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ABSTRACT

Next Generation Risk Assessment (NGRA) promotes animal-free, exposure-informed, and hypothesis-driven
approaches to chemical safety assessment. In silico tools, such as quantitative structure-activity relationship
(QSAR) models, are valuable new approach methodologies (NAMs) for use in NGRA. However, the practical
implementation of in silico NAMs remains limited by challenges in data availability, heterogeneity, and regu-
latory acceptance. In this study, federated learning is introduced to advance chemical safety assessment while
leveraging proprietary data domains. Federated learning is a decentralised machine learning approach where
multiple organisations, devices or servers collaboratively train a model while keeping their data locally, sharing
only model updates to preserve confidentiality and privacy. Three use cases were simulated with the Flower
open-source federated learning framework, namely (i) federated analytics for dermal permeability (log Kp)
screening; (ii) federated convolutional neural networks (CNNs) for mutagenicity prediction from SMILES strings,
and (iii) federated eXtreme Gradient Boosting (XGBoost) models for predicting skin sensitisation potential using
molecular fingerprints and descriptors. The results show that federated learning approaches can yield predictive
performance comparable to centralised models while mitigating concerns over the visibility of, and access to,
commercially sensitive data. Open challenges related to data curation, interpretability, and model governance, as
well as future directions, are discussed. This work demonstrates that federated learning can facilitate secure
collaboration across organisations, enhance the utility of distributed chemical datasets, and accelerate the
adoption of in silico NAMs.

1. Introduction

applications of NGRA, such as the Alternative Safety Profiling Algorithm
(ASPA), offer a vision for its successful implementation [4].

Next Generation Risk Assessment (NGRA) is an emerging framework
that advocates for exposure-informed, hypothesis-driven, and animal-
free safety assessment of chemicals [1,2]. It relies heavily on new
approach methodologies (NAMs), including in vitro assays and in silico
tools. Despite increasing investment in non-animal alternatives, the
uptake of NGRA approaches in regulatory settings has been slow across
many regions and sectors, in part due to the current immaturity of the
framework and the need for further development of underlying meth-
odologies and case study evidence to demonstrate their robustness and
protective capabilities [3]. However, developments and practical
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Computational methods, such as quantitative structure-activity
relationship (QSAR) models, are widely employed to address data gaps
in chemical safety decision-making, particularly when experimental
data are unavailable or inadequate. These models are valuable tools for
hazard identification and prioritisation, but their use is not without
limitations. The coverage of chemical space is often uneven, with certain
compound classes overrepresented in publicly available sources due to
historical testing practices [5]. This affects their applicability domain,
which is not always clearly defined. In addition, the inherent variability
in the data on which these models are trained can result in differences in
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predictions for the same endpoint. Furthermore, many QSAR models are
not routinely updated to reflect newly available data, limiting their
relevance and robustness in evolving regulatory and research contexts
[6].

Federated learning (FL), a decentralised machine learning paradigm
introduced by McMahan et al. [7], enables collaborative model training
without requiring direct data sharing. Instead, parameters from locally
trained models are aggregated to update a global model. Originally
developed for different domains, such as mobile and edge device use
cases [8], FL has emerged as a viable approach for drug discovery ap-
plications, with practical implementations such as MELLODY [9-11],
and promising research results, such as data-centric federated knowl-
edge distillation [12], drug-target binding affinity and drug-drug
interaction [13], mechanism of action prediction based on cell paint-
ing [14] and other molecular discovery applications [15]. These studies
have shown that federated models can outperform locally trained
models, particularly in scenarios where individual datasets are small or
incomplete, by leveraging patterns learned from decentralised data silos
while at the same time preserving data privacy and confidentiality. Such
collaboration can lead to improved model generalisability and expanded
applicability domains. In an NGRA context, FL offers a mechanism to
jointly learn from distributed safety-relevant datasets to support hazard
identification, problem formulation, and prioritisation of NAM testing
without compromising proprietary data ownership. Federated analytics
extends this paradigm beyond model training by enabling the compu-
tation of aggregate statistics, feature distributions, and mechanistic
signals across decentralised datