue inhibitor of matrix metalloproteinase 25 

tRF   transfer RNA fragments 26 

VLU   Venous leg ulcer 27 

VEGF   Vascular endothelial growth factor 28 

WAKMAR  Wound and keratinocyte migration-Associated RNA 29 
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Abstract  1 
 2 
Chronic non-healing wounds represent a major clinical challenge, often associated with 3 

diabetes, vascular insufficiencies, and aging. Despite the substantial burden that such wounds 4 

place on patients and healthcare systems, few biomarkers have been approved for prediction 5 

of wound healing trajectories and outcomes, limiting opportunities to inform clinical 6 

management decisions or quantify patient responses to interventions. Recent advances have 7 

identified cell-free nucleic acids as powerful tools for gaining molecular insights because they 8 

offer a non-invasive, dynamic snapshot of physiological and pathological processes occurring 9 

throughout the body. In particular, cell-free RNAs from non-coding RNA families including 10 

microRNA , long non-coding RNA , circular RNA  and transfer RNA fragments can be profiled 11 

on a large scale to reveal novel disease signatures to support biomarker development. The 12 

presence of such non-coding RNAs in serum, plasma or other biofluids provides a rich 13 

resource for uncovering new parameters that can support biomarker development for wound 14 

repair. In this review article, we highlight some of the current challenges associated with 15 

biomarkers for wound healing in clinical practice. We then survey microRNAs, long non-16 

coding RNA and circular RNAs landscape in relation to their utility as biomarkers in diabetic 17 

foot ulcers and other chronic wounds.  Collectively, these extracellular RNAs offer a 18 

multifaceted view of wound biology and may serve as non-invasive biomarkers for stratifying 19 

wound severity, predicting healing outcomes, and guiding personalized interventions. 20 

 21 
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Introduction  1 
 2 
Chronic wounds are open wounds that often take months to heal, if they heal at all. These 3 

wounds include diabetic foot ulcers (DFU), venous leg ulcers (VLU), arterial ulcers , pressure 4 

ulcers and surgical wounds healing by secondary intention that fail to achieve full closure [1, 5 

2]. Collectively these wounds are common, with major implications for those affected and the 6 

health systems that deliver their care. For instance, the costs of managing chronic wounds 7 

was estimated at US$25 billion per annum in the USA and the prevalence 1–2% of the 8 

population in developed countries [3]. More recently, Guest and colleagues put the costs of 9 

wound management across the National Health Service of the United Kingdom at £8.3 billion, 10 

of which £5.6 billion was for managing unhealed wounds [4]. In a primary care setting in 11 

Barcelona, Spain, a 3-year evaluation put wound care costs at around US$40 million, which 12 

extrapolated to $2 billion across Spain [5]. Beyond these economic considerations, chronic 13 

wounds also have a substantial negative impact on health-related quality of life, which overall 14 

are comparable to those observed in congestive heart failure or chronic obstructive 15 

pulmonary disease [6]. Further, there is evidence that the 5-year mortality rate for patients 16 

after diabetes-related amputations is almost 50%, which is twice that reported for breast 17 

cancer [7]. It is also worth noting that there are limited effective treatments to promote 18 

wound healing across all wound types, and those that are evidence-based are mostly physical 19 

or mechanical in nature, such as negative pressure wound therapy, advanced dressings and 20 

compression therapy rather than biologically active innovations implemented in a stratified 21 

medicine framework [8, 9]. 22 

Wound healing progresses through well-established phases of inflammation, 23 

proliferation and remodelling, with co-ordinated interactions between diverse cell types 24 

orchestrating completion of the process [10, 11]. In chronic wounds, inflammation fails to 25 

resolve, neovascularisation is curtailed, extracellular matrix (ECM) formation and turnover is 26 

disrupted and keratinocytes adopt a hyperproliferative phenotype that prevents 27 

differentiation, migration and re-epithelialisation of the wound [12-14]. Against this 28 

backdrop, the ability to characterise the wound status and predict healing outcomes using 29 

biomarkers may offer a new framework for clinical management of chronic wounds by 30 

enabling personalised interventions that target the underlying molecular and cellular 31 

dysfunction associated with non-healing wounds. , However,  although our understanding of 32 
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the cell and molecular biology of wound healing has grown tremendously in recent years, this 1 

has not been paralleled with a similar increase in understanding of the biomarker profiles of 2 

the wound microenvironment or indeed the blood-based biomarker profile associated with 3 

different types of chronic wounds, and issues with study quality often limit the conclusions 4 

that can be drawn [15-17]. Unsurprisingly then,  no biomarkers are routinely recommended 5 

in national clinical guidelines for wound care in the UK. The National Institute for Health and 6 

Care Excellence (NICE) guidance on wound management does not recommend any 7 

biomarkers for routine clinical use in wound assessment or treatment, though several 8 

biomarkers have been explored in research settings (Table 1). The specificity of current 9 

wound care biomarkers such as proteases and cytokines is unclear, and spatiotemporal 10 

changes to their levels during wound healing makes their deployment as simple biomarkers 11 

more difficult. This highlights the gap between biological insight and practical diagnostic tools. 12 

