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Abstract

The northern coast of Mauritania presents a strategic opportunity for clean energy in-
vestment due to its remarkable potential for green hydrogen production through wind
energy. To determine the best location for wind-based green hydrogen production, this
paper established a Multi-Criteria Decision-Making framework (MCDM) that combines
the Analytic Hierarchy Process (AHP) and Evidential Reasoning (ER) to assess five coastal
sites: Nouakchott, Nouamghar, Tasiast, Boulanoir, and Nouadhibou. Four main criteria
(i.e., economic, technical, environmental, and social) and twelve sub-criteria were taken
into account in the assessment. To ensure reliability and contextual accuracy, the data
used in this study were obtained from geographic databases, peer-reviewed literature, and
structured expert questionnaires. The results indicate that site 5 (Nouadhibou) is the most
suitable location for green hydrogen generation using wind energy. Sensitivity analysis
confirms the robustness of the ranking results, validating the reliability of the proposed
hybrid framework. The findings of this study provide critical, data-driven decision-support
insights for investors and policymakers, guiding the strategic development of sustainable
wind-based green hydrogen projects along Mauritania’s coastline.

Keywords: Mauritania; site selection; multi-criteria decision making; analytic hierarchy
process; evidential reasoning; green hydrogen

1. Introduction
Carbon-neutral alternatives to fossil fuels are increasingly being pursued across a wide

range of applications, reflecting the growing imperative to decarbonise energy systems.
Among these, hydrogen is gaining significant global traction, with green hydrogen, in
particular, is emerging as a promising carbon-neutral substitute for fossil fuels across
multiple sectors. The global shift towards low-carbon energy systems has positioned
green hydrogen as a key vector for decarbonisation across sectors such as industry, power
generation, and transport. Unfortunately, most current hydrogen production systems
still rely on fossil fuels, meaning that significant research and investment are required to
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develop more sustainable pathways for hydrogen generation. Mauritania, located on the
western edge of the Sahara Desert and bordered by the Atlantic Ocean, offers substantial
potential for renewable energy development, with an estimated area of 700,000 km2 of
land suitable for large-scale solar and wind power installations. The country’s theoretical
renewable energy potential is estimated at approximately 457.9 GW for solar photovoltaic
and 47 GW for wind energy projects [1]. With a 750 km Atlantic coastline, the northern
coastal corridor between Nouakchott and Nouadhibou has been identified as particularly
favourable for wind energy development, with mean wind speeds ranging from 7.6 m/s
to 9.8 m/s [2]. Despite this vast resource, Mauritania remains heavily dependent on fossil
fuels, with 89% of its electricity produced from fossil fuels in 2021, followed by wind (6%)
and solar PV (5%).

However, the country is making significant progress in adopting renewable energy.
The 100 MW Boulanoir Wind Power Station represents Mauritania’s largest wind farm and
marks a step toward diversifying its energy mix and supporting future green hydrogen
production. Mauritania’s renewable energy portfolio currently consists of approximately
83 MW of solar and 130 MW of wind capacity. These installations form part of a broader
national strategy to enhance the role of renewable energy sources within the national elec-
tricity mix [3]. According to the IEA’s 2024 report, the majority of global green hydrogen
projects at the construction stage or with a final investment decision (FID) are concentrated
in China (around 45%) and Europe (around 30%). Nevertheless, Mauritania is emerging as
a notable new player in this field. The country has signed several Memoranda of Under-
standing with leading international developers, such as CWP and London-listed Chariot
Ltd. (London, UK), for large-scale hydrogen projects, including Nour and Aman [4]. In
February 2025, the government further strengthened its position by concluding a frame-
work agreement with GreenGo, a Danish developer, to develop the Megaton Moon project,
providing access to 100,000 hectares of land [5]. The recently enacted Law no. 2024-037/P. R
(Hydrogen Code) establishes a dedicated legal framework to attract investment, including
tax incentives, the creation of the Mauritanian Green Hydrogen Agency, as well as clearly
defined project obligations [6]. While this law provides the regulatory basis, Maurita-
nia had already published a national green hydrogen roadmap in 2022, developed with
AFRY Consulting, which envisions the country capturing approximately 1.5% of the global
hydrogen demand and around 1% of the green steel market by 2050 [7].

In this context, the selection of suitable sites becomes a critical step in advancing green
hydrogen development in Mauritania. While the country benefits from abundant wind and
solar resources, other key factors such as levelised cost of hydrogen (LCOH), levelised cost
of electricity (LCOE), payback period (PBP), accessibility to seaports and water resources,
as well as environmental and social impacts, must be carefully assessed. A narrow focus
on economic performance alone would provide a partial perspective and could overlook
essential dimensions required for long-term sustainability and project feasibility. This un-
derscores the need for comprehensive site selection methodologies that integrate economic,
technical, environmental, and social criteria. For example, Yunna and Geng [8] used the An-
alytic Hierarchy Process (AHP) to rank potential locations for a solar–wind hybrid power
station (SWHPS) in China, identifying the southwestern alternative as the optimal location,
and the sensitivity analysis confirmed the robustness of the result. Similarly, in China,
Zhao and Wang [9] used a geographic information system (GIS) combined with MCDM
techniques to select the most suitable site for the construction of a wind–solar–hydrogen
storage power plant. Their study confirmed that Location A6, in the Inner Mongolia Au-
tonomous Region of China, was the optimal, again supported by sensitivity analysis. In
Iran, Mostafaeipour and Sadeghi Sedeh [10] evaluated five major petrochemical complexes
as potential sites for constructing a solar power plant to produce green chemical fertilisers.
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Using a combination of AHP and the TODIM method, they identified the Shiraz Petrochem-
ical Complex as the most suitable. Similarly, Loughney et al. [11] developed a methodology
based on Evidential Reasoning (ER) to determine the optimal location for a floating offshore
wind farm on the northern coast of Scotland. Their analysis found that Site 15, along with
five other sites out of 45, represented the most promising candidates for development.
In a related study, Diaz et al. [12] compared AHP with a hybrid AHP–ER approach for
selecting floating offshore wind farm sites. They concluded that both methods are suitable
for this decision-making problem, although the ER method is more efficient and requires
fewer expert judgments, offering practical advantages in complex site-selection processes.

