

1 **Title**

2 Pitch Size, Player Numbers, and Playing Rules: How Small-Sided Game Constraints Shape
3 the Training Demands in Male Academy Soccer

4

5 **Running Head**

6 Small-Sided Games Shape Training Demands

7

8 **Authors**

9 Olthof, Sigrid B.H.*¹, Ferrandis, Jordi*¹, de Dios, Vicente^{2,3} & Riboli, Andrea^{4,5}

10 * Shared first authorship: both authors contributed equally to this work

11

12 **Affiliations**

13 ¹ School of Sport and Exercise Sciences; Liverpool John Moores University, Liverpool,
14 United Kingdom

15 ² Faculty of Education and Sport Sciences, University of Vigo, Pontevedra, Spain

16 ³ Methodology department, Real Club Celta de Vigo, Pontevedra, Spain

17 ⁴ MilanLab Research Department, A.C. Milan S.p.A., Milan, Italy

18 ⁵ Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan,
19 Italy

20

21 **Corresponding author**

22 Sigrid Olthof

23 School of Sport and Exercise Sciences,

24 Liverpool John Moores University

25 Liverpool, United Kingdom

26 **Abstract**

27 Small-sided games (SSGs) are part of daily soccer practice and usually manipulated in pitch
28 size, player number, and playing rules. The aim of this study is to identify constraints that
29 significantly impact the physical demands in SSGs in youth elite soccer players. Training
30 sessions from an under-18 Spanish academy team were monitored, including 87 SSGs. SSGs
31 were labelled for area per player (ApP), number of players, type of game, playing duration,
32 goal size, use of floater players and goalkeepers, and number of touches. Relative physical
33 demands were measured as total distance (TD), high-speed running (HSR), sprint distance
34 (SD), and acceleration (ACC) and deceleration (DEC) distance. A linear mixed-effects
35 model analysis was performed estimating the effects of SSG constraints (α set at 0.05).
36 Greater ApP consistently increased TD, HSR, SD, ACC, and DEC. In contrast, increasing
37 the number of players and longer playing duration reduced TD, HSR, ACC, and DEC.
38 Additionally, specific playing rules, such as the use of floater players, limited touches, and
39 small goals primarily impacted ACC and DEC. These findings highlight the important role
40 of ApPs in shaping physical demands, while also showing that team size, playing duration,
41 and specific playing rules contribute to the physical demands of SSGs. Understanding the
42 magnitude and direction of these manipulations allows coaches to design SSGs more
43 effectively to meet training objectives.

44

45 **Key words:** football, training format, training load, locomotor activities, team sports,
46 performance

47

48 **INTRODUCTION**

49 Soccer is characterized by its dynamic and intermittent nature, with frequent transitions
50 between high-intensity and low-intensity periods occurring approximately every four to six
51 seconds (11,30,45). These activities are part of natural soccer behavior as a result of
52 offensive and defensive actions in the pursuit of scoring goals, driven by ball possession and
53 a direction of play (25). To replicate these demands in training, coaches frequently use small-
54 sided games (SSGs), which provide a representative learning environment by preserving
55 affordances inherent to match-play (2,35). Unlike drill-based exercises, SSGs a meaningful
56 training environment where players interact with team members and opponents, and where
57 ball possession create soccer-specific affordances (2). Simultaneously, SSGs support the
58 development of locomotor (39), physiological (8), technical (12) and tactical (34) skills. As
59 such, SSGs offer coaches a versatile and powerful training tool which provide effective
60 training stimuli.

61 SSGs can be defined as training formats that are derived from the match with
62 manipulations in pitch size, number of players, and/or playing rules (1,4,11,24). These task
63 constraints shape players' behaviors and determine the physical load imposed (11,24,37).
64 Sport scientists have experimented with these manipulations to explore players' acute
65 response to SSGs. Research consistently demonstrates that larger pitch sizes increase total
66 distances covered and high speed running (11,37,40,41). Conversely, smaller pitch
67 dimensions, combined with concurrent alterations in player numbers, overload primarily
68 acceleration and deceleration efforts, whilst reducing high speed running (5,14,20).

69 Despite a wide range of pitch sizes, most SSGs are typically played on considerably
70 small pitch sizes compared to the official match. Expressed as the area per player (ApP; or
71 relative pitch area; (6,9,37)), SSGs are predominantly played on an ApP $<150\text{m}^2$ per player
72 (1,24) compared to the ApP $\sim320\text{m}^2$ per player of the match (32–34). Such small ApPs

73 consequently result in lower physical demands in SSGs compared to match demands (7).
74 Previous research has experimented with playing SSGs on varying ApPs to closely mimic
75 match demands. Pitch dimensions of 200m² – 320m² ApP can replicate the high intensity
76 activities (41,42), technical actions (40), and the team tactical performance (34) of the match.
77 This underscores the important role of pitch size as a key constraint on shaping the
78 performance demands in SSGs. Yet, in practice, the pitch size is rarely manipulated in
79 isolation in SSGs.

