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Abstract

TwinArray Sort is a non-comparison integer sorting algorithm designed for non-negative
integers with relatively dense key ranges, offering competitive runtime performance and
reduced memory usage relative to other counting-based methods. The algorithm introduces
a conditional distinct-array verification mechanism that adapts the reconstruction strategy
based on data characteristics while maintaining worst-case time and space complexity of
O(n + k). Comprehensive experimental evaluations were conducted on datasets containing
up to 108 elements across multiple data distributions, including random, reverse-sorted,
nearly sorted, and their unique variants. The results demonstrate consistent performance
improvements compared with established algorithms such as Counting Sort, Pigeonhole
Sort, MSD Radix Sort, Spreadsort, Flash Sort, Bucket Sort, and Quicksort. TwinArray Sort
achieved execution times up to 2.7 times faster and reduced memory usage by up to 50%,
with particularly strong performance observed for unique and reverse-sorted datasets. The
algorithm exhibits good scalability for large datasets and key ranges, with performance
degradation occurring primarily in extreme cases where the key range significantly exceeds
the input size due to auxiliary array requirements. These findings indicate that TwinArray
Sort is a competitive solution for in-memory sorting in high-performance and distributed
computing environments. Future work will focus on optimizing performance for wide key
ranges and developing parallel implementations for multi-core and GPU architectures.

Keywords: non-comparison integer sorting; linear-time sorting; dense key ranges;
duplicate-aware algorithms; memory–time trade-offs

1. Introduction and Related Work
Sorting algorithms are essential to computer science and are used in many different

applications. Through rigorous optimization and study, classic comparison-based sorting
algorithms such as Quicksort, Merge Sort, and Heapsort have achieved average-case time
complexities of O(nlogn) [1–4]. Nonetheless, these algorithms have inherent limitations,
particularly when dealing with large datasets or under technological constraints where
time and space efficiency is crucial.

Non-comparison-based sorting algorithms, including Bucket Sort, Radix Sort, and
Counting Sort, offer an alternative approach by leveraging data attributes instead of direct
comparisons [5,6]. These algorithms are suitable for specific types of data and can achieve
linear time complexity under certain conditions. For example, Counting Sort, which counts
the frequency of each element, can run in O(n + k) time, where n is the number of elements
and k is the range of input values [7].
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Despite their efficiency, non-comparison-based algorithms also have drawbacks.
Counting Sort, for instance, consumes additional memory proportional to the range of
input values, which poses challenges for datasets with large value ranges [8,9]. It may also
struggle with handling duplicate elements efficiently [10]. Similarly, Bucket Sort and Radix
Sort often involve high overhead due to initialization demands and multiple passes over
the dataset. For instance, the setup and management of buckets in Bucket Sort introduces
substantial overhead [11,12]. Moreover, the performance of Bucket Sort depends heavily
on the number of buckets chosen: too few leads to under-utilization and inefficiency, while
too many significantly increase space complexity [13].

To address these issues and enhance performance, the proposed TwinArray Sort
introduces techniques such as dual auxiliary arrays and a conditional distinct array verifier.
Its design avoids tunable heuristic parameters but explicitly relies on the maximum key
value k, making it most suitable for datasets where the key range is relatively dense.
TwinArray Sort is especially advantageous for datasets with particular distribution patterns
such as nearly sorted, reversed, or randomized sequences. It offers consistent performance
across various data types, making it a versatile solution for modern sorting requirements.
Applications include machine learning, where efficient data pre-processing can significantly
reduce model training time, and large-scale data processing pipelines, where fast sorting is
critical. Unlike traditional sorting algorithms that may degrade under certain conditions,
TwinArray Sort maintains stable performance in most scenarios. TwinArray Sort applies
exclusively to arrays of non-negative integers and is not intended for floating-point or
general object sorting.