In southern Thailand, Ali et al. [13] employed a combined GIS approach and AHP to
assess and select potential sites for solar-based green hydrogen production. Their analysis
revealed that approximately 4302 km2 in the southern region is highly suitable for deploy-
ment, with a further 3350 km2 classified as moderately suitable. In Algeria, Tiar et al. [14]
adopted a similar GIS and AHP methodology and identified around 4076 km2 of highly
suitable land for producing hydrogen.

In India, Thekkethil et al. [15] applied AHP to assess land suitability for establishing
a green hydrogen hub across thirteen states, identifying Gujarat as the most suitable lo-
cation, followed by Maharashtra and Andhra Pradesh. Likewise, in the Brazilian state of
Ceará, Leal et al. [16] employed four MCDM techniques to rank municipalities for wind
and solar-powered hydrogen production, finding that Araripe had the highest suitability
among 184 municipalities.

Kumar et al. [17] developed a GIS-MCDM framework for the development of offshore
green hydrogen systems in Australia, with sensitivity analysis confirming Site 3 as the
most suitable location for offshore hybrid renewable-powered green hydrogen production
in the marine region. Similarly, Rekik and El Alimi [18] applied GIS-MCDM techniques
for selecting optimal sites for solar-based green hydrogen projects in Tunisia, highlighting
the southeastern and southwestern regions, particularly Sfax, Monastir, and Sousse, as the
most promising areas. Pinto et al. [19] further reinforced these findings using GIS-AHP,
confirming the southern and eastern regions of Tunisia as highly suitable for solar-hydrogen
production. In Cameroon, Metegam and Flora [20] applied GIS-AHP for evaluating the
potential of solar and wind energy for both electricity and hydrogen production, concluding
that 30.14% of the national territory is highly suitable, while 42.35% is unsuitable. In
a related study, Flora and Metegam [21] used GIS-AHP to evaluate land suitability for five
solar power system configurations. Their findings confirmed that 42.35% of the area is
unsuitable for solar energy implementation. The study also revealed that the solar PV
system ranked as the most favourable, followed by the solar PV and concentrated solar
power hybridisation with wet and dry cooling.

Recent studies have proposed advanced heterogeneous MCDM approaches for site
selection in various domains. For example, Wan et al. [22] applied complex heterogeneous
MCDM methods to solar PV station site selection. Similarly, Wan et al. [23] introduced
a heterogeneous MCDM framework combining a trapezoidal cloud model and MULTI-
MOORA method to determine optimal container multimodal transport routes. Additionally,
Dong et al. [24] proposed a new MCDM approach with probabilistic linguistic term sets
for hotel construction project site selection. These contributions highlight the increasing
methodological sophistication in site selection research, particularly in handling hetero-
geneous information and group preferences. However, many of these approaches rely on
problem-specific linguistic or cloud-based modelling, high computational complexity when
the number of alternatives increases, and non-linear procedures, which may limit their scal-
ability and applicability in data-scarce decision contexts. In contrast, the hybrid AHP–ER
framework adopted in this study offers a transparent and flexible integration of quanti-
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tative and qualitative data with explicit uncertainty representation through belief-degree
distributions, making it well-suited to strategic wind-based green hydrogen site selection.

The selection of the ER approach in this study is further supported by comparative
evidence from the decision-making literature. Previous studies show that hybrid AHP–ER
frameworks provide more transparent, robust, and reliable decision-support structures,
particularly in complex site-selection contexts [12,25]. ER-based aggregation has also
been shown to yield more reliable outcomes than simple additive approaches such as
SAW [26]. Comparative assessments against conventional MCDM methods (AHP, ANP,
TOPSIS, PROMETHEE, and clustering-based techniques) further highlight ER’s strong
performance in uncertainty handling and consistency, while maintaining moderate compu-
tational complexity and modelling effort [27]. These features make ER particularly suitable
for strategic site selection in emerging, data-scarce contexts such as wind-based green
hydrogen production.

Although numerous studies have employed MCDM methods to renewable energy
and hydrogen planning projects, several important research gaps remain. First, there is
a lack of context-specific analyses for Mauritania. While substantial research exists for
Europe, Asia, and other parts of North Africa, Mauritania has received limited scholarly
attention despite its exceptional wind potential, extensive coastline, and favourable prox-
imity to export markets. Second, existing literature predominantly relies on single MCDM
methods, such as the AHP method, which limits the ability to integrate heterogeneous
(quantitative and qualitative) criteria and robustly handle uncertainty and imprecision
inherent in expert judgments. The ER approach is specifically designed to overcome these
limitations. However, despite its suitability for managing incomplete and uncertain infor-
mation, the ER approach, particularly in a hybrid AHP–ER context, has not been applied
to the complex multi-criteria problem of green hydrogen site selection. Consequently, its
potential advantages in this strategic sector remain unexplored. Addressing these research
gaps, this study presents a hybrid AHP–ER framework for selecting suitable locations for
wind-based green hydrogen production in Mauritania, integrating both quantitative and
qualitative criteria into a balanced and comprehensive assessment. This study represents
one of the first structured MCDM applications to hydrogen site selection in Mauritania and
offers policymakers and investors valuable decision-support insights by identifying the
most promising coastal sites for future green hydrogen projects.