80 Coaches frequently adjust other constraint such as team size and playing rules – often
81 simultaneously – either to meet training objectives or due to logistical factors like player
82 availability. While team size alone appears to have minimal impact when pitch dimensions
83 remain constant (9), playing rules like changing the scoring format, including floater and
84 bounce players, and limiting ball touches can significantly influence running demands
85 (13,23). For example, the use of floater players, common for creating numerical imbalances
86 (24), has shown some mixed results: some studies report reduced load (3), other no effect
87 (36), albeit in small teams on a small ApP (i.e., <150m² per player). The nuanced influence
88 of playing rules on both physiological and running aspects further highlights the intricate
89 nature of constraints within SSGs.

90 While previous research has examined how task constraints affect physical demands
91 of SSGs, these have largely been studied in isolation under controlled conditions. In training,
92 SSGs involves multiple interacting elements. As a result, there remains a lack of clarity
93 around how such constraints interact in typical academy training contexts, and how their
94 combinations influence players' locomotor and biomechanical demands.

95 It is a common practice for soccer teams to monitor the training load with player
96 tracking technology devices (44). Demands of the training often get accompanied by
97 information on the training drills which can help contextualise the training load. This is

98 especially useful in SSGs where a single configuration does not exist and where constraints
99 have various impacts on players' physical demands. Instead, coaches use a variety of task
100 constraints to design SSGs. They use SSGs with teams of varying sizes that engage on
101 various pitch dimensions, constrained by specific playing rules, such as scoring mode,
102 limited ball touches, inclusion and exclusion of goalkeepers, floater players and bounce
103 players, and different goal sizes. Manipulating those constraints concurrently can have
104 varying effects on the players' performance in SSGs. According to the constraint-led
105 approach, seemingly small changes in the SSG design may result in large changes of the
106 locomotor demands, but a combination of multiple manipulations may also cancel each other
107 out and minimal changes can result in large effect (21). To understand the concurrent effects
108 of manipulating SSGs on players' locomotor demands, a holistic approach is required
109 including various configurations of SSGs.

110

111 Therefore, this study examines how multiple interacting SSG constraints impact
112 locomotor and biomechanical demands in elite youth soccer across an entire season. To our
113 knowledge, it's the first to systematically analyze a large sample of ecologically valid SSGs
114 with detailed contextual annotations and GPS tracking.

115

116 **METHODS**

117 *Experimental Approach to the Problem*

118 The study is of an observational nature that included all SSGs from a male academy soccer
119 team during a single season and aims to investigate the effect of manipulating SSG
120 constraints on the physical demands of players. The SSG configurations have been labelled
121 for their pitch size, number of players, playing duration and various playing rules.
122 Subsequently, players have been monitored with player tracking technology during the SSGs

123 to capture the physical demands of the games. Accordingly, the effects of the SSGs have
124 been evaluated with a linear mixed-effects model to assess the contribution of the constraints
125 on players' physical demands, hereby accounting for the observational nature of the study,
126 the natural variation of SSGs used by coaches, and the individual differences of players.

127

128 *Subjects*

129 The study monitored 34 players of an under-18 Spanish male elite academy soccer team
130 (age: 17.1 ± 0.99 years [range 16-19 years]; height: 174.5 ± 6.24 cm; body mass: 66.5 ± 6.34
131 kg; body fat percentage: $10.3 \pm 1.75\%$) in training sessions during the 2021-2022 season.
132 Goalkeepers were excluded from the analysis. Players who were deemed fit by the medical
133 staff and participated for the entire duration of the practice were included for further analysis.
134 Gatekeeper consent was provided by the club to share deidentified data, which were then
135 compiled in a data repository. The research protocol was approved by the Research Ethics
136 Committee at the University of Milan (Protocol #102/14).

137

138 *Procedures*

139 A total of 117 SSGs were monitored across forty training sessions, which were part of the
140 team's regular training program. The SSGs were performed under the supervision and
141 motivation of several coaches. Balls were placed outside the playing area to ensure swift
142 replacement if a ball went out of play. All SSGs were played on artificial turf pitches.

143 SSG characteristics on pitch dimensions, number of players, scoring mode, and
144 playing rules were captured. The area per player (ApP) was determined as the total pitch
145 area (in m^2) divided by the number of players on the pitch (goalkeepers included) (9,37).
146 The number of players per team and floater players were annotated, and whether a
147 goalkeeper was part of the game. The goal size varied between a big goal (as used in the

148 official match) or a small goal. Lastly, the number of touches were indicated as unlimited or
149 limited (i.e., restricted to two or three touches per player possession). Characteristics of the
150 SSGs are presented in Supplementary material 1.

151 Data from 1 vs. 1-formats ($n = 5$ SSGs) and single player observation ($n = 5$ players)
152 were excluded. Only games were included that were played with a goal, which excluded
153 possession games ($n = 6$ SSGs). Further, SSGs with more than two floaters were excluded
154 due to the specific nature of those games ($n = 19$ SSGs). Finally, three players who
155 participated in only one practice session were excluded from the dataset. After data
156 processing, the dataset comprised 87 SSGs across 32 training sessions, including 540 player
157 observations of 31 unique players.

158 Locomotor and biomechanical demands were collected using Catapult Optimeye S5
159 (CatapultSport, Melbourne, Australia) tracking devices. Locomotor demands were measured
160 as total distance (TD, in meters), distance covered at high intensity (HSR, 18-21km/h), and
161 sprint distance (SD, >21 km/h). Biomechanical demands were determined as the distance
162 covered of accelerations (ACC, >1 m/s 2) and decelerations (DEC, <-1 m/s 2). Data were
163 normalised to time (m/min) to account for different SSG durations. Data were organized in
164 OpenField software, and data quality was ensured by consistent device usage by all players
165 in each training session.