2. Materials and Methods
To define the size for two auxiliary arrays, TwinArray Sort first identifies the maxi-

mum value within the input array. The values from the input array and their associated
frequencies are stored in these arrays. Once the arrays are populated according to their
indices, the algorithm checks for duplicate elements. It generates the sorted output by
either directly extracting nonzero components from the value array or by reconstructing
elements based on their frequencies, depending on whether duplicates are detected. While
both reconstruction paths require a linear scan over the auxiliary domain, the no-duplicate
case avoids frequency-based replication and repeated writes, reducing constant-factor
overhead without altering asymptotic complexity. The procedure may prepend a zero if the
input array’s index 0 holds the value 0, ensuring that the output array remains the same
size as the input array. This technique, which is particularly effective with datasets that
have a narrow range of integer values, successfully combines the concepts of Counting
Sort with direct element insertion. Algorithm 1 shows the pseudocode of the TwinArray
Sort algorithm.

By utilizing the built-in indices of array elements, the TwinArray Sort method is
designed to sort an array of integers efficiently. This approach ensures that it can handle
both unique and repeated numbers effectively by sorting the data using dual auxiliary
arrays. The TwinArray Sort algorithm is implemented and analyzed in the steps that follow.

Formally, let the maximum value in the input be k = max(A). TwinArray Sort allocates
two auxiliary arrays of length k + 1:

value_store[i] = i·1{∃ j : aj= i},

count_store[i] = ∑n
j=1 1aj=i, i = 0, . . . , k.

(1)

Here, 1{·} denotes the indicator function, which equals 1 if the condition is true
and 0 otherwise. The first array mirrors the domain by storing each encountered value
at its corresponding index, while the second records the frequency of each value. This
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formalization captures the mapping phase of the algorithm and provides the mathematical
basis for its duplicate-handling mechanism.

Algorithm 1 Pseudocode of the TwinArray Sort algorithm

Require: Array arr
Ensure: Sorted array sorted_arr
1: max val←maximum value in arr
2: Create array value_store of size max_val + 1 initialized to 0
3: Create array count_store of size max_val + 1 initialized to 0
4: has duplicates← false
5: for each num in arr do
6: value_store[num]← num
7: count_store[num]← count_store[num] + 1
8: if count_store[num] > 1 then
9: has_duplicates← true
10: end if
11: end for
12: Create empty array sorted_arr
13: if not has_duplicates then
14: for each value in value_store do
15: if value ̸= 0 then
16: Append value to sorted_arr
17: end if
18: end for
19: if count_store[0] == 1 then
20: Insert 0 at the beginning of sorted_arr
21: end if
22: else
23: for i← 0 to length of count_store − 1 do
24: if count_store[i] > 0 then
25: Append count_store[i] copies of value_store[i] to sorted_arr
26: end if
27: end for
28: end if
29: return sorted_arr

The presence of duplicates is detected using the following conditional trigger:

has_duplicates = (∃i ∈ {0, . . . , k} : count_store[i] > 1) (2)

Based on this condition, the sorted output array is constructed as follows. If no
duplicates are present:

sortedarr = [ i | i ∈ {0, . . . , k} ∧ count_store[i] > 0 ] (3)

If duplicates are present:

sortedarr = [i repeated count_store[i] times | i ∈ {0, . . . , k}] (4)

Let A be an input array with n elements, A = {a1, a2, a3, . . ., an}, where ∀ai,aj ∈ A, ai ≥ 0.
The TwinArray Sort algorithm involves the following steps (Figure 1):
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Figure 1. Flowchart of the TwinArray Sort algorithm.

The TwinArray Sort algorithm has a time complexity of O(n + k), where n is the number
of elements in the input array.

This is achieved by performing a single pass over the input array and another pass
over the auxiliary arrays during the mapping and reconstruction phases, respectively. The
space complexity is also O(n + k), where k is the highest value in the input array, primarily
due to the use of two auxiliary arrays.

Although TwinArray Sort shares some similarities with Counting Sort, the two differ
significantly in their methodology, advantages, limitations, and unique features. TwinAr-
ray Sort offers several advantages over Counting Sort, particularly in terms of memory
optimization and efficient handling of duplicate values. Its conditional distinct array verifi-
cation mechanism enables the algorithm to determine whether a simpler reconstruction
path can be used when no duplicates are present—reducing constant-factor overhead (e.g.,
fewer frequency-based checks and writes) without changing asymptotic complexity.

Moreover, by separating value storage and frequency counting into two auxiliary
arrays, TwinArray Sort allows for greater flexibility in certain scenarios. One of its defining
features is the use of a conditional trigger that detects the presence of duplicates and
adapts the sorting strategy accordingly. Unlike Counting Sort, which processes all elements
uniformly regardless of duplication, TwinArray Sort dynamically modifies its approach
based on data characteristics.

3. Experimental Setup
For the purposes of this investigation, the TwinArray Sort algorithm was developed in

Python 3.11. The effectiveness of the TwinArray Sort algorithm was assessed by comparing
it to many other widely used sorting algorithms. These included Counting Sort, Pigeonhole
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Sort, MSD Radix Sort, Flash Sort, Tim Sort, Heap Sort, Shell Sort, Comb Sort, Bucket Sort,
Block Sort, Spreadsort, Quicksort, and Merge Sort. Following a preliminary comparative
investigation, the seven fastest algorithms were chosen. A more thorough comparative
study and analysis were then conducted on these selected algorithms. This method enabled
a comprehensive understanding of TwinArray Sort’s performance characteristics in relation
to other established sorting techniques.

TwinArray Sort is contrasted in this study with Counting Sort, Pigeonhole Sort, MSD
Radix Sort, Spreadsort, Flash Sort, Bucket Sort, and Quicksort. Various data distributions
based on 64-bit unsigned integers were used, including nearly sorted, reversed, and random
arrays with different sizes: 105, 106, 107, and 108. The sorting algorithms were evaluated
on an 8-core AMD Ryzen 7 5700X CPU with 32 GB of RAM, running Ubuntu Linux on a
virtual machine (WSL 2).

Selecting the middle element as the pivot in Quicksort is a calculated decision that
balances performance and stability. In the best-case scenario, the middle element tends
to split the array into two nearly equal parts, maintaining the optimal O(nlogn) time
complexity and reducing recursion depth [14]. However, in the worst-case scenario, poor
splits can lead to O(n2) time complexity [15]. Nonetheless, using the middle element often
yields better average-case performance compared to choosing the first or last element,
which are more susceptible to producing unbalanced partitions [14]. Therefore, the middle
element is selected in this study to support overall Quicksort performance and stability.

For Bucket Sort, the number of buckets was set equal to the length of the array. This
approach provides a balanced strategy suitable for a wide range of data distributions.
It ensures that each bucket receives a manageable number of items, which facilitates
efficient intra-bucket sorting and keeps the overall time complexity close to O(n + k),
where k is a small constant. This method works particularly well when the input is
uniformly distributed, as it promotes evenly sized buckets and minimizes performance
bottlenecks [12]. Moreover, scaling the number of buckets proportionally to the array size
allows the algorithm to adapt to both small and large datasets without complex heuristics.
The findings of Burnetas et al. (1997) support this approach, noting that bucket count
significantly influences partitioning balance and intra-bucket sorting efficiency [12]. This
implementation aligns with those insights, offering a robust and adaptable solution.

Six different random number generators were used to produce test arrays: Random,
Reversed, Nsorted (nearly sorted), U Random (unique random), U Reversed (unique
reversed), and U Nsorted (unique nearly sorted). In the Nsorted and U Nsorted arrays,
5% of the elements were displaced to simulate near ordering. To ensure consistency and
fairness, the same generated arrays were used to benchmark all sorting algorithms under
identical conditions.

To ensure consistency and reproducibility, we employed the memory profiler mod-
ule in Python for tracking memory consumption during each sorting run. This profiler
periodically samples the Python process’s memory footprint (resident set size) at specified
intervals. Specifically, we instrumented each sorting function call with a decorated context
manager that monitors peak memory usage until the sorting routine completes. By captur-
ing the highest recorded value, we obtain a reliable indication of peak resident memory
consumption for each algorithm under test. All experiments were run in the same Python
environment and on the same system configuration to minimize variability.