The main contributions of this paper are summarised as follows:

• A hybrid MCDM framework integrating the AHP and ER approach is proposed to
support site selection for wind-based green hydrogen production.

• The framework enables the systematic integration of heterogeneous information while
explicitly accounting for uncertainty and incomplete expert judgements through
belief structures.

• The proposed approach is applied to a real-world case study along the northern coast
of Mauritania, evaluating five coastal sites using region-specific technical, economic,
environmental, and social indicators.

The remainder of this paper is organised as follows:
Following the introduction, which includes the literature review on the use of MCDM

methods in the context of site selection in Section 1, Section 2 presents the proposed hybrid
AHP–ER framework. Section 3 describes the case study area, criteria evaluation process,
and the dataset used in this study. Section 4 presents and discusses the results, including
ranking outcomes, sensitivity analysis, and validation of the process. Finally, Section 5
concludes the paper and highlights key findings, limitations of this paper, and the directions
of future research.
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2. Materials and Methods
MCDM methods can generally be divided into two main categories: Multi-Objective

Decision-Making (MODM) and Multi-Attribute Decision-Making (MADM). MADM is
typically used to evaluate and select the most suitable alternative(s) (e.g., sites, technologies,
policies) based on multiple criteria. In contrast, MODM is used when optimising multiple
conflicting objectives under constraints, usually involving continuous decision variables.
MCDM frameworks incorporate several key factors depending on the specific nature of the
decision-making problem. The main components are outlined below:

- The alternatives represent different possible courses of action or options under consideration.
- The criteria are the measurable characteristics used to evaluate and compare

these alternatives.

This study applied a hybrid decision-making framework that combines AHP and
ER. The objective was to evaluate and rank potential sites for wind-based green hydrogen
production along Mauritania’s northern coast: Nouakchott, Nouamghar, Tasiast, Boulanoir,
and Nouadhibou.

2.1. The Proposed Hybrid Approach

The proposed framework is structured in three main stages. First, a hierarchical
structure is developed, consisting of four main criteria (economic, technical, environmental,
and social) and their respective sub-criteria. Second, the AHP method is applied to derive
the relative weights of these criteria based on pairwise comparisons informed by expert
judgment through a survey. Finally, the ER method is employed to evaluate and rank
the five potential sites for wind-based green hydrogen production. The proposed hybrid
framework procedure is illustrated in Figure 1. The approach consists of eight key steps,
described as follows:

1. Define the problem.
2. Select the criteria.
3. Collect data to support expert evaluations.
4. Conduct the AHP survey to obtain pairwise comparison judgments and apply AHP

to derive the weights of the criteria.
5. Conduct the ER survey to assign belief degrees for each alternative based on

the criteria.
6. Run the ER algorithm separately for each alternative using IDS software (Version 1.2).
7. Rank the alternatives.
8. Conduct sensitivity analysis and axioms validation of the ER model to test both the

decision process and the stability of results.

2.2. Analytic Hierarchy Process (AHP) for Criteria Weighting

AHP, introduced by Saaty [28], is a structured MCDM method that derives criteria
weights through pairwise comparisons. The methodology involves constructing a hierar-
chical representation of the decision problem and systematically comparing criteria using
Saaty’s fundamental scale of relative importance used for the AHP, as shown in Table 1.
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Figure 1. The overall framework for site selection assessment.
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Table 1. Weighting scale of the relative importance [28].

Numerical Weighting Explanation

1 Equally important

3 A little important

5 Important

7 Very important

9 Extremely important

2, 4, 6, 8 Intermediate values

1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9 Values for inverse comparison

The pairwise judgments in AHP are represented by n × n matrix A, as shown in
Equation (1) [28–30].

A =
(
aij
)
=


1 a12 . . . a1n

1/a12 1 . . . a2n
...

...
...

...
1/a1n 1/a2n . . . 1

 (1)

where i, j = 1,2, 3, . . ., n and each element aij represents the relative importance of criterion i
over criterion j.

For a comparison matrix of order n, (n × (n − 1)/2) evaluations are required. The
resulting weight vector reflects the relative importance of each element in the pairwise
comparison matrix with respect to its overall contribution to the decision-making process
and can be calculated using Equation (2) [14,30].

ωk =
1
n

n

∑
j=1

(
akj

∑n
i=1 aij

)
(k = 1, 2, 3, . . . , n) (2)

where each aij denotes the element in row i and column j of a comparison matrix of order n.
To verify reliability, the Consistency Ratio (CR) is determined, as shown below in

Equations (3)–(5), given by [12,14,28–30].

CR =
CI
RI

(3)

with the Consistency Index (CI) defined as:

CI =
λmax − n

n − 1
(4)

λmax =
1
n

n

∑
j=1

(
akj

∑n
i=1 aij

)
(5)

where λmax is the matrix’s maximum eigenvalue, n is the number of criteria, and RI is the
random index, whose value is selected according to the size of the pairwise matrix, as
presented in Table 2.

Table 2. The Random Index [28].

n 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49
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If the result of CR is less than 0.1, the calculated weights are accepted as valid. Other-
wise, the comparison process must be repeated.

2.3. Evidential Reasoning (ER) for Site Evaluation

The ER approach introduced by Yang and Singh [31] is designed to evaluate alterna-
tives involving both quantitative and qualitative criteria while explicitly accounting for
uncertainty and incomplete information [11,12,31–35].