166 Data analysis and processing were performed using Jupyter Notebook. Monitoring
167 data from training sessions were exported as .csv files and compiled for analysis. The SSG
168 design information was integrated into the data using Excel. Relevant data preprocessing,
169 including exclusions and normalization, was conducted in Jupyter Notebook, leading to the
170 creation of a .csv file for subsequent analysis in R.

171

172 *Statistical Analysis*

173 A linear mixed-effects model was developed to evaluate to what extent SSG constraints
174 contribute to players' physical demands in SSGs. Locomotor and biomechanical variables
175 were treated as the dependent variables, while SSG constraints were treated as fixed effects.
176 The model incorporated players as a random intercept to account for player variability.
177 Distribution of the data was visually inspected for the assumptions of linearity and normality.
178 Statistical significance of the estimates was evaluated by calculating 95% confidence
179 intervals (CIs) from the regression models and observing the respective *p*-values
180 (significance level $\alpha \leq 0.05$). All statistical analysis was performed using the *lme4* package
181 for linear mixed-effects modelling and *lmerTest* package for significance assessment in R
182 (version 4.3.1., R Core Team).

183

184 **RESULTS**

185 A total of 87 SSGs were included in the analysis. Descriptive statistics are presented in Table
186 1 and Figure 1. The formats range from 2 vs. 2+GKs to 10 vs. 10+GKs. The ApP ranges
187 from 33.0m² per player to 293.1m² per player. Across all games, there is a variation of rules
188 imposed relating to the use of GKs, presence of a floater player, touch restrictions, and the
189 goal size.

190

191 *** Table 1 near here ***

192

193 *** Figure 1 near here ***

194

195 Findings of the linear mixed-effects model analysis for the locomotor and biomechanical
196 variables are summarized in Table 2. ApP had a significant positive effect on all physical
197 demands. An increase in ApP increased the TD, HSR, SD, ACC and DEC while holding

198 other factors constant. Player number holds a negative significant effect on TD, ACC, and
199 DEC. With an increase in player numbers, the TD, ACC, and DEC would decrease, while
200 holding other factors constant. Similarly, a longer duration of the SSG resulted in a lower
201 TD, HSR, ACC, and DEC.

202 The presence of a goalkeeper, the use of a floater player, limited touches, and the use
203 of a small goal are categorical variables and hold significant effects on some physical
204 demands. To illustrate, the use of a floater player (vs. no floater player involved) would
205 decrease the TD and HSR by 3.97 m/min and 1.32 m/min, respectively, and the ACC and
206 DEC by 1.69 and 2.02 m/min, respectively. In contrast, limiting the touches per player would
207 lead to an increase in TD, ACC, and DEC. The presence of a GK negatively impacts the
208 HSR, and the use of a smaller goal size negatively impacts the ACC and DEC, whilst keeping
209 all other factors constant.

210

211 *** Table 2 near here ***

212

213 The linear mixed-effects model explained the variance in the dataset for 39.7–47.6% when
214 the individual player was included as a random effect (Table 2). The linear mixed-effects
215 model explained the variance in the dataset for 39.7–47.6% when the individual player was
216 included as a random effect (Table 2). Such a model has increased the explained variance
217 compared to including fixed factors (i.e., SSG constraints) only.

218

219 DISCUSSION

220 This study aimed to evaluate the effect of different SSG constraints on locomotor and
221 biomechanical demands in youth elite soccer players. SSGs are versatile in use and coaches
222 usually manipulate the pitch size, number of players, and various playing rules concurrently

223 in line with the aim of the session, but those constraints can pose different effects on physical
224 demands. The main finding of this study is that the most used SSG constraints, ApP, player
225 number, playing duration, use of GKs, use of floater players, limited touches, and different
226 goal sizes, have different effects on players' physical demands in these training formats.
227 More specifically, i) the ApP impacts all locomotor and biomechanical demands, but player
228 number mainly impacts biomechanical demands, ii) SD is only impacted by the ApP, but
229 not by any other SSG constraint, and iii) an increase in playing duration would decrease
230 locomotor and biomechanical demands in SSGs.

231 Manipulating the ApP had a significant positive effect on all physical demands,
232 indicating that TD, HSR, SD, ACC, and DEC increased with a greater ApP. These results
233 align with previous research reporting that greater ApPs lead to increased physical responses
234 in SSGs (10,11,32). However, unlike current findings, Riboli et al. (41) did not observe
235 effects of ApP on ACC and DEC in U18 players, and De Dios-Alvarez et al. (15) highlighted
236 a reduction in ACC and DEC with greater ApP. Such discrepancies across studies may
237 reflect the inherent variability of soccer performance (22), which is also evident during SSGs
238 (31,34). This variability arises from the complex, dynamic interactions between players and
239 SSG constraints, and can lead to different physical responses even when similar pitch areas
240 are used. The current analysis, by incorporating multiple constraints and accounting for
241 player-level variability through random effects in the linear mixed-effects model, aimed to
242 address some of this complexity. Nevertheless, these findings reinforce that ApP is a robust
243 constraint, not only for enhancing running demands, but also for modulating biomechanical
244 load, despite the natural variability typical of training environments.