All evaluated algorithms were implemented in pure Python without reliance on
NumPy vectorization, C extensions, or external optimized libraries. Each algorithm oper-
ates directly on Python lists and returns a Python list as output. Input generation, output
construction, and any required data handling are included in the reported execution times
for all methods to ensure consistent and fair comparisons.
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4. Results
A comparison of several sorting algorithms under varied input distributions and

dataset sizes is presented in Table 1. The algorithms evaluated include TwinArray Sort,
Counting Sort, Pigeonhole Sort, MSD Radix Sort, Spreadsort, Flashsort, Bucket Sort, and
Quicksort. Arrays with distributions including Random, Reversed, nearly Sorted (Nsorted),
Unique Random (U Random), Unique Reversed (U Reversed), and Unique Sorted (U
Nsorted) were used to assess each technique. The dataset sizes range from 105 to 108. The
table reports both runtime (in seconds) and memory usage (in megabytes).

As can be seen, TwinArray Sort performed significantly faster across various input
distributions. For instance, TwinArray Sort completed the task in 178.6 s and required
2291.14 MB of memory for a dataset of size 108 with a Random distribution. In comparison
to other algorithms, such as Counting Sort, which required significantly higher memory
(4577.63 MB) for the same input size and distribution and ran in a much higher amount
of time (487.10 s), TwinArray Sort’s performance is considerably more efficient. This is
approximately 50% of the memory requirement and is nearly 2.7× faster.

Similarly, TwinArray Sort was around 10% faster and consumed 60.6% of the memory
that Pigeonhole Sort required, which ran in 196.37 s and used 3814.69 MB of memory
under the same conditions. It is evident from analyzing TwinArray Sort’s performance
in many scenarios that apart from MSD Radix Sort, it consistently used less memory
compared to others. For instance, TwinArray Sort used 2332.20 MB for the Reversed
distribution and dataset size of 108, while Flashsort and Spreadsort needed 2403.25 MB
and 8842.53 MB, respectively. TwinArray Sort consumes significantly less memory in this
case—approximately 26.3% of Spreadsort’s memory requirements and slightly less than
Flashsort, using about 97% of its memory.

TwinArray Sort continued to have an advantage in terms of runtime. The approach
works consistently well, often surpassing competing algorithms such as Bucket Sort and
Spreadsort, especially in terms of memory efficiency, even with the largest dataset size of
108 across multiple distributions.

In further comparison, TwinArray Sort performed significantly faster for unique
element arrays. This behavior is associated with the simplified reconstruction path enabled
by the conditional distinct array verifier, which reduces constant-factor overhead but does
not change the algorithm’s asymptotic complexity. For example, TwinArray Sort used
2322.32 MB of RAM to sort a uniquely distributed random (U_Random) array of size 108 in
66.14 s. On the other hand, Counting Sort required much more memory (4577.63 MB) and
took 510.64 s for the same distribution and input size.

When dealing with large inputs, MSD Radix Sort performs competitively in run times
(e.g., 724.03 s for 108 size). However, its memory usage is lower (1716.61 MB) than that
of TwinArray Sort. While Flashsort, Bucket Sort, and Quicksort exhibit longer execution
times and varying memory consumption in our experiments, TwinArray Sort generally
provides a favorable overall runtime–memory trade-off among the evaluated methods.
For unique-element arrays across the tested distributions and input sizes, TwinArray Sort
consistently achieves short runtimes and competitive memory usage relative to the other
methods considered.
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Table 1. Comparative analysis of sorting algorithms showing runtime and memory usage across
different input distributions and dataset sizes, including Quicksort [3], Merge Sort [4], Counting
Sort [6], Radix Sort [5], Bucket Sort [12], TimSort [9], Spreadsort [16], and Flashsort [17].