In the UK, the only biomarker for wounds which has been evaluated by NICE is the 13 

WoundCheck Protease status test [18]. However, according to NICE (2016), this has so far only 14 

been tested in one small (n=35) prospective study, and its value therefore remains unclear.  15 

  16 
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Table 1. Illustrative biomarkers in wound healing identified in the literature, derived from references 1 
[19-23] 2 
Biomarker Type Clinical 

Relevance 
Strengths Limitations 

C-Reactive Protein  Acute-phase 
protein 

Indicates systemic 
inflammation; 
elevated in infected 
or non-healing 
wounds 

Easily 
measurable; 
widely used in 
clinical settings 

Non-specific; 
elevated in various 
inflammatory 
conditions 

Interleukins  (e.g. IL-
6, IL-8) 

Cytokine Pro-inflammatory; 
elevated levels may 
indicate impaired 
healing or infection 

Sensitive to 
changes in 
inflammatory 
status 

Levels can 
fluctuate; not 
specific to wound 
healing 

Tumor Necrosis 
Factor-alpha  

Cytokine Promotes 
inflammation; high 
levels associated 
with chronic wounds 

Key mediator in 
inflammation; 
potential 
therapeutic 
target 

Systemic effects; 
elevated in various 
diseases 

Matrix 
Metalloproteinases  

Enzymes Involved in 
extracellular matrix 
remodelling; 
elevated in chronic 
wounds 

Reflects tissue 
remodelling 
activity; potential 
target for therapy 

Overexpression can 
impair healing; 
requires balance 
with inhibitors 

Tissue inhibitor of 
matrix 
metalloproteinases 
 

Protease 
inhibitors 

Reduced levels of 
TIMPS may worsen 
the impact of raised 
MMPs 

May be measured 
from wound fluid. 

Must be interpreted 
alongside MMPs to 
be clinically 
meaningful. 

Vascular Endothelial 
Growth Factor  

Growth 
factor 

Stimulates 
angiogenesis; 
crucial for tissue 
regeneration 

Promotes blood 
vessel formation; 
therapeutic 
potential 

Overexpression 
may lead to 
abnormal 
angiogenesis 

Heparin-binding 
EGF-like Growth 
Factor  

Growth 
factor 

Enhances 
keratinocyte 
migration and 
proliferation; aids 
re-epithelialization 

Potent mitogen; 
involved in 
multiple healing 
phases 

Potential role in 
tumorigenesis; 
requires controlled 
expression 

Copper Peptide  Peptide 
complex 

Stimulates collagen 
synthesis; promotes 
wound contraction 
and angiogenesis 

Enhances tissue 
regeneration; 
antioxidant 
properties 

Limited clinical 
data; requires 
further research 

Angiopoietin-like 4  Glycoprotein Modulates vascular 
permeability; 
promotes 
keratinocyte 
migration 

Involved in 
angiogenesis; 
potential 
therapeutic 
target 

Complex role in 
metabolism and 
cancer; requires 
careful modulation 

 3 

 4 
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Early proteomics studies on rodent wound fluid sought to identify peptides that may 1 

promote wound repair or have antimicrobial properties [24, 25]. In addition, proteomics-2 

based analyses of wound fluid have gained traction for biomarker discovery to understand or 3 

predict the healing trajectory of a wound, particularly in relation to proteases and cytokines, 4 

as well as small molecules and microbes [21, 23, 26-28]. RNA-based biomarkers, particularly 5 

cell-free RNAs (cfRNA), may offer greater molecular specificity and reflect dynamic gene 6 

regulation processes central to healing and chronicity. Their presence in accessible fluids such 7 

as wound exudate and plasma makes them promising candidates for non-invasive, prognostic 8 

tools capable of personalising wound care. However, the cell-free nucleic acid (cfNA) 9 

landscape of wound fluid has received limited attention whether in relation to DNA, 10 

messenger RNAs (mRNA), non-coding RNAs (ncRNA). Hence the potential of wound fluid-11 

derived cfNAs as an alternative biomarker for monitoring and predicting outcomes for 12 

patients with open wounds remains obscure.   13 

Cell-free nucleic acids , particularly cell-free DNA, have emerged as tractable analytes 14 

for testing a range of conditions including non-invasive prenatal testing, tumour profiling and 15 

tracking, transplant surveillance and pathogen detection in infectious diseases [29].  The 16 

potential to gain deeper molecular and mechanistic insight into the underlying  disease 17 

process has also led to a surge of interest in the exploitation of cfRNA as biomarkers for 18 

cancer. Broadly, the study of cfRNA bifurcates into those that focus on mRNA and those that 19 

focus on non-coding RNAs (Figure 1).  20 

For ncRNA, the potential of cfRNA profiling is enormous because at least four 21 

categories of well-defined ncRNAs have been established: microRNAs (miRNA), long non-22 

coding RNAs (lncRNA), circular RNAs (circRNA) and transfer RNA fragments (tRF) (Figure 1). In 23 

many cases, the assessment of these ncRNAs as biomarkers has been linked to studies on 24 

small extracellular vesicles (sEVs; exosomes).  25 

Within this article, we evaluate the potential of ncRNAs, alone or associated with sEVs, 26 

as biomarkers that can be marshalled to monitor and predict the trajectories and outcomes 27 

of chronic non-healing wounds.  28 

 29 
  30 
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 28 
Figure 1: Cell-free nucleic acids (cfNA) amenable to analysis as biomarkers for wound repair. 29 
The cfNAs may be quantified in wound fluid, serum, saliva, urine and exosomes derived from 30 
these biofluids; ncRNA, non-coding RNA; mRNA, messenger RNA; miRNA, microRNA; lncRNA, 31 
long non-coding RNA, circRNA, circular RNA, tRF, tRNA fragments. Depictions of the RNAs 32 
were generated in BioRender. 33 
 34 
 35 
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Cell-free RNA  1 

The presence of stable miRNAs in serum and plasma first highlighted the potential of miRNAs 2 

as a bloodborne biomarker that could be exploited for diagnostic or prognostic purposes in 3 

disease [30, 31]. These studies did not examine cfNAs in the context of bloodborne sEVs, 4 

which have since become a focus of much biomarker discovery work. Interestingly, more 5 

recent efforts have sought to uncover cell-free plasma mRNA biomarkers with diagnostic and 6 

prognostic potential for cancer [32-34], coronary disease [35], Alzheimer’s disease [36, 37] 7 

and paediatric inflammatory syndromes such as bacterial/viral infection and Kawasaki disease 8 

[38]. Indeed, there is evidence that plasma cf-mRNAs may be enriched in cancer EVs [39]. 9 

However, the biomarker potential of cf-mRNA in plasma or plasma derived EVs from chronic 10 

wound patients remains under-explored, as the focus remains on miRNA, lncRNA and 11 

circRNA. These diverse RNA species may, together, offer exciting opportunities to uncover 12 

biomarker patterns that can support wound management, and we now appraise their 13 

potential in that regard.  14 

 15 

MicroRNAs 16 

MicroRNAs are endogenous small, non-coding RNA molecules, typically 22 nucleotides long, 17 

that regulate gene expression in a post-transcriptional manner by binding to the 3ʹ-18 

untranslated region (UTR) of target mRNAs [40]. This function of miRNA is intrinsically linked 19 

to their association with Argonaute proteins to form the RNA-induced silencing complex 20 

(RISC) which orchestrates the assembly of large multi-protein complexes that drive 21 

destabilisation, degradation or translation repression of target mRNAs [41].  22 

Importantly, miRNAs play critical roles in numerous physiological and pathological 23 

processes, with a wide variety of roles in wound healing, modulating the expression of genes 24 

involved in proliferation, migration, differentiation, neovascularization and inflammation 25 

across multiple cell types as has been reviewed elsewhere by us and others [42-47]. These 26 

include miR-34a-5p and miR-34c-5p, which promote inflammation signalling in keratinocytes 27 

and impair wound closure in mouse wounds [48]; miR-132 which dampens keratinocyte 28 

inflammatory cytokine and chemokine production while elevating both keratinocyte 29 

proliferation and fibroblast migration [49, 50] and miR-129-5p and miR-335-5p  which 30 

dampen the expression of matrix metalloproteinase 9 (MMP-9) [51]. In addition,  miR-21-5p 31 

exerts pro-healing actions through an extensive network that includes anti-Inflammatory 32 
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regulation of nuclear factor kappa B (NF-κB) via programmed cell death 4 (PDCD4), promotion 1 

of keratinocyte migration by silencing of tissue inhibitor of metalloproteinases (TIMP-3) and 2 

regulation of fibroblast function by targeting sprouty homolog 2 (SPRY /2), as reviewed 3 

recently [52]. Notably, miR-21-5p is transferred from keratinocytes to myeloid cells via sEVs 4 

to shift the latter towards a pro-healing fibroblast-like phenotype that granulation tissue to 5 

support wound healing [53]. Further, multiple miRNAs regulate neovascularisation,  with 6 

elevation of miR-221, miR-222, miR-92a, and miR-301a-3p inhibiting angiogenesis, while miR-7 

296, miR-126, miR-378, and miR-210 promoted angiogenesis [47]. For more insight regarding 8 

the roles of miRNA in skin healing, the reader is referred to a recent review by Doghish and 9 

colleagues [54].   10 

 11 

 12 

Cell-free MicroRNAs as Biomarkers for Chronic Wounds 13 

Differential miRNAs expression in wound tissue from DFUs has received particular attention, 14 

as reviewed elsewhere [38], though studies defining the miRNA signatures of VLU has also 15 

been reported [55]. However, it remains unclear whether circulating miRNA can serve as 16 

prognostic biomarkers that would enable healthcare providers to predict the trajectory of 17 

wound healing and adjust treatment plans accordingly.  Indeed, only a limited number of 18 

studies appear to have examined cf-miRNAs in wound fluid or blood from patients with DFU 19 

and other wounds, as summarised in Table 2., These include seminal work by Ren and 20 

colleagues, which assessed miRNA in sEVs from wound fluid. Differential expression of 211 21 

miRNAs, reporting 58 miRNAs that were elevated and 153 that were depleted in DFU-derived 22 

EVs compared to control EVs [56]. The study focused on miR-205-5p and miR-195-5p which 23 

they linked to the regulation of vascular endothelial growth factor A (VEGFA): transfer of the 24 

DFU-derived EVs into endothelial cells elevated the expression of these miRNAs and 25 

diminished VEGFA expression. Given the importance of VEGF, it appears feasible that these 26 

may have value as biomarkers. Levels of miR-205-5p might be carefully calibrated during 27 

wound repair, as both pro-migratory and anti-migratory effects have been reported in 28 

keratinocytes [57, 58] but whether the high levels of miR-205 in DFU EVs reflect elevated 29 

expression in structural cells of skin and blood vessels as opposed to EV released from 30 

infiltrating blood cells remains to be established. It might not matter in any case as putative 31 

transfer of miR-205-5p in a paracrine manner may contribute to impaired healing. The 32 
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important consideration from our perspective is whether monitoring miR-205-5p has 1 

prognostic value in predicting patient outcomes to standard of care. It should also be noted, 2 

however, that cf-miRNAs have not been formally validated in clinical contexts, whereas 3 

circulating miRNAs with biomarker potential have been established in clinical settings linked 4 

to cancer, ischemic stroke and myocardial infarction, as illustrated by several recent studies 5 

[59-61]. 6 

 7 

  8 
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Table 2: Extracellular miRNAs and lncRNAs as potential biomarkers in DFU 1 
 2 

Condition Sample RNA Evaluated in 
EVs 

Sample size Ref. 

DFU Serum miR-205-
5p↑ 

Yes 21 patients 
18 controls 

[56] 

DFU Wound 
fluid 

miR-195-
5p↑ 
miR-205-
5p↑ 

Yes 21 patients 
14 DM controls 
18 healthy controls 

[56] 

DFU Plasma let-7e-5p ↑ 
miR-17-5p ↑ 
miR-191-5p 
↑ 
miR-33a-5p 
↑ 

No 41 patients 
50 controls 

[62] 

DFU Plasma miR-203a-
3p↑ 

Plasma 64 patients 
52 controls 

[63] 

DFU Serum  
-derived 
exosomes 

miR-15a-
3p↑ 

Detected in 
both serum 
and serum-
derived 
exosomes 

10 DFU patients  
10 patients with non-
diabetic foot wounds 

[64] 

DFU Serum lncRNA 
A1BG-AS1↑ 

No 77 DFU patients 
85 T2DM patients 
75 healthy controls 

[65] 

DFU Serum lncRNA 
DLEU1↑ 

No 71 DFU patients 
71 Healthy controls 

[66] 

 
EV, Extracellular vesicle  
lncRNA, long non-coding RNA 
DLEU1, Deleted in Lymphocytic Leukaemia 1 
DFU, diabetic foot ulcer 
DM, diabetes mellitus 
T2DM, type 2 diabetes mellitus patients 
 

 3 

 4 

 5 

 6 
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Long non-coding RNAs 1 

Long non-coding RNAs are RNA transcripts that have traditionally been defined as consisting 2 

of at least 200 nucleotides but having little or no protein-coding capacity. While the 200 nt 3 

lower limit for lncRNA size has served as a useful cut-off to date, a recent Consensus 4 

Statement has sought to re-define lncRNAs as >500 nt [67].  This is to distinguish lncRNA more 5 

clearly from certain ncRNAs that are over 200 nt long but are not classical lncRNAs. The 60-6 

300 nt long small nucleolar RNAs involved in ribosomal RNA modification  and the small 7 

nuclear RNAs that execute pre-mRNA splicing, which are typically ~150 nt long but can be 60-8 

450 nt long, fall into this category of intermediate RNAs  [68, 69].  9 

Although a few notable lncRNAs such as X-inactive specific  and H19 had been 10 

discovered early in relation to developmental processes [70, 71], it was the characterization 11 

of large-scale mouse, human and fly transcriptome datasets that established the pervasive 12 

nature of lncRNA transcripts [72-75]. The recent NONCODEV6 study estimates the human 13 

genome has just over 173,00 lncRNAs, but the number of functional human lncRNAs seems 14 

to be 20,000-60,000 [76, 77].  15 

Combined with their genomic and structural diversity and low sequence conservation, 16 

the relatively large number of lncRNAs has made the validation and functional annotation of 17 

lncRNAs challenging but they have been implicated in mRNA decay, structural scaffolding, 18 

chromatin remodeling, epigenetic regulation, transcriptional and post-transcriptional 19 

regulation, RNA splicing and editing and in development [78, 79]. Competitive endogenous 20 

RNA (ceRNA) binding represents another framework for understanding lncRNA function, and 21 

involves sequestration of endogenous miRNA by lncRNA [36,37]. Thus, the lncRNA competes 22 

with mRNA targets to capture miRNAs, thereby limiting the effective concentration of target 23 

miRNA that is available to mediate repression [36]. It should be noted that a significant 24 

proportion of so-called lncRNAs are now known to encode peptides via short open reading 25 

frames [80, 81]. These micropeptides, usually less than 100 amino acids long, have been 26 

implicated in a range of functions associated with protein phosphorylation, mRNA modulation 27 

and interactions with proteins associated with subcellular organelle membranes [82].  28 

The TINCR (Terminal differentiation-Induced Non-Coding RNA) gene is one such lncRNA that 29 

is now known to encode an 87-amino acid long peptide that has been implicated in promoting 30 

keratinocyte proliferation to support wound healing [83]. However, this appears to be the 31 

exception among several lncRNAs implicated in wound repair, to which we now turn.  32 
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LncRNA and wound healing 1 

Multiple lncRNAs have been implicated in wound healing as well as other  aspects of skin 2 

biology, including keratinocyte differentiation, melanocyte behaviour and hair growth [84, 3 

85]. From the epidermal perspective, such lncRNAs include wound and keratinocyte 4 

migration-associated lncRNAs (WAKMAR1 and WAKMAR2) [86, 87]; TET2-interacting long 5 

noncoding RNA, which contributes to disrupted ECM homeostasis by promoting expression 6 

of  MMP-9 promoter [88] and lncRNA SNHG26 which shifts keratinocyte progenitor cells from 7 

the inflammatory to the proliferative state during wound healing [89]. Interestingly, 8 

keratinocyte sEVs delivered the lncRNA metastasis-associated lung adenocarcinoma 9 

transcript 1 (MALAT1) into macrophages, shifting  them towards a pro-healing phenotype 10 

[90]. In fibroblasts, lncRNA cancer susceptibility candidate 2 (CASC2) levels were lower in 11 

wound tissues of DFU patients and CASC2 overexpression promoted fibroblast migration and 12 

proliferation and reduced their apoptosis [91]. On the other hand, lncRNA growth arrest-13 

specific transcript 5 was elevated in diabetic wounds and drove macrophages towards a pro-14 

inflammatory M1 phenotype [92].  The roles of these and other lncRNAs in relation to 15 

inflammation, angiogenesis and ECM turnover have been reviewed elsewhere recently [93]. 16 

Here, we first focus on lncRNAs associated with wound healing where there is also evidence 17 

of loading into EVs (H19, HOTAIR, NEAT1) then highlight two lncRNAs (A1BG-AS1 and DLEU1) 18 

identified as candidate biomarkers in DFU patient sera. 19 

 20 

 21 

LncRNA-H19  22 

Long noncoding RNA H19 has been established as a key regulator of programmed cell death 23 

and autophagy [94]. Recent evidence has emerged to suggest that H19 is downregulated in 24 

human mouse diabetic skin and elevated in exosomes from human hair follicle mesenchymal 25 

stem cells [95, 96]. Functionally, exosomal H19 appeared to promote wound repair promoting 26 

fibroblast proliferation through anti-inflammatory mechanisms that involved abrogation of  27 

pyroptosis, a form of programmed cell death mediated by the gasdermin family of pore-28 

forming proteins [95-97]. This putative ability of H19 to dampen pyroptosis was associated 29 

with improved healing of diabetic mouse skin wounds through better re-epithelialisation and 30 

neovascularisation, and studies on HaCaT epidermal keratinocytes showcased suppression of 31 

the NLRP3, caspase-1, IL-β, and IL-18 axes of inflammation. However, it is not clear at present 32 



15 
 

if H19 levels are altered in exosomes from wound fluid, serum or plasma of patients with DFU 1 

or other chronic wounds. .  2 

 3 

HOTAIR  4 

HOTAIR (HOX Antisense Intergenic RNA) is a 2158 nucleotide lncRNA that was first identified 5 

in human fibroblasts following transcriptional profiling of the four HOX chromosomal loci 6 

present [98]. Mechanistically, HOTAIR was found to promote transcriptional silencing of 7 

chromosomal domains by Polycomb Repressive Complex 2-dependent H3K27 methylation 8 

[98]. Since then, multiple other roles have been established for HOTAIR, including serving as 9 

a ceRNA to sequester miRNAs as well as post-translational functions including ubiquitination 10 

and subsequent degradation of protein targets, as reviewed in [99]. In relation to wound 11 

healing, ethanol treatment was shown to boost the vascularization bioactivity of endothelial 12 

cell-derived EVs through mechanisms that included elevation of HOTAIR and MALAT1 within 13 

the EV cargo and downregulation of the anti-angiogenic miRNA miR-106b [100]. Additional 14 

evidence from the same group showed that HOTAIR overexpression in mesenchymal stem 15 

cells yielded EVs with raised HOTAIR levels to support wound healing in diabetic mice via 16 

increased angiogenesis [101]. HOTAIR expression increases after a burn injury in mouse skin 17 

and intradermal injections of HOTAIR-overexpressing epidermal stem cells promoted re-18 

epithelialization and wound closure [102].  19 

There is evidence in some contexts (laryngeal squamous cell cancer, acute myeloid 20 

leukaemia and liver fibrosis) that HOTAIR promotes methylation of phosphatase and TENsin 21 

homolog deleted on chromosome 10 (PTEN) by marshalling DNA Methyltransferase 3 beta 22 

expression [103-105]. The levels of such HOTAIR-dependent methylation of PTEN during 23 

wound healing have not been established to our knowledge but growing evidence links 24 

miRNA-mediated downregulation of PTEN to wound repair mechanisms [106-108]. 25 

Early studies considered the potential of serum-derived exosomal HOTAIR, in 26 

combination with exosomal miRNA-21, as candidate diagnostic and prognostic biomarkers 27 

for laryngeal squamous cell carcinoma  [109]. Further investigations revealed HOTAIR 28 

elevation in urinary exosomes in bladder cancer [110], serum-derived EVs from lung cancer 29 

patients [111], colorectal cancer cell-derived exosomes [112] and in serum-derived exosomes 30 

from breast cancer patients, where HOTAIR levels appeared to have diagnostic and prognostic 31 

potential [113]. Together, these studies highlight the potential of HOTAIR as a biomarker 32 
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amenable to detection in liquid biopsies. However, the extent to which exosomal HOTAIR 1 

levels vary in serum or wound fluid from patients with different types of complex wounds 2 

compared to those whose wounds heal within a relatively short time frame has not been 3 

established.  4 

 5 

Nuclear enriched abundant transcript 6 

Nuclear enriched abundant transcript 1 (NEAT1) lncRNAs include, a short isoform of 3.7 kb 7 

(originally termed MENε, now known as NEAT1_1) and a large 23 kb which was initially known 8 

as MEN β but is now called NEAT1_2 [114, 115]. This longer NEAT1_1 isoform has been 9 

established as a central orchestrator of the assembly of paraspeckles, membraneless 10 

organelles implicated in cancer, stress responses and  developmental processes, as reviewed 11 

in [116]. Elevation of NEAT1 has been implicated in multiple cancers, which mechanisms of 12 

pathogenesis often associated with ceRNA effects of NEAT that lead to sequestration of 13 

miRNA targets and subsequent elevation of various transcription factors and enzymes 14 

associated with oncogenesis [117, 118].   15 

There is is evidence linking NEAT1 to angiogenesis as it downregulated in chronic DFU 16 

compared to acute DFU, liberating miR-146 which in turn represses  matG, an important 17 

angiogenic transcription factor [119]. Depletion of NEAT1 was associated with impaired 18 

endothelial cell migration and network formation. Notably, exosomal NEAT1 has been 19 

reported in some contexts including serum-derived exosomes of rheumatoid arthritis 20 

patients [120], cancer-associated fibroblasts [121] and endothelial cells under oxidative stress 21 

[122].   However, NEAT1 has not been associated with exosomes from chronic wounds to our 22 

knowledge.  23 

 24 

LncRNA A1BG-AS1  25 

A recent survey of lncRNA-mRNA coexpression network analysis in peripheral blood 26 

monocytes identified 12 lncRNAs associated with inflammation in type 2 diabetes mellitus 27 

(T2DM) peripheral blood monocytes [123]. In a subsequent study comparing serum levels of 28 

lncRNA A1BG antisense RNA 1 (A1BG-AS1) in DFU, T2DM and control subjects (n = 77, 85 and 29 

75, respectively), A1BG-AS1 was modestly (about 2-fold) upregulated in patients with DFUs 30 

[65].  Close analysis revealed a correlation with fasting blood glucose, glycated hemoglobin 31 
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and Wagner grade scores when segregated into high versus low A1BG-AS1 serum levels [65].  1 

Both univariate and multivariate analysis suggested A1BG-AS1 levels may have potential as a 2 

biomarker for predicting the risk of DFU in T2DM patients and quantifying severity of DFU 3 

[65].  High glucose was shown to raise A1BG-AS1 expression in human dermal fibroblasts and 4 

reduce miR-214 levels, but it remains to be seen whether this translates into A1BG-AS1-5 

mediated effects of autocrine exosomal miR-214-3p-depenent angiogenesis reported early 6 

on by Verhaar and colleagues [124]. However, longitudinal studies are required to validate 7 

the potential utility of monitoring serum A1BG-AS1 levels in DFU patients. 8 

 9 

 10 

LncRNA DLEU1 11 

Deleted in Lymphocytic Leukaemia 1 (DLEU1) has been established as a cancer-associated 12 

lncRNA that is upregulated in various tumours [125]. Analysis of sera from 71 DFU patients 13 

and matched controls revealed a modest 1.5-fold increase in lncRNA DLEU1 expression in the 14 

DFU cohort. Unlike the above-mentioned study of lncRNA A1BG-AS1, the study on serum 15 

DLEU1 did not present deep analysis based on low versus high levels of lncRNA DLEU1 [66]. 16 

Nonetheless, there was some suggestion that serum lncRNA DLEU1 had biomarker potential 17 

for monitoring DFU. Functionally, lncRNA DLEU1 appeared to have an anti-angiogenic 18 

function based on studies of cultured endothelial cells but the impact of DLEU1 on wound-19 

related angiogenesis in vivo has yet to be determined. 20 

Notably, none of the above studies examined lncRNA in plasma or serum-derived sEV or in 21 

wound exudates. Hence there is likely to be more scope to uncover lncRNA biomarkers with 22 

prognostic value in managing chronic wound patients.  On the other hand, circular RNAs may 23 

also be promising as chronic wound biomarkers, and we now consider their potential in that 24 

regard.  25 

 26 

Circular RNAs: A Brief Background   27 

Circular RNAs are ncRNAs characterized by their covalently closed-loop structure and absence 28 

of 5ʹ cap and poly(A) tail typically found in linear RNAs [126]. Interest in circular RNAs has 29 

grown tremendously over the last decade but their discovery goes back to the 1970s, with 30 

the first report of circular RNA viroids that infect plant hosts by Kleinschmidt and colleagues 31 