245 Further, the current findings highlight that, although the effects of the ApP on
246 physical demands may appear relatively small on a per-unit basis, their practical significance
247 becomes substantial when considering the full range of ApP used in this study. To illustrate,

248 each 10m² increase in ApP corresponded to an increase of 1.5m/min in TD and 0.3m/min in
249 SD. Given the broad range of ApP observed (i.e., 33-293m² per player), these small
250 incremental effects can compound into large and meaningful changes in physical demands.
251 The current model suggests greater physical demands on a larger ApP. Previous studies
252 suggest that specific SSG configurations may replicate match demands even without
253 matching the 320 m² ApP of the official match (32,41,42). Based on this and current
254 findings, manipulating the ApP is an essential component of designing SSGs as
255 representative learning tasks (35), as it helps preserve the affordances and intensity profiles
256 of match play. Notably, coaches should carefully consider ApP as a constraint when aiming
257 to simulate match-like conditions in training.

258 The number of players had a significant negative effect on the physical demands.
259 Specifically, an increase in the number of players resulted in a decrease of TD, ACC, and
260 DEC when all other constraints were kept constant. This highlights the isolated influence of
261 team size on physical demands, particularly on the biomechanical demands (i.e., ACC and
262 DEC), while running demands (i.e., HSR and SD) remained unaffected. Current findings
263 aligned with previous studies that highlighted greater acceleration and deceleration demands
264 with a smaller number of players in elite soccer players when the ApP was kept similar (14).
265 Although prior studies suggested that total distance might not differ when ApP is kept
266 constant across different team sizes (e.g., 7 vs 9 vs 11 players) (9), current results extend this
267 by demonstrating that biomechanical demands do vary. This indicates that even at the same
268 ApP, smaller formats may inherently increase stop-start intensity due to greater involvement
269 per player and more frequent role changes.

270 A longer playing period of SSGs resulted in lower physical demands (accounted for
271 time). This seems an intuitive consequence of players pacing their efforts over longer playing
272 durations. Prior knowledge to playing duration influences the internal and external load

273 experienced by players in SSGs. Fanchini et al. (19) demonstrated a lower internal load in
274 SSGs with longer vs. shorter duration in senior amateur and elite soccer. Additionally,
275 continuous (i.e., 12-min) or intermittent SSGs of a longer duration seem to lower the external
276 load in male (under-18) and female (under-23) players (18,26). Although those studies have
277 explicitly used the playing duration as a constraint to manipulate in an experimental design,
278 those findings seem to translate to the current dataset with SSGs played in a regular training
279 season. Players at later stages of the academy system, i.e. under-18, seem to regulate their
280 physical efforts based on the playing duration. This underscores the importance of regulating
281 playing duration in SSGs as a strategic training variable: shorter bouts may be used to
282 increase intensity during high-load phases or in sessions targeting high-intensity
283 conditioning, whereas longer bouts can support volume accumulation and reflect the
284 intermittent nature of match-play.

285 Coaches often implement rule modifications that do not occur in official match-play,
286 such as playing without GKs, using floater players, limiting touches on the ball, and using
287 small goals. These variations were present in 8-20% of the observed SSGs. Such constraints
288 are commonly applied in combination rather than in isolation (see Supplementary Material
289 1), contributing to varying effects on players' physical demands. However, none of those
290 constraints impacted the players' sprint demands. A SSG without a GK or with a floater
291 player negatively impacted the HSR demands. Using limited touches increased the ACC and
292 DEC, but using a floater player or a small goal decreased those biomechanical demands.
293 This demonstrates the delicate balance of imposing playing rules in SSGs. From an
294 ecological perspective, combining constraints may interact in ways that either offset or
295 amplify their effects on physical demands, depending on how they shape player behavior
296 and affordances within the game.

297 The magnitude of the effect of playing rules should be considered carefully. Playing
298 without a GK seems to have a large negative impact on HSR, which decreases HSR by
299 5.17m/min. Previous research demonstrated both positive and negative impacts of presence
300 of a GK, either resulting greater responses of the internal and external load in SSGs without
301 GKs (29) or lower responses in external load (27,43). SSGs without GKs were always played
302 with small goals in the current study and, for the majority, on a small ApP (i.e. <100m²,
303 Supplementary Material 1), which will likely contributed to reduced HSR demands. This
304 has implications for session planning, as removing the GK (e.g., to shift focus toward
305 possession) may unintentionally reduce running intensity and should be adjusted based on
306 session objectives.

307 Additionally, coaches commonly impose restrictions on the number of touches in
308 ball possession with the aim of encouraging more dynamic off-the-ball movements, which
309 increase players' involvement in creating space, offering pass options, and reacting to
310 turnovers. Current findings highlight a positive impact of touch restrictions on ACC and
311 DEC of 3.18m/min and 3.28m/min, respectively. This aligns with previous observations
312 showing that limited touches increase movement demands (16,17). The increased
313 biomechanical demands likely stems from technical errors, such as more unsuccessful
314 passes, duels, and losses of ball possession (16). Consequently, transitioning between in-
315 possession and out-of-possession demands players to reposition frequently. This constraint
316 may be used purposefully to promote mechanical load while also emphasizing quick
317 responses during transitions between attack and defense.