Algorithms Dist.
Run Times (s) Memory (MB)

n = 105 n = 106 n = 107 n = 108 n = 105 n = 106 n = 107 n = 108

TwinArray
Sort

Random 0.118 1.111 12.267 178.617 2.361 23.386 230.554 2291.144
Reversed 0.090 1.083 11.302 177.440 2.323 22.923 230.952 2332.206
Nsorted 0.108 1.104 11.633 177.939 2.319 23.007 238.275 2347.160

U_Random 0.010 0.363 4.684 66.141 2.290 23.316 237.556 2322.321
U_Reversed 0.006 0.069 0.681 15.337 2.290 23.316 237.556 2322.320
U_Nsorted 0.011 0.106 1.213 19.972 2.290 23.316 237.556 2322.320

Counting
Sort

Random 0.255 3.059 35.237 487.108 4.570 45.768 457.757 4577.631
Reversed 0.237 2.423 25.494 317.697 4.572 45.769 457.757 4577.631
Nsorted 0.242 2.521 27.876 369.341 4.570 45.769 457.757 4577.630

U_Random 0.286 3.643 40.947 510.645 4.571 45.769 457.757 4577.631
U_Reversed 0.216 2.167 22.253 244.145 4.573 45.769 457.757 4577.631
U_Nsorted 0.242 2.347 25.070 275.164 4.573 45.769 457.757 4577.631

Pigeonhole
Sort

Random 0.160 1.631 17.099 196.366 3.808 38.140 381.463 3814.690
Reversed 0.162 1.834 19.335 230.885 3.807 38.139 381.463 3814.690
Nsorted 0.160 1.787 19.522 230.637 3.808 38.139 381.463 3814.691

U_Random 0.167 1.980 20.102 239.526 3.807 38.140 381.463 3814.691
U_Reversed 0.171 1.550 15.215 158.644 3.807 38.139 381.463 3814.691
U_Nsorted 0.162 1.591 16.169 165.247 3.807 38.139 381.463 3814.691

MSD
Radix Sort

Random 0.315 4.181 47.839 663.023 1.679 16.775 165.645 1650.600
Reversed 0.240 4.367 49.424 750.084 1.653 16.476 164.225 1656.515
Nsorted 0.302 4.466 61.134 747.062 1.648 16.636 165.542 1647.953

U_Random 0.323 4.395 58.749 724.031 1.718 17.167 171.664 1716.618
U_Reversed 0.319 4.043 53.789 632.245 1.717 17.168 171.664 1716.618
U_Nsorted 0.312 4.036 54.565 640.853 1.717 17.167 171.664 1716.618

Spreadsort

Random 0.132 1.868 27.347 856.944 8.877 88.990 890.985 8842.531
Reversed 0.124 1.495 26.053 1052.850 8.838 88.524 891.466 8883.657
Nsorted 0.188 2.369 27.610 1320.442 8.831 88.611 898.698 8898.529

U_Random 0.224 3.307 35.031 922.079 9.917 100.034 1009.162 9985.214
U_Reversed 0.184 1.745 15.993 765.324 9.916 100.030 1009.162 9985.215
U_Nsorted 0.127 1.294 22.438 929.743 9.916 100.030 1009.166 9985.211

Flashsort

Random 0.685 7.443 76.774 910.031 2.400 24.031 240.324 2403.258
Reversed 0.642 7.383 70.576 769.748 2.400 24.030 240.324 2403.258
Nsorted 0.662 7.606 73.095 798.901 2.400 24.031 240.324 2403.258

U_Random 0.684 8.158 83.678 935.181 2.400 24.031 240.324 2403.258
U_Reversed 0.646 6.662 67.286 697.841 2.400 24.031 240.324 2403.258
U_Nsorted 0.653 7.322 71.148 733.189 2.400 24.030 240.324 2403.258

Bucket
Sort

Random 0.378 5.248 50.429 1313.397 8.877 88.995 890.985 8842.532
Reversed 0.347 4.325 48.618 1409.581 8.838 88.529 891.467 8883.663
Nsorted 0.436 4.926 49.666 1414.722 8.836 88.611 898.703 8898.531

U_Random 0.487 5.843 61.486 1404.084 9.916 100.035 1009.167 9985.217
U_Reversed 0.450 4.393 40.355 1103.711 9.916 100.034 1009.167 9985.217
U_Nsorted 0.365 3.640 47.380 1289.114 9.916 100.034 1009.167 9985.217

Quicksort

Random 0.347 4.534 59.453 967.493 3.695 33.638 279.969 4682.106
Reversed 0.271 3.742 52.240 942.599 2.435 23.550 241.860 2336.865
Nsorted 0.277 3.839 56.217 946.405 2.480 24.284 246.428 2426.211