The implementation of the ER algorithm can be carried out through five steps, as
outlined below:

Step 1: Definition of evaluation grades.
A common set of linguistic evaluation grades is defined for all criteria to ensure

consistency across expert assessments.
Step 2: Assignment of belief degrees.
For each alternative and criterion, experts express their assessments through a ques-

tionnaire by distributing belief degrees across the predefined evaluation grades.
Step 3: Generate basic probability masses.
The assigned belief degrees are transformed into basic probability masses, taking into

account the relative importance of criteria derived from the AHP weighting process.
Step 4: Generate combined belief degrees.
The probability masses are recursively combined using the ER aggregation process to

obtain an overall belief distribution for each alternative.
Step 5: Utility calculation and ranking.
The aggregated belief distributions are converted into expected utility values, enabling

the final ranking of candidate sites.

2.3.1. ER Algorithm

In the ER framework, each alternative is assessed through belief degrees distributed
across five evaluation grades, as shown in Equation (6) [11,12,31–35].

Hn = {Worst (H1), Poor (H2), Average (H3), Good (H4), Best (H5)} (6)

Each sub-criterion ei is evaluated using a distributed assessment S(ei), represented
by belief degrees βn,i associated with the evaluation grades Hn. This representation is
illustrated in Equation (7) [11,12,32–34].

S(ei) =
{(

Hn,βn,i
)

n = 1, 2 . . . N
}

(7)

where βn,i denotes the belief degrees allocated to the evaluation grades Hn.
The ER algorithm transforms the distributed assessments into the basic probability

masses mn,i, which are determined using Equations (8) and (9) [11,12,32–34].

mn,i = ωiβn,i n = 1, 2 . . . N (8)

mH,i = 1 −
N

∑
n=1

mn,i = 1 −ωi

N

∑
n=1

βn,i (9)

where ωi denotes the weight of the ith sub-criteria (ei) and mH,i represents the remaining
probability mass not distributed among the individual grades after evaluating all grades.

These probability masses are then recursively aggregated using the ER algorithm to
generate combined probability masses, as shown in Equations (10)–(12) [11,12,32–34]. To
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present the ER aggregation process, we must also define the subset of the i sub-criteria
under the Ith main criterion as EI(i) = {e1e2 · · · ei}.

mn,I(i+1) = KI(i+1)

(
mn,I(i)mn,i+1 + mn,I(i)mH,i+1 + mH,I(i)mn,i+1

)
(10)

mH,I(i+1) = KI(i+1)mH,I(i)mH,i+1 (11)

KI(i+1) =

[
1 −

N

∑
t=1

N

∑
j=1

mt,I(i)mj,i+1

]−1

(12)

where KI(i+1) is the normalising factor with mn,I(1) = mn,1 and mH,I(1) = mH,1 so that
∑N

n=1 mn,I(i+1) + mH,I(i+1) = 1.
Once the probability masses are aggregated, the combined belief degrees βn are

calculated using Equations (13) and (14) [11,12,32–34].

βn =
mn,I(L)

1 − mH,I(L)
n = 1, 2 . . . N (13)

βH = 1 −
N

∑
n=1

βn (14)

where βn represents the combined belief degree of the aggregated assessment and βH

denotes the unassigned belief degree considering all L attributes.
When alternatives cannot be ranked directly based on their distributed assessments, an

estimated utility U(Hn) is introduced. In the absence of preference information, these utility
values are typically assumed to be equidistant, as defined by Equation (15) [11,12,33,35].

U(Hn) = {U(H1) = 0, U(H2) = 0.25, U(H3) = 0.5, U(H4) = 0.75, U(H5) = 1} (15)

The estimated utility of the main criteria y, evaluated through a set of sub-criteria ei,
and corresponding evaluation grades, is calculated using Equation (16) [11,12,32–35].

U(S(y(ei))) =
N

∑
n=1

U(Hn)βn(ei) (16)

2.3.2. Validation of the ER Process

Nevertheless, the aggregation procedure described above may not be rational or
provide meaningful results unless it satisfies a set of established synthesis axioms. Therefore,
validating the decision-making process is essential, providing confidence in the robustness
and reliability of the results. According to recent literature, an axiom-based validation
procedure is commonly applied to verify the integrity of the ER process [11,12,34]. The
four axioms to be examined in this study are as follows:

Axiom 1. If none of the sub-criteria are assigned to evaluation grade Hn, the main criterion must
also not be assigned to Hn.

Axiom 2. If all sub-criteria are assigned to evaluation grade Hn, then the main criterion must be
precisely assigned to Hn.

Axiom 3. If all sub-criteria are completely assigned to a given subset of evaluation grades, the main
criterion must likewise be assigned to the same subset of evaluation grades.

Axiom 4. If the assessment of any sub-criterion is incomplete, then the evaluation of the main
criterion must also contain a corresponding level of incompleteness.
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The Intelligent Decision System (IDS) is a software tool based on the Evidential
Reasoning (ER) approach described by Xu and Yang [33]. IDS integrates multiple decision-
making tools, including the AHP for deriving criteria weights and the ER algorithm for
aggregating both quantitative and qualitative assessments from the sub-criteria level to the
overall decision objective.

In this study, the proposed hybrid AHP–ER framework was implemented using the
IDS, enabling systematic modelling, evaluation, and comparison of the selected alternatives.