318 Lastly, the presence of a floater player decreased TD, HSR, ACC, and DEC. A floater
319 creates a numerical superiority for the team in possession and exerted lower loads compared
320 to regular team players (28,38). Potentially, this temporary numerical overload leads to
321 longer ball possession phases where players engage in longer phases of attack and defense,

322 which reduced the need for high-intensity efforts for the whole team. This suggests that even
323 seemingly minor constraints can change the intensity profile of the entire game, and coaches
324 should consider these broader effects when designing SSGs.

325 The current study has some limitations that should be considered in interpreting the
326 findings. First, the majority of SSGs were played on an ApP less than 150m², and only
327 exceeded 150m² when a greater team size was used (i.e., 9 vs. 9 – 11 vs. 11). As such, a very
328 high correlation was observed between ApP and number of players (i.e., the model showed
329 multicollinearity). This limited variation of SSGs may have undermined the effect of number
330 of players and the model in general on physical demands. Generally, low values of sprint
331 distances were observed across all SSGs. This is a typical observation for SSGs played on
332 smaller pitch dimensions. Second, although the study was observational of nature without
333 an intervention of the research team, decisions were made to exclude SSGs with a chronic
334 overload/underload of teams, bounce players, more than two floater players, and possession
335 games. This has resulted in an exclusion of thirty SSGs (and seven training sessions) in total.
336 Third, specific playing positions were not included in the model. Instead, individual players
337 were included as random effects, and this has increased the explained variance of the model
338 by 8-18%.

339 In conclusion, this study examined the effects that various SSG constraints had on
340 players' physical demands. The ApP has a positive effect on all locomotor and
341 biomechanical demands, although the effects may have been limited by a limited variation
342 of pitch areas used in this study. Sprint distance is only affected by this ApP, which may
343 also have been controlled by variation of the dataset. Lastly, all constraints (except for the
344 use of GKs) positively or negatively affected the biomechanical demands. This highlights
345 the delicate use of constraints in SSGs and their effects on physical demands.

346

347 **PRACTICAL APPLICATIONS**

348 These findings provide valuable guidance for SSGs design. To target high speed running
349 and emphasise sprinting, coaches may increase the ApP, but should also pair this with a short
350 playing duration, the inclusion of GKs, and the exclusion of floater players. On the other
351 hand, when aiming to increase biomechanical load (e.g., increase the acceleration and
352 deceleration distance), coaches can still use a greater ApP, while also opting for smaller team
353 formats, shorter duration, and rules such as limited touches, big goals, and again avoiding
354 the use of floater players. Essentially, coaches can strategically manipulate constraints as
355 part of a broader SSG design toolkit by tailoring physical demands according to training
356 objectives.

357

358 **ACKNOWLEDGEMENTS**

359 The authors would like to thank players and coaching staff of the Academy for contributing
360 to the data collection of this study. S. B. H. Olthof and J. Ferrandis shared first authorship:
361 both authors contributed equally to this work.

362

363 **DISCLOSURE STATEMENT**

364 No potential conflict of interest was reported by the authors.

365

366 **REFERENCES**

- 367 1. Aguiar, M, Botelho, G, Lago, C, Maças, V, Sampaio, J. A review on the effects of
368 soccer small-sided games. *J Hum Kinet* 33: 103–113, 2012.
- 369 2. Araújo, D, Davids, K. Towards a theoretically-driven model of correspondence
370 between behaviours in one context to another: Implications for studying sport
371 performance. *Int J Sport Psychol* 46: 745–757, 2015.
- 372 3. Asian-Clemente, JA, Rabano-Muñoz, A, Requena, B, Santalla, A, Suarez-Arribas, L.
373 The influence of the floater position on the load of soccer players during a 4 vs 4 + 2
374 game. *Kinesiology* 54: 82–91, 2022.

375 4. Bujalance-Moreno, P, Latorre-Román, PÁ, García-Pinillos, F. A systematic review on
376 small-sided games in football players: Acute and chronic adaptations. *J Sports Sci* 37: 921–949, 2019.

378 5. Casamichana, D, Bradley, PS, Castellano, J. Influence of the Varied Pitch Shape on
379 Soccer Players Physiological Responses and Time-Motion Characteristics During
380 Small-Sided Games. *J Hum Kinet* 64: 171–180, 2018.

381 6. Casamichana, D, Castellano, J. Time-motion, heart rate, perceptual and motor
382 behaviour demands in small-sides soccer games: Effects of pitch size. *J Sports Sci* 28: 1615–1623, 2010.

384 7. Casamichana, D, Castellano, J, Castagna, C. Comparing the Physical Demands of
385 Friendly Matches and Small-Sided Games in Semiprofessional Soccer Players. *J
386 Strength Cond Res* 26: 837–843, 2012.

387 8. Castagna, C, D’Ottavio, S, Cappelli, S, Araújo Póvoas, SC. The Effects of Long Sprint
388 Ability–Oriented Small-Sided Games Using Different Ratios of Players to Pitch Area
389 on Internal and External Load in Soccer Players. *Int J Sports Physiol Perform* 14: 1265–1272, 2019.

391 9. Castellano, J, Puente, A, Echeazarra, I, Casamichana, D. Influence of the number of
392 players and the relative pitch area per player on heart rate and physical demands in
393 youth soccer. *J Strength Cond Res* 29: 1683–1691, 2015.