U_Random 0.488 5.584 65.363 816.290 5.412 44.461 271.089 2598.388
U_Reversed 0.360 3.320 38.278 472.974 2.436 23.550 241.860 2336.866
U_Nsorted 0.353 3.862 44.096 504.749 2.482 24.320 246.362 2426.211
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Figure 2 displays a grouped bar chart comparing runtime (in seconds) for each sorting
algorithm at n = 108. The six bars per algorithm correspond to U_Reversed, U_Nsorted,
U_Random, Reversed, Nsorted, and Random distributions. As indicated by the lowest bar
in each group, TwinArray Sort consistently outperforms the other algorithms across all
distributions, with the largest margin appearing in the unique-element cases (U_Random,
U_Reversed, U_Nsorted). These results align closely with the data presented in Table 1, in-
dicating that TwinArray Sort is the fastest among the evaluated methods in our experiments
for both unique and non-unique inputs at large scales.

Figure 2. Runtime comparison of sorting algorithms across all distributions at n = 108.

It was observed that the performance of TwinArray Sort decreases, much like that
of Counting Sort, as the range r grows significantly larger than the number of elements
n, due to the increasing time and space complexity involved in managing a large count
array. When r ≫ n, it becomes necessary to allocate and process a large array that is
mostly empty, leading to memory waste and additional processing time. The results of
the investigation (Figure 3) show that there is a virtually perfect positive linear relation
(correlation coefficient of approximately 0.992 and 1.0, respectively) between the range and
both time and memory.

This suggests that memory use and processing time grow in a directly proportionate
way as the range variable increases. In particular, the memory correlation value of 1.0
indicates that memory usage will double along with a doubling of the range. Comparably,
the time taken scales roughly linearly with the range, as seen by the strong positive
correlation of 0.992 for time. The graph for Time shows that there is some jitteriness in the
time data. Although a perfect linear relationship, akin to memory, is what is anticipated,
there are a number of reasons why this tiny deviation could occur. There may be small
differences in the amount of time it takes to finish the sorting process depending on
whether other processes and apps are using the computer’s CPU and RAM when the
sorting algorithm is running. Furthermore, Python’s garbage collection feature for memory
management may occasionally halt program execution in order to recover memory, leading
to small discrepancies in timing measurements [18]. These variables add to the overall
extremely linear and predictable trend, but they also cause the jitteriness in the time
measurements that is shown. Thus, TwinArray Sort is less efficient in situations when
the number of items is small relative to the wide range of input values because of this
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deterioration. It works well in situations when the range of values is proportionate to the
number of elements and relatively modest.

Figure 3. Impact of value range r on TwinArray Sort performance (runtime and memory) for
n = 105 with uniformly random data. A strong linear correlation is observed between range and
resource usage.

Like other non-comparison-based sorting algorithms, the TwinArray Sort algorithm
showed higher time and memory consumption when compared to other sorting techniques,
as seen in Figures 4 and 5, when the range is significantly higher than the number of
elements in an array. However, TwinArray Sort performed noticeably better in terms of
execution time than Spreadsort, Pigeonhole Sort, and Counting Sort when sorting datasets
made up of unique numbers, thanks to its conditional distinct array verifier. Furthermore,
TwinArray Sort used less memory than both Spreadsort and Counting Sort, making it a
more efficient method of memory consumption.

Figure 4. Execution time comparison of TwinArray Sort against other sorting algorithms for both
Random and U_Random distributions (n = 105, k = 108).
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Figure 5. Execution memory comparison of TwinArray Sort against other sorting algorithms for both
Random and U Random distributions (n = 105, k = 108).

The heatmap in Figure 6 provides a focused analysis of TwinArray Sort under varying
input sizes (n) and key ranges (k). This visualisation highlights its scalability patterns,
showing consistent performance for smaller and moderate key ranges, with a pronounced
increase in execution time when both the dataset size and key range reach their maximum
values (n = 106, k = 106). This spike is attributable to the algorithm’s design, as TwinArray
Sort allocates and initialises auxiliary arrays whose size scales linearly with k. When k
approaches n at such magnitudes, initialisation costs become significant, and memory
accesses lose spatial locality, leading to increased cache miss rates and, in some cases,
paging overhead. These effects align with theoretical expectations for counting-based
approaches under large key ranges [7,8], indicating that the observed behaviour is inherent
to the algorithm rather than an implementation flaw.

Figure 7 isolates TwinArray Sort under Random and Reversed inputs across nine (n, k)
settings. Execution time remains low and close between the two distributions when k ≤ 105;
Reversed is consistently (but slightly) slower than Random. When both the dataset size and
key range reach their maxima (n = 106, k = 106), runtime increases sharply (about 1.09–1.11 s),
in line with the O(n + k) cost and the memory-hierarchy effects discussed earlier.

Several asymptotic notations can be used to represent the temporal complexity of the
TwinArray Sort algorithm in order to characterise its performance (Table 2). The temporal
complexity, expressed in Big O notation, O(n + k), indicates that the algorithm must process
both the maximum value and every element in the array. This notation provides an upper
bound on the algorithm’s growth rate. The Big Omega notation, Ω(n), represents the best-
case scenario, where the time required is at least proportional to the number of elements
in the array, offering a lower bound on performance. The algorithm’s running time is
tightly bounded by the Big Theta notation, Θ(n + k), which encapsulates both the best and
worst-case scenarios.
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Figure 6. Heatmap of TwinArray Sort runtime performance under varying input sizes (n) and
key ranges (k).

Figure 7. TwinArray Sort execution time (seconds) for Random vs. Reversed inputs across (n, k):
[10 K, 10 K], [100 K, 10 K], [1 M, 10 K], [10 K, 100 K], [100 K, 100 K], [1 M, 100 K], [10 K, 1 M],
[100 K, 1 M], [1 M, 1 M]. The trajectories show close performance for small/moderate key ranges and
a pronounced increase at n = 1 M, k = 1 M.

TwinArray Sort demonstrates superior efficiency compared to standard comparison-
based algorithms for large inputs. This is reflected by the Little o notation, o(nlogn),
indicating that, for sufficiently large n, its growth rate is strictly less than nlogn. Finally, the
Little Omega notation, ω(n), suggests that the algorithm’s runtime grows faster than any
constant multiple of n; thus, it does not remain constant but increases with input size.

Since the auxiliary arrays scale with k, the efficiency of TwinArray Sort depends on
the relationship between n and k. In particular:
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Table 2. Asymptotic notations representing the temporal complexity of TwinArray Sort.

Asymptotic Notation Time Complexity Description

Big O (O) O(n + k)
Upper bound: The algorithm
processes all elements and the
maximum value.

Big Omega (Ω) Ω(n)
Lower bound: In the best case, time
is at least proportional to the number
of elements.

Big Theta (Θ) Θ(n + k) Tight bound: Both best and worst
cases involve these terms.

Little o (o) o(nlogn) The algorithm grows slower than
nlogn for large n.

Little omega (ω) ω(n) The algorithm grows faster than any
constant factor of n.

TwinArray Sort is efficient if k = O(n), equivalently

lim
n→∞

(
k
n

)
< ∞ (5)

Moreover, one of the distinctive advantages of TwinArray Sort is its conditional
handling of duplicates. Let c1, c2, and c4 be constant coefficients for the input scan, auxiliary
traversal, and duplicate reconstruction phases, respectively. There is also a fixed constant
overhead c3 associated with array allocation and initialization; however, since c3 does not
depend on n or k, it is omitted from the following expressions for clarity. The running time
can then be expressed as:

Tno−dup(n, k) = c1n + c2k + c3n
Tdup(n, k) = c1n + c2k + c4n

(6)

Both cases include the auxiliary-domain scan term c2k; the difference is in constant-
factor reconstruction overhead (extra conditional checks/loop overhead), modelled here as
a different linear-in-n coefficient.

Tdup(n, k)− Tno−dup(n, k) = (c4 − c3)n > 0 (7)

The additional cost in the duplicate case is therefore captured as a constant-factor
increase in the linear-in-n reconstruction term, while both cases still include the auxiliary-
domain scan term c2k.