3. Case Study: Northern Coast of Mauritania
3.1. Study Area and Selected Sites

The study utilised data collected from multiple coastal sites located between Nouak-
chott and Nouadhibou. In the Nouakchott region, measurements were obtained from
a mast situated approximately 28 km south of the city along the Rosso-Nouakchott corridor.
The coordinates of all measurement points and the corresponding wind speed (WS) sensor
heights are provided in Table 3, mapped in Figure 2, and complemented by site photographs
in Figure 3. At Nouamghar, wind resource data were derived through advanced satellite-
based modelling, processed by 3Tier, a recognised global provider of high-resolution wind
resource assessment services. The approach integrates satellite observations with mesoscale
atmospheric modelling, offering robust and high-fidelity wind estimates. At the Tasiast
site, vertical wind profiles were obtained using a ZX300 LiDAR unit (Zephir Ltd., Malvern,
UK) installed inside a container equipped with photovoltaic panels and battery storage
backup. Although more costly than conventional meteorological towers, this configuration
provides significant advantages, including portability and the capability of measuring the
WS at ten different heights. In Boulanoir, a meteorological mast installed in 2021 as part
of the 100 MW wind farm project was fitted with sensors for wind speed, wind direction,
temperature, atmospheric pressure, and relative humidity. Measurements were collected
every second and aggregated into ten-minute averages. Additional masts at Boulanoir
and Nouadhibou were equipped with thermometers, anemometers, and wind vanes, all
mounted with protective covers.

Table 3. Identification of measurement masts.

Sites Location Station GPS Coordinates

1 Nouakchott Measurement Mast (Helimax Energy Inc., Montréal,
QC, Canada) 17◦58′02.80′′ N, 15◦58′52.10′′ W

2 Nouamghar 3Tier Satellites (Vaisala, Vantaa, Finland) 19◦33′44.49′′ N, 15◦55′27.57′′ W
3 Tasiast ZX300 Lidar 20◦31′36.85′′ N, 15◦59′29.44′′ W
4 Boulanoir Measurement Mast 21◦16′29.07′′ N, 16◦47′08.98′′ W
5 Nouadhibou Measurement Mast 20◦53′59.70′′ N, 17◦03′36.10′′ W

Furthermore, several strategic reference points were identified to anchor the spatially-
based quantitative criteria. These include the Port of Nouakchott and the Port of Nouad-
hibou, the country’s primary industry and export hubs, which are critical for equipment
transport and future hydrogen export. Environmental considerations were also integrated
by incorporating two protected areas within the study region: the Diawling and Banc
d’Arguin National Parks.
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Figure 2. Positions of meteorological masts throughout Mauritania.

Figure 3. Images of meteorological measurement masts located in Mauritania.

3.2. Criteria Evaluation

This study aimed to identify the most suitable site for wind-based green hydro-
gen production along the northern coast of Mauritania (Nouakchott, Nouamghar, Tasi-
ast, Boulanoir, and Nouadhibou). The evaluation was conducted using a hybrid multi-
criteria decision-making framework that integrates the AHP and ER. Four primary criteria
(economic, technical, environmental, and social), along with their respective sub-criteria
(Table 4), were used to support a holistic and robust assessment.
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Table 4. List of criteria.

Main Criteria Sub-Criteria References

Economic
LCOH
LCOE
PBP

[17,36,37]
[29,37,38]
[8,9,29,39]

Technical
Wind availability
Proximity to water
Distance from seaports

[8,11,12,16,39]
[12,13,18–21]
[10,12,17]

Environmental
Annual reduction of CO2 emissions
Distance from protected areas
Distance from residential areas

[17,29,37–39]
[12,13,18,19]
[12,13,18–21]

Social
Job creation
Health & Safety
Public acceptance

[3,30,38,39]
[17,30,36]
[8,17,30,36,38,39]

The criteria were selected to ensure a balanced representation across all dimensions,
thereby supporting a comprehensive and holistic evaluation. These criteria align with the
most relevant factors identified in the existing literature on green hydrogen site selection.
It is important to note that criteria selection is context-dependent and may vary depending
on the project’s objectives, regional characteristics, and stakeholder priorities. Accordingly,
the proposed framework remains flexible and can be applied to different configurations
of criteria and alternatives depending on the specific decision-making problem. In this
study, these criteria will be applied, with a specific focus on selecting the best location
for hydrogen production from wind energy. A detailed description of these criteria is
presented in the form of sub-criteria in Table 5.

Table 5. Criteria for MCDM analysis with their annotation and description.

Main Criteria Sub-Criteria Description

Economic (x) LCOH (e1) The average production cost of hydrogen throughout the plant’s
lifetime.

LCOE (e2) The average cost of producing electricity used for hydrogen
production.

PBP (e3) The number of years required to recover the initial investment in
the green hydrogen production project.

Technical (y) Wind availability (e4) The reliability and consistency of wind resources at the project
site for hydrogen production.

Water proximity (e5) The distance of the project site from a water source required for
hydrogen production.

Distance from seaports (e6) The distance of the project site from the nearest seaport for
equipment transport and future hydrogen export.

Environmental (z) Annual reduction in CO2 emissions (e7) The yearly amount of CO2 emissions avoided by replacing
fossil-based energy with wind-powered green hydrogen.

Distance from protected areas (e8) The distance of the project site from ecologically sensitive or
legally protected zones.

Distance from residential areas (e9) The distance of the project site from residential areas considering
noise, visual disturbance, and safety concerns.

Social (v) Job creation (e10) The employment opportunities created during the construction
and operational phases of the project.

Health & Safety (e11) The potential risks associated with the hydrogen production
facility.

Public acceptance (e12) The level of community support for approving the project.

In this study, a hierarchical structure was developed comprising four levels: goal,
main criteria, sub-criteria, and alternatives, as illustrated in Figure 4.
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Level 0: Goal
To select the most suitable location among the candidate sites for wind-based green

hydrogen production.
Level 1: Main Criteria
The main criteria considered in this study were economic, technical, environmental,

and social.
Level 2: Sub-criteria
The sub-criteria considered in this study were LCOH, LCOE, PBP, wind availability,

proximity to water, distance from seaports, annual reduction of CO2 emissions, distance
from protected areas, distance from residential areas, job creation, health & safety, and
public acceptance.

Level 3: Alternatives
The following sites will be compared and analysed:
S1—Nouakchott
S2—Nouamghar
S3—Tasiast
S4—Boulanoir
S5—Nouadhibou

 

Figure 4. The hierarchical structure of the study.

3.3. Data Collection

A structured questionnaire was used to gather data from eight academic and pro-
fessional experts in sustainable energy and renewable energy technologies in Mauritania.
While the experts remain anonymous, their areas of expertise are presented in Table 6.
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Table 6. List of experts and their professional background.

Position Type of Organisation Experience

Expert 1 O&M Solar Engineer Industrial mining operations 5 years–10 years

Expert 2 Dr/Electrical Engineer Academic institution >10 years

Expert 3 Dr/Energy Specialist International development finance institution >10 years

Expert 4 Energy Specialist Government energy regulatory body 5 years–10 years

Expert 5 Professor in Applied Physics Academic institution >10 years

Expert 6 Professor in Applied Physics Academic institution >10 years

Expert 7 Professor/Director of Scientific Programs National research and innovation agency >10 years

Expert 8 Professor of Physics and Materials Science Academic institution >10 years

All experts completed the questionnaire, providing both the pairwise comparison
judgements for the AHP weighting process and the belief degree assessments for each
sub-criterion’s evaluation. Additional required data were obtained from relevant literature
and other secondary sources. These data, summarised in Table 7, were adapted for use in
this study.

Table 7. Assessment of the sub-criteria for all sites.

Sub-Criteria S1 S2 S3 S4 S5 Source

LCOH
(USD cents/kg H2) 270.05 259.75 256.88 214.7 188.02 [2]

LCOE
(USD cents/kWh) 8.93 8.59 8.75 7.10 6.22 [2]

PBP
(Years) 3.3 3.3 3.2 3.3 4.7 [2]

Wind availability (0.04, 0.10, 0.14,
0.32, 0.40)

(0.09, 0.10, 0.16
0.29, 0.36)

(0.08, 0.14, 0.24,
0.32, 0.22)

(0.08, 0.09, 0.12,
0.26, 0.45)

(0.00, 0.01, 0.08,
0.21, 0.70)

Expert
survey

Proximity to water
(Km) 4.181 49.84 40.28 18.89 0.611 Google Earth

database

Distance from
seaports (Km) 5.168 174.1 173.14 61.48 0.765 Google Earth

database

Annual reduction of
CO2 emissions
(MtCO2/year)

2661.29 2766.84 2819.62 3347.39 3822.38 [2]

Distance from
protected areas (Km) 163.75 119.73 28.32 93.19 90.5 Google Earth

database

Distance from
residential areas (Km) 0.355 7.382 14.43 14.33 0.874 Google Earth

database

Job creation (0.02, 0.04, 0.06,
0.18, 0.70)

(0.10, 0.14, 0.18,
0.16, 0.42)

(0.10, 0.13, 0.19,
0.20, 0.38)

(0.08, 0.09, 0.09,
0.21, 0.53)

(0.00, 0.01, 0.09,
0.22, 0.68)

Expert
survey

Health & Safety (0.05, 0.18, 0.25,
0.22, 0.30)

(0.10, 0.22, 0.26,
0.22, 0.20)

(0.09, 0.22, 0.24,
0.19, 0.26)

(0.09, 0.21, 0.19,
0.22, 0.29)

(0.03, 0.15, 0.23,
0.24, 0.35)

Expert
survey

Public acceptance (0.06, 0.12, 0.18,
0.27, 0.37)

(0.11, 0.22, 0.24,
0.20, 0.23)

(0.09, 0.18, 0.23,
0.22, 0.28)

(0.10, 0.21, 0.21,
0.24, 0.24)

(0.04, 0.06, 0.15,
0.32, 0.43)

Expert
survey

The evaluation draws on a combination of expert survey responses and secondary
data sources. Economic and environmental indicators such as the LCOH, LCOE, PBP
and annual reduction in CO2 emissions were obtained from a previous techno-economic
assessment of wind-based hydrogen projects in Mauritania, in which the candidate sites
were evaluated using wind resource and cost data from 2022–2023. In that assessment, the

https://doi.org/10.3390/en19020396

https://doi.org/10.3390/en19020396


Energies 2026, 19, 396 15 of 24

indicators were calculated under uniform system boundaries, covering wind electricity
generation for hydrogen production, with identical technology assumptions, including
a commercial onshore wind turbine (Gamesa G114–2.5 MW) and alkaline electrolysis
representative of current industrial practice. Technical and environmental sub-criteria,
including distance from protected areas, proximity to water resources, and distance from
seaports, were derived from geospatial databases. The remaining sub-criteria were assessed
qualitatively using expert judgements. Each sub-criterion was defined with corresponding
performance grading scales to enable both qualitative and quantitative comparison across
the five candidate sites. To ensure transparency and consistency, all experts were provided
with a unified evaluation protocol and a common set of performance grading definitions
prior to completing the questionnaires.

4. Results and Discussion
4.1. Ranking Results

The IDS software was used to carry out the computational steps of AHP and derive the
criteria weights. The final weights of the main criteria and associated sub-criteria, obtained
through the AHP method described above, are summarised in Table 8 and illustrated in
Figure 5.

Table 8. Final weights of the criteria.

Main Criteria Weight Sub-Criteria Weight

Economic 0.3226
LCOH
LCOE
PBP

0.4642
0.3063
0.2295

Technical 0.2093
Wind availability
Proximity to water
Distance from seaports

0.3852
0.2911
0.3237

Environmental 0.2949
Annual reduction of CO2 emissions
Distance from protected areas
Distance from residential areas

0.4269
0.3668
0.2063

Social 0.1732
Job creation
Health & Safety
Public acceptance

0.1812
0.5173
0.3015

Figure 5. The weights of the main criteria.

The CR value obtained in this study was less than 0.1, suggesting that the experts’
evaluations were acceptably consistent.
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The results (Figure 5) indicate that the Economic criterion holds the highest impor-
tance (32.26%), followed by the Environmental (29.49%), Technical (20.93%), and So-
cial (17.32%) criteria. This suggests that Techno-economic factors remain dominant in
decision-making for green hydrogen projects, although environmental aspects are gaining
notable significance.

The data from Table 7 were processed with the IDS software. The results obtained are
summarised in Table 9 and illustrated in Figures 6–8.

Table 9. The utility scores and ranking of the alternatives.

Alternative U (Total) Ranking

S1: Nouakchott 0.4217 3
S2: Nouamghar 0.3227 4
S3: Tasiast 0.2890 5
S4: Boulanoir 0.6620 2
S5: Nouadhibou 0.8323 1

 

Figure 6. The aggregated belief degree distributions of the alternatives.

Figure 7. The utility scores of the main criteria for each alternative.
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Figure 8. The overall utility scores of the alternatives.

Figure 6 presents the aggregated belief degree distribution for each alternative. The
results indicate that Nouadhibou achieved the highest belief degree in the “Best” grade
(74.23%), followed by Nouakchott (33.76%), Tasiast (15.50%), Boulanoir (15.37%), and finally
Nouamghar (9.77%). However, Nouadhibou also recorded the lowest belief degree value
(4.05%) for the “Good” grade, ranks third for “Average” grade (10.26%), and fourth in both
“Poor” (3.36%) and “Worst” (8.10%) grades, indicating a more polarised evaluation profile
than the other locations.

Despite these graphical results, the belief distributions alone do not provide a defini-
tive ranking. In order to allow for numerical comparison of the alternatives, the given
evaluations were converted into comparable utility scores using an equidistant utility
scale (Worst = 0.0, Poor = 0.25, Average = 0.5, Good = 0.75, Best = 1.0). According to this
transformation, the utility scores were calculated for each site. The resulting utility scores
for each site are illustrated in Figures 7 and 8.

Figure 7 presents the utility score of each site across the main evaluation criteria
considered in this study. The results clearly indicate that Nouadhibou ranked first for
all the main criteria. In particular, it achieved the best score for the Technical (0.97) and
Economic criteria (0.85), confirming its outstanding techno-economic viability.

Finally, the aggregated utility scores and final ranking of all alternatives are presented
in Figure 8 and Table 9. The results show that Nouadhibou is the most suitable site for
hydrogen production, achieving the highest overall score (0.8323), followed by Boulanoir
(0.6620), Nouakchott (0.4217), Nouamghar (0.3227), and Tasiast (0.2890). These findings
demonstrate that Nouadhibou offers the most balanced performance across sustainabil-
ity dimensions, reinforcing its strategic potential as the most competitive site for green
hydrogen production.

4.2. Discussion

The application of the hybrid AHP–ER framework had a clear influence on the ranking
outcomes obtained in this study. By combining AHP weighting process with the ER aggre-
gation process, the proposed model demonstrates a high degree of flexibility in handling
heterogeneous quantitative and qualitative information while explicitly accounting for
uncertainty in expert judgement. This capability is particularly relevant for strategic green
hydrogen site selection, where data availability is limited and expert judgement plays
a central role.
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The ranking results indicate that Nouadhibou consistently outperformed the other can-
didate sites, a finding that aligns with a previous site selection study conducted in [2]. The
convergence of results reinforces the credibility and robustness of the proposed framework.

In contrast, lower-ranked sites exhibited constraints in one or more critical dimensions.
For example, Tasiast and Nouamghar performed well in the social dimension but were
penalised by weaker economic and technical scores. Similarly, Nouakchott demonstrated
strong technical and social performance, but its relatively lower economic and environ-
mental scores limits its overall utility. This outcome highlights the importance of balanced
multi-criteria performance rather than dominance in a single dimension.

4.3. Sensitivity Analysis

To ensure the credibility of the proposed framework, a sensitivity analysis was per-
formed to evaluate the robustness of the final ranking with respect to variations in the
weights of the main criteria (Economic, Technical, Environmental, and Social) and their
effects on the ranking of alternative site outcomes. In this analysis, the weight of each main
criterion was individually adjusted by −25%, −15%, 15%, and 25%, while the remaining
criteria were proportionally modified to maintain a total weight of one. For each modified
weight scenario, the IDS software recalculated the overall utility scores for the alternatives.
The corresponding results are illustrated in Figures 9–12.

Figure 9. Impact of economic criteria weight variations on the utility scores of the alternatives.

The analysis revealed that the ranking of the alternatives remained stable across all
tested variations, and the ranking results were still S5 > S4 > S1 > S2 > S3. While the overall
ranking remained unchanged, the magnitude of utility score variations differed among the
candidate sites. For instance, changes in the weight of the economic criterion (Figure 9)
had a more pronounced effect on the utility score of Nouakchott. This behaviour reflects
Nouakchott’s relatively balanced but non-dominant economic performance (Figure 7),
making its overall score more sensitive to variations in the economic weight. In contrast,
Nouadhibou exhibited limited sensitivity due to its consistently strong performance across
the economic dimension. Similar patterns were observed for technical, environmental, and
social criteria, where sites that rely more heavily on a specific criterion displayed greater
responsiveness to weight variations.
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Overall, the results demonstrate that the proposed framework is both consis-
tent and reliable for MCDM in green hydrogen site selection, without prescriptive
policy recommendations.