394 10. Castillo-Rodríguez, A, Durán-Salas, Á, Giménez, JV, Onetti-Onetti, W, Suárez-
395 Arrones, L. The Influence of Pitch Dimensions during Small-Sided Games to Reach
396 Match Physical and Physiological Demands on the Youth Soccer Players. *Sensors* 23: 1299, 2023.

398 11. Clemente, FM, Praça, GM, Aquino, R, et al. Effects of pitch size on soccer players’
399 physiological, physical, technical, and tactical responses during small-sided games: a
400 meta-analytical comparison. *Biol Sport* 40: 111–147, 2023.

401 12. Clemente, FM, Sarmento, H. The effects of small-sided soccer games on technical
402 actions and skills: A systematic review. *Hum Mov* 21: 100–119, 2020.

403 13. Coutinho, D, Gonçalves, B, Santos, S, et al. Exploring how limiting the number of ball
404 touches during small-sided games affects youth football players’ performance across
405 different age groups. *Int J Sports Sci Coach* 17: 545–557, 2022.

406 14. Dalen, T, Sandmæl, S, Stevens, TGA, et al. Differences in Acceleration and High-
407 Intensity Activities Between Small-Sided Games and Peak Periods of Official Matches
408 in Elite Soccer Players. *J Strength Cond Res* 35: 2018–2024, 2021.

409 15. De Dios-Álvarez, V, Padrón-Cabo, A, Alkain, P, Rey, E, Castellano, J. Area per Player
410 in Small-Sided Games to Estimate the External Load in Elite Youth Soccer Players. *J
411 Hum Kinet* , 2025. Available from: <https://jhk.termedia.pl/Area-per-Player-in-Small-Sided-Games-to-Estimate-the-External-Load-in-Elite-Youth,189421,0,2.html>

413 16. Dellal, A, Lago-Penas, C, Wong, DP, Chamari, K. Effect of the Number of Ball
414 Contacts Within Bouts of 4 vs. 4 Small-Sided Soccer Games. *Int J Sports Physiol
415 Perform* 6: 322–333, 2011.

416 17. Dellal, A, Owen, A, Wong, DP, et al. Technical and physical demands of small vs.
417 large sided games in relation to playing position in elite soccer. *Hum Mov Sci* 31: 957–
418 969, 2012.

419 18. de Dios-Álvarez, V, Lorenzo-Martínez, M, Padrón, A, Clemente, FM, Rey, E.
420 Intermittent Training Regimen of Small-Sided Games Increases External Load in
421 Female Soccer Players. *Ann Sports Med Res* 10, 2023.

422 19. Fanchini, M, Azzalin, A, Castagna, C, et al. Effect of bout duration on exercise intensity
423 and technical performance of small-sided games in soccer. *J Strength Cond Res* 25:
424 453–458, 2011.

425 20. Gaudino, P, Alberti, G, Iaia, FM. Estimated metabolic and mechanical demands during
426 different small-sided games in elite soccer players. *Hum Mov Sci* 36: 123–133, 2014.

427 21. Glazier, PS, Robins, MT. Self-Organisation and Constraints in Sports Performance. In:
428 Routledge Handbook of Sports Performance Analysis. McGarry, T, O'Donoghue, P,
429 and Sampaio, J, eds. . Taylor & Francis Group, 2013. pp. 42–51

430 22. Gregson, W, Drust, B, Atkinson, G, Salvo, V. Match-to-Match Variability of High-
431 Speed Activities in Premier League Soccer. *Int J Sports Med* 31: 237–242, 2010.

432 23. Hill-Haas, SV, Coutts, AJ, Dawson, B, Rowsell, GJ. Time-motion characteristics and
433 physiological responses of small-sided games in elite youth players: The influence of
434 player number and rule changes. *J Strength Cond Res* 24: 2149–2156, 2010.

435 24. Hill-Haas, SV, Dawson, B, Impellizzeri, FM, Coutts, AJ. Physiology of small-sided
436 games training in football: a systematic review. *Sports Med* 41: 199–220, 2011.

437 25. Ju, W, J Lewis, C, Evans, M, Laws, A, S Bradley, P. The validity and reliability of an
438 integrated approach for quantifying match physical-tactical performance. *Biol Sport*
439 39: 253–261, 2022.

440 26. Köklü, Y, Alemdaroğlu, U, Cihan, H, Wong, DP. Effects of Bout Duration on Players'
441 Internal and External Loads During Small-Sided Games in Young Soccer Players. *Int
442 J Sports Physiol Perform* 12: 1370–1377, 2017.

443 27. Köklü, Y, Sert, Ô, Alemdaroğlu, U, Arslan, Y. Comparison of the physiological
444 responses and time-motion characteristics of young soccer players in small-sided
445 games: The effect of goalkeeper. *J Strength Cond Res* 29: 964–971, 2015.

446 28. Lacome, M, Simpson, BM, Cholley, Y, Lambert, P, Buchheit, M. Small-Sided Games
447 in Elite Soccer: Does One Size Fit All? *Int J Sports Physiol Perform* 13: 568–576,
448 2018.

449 29. Mallo, J, Navarro, E. Physical load imposed on soccer players during small-sided
450 training games. *J Sports Med Phys Fitness* 48: 166–171, 2008.

451 30. Moura, FA, Marche, AL, Caetano, FG, et al. Analysis of high-intensity efforts in
452 Brazilian professional soccer players. *Hum Mov* 18: 55–62, 2017.

453 31. Olthof, S, Frencken, WGP, Lemmink, K. The older, the wider: On-field tactical
454 behavior of elite-standard youth soccer players in small-sided games. *Hum Mov Sci* 41:
455 92–102, 2015.

456 32. Olthof, S, Frencken, WGP, Lemmink, K. Match-derived relative pitch area changes the
457 physical and team tactical performance of elite soccer players in small-sided soccer
458 games. *J Sports Sci* 36: 1557–1563, 2018.

459 33. Olthof, S, Frencken, WGP, Lemmink, K. When something Is at stake: Differences in
460 soccer performance in 11 vs. 11 during official matches and training games. *J Strength
461 Cond Res* 33: 167–173, 2019.

462 34. Olthof, S, Frencken, WGP, Lemmink, K. A match-derived relative pitch area facilitates
463 the tactical representativeness of small-sided games for the official soccer match. *J
464 Strength Cond Res* 33: 523–530, 2019.

465 35. Pinder, RA, Davids, K, Renshaw, I, Araújo, D. Representative Learning Design and
466 Functionality of Research and Practice in Sport. *J Sport Exerc Psychol* 33: 146–155,
467 2011.

468 36. Praça, G, Barbosa, GF, Murta, C, et al. Influence of floaters and positional status on
469 players' tactical, physical, and physiological responses in soccer small-sided games.
470 *Hum Mov* 21: 54–63, 2020.

471 37. Praça, GM, Chagas, MH, Bredt, S da GT, Andrade, AGP de. Small-Sided Soccer
472 Games with Larger Relative Areas Result in Higher Physical and Physiological
473 Responses: A Systematic and Meta-Analytical Review. *J Hum Kinet* 81: 163–176,
474 2022.

475 38. Rábano-Muñoz, A, Asian-Clemente, J, Sáez De Villarreal, E, Nayler, J, Requena, B.
476 Age-Related Differences in the Physical and Physiological Demands during Small-
477 Sided Games with Floaters. *Sports* 7: 79, 2019.

478 39. Riboli, A, Coratella, G, Rampichini, S, Cé, E, Esposito, F. Area per player in small-
479 sided games to replicate the external load and estimated physiological match demands
480 in elite soccer players. *PLOS ONE* 15: e0229194, 2020.

481 40. Riboli, A, Esposito, F, Coratella, G. Technical and locomotor demands in elite soccer:
482 manipulating area per player during small-sided games to replicate official match
483 demands. *Biol Sport* 40: 639–647, 2023.

484 41. Riboli, A, Olthof, S, Esposito, F, Coratella, G. Training elite youth soccer players: area
485 per player in small-sided games to replicate the match demands. *Biol Sport* 579–598,
486 2022.

487 42. Sangnier, S, Cotte, T, Brachet, O, Coquart, J, Tourny, C. Planning Training Workload
488 in Football Using Small-Sided Games' Density. *J Strength Cond Res* 33: 2801–2811,
489 2019.

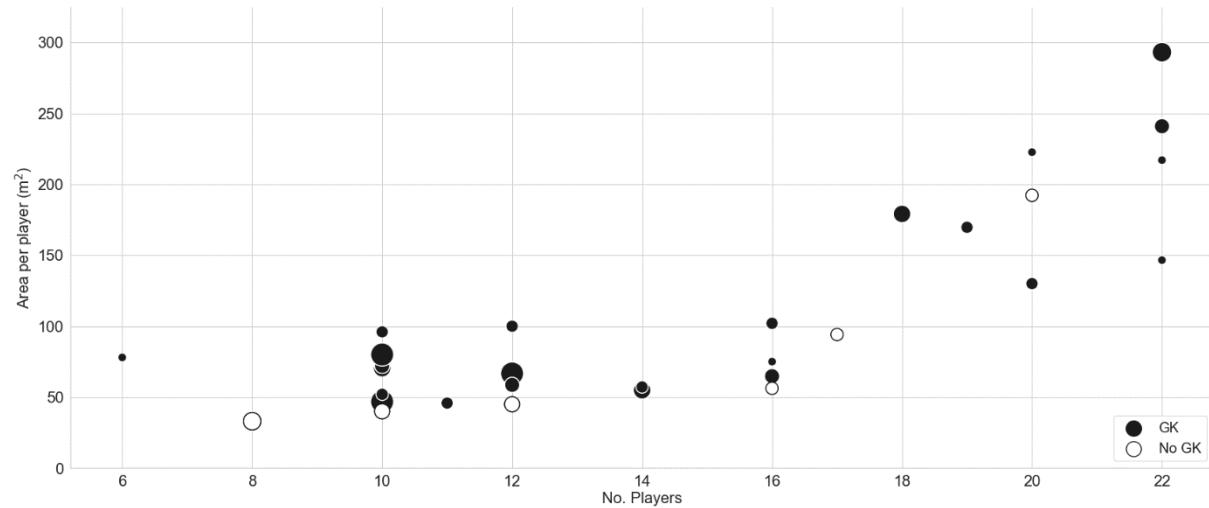
490 43. Santos, FJ, Verardi, CEL, De Moraes, MG, et al. Effects of Pitch Size and Goalkeeper
491 Participation on Physical Load Measures during Small-Sided Games in Sub-Elite
492 Professional Soccer Players. *Appl Sci* 11: 8024, 2021.