[127] followed by observation of circular RNAs in Hela cells by Hsu and Coca-Prados [128]. For 32 
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an elegant summary of the history of circRNAs, the reader is referred to a review by 1 

Kadener and colleagues [129]. The studies that moved circRNA from relative obscurity into 2 

the limelight emerged in 2013, when deep sequencing revealed their prevalence across 3 

human and other animal transcriptomes [130, 131] and their roles as competing endogenous 4 

RNAs that sequester miRNAs and thus reduce their availability to interact with target mRNA 5 

transcripts were defined [132, 133]. Interestingly, although primarily defined as non-coding 6 

RNA, evidence has emerged to show circRNA can be translated into protein [134-136]. 7 

 Most circRNAs are derived from direct “back-splicing” of pre-mRNA exons though 8 

several other circRNAs have been defined based on the mechanism of biogenesis [137]. In 9 

any case, the circular structure of circRNAs renders them resistant to exonucleases, making 10 

them more stable than their linear counterparts. As a result, although their abundance tends 11 

to be low, they have emerged as promising biomarkers of disease, with high specificity and 12 

sensitivity [138, 139]. Further, a recent study of over 1000 human plasma samples, along with 13 

urine, bile and cerebrospinal fluid samples, revealed that circRNAs appeared to be 14 

preferentially sorted into EVs compared to linear RNAs, enabling functional enrichment [140]. 15 

Importantly, as with miRNA and lncRNA, circRNAs are also loaded into exosomes and have 16 

thus gained traction as novel biomarkers for cancer and other diseases [141-144].  17 

 18 

Circular RNAs: Emerging Roles in Cutaneous Wound Healing 19 

Recent studies have implicated circRNAs in both keratinocyte and fibroblast functions during 20 

wound repair [145-150].  Work  from the Landén group on DFU [145] lay much of the foundation 21 

for understanding circRNA expression in chronic wounds. Wang, Landén and colleagues found that 22 

the expression of hsa_circ_0084443 (now known as circ_PRKDC) was reduced in normal wounds 23 

compared with intact skin, but expression of circ_PRKDC in  DFUs was higher than in normal wounds 24 

[145]. Elevated circPRKDK may impair DFU by reducing keratinocyte migration via mechanisms in 25 

which circ_PRKDC sequesters miR-17-3p and miR-31, in turn modulating the activity of multiple 26 

pathways  [145-147]. In an unrelated study that also used the Wang dataset as the starting point, 27 

Xiong and colleagues also found that a circRNA, circRNA-080968 was upregulated in DFU tissues 28 

compared to that of non-DFU wounds and its overexpression impaired keratinocyte migration [151]. 29 

Another circRNA implicated in wound repair is circCDK13, which was identified by analysis of the Wang 30 

dataset [145] followed by delineation of circRNAs depleted upon exposure of keratinocytes and 31 

fibroblasts to the advanced glycation end product-bovine serum albumin, to mimic the DFU 32 

environment [148]. CircCDK13 promoted the migration and proliferation of keratinocytes and 33 
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fibroblasts [148]. Notably, circCDK13 harboured N6-methyladenosine modifications that facilitated 1 

interactions with insulin-like growth factor 2 mRNA-binding protein 3, an important RNA-binding 2 

protein [148]. In addition, Landen and colleagues define the circRNA network in VLUs and uncovered  3 

hsa-CHST15_0003 and hsa-TNFRSF21_0001 as upregulated circRNAs that appear to 4 

impair keratinocyte migration but boost proliferation, perhaps contributing to the pathologic 5 

hyperproliferation and impaired differentiation of keratinocytes at the wound edge in VLUs [152]. 6 

Interestingly, by segregating keratinocytes and fibroblasts prior to RNA sequencing, the Landén group 7 

also recently identified a bifunctional circRNA, CircGLIS3(2) that supports fibroblasts during wound 8 

repair [149]. The CircGLIS3(2) RNA stimulates ECM production while the 131-amino-acid protein 9 

encoded by CircGLIS3(2) enhances fibroblast proliferation via interactions with the  transcription 10 

factor basic transcription Factor 3 [149]. Together, these studies showcase the importance of circRNAs 11 

in wound healing and raise the prospect of their being exploited as biomarkers in chronic wounds 12 

(Table 3).  13 

 Nevertheless, much remains to be done to establish the prognostic biomarker potential of 14 

circRNA in chronic wound exudates and in longitudinal contexts of healing versus non-healing wounds. 15 

For instance, there is some evidence that hsa_circ_0000907 and hsa_circ_0057362 in serum and 16 

serum-derived sEV may serve as potential biomarkers for early DFU diagnosis [153]. However, it is not 17 

clear if these circRNAs have prognostic value in predicting wound healing trajectories. Further, 18 