Figure 10. Impact of technical criteria weight variations on the utility scores of the alternatives.

Figure 11. Impact of environmental criteria weight variations on the utility scores of the alternatives.
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Figure 12. Impact of social criteria weight variations on the utility scores of the alternatives.

4.4. Validation of the ER Process

In addition, the ER aggregation process was evaluated against the four axioms outlined
in Section 2.3 to provide partial methodological validation. The analysis confirms that all
four axioms were satisfied in the study, demonstrating internal consistency in the evaluation
process. Each axiom was examined individually as follows:

Axiom 1. This axiom was satisfied. For the aggregation of the Environmental criterion at Site 4,
none of the sub-criteria were assessed as “Worst”. As a result, the belief degree associated with the

“Worst” grade of the main criterion should also be 0, which it is.

Axiom 2. This axiom was satisfied for the Environmental criterion at Site 4. The sub-criteria (e7,
e8, e9) all exhibited zero belief degrees in the “Worst” grade, leading to an aggregated “Worst” value
of 0. The final aggregated belief distribution for this criterion was: “Worst” (0), “Poor” (0.265),
“Average” (0.6836), “Good” (0.1525), and “Best” (0.1374), thereby confirming compliance with
this axiom.

Axiom 3. This condition was fulfilled throughout the analysis, as all criteria were evaluated against
the same set of grades: “Worst”, “Poor”, “Average”, “Good”, and “Best”.

Axiom 4. This axiom was also satisfied since all belief degrees were complete, and the total belief for
each criterion summed to one.

Beyond procedural verification, the ER axiom-based validation process was employed
to clarify the applicability conditions and limitations of the ER algorithm. Verifying these
axioms ensures that the aggregation behaviour of the ER model is logically sound and
the resulting decision outcomes are credible. However, this validation process does not
eliminate uncertainty inherent in expert-based inputs, nor does it imply applicability
beyond the specific decision context examined in this study.

On this basis, the ER-based aggregation process can be considered methodologically
sound and appropriately validated for the site selection problem addressed in this study.
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5. Conclusions
In this study, a hybrid AHP–ER decision-making framework was developed to identify

suitable sites for wind-based green hydrogen development along the northern coast of
Mauritania. Five coastal locations were evaluated using a structured hierarchy comprising
four main criteria (Economic, Technical, Environmental, and Social) and associated twelve
sub-criteria. The AHP method was employed to derive the relative importance of the
criteria, while the ER method integrated heterogeneous quantitative and qualitative as-
sessments to generate overall utility scores to rank the candidate sites. The results indicate
that Nouadhibou (Site 5) is the highest-ranked location for wind-based green hydrogen
development, followed by Boulanoir (Site 4), Nouakchott (Site 1), Nouamghar (Site 2), and
Tasiast (Site 3). Nouadhibou demonstrated superior performance across all sustainability
dimensions, particularly in economic and technical aspects, confirming its strong potential
for large-scale green hydrogen production. Sensitivity analysis further validated the ro-
bustness of the rankings, with Nouadhibou consistently preserving its top position in the
different weighting variation scenarios. The model was also shown to be valid with respect
to the four ER axioms, ensuring the consistency and rationality of the aggregation.

Beyond its methodological contribution, this study provides a practical decision-
support tool to inform Mauritania’s emerging green hydrogen strategy. The proposed
AHP–ER framework is flexible and can be adapted to other renewable energy planning
scenarios or regional studies, particularly in regions where data availability is limited.

Despite these contributions, several limitations should be acknowledged. The analysis
relies partly on expert-based weighting and belief assignments, which may reflect subjective
judgements influenced by expert experience. While sensitivity analysis and ER axiom-
based validation were conducted to enhance robustness, future research could explore
hybrid renewable energy systems (wind-solar systems), integrate more detailed techno-
economic and life-cycle assessments using harmonised site-specific datasets, and compare
the proposed AHP–ER framework with other uncertainty-handling MCDM methods.
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Abbreviations
The following abbreviations are used in this manuscript:

MCDM Multi-Criteria Decision-Making
AHP Analytic Hierarchy Process
ER Evidential Reasoning
LCOE Levelised Cost of Electricity (US$/kWh)
LCOH Levelised Cost of Hydrogen (US$/kg H2)
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PBP Payback Period (year)
FID Final Investment Decision
SWHPS Solar–Wind Hybrid Power Station
GIS Geographic Information Systems
MODM Multi-Objective Decision-Making
MADM Multi-Attribute Decision-Making
aij Represents the relative importance of criterion i over criterion j
CR Consistency Ratio
CI Consistency Index
λmax Maximum eigenvalue of the matrix
n Number of criteria
RI Random Index
Hn nth evaluation grade used to assess the main and sub-criteria
ei ith sub-criteria
βn,i Belief degrees of the sub-criteria ei

S(ei) Distributed assessment
mn,i Basic probability masses of the sub-criteria ei assessed to Hn

ωi Weight of the ith sub-criteria
mH,i Remaining probability not distributed among the individual grades after evaluating all grades
βn Combined belief degrees
βH Belief degree unassigned to any individual grade considering all criteria
U(Hn) Estimated utility value corresponding to evaluation grade Hn

IDS Intelligent Decision System
WS Wind Speed
O&M Operations and Maintenance
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