493 44. Torres-Ronda, L, Beanland, E, Whitehead, S, Sweeting, A, Clubb, J. Tracking Systems
494 in Team Sports: A Narrative Review of Applications of the Data and Sport Specific
495 Analysis. *Sports Med - Open* 8: 15, 2022.

496 45. Vigh-Larsen, JF, Dalgas, U, Andersen, TB. Position-Specific Acceleration and
497 Deceleration Profiles in Elite Youth and Senior Soccer Players. *J Strength Cond Res*
498 32: 1114–1122, 2018.

499

500 **FIGURE LEGEND**


501

502 Figure 1. Distribution of the small-sided games for the area per player and number of players.

503 Bigger dots indicate a bigger proportion of games played. GK = goalkeeper

504

505 **FIGURE**

506

507 Figure 1. Distribution of the small-sided games for the area per player and number of players.

508 Bigger dots indicate a bigger proportion of games played. GK = goalkeeper.

509

510 **TABLES**

511

512 Table 1. Descriptive statistics of the SSG constraints and locomotor and biomechanical
 513 variables. Continuous variables are indicated as mean (\pm SD) and the categorical variables
 514 are indicated as count (percentage)

<i>Fixed factors</i>		
ApP (m²/player)		99.6 (71.6)
Format	2 vs. 2	1 (1.1%)
	3 vs. 3	11 (12.6%)
	4 vs. 4	23 (26.4%)
	5 vs. 5	15 (17.2%)
	6 vs. 6	9 (10.3%)
	7 vs. 7	3 (3.4%)
	8 vs. 8	10 (11.5%)
	9 vs. 9	3 (3.4%)
	10 vs. 10	12 (13.8%)
Duration (min)		5.0 (3.1)
Goalkeeper	GK	71 (81.6%)
	No GK	16 (18.4%)
Floater	Floater	26 (29.9%)
	No floater	61 (70.1%)
Touch restrictions	Limited	8 (9.2%)
	Unlimited	79 (90.8%)
Goal size	Big	69 (79.3%)
	Small	18 (20.7%)
<i>Dependent variables</i>		
TD (m/min)		112.0 (10.9)
HSR (m/min)		6.6 (4.2)
SD (m/min)		2.2 (2.1)
ACC (m/min)		19.1 (3.2)
DEC (m/min)		22.3 (3.8)

515 ApP: area per player; GK: goalkeeper; TD: total distance; HSR: high speed running; SD:
 516 sprint distance; ACC: acceleration distance; DEC: deceleration distance

517

518 Table 2. Estimates of the fixed effects [95% confidence intervals] in the small-sided games
 519 for locomotor and biomechanical variables. The explained variance is included for fixed
 520 factors (i.e. SSG constraints) and the random effect (i.e. individual players).

	TD	HSR	SD	ACC	DEC
<i>Estimates</i>					
Intercept	119.09		4.27	-0.05	27.21
Fixed factors					
ApP	0.15 [0.12, 0.19]	0.06 [0.05, 0.07]	0.03 [0.02, 0.04]	0.02 [0.01, 0.03]	0.01 [0.00, 0.03]
Player number	-0.99 [-1.48, -0.49]	-0.12 [-0.31, 0.07]	-0.01 [-0.10, 0.09]	-0.51 [-0.66, -0.35]	-0.64 [-0.80, -0.48]
Duration	-0.71 [-1.26, -0.15]	-0.26 [-0.47, -0.05]	-0.07 [-0.18, 0.04]	-0.27 [-0.44, -0.09]	-0.28 [-0.46, -0.09]
No goalkeeper (vs. GK)	-4.63 [-14.00, 4.69]	-5.17 [-8.77, -1.59]	-1.66 [-3.46, 0.13]	0.97 [-1.95, 3.85]	1.49 [-1.64, 4.58]
Floater (vs. no floater)	-3.97 [-6.81, -1.10]	-1.32 [-2.41, -0.22]	-0.33 [-0.87, 0.22]	-1.69 [-2.57, -0.79]	-2.02 [-2.97, -1.06]
Limited touches (vs. free play)	6.17 [1.96, 10.36]	-0.35 [-1.96, 1.25]	-0.17 [-0.98, 0.63]	3.18 [1.89, 4.48]	3.28 [1.89, 4.67]
Small goal (vs. big goal)	-4.08 [-13.52, 5.41]	3.69 [0.07, 7.35]	1.45 [-0.36, 3.28]	-3.15 [-6.08, -0.20]	-4.08 [-7.21, -0.91]
<i>Variance explained</i>					
SSG constraints	22.9%	30.3%	34.5%	25.7%	34.7%
SSG constraints + individual players	41.4%	39.7%	42.8%	41.6%	47.6%

521 Bolded results indicate a significant effect. ApP: area per player; GK: goalkeeper; SSG:
 522 small-sided game; TD: total distance; HSR: high speed running; SD: sprint distance; ACC:
 523 acceleration distance; DEC: deceleration distance

524