Bindereif and colleagues showed that circRNAs were associated with platelet-derived EVs [93]. It will 19 

therefore be interesting to uncover the circRNA landscape in platelet EVs at different stages of healing 20 

and non-healing wounds.  21 

 22 

Conclusion 23 

Are the most promising prospective cfRNA biomarkers to be found in wound fluid or in bloodborne 24 

EVs of serum and plasma? Can even less invasive liquid biopsies like saliva and urine provide cfRNA 25 

markers relevant to chronic wound management? In much the same way that wound fluid has been 26 

studied extensively to identify proteomic markers with prognostic value, attention should now be 27 

turned to defining the full RNA signatures of wound fluid and wound fluid-derived exosomes from a 28 

range of patients with diverse types of chronic non-healing wounds. Crucially, it will be important to 29 

compare healing and non-healing wounds to establish correlations between cfRNA expression and 30 

healing times in order to maximise the clinical relevance of such biomarker discovery programmes. 31 

Critically, cfRNA alone may not suffice to achieve the high sensitivity and specificity crucial 32 

to ensure accurate identification of wound prognosis without false positives or false 33 

negatives. Hence, they will need to be integrated with other biomarkers, such as DFU 34 
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signatures from serum and plasma proteomics datasets [154-156]. Notably, a longitudinal 1 

study from Jozic and coworkers recently contrasted the proteomic profiles of chronic wounds 2 

using discarded wound dressings as a source of cells, EVs and soluble proteins and identified 3 

protein signatures that segregated healing from non-healing wounds [157]. Further, Veves 4 

and colleagues used a machine learning approach to identify serum proteins that delineated 5 

fast healing DFUs from slow healing ones [158]. Separately, metabolite profiling recently 6 

identified 402 small molecule metabolites in DFU exudates, though their predictive 7 

capabilities remain to be established [159]. Going forward, it will be interesting to exploit 8 

integrative approaches to connect cfRNA, protein and metabolite signatures to 9 

pathophysiological processes associated with chronic wounds datasets from the Veves and 10 

Landen laboratories [55, 152, 160, 161]. Such multi-omics integration promises to yield ever 11 

deeper insight into the molecular networks associated with chronic wounds. for sensitive 12 

biomolecular detection in clinical diagnostics. 13 

Challenges remain in terms of standardising protocols for sample acquisition to 14 

support cfRNA and other biomarker profile studies, as has been outlined recently in relation 15 

to circulating miRNAs for cancer [162]. Nevertheless, there are exciting prospects for 16 

exploiting emerging biosensor technologies to real-world monitoring of cfRNAs in serum or 17 

exudates of chronic wound patients. These include a quantum-dot based triple sensor to 18 

detect lncRNA, miRNA and mRNA [163] and an upconversion nanoparticle-based lateral flow 19 

assay that was optimised for miR-21 detection [164]. Convergence of these and related 20 

technologies with machine learning algorithms [165] over the next few years will help shift 21 

cfRNA from the laboratory bench to clinical practice to improve patient outcomes.  22 
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Table 3: Circular RNAs as potential biomarkers in wound healing   1 

Condition Sample RNA Sample size for 
validation 

Ref.  

DFU Skin hsa_circ_0084443* ↑ in 
DFU compared to NW  
(115 ↑ and 111 ↓ circRNAs 
in DFU vs. NWs) 
 

19 DFU patients 
8 healthy controls 

[145] 

DFU Serum and  
Serum 
derived 
exosomes 

hsa_ circ_0000907 ↑ 
hsa_circ_0057362 ↑ 
in DFU compared to both 
controls and non-DFU 
 

65 DFU patients  
65 non-DFU DM patients  
70 healthy controls  

[153] 

DFU Skin hsa_circRNA_072697 ↑ 
 
(25 ↑ and 40 ↓ circRNAs in 
DFU vs. NWs)  
 

9 DFU patients  
8 healthy controls  

 [166] 
 
 

DFU Skin circRNA-80968↑ 
circRNA-081069↑  
circRNA-100980↑  
 
(515 ↑ and 615 ↓ circRNAs 
in DFU vs. NW) 
 

37 DFU patients  
16 non-DFU DM patients  
18 healthy controls 

[151]  
 

VLU Skin hsa-TNFRSF21_0001 
hsa-CHST15_0003  
 

5 VLU patients 
5 healthy controls 

[152] 

*Now known as circ_PRKDC 
DFU, diabetic foot ulcer 
VLU, venous leg ulcer 
NW, normal wound 
circRNA, circular RNA 
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Supplementary Information 1 
 2 
Search Strategies for Tables 2 and 3  3 
 4 
Searches were performed on PubMed between January and June 2025. Search terms 5 
included: 6 
 7 
circulating microRNA wound healing: 49 hits 8 
circulating microRNA diabetic foot ulcers: 10 hits 9 
circulating microRNA venous leg ulcers: 0 hits 10 
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lncRNA diabetic foot ulcers NOT reviews: 37 hits. 15 
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circular RNA diabetic foot ulcers: 22 hits   18 
circulating circular RNA wound healing: 4 hits.  19 
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