5. Discussion and Conclusions
TwinArray Sort presents a compelling alternative to conventional sorting techniques,

demonstrating notable improvements over established non-comparison-based algorithms.
Across diverse experimental conditions, it consistently outperformed other sorting methods
in terms of execution speed, particularly on datasets with duplicates and moderate key
ranges. The algorithm’s efficiency is largely attributable to its optimized duplicate handling
and the innovative conditional distinct array verification mechanism.

Experimental results show that TwinArray Sort maintains strong performance across
a variety of input distributions, including random, reversed, and nearly sorted datasets.
Its scalability is evidenced by stable execution times for smaller key ranges and gradual
increases when processing larger datasets. TwinArray Sort is best suited for dense-range
integer datasets where the key range satisfies k = O(n); performance degradation is expected
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when the key range grows significantly larger than the input size. In scenarios involving
reversed datasets, its performance advantage becomes more pronounced, indicating that
the algorithm is capable of detecting and leveraging data patterns to reduce processing
overhead. With respect to memory usage, TwinArray Sort occupies a middle ground:
it requires more auxiliary space than in-place algorithms such as Quicksort, Flashsort,
and MSD Radix Sort, but consumes considerably less memory than Counting Sort and
Spreadsort. This positions it as a competitive option in environments where higher auxiliary
memory usage is acceptable in exchange for reduced runtime, particularly when compared
against other counting-based methods such as Counting Sort and Spreadsort. TwinArray
Sort is not an in-place algorithm, and its memory consumption increases linearly with the
key range k; however, under identical conditions it consistently requires significantly less
memory than Counting Sort and Spreadsort.

Although the algorithm demonstrates impressive versatility, performance declines in
situations where the key range (k) is significantly larger than the dataset size (n). This limi-
tation arises from the increased memory and time complexity associated with constructing
large auxiliary arrays. Nevertheless, even under such conditions, TwinArray Sort remains
competitive with established methods, and there are promising opportunities to address
this drawback through hybrid or adaptive approaches. For example, a dynamic algorithm
selection mechanism could switch to comparison-based sorting once k exceeds a threshold,
or compressed auxiliary structures could be employed to reduce the memory footprint.

The characteristics of TwinArray Sort make it applicable to a variety of real-world sce-
narios where high throughput is critical and moderate memory overhead can be tolerated.
It is well-suited for distributed log processing in cluster environments, blockchain transac-
tion ordering where massive and partially ordered transaction lists must be processed with
minimal latency, and network packet sequencing in high-speed networking applications
where processing delays must be avoided. It could also be beneficial in bioinformatics
pipelines for sorting genetic sequence identifiers with large and variable key spaces, as well
as in Big Data ETL systems where sorting phases often constitute a performance bottleneck.

From a future generation computing perspective, TwinArray Sort shows strong po-
tential for further optimization in emerging architectures. Recent work on integer sorting
and systematic performance analysis further emphasizes the importance of memory–time
trade-offs in high-performance sorting algorithms [19,20]. Its data-aware execution flow
makes it an attractive candidate for GPU acceleration, parallel CPU implementations, and
cloud-native deployments where efficiency translates directly into cost savings. The al-
gorithm could also be extended to streaming contexts, enabling incremental sorting in
real-time data processing frameworks.

Future work will focus on developing parallel implementations for multi-core CPUs
and GPUs, designing hybrid adaptive variants that dynamically choose the most efficient
sorting strategy based on runtime profiling, and exploring domain-specific optimizations
for time-series, geospatial, and multimedia datasets. Additional research will also investi-
gate energy consumption profiling to assess suitability for green computing applications.

In conclusion, TwinArray Sort represents a significant advancement in sorting algo-
rithm design, delivering a balanced trade-off between computational speed and memory
usage. Its adaptability, consistent superiority in experimental evaluations, and applicability
to large-scale, diverse datasets make it a promising candidate for deployment in modern
high-performance and distributed computing environments. With targeted future opti-
mizations, TwinArray Sort has the potential to become a foundational sorting solution for
next-generation computing systems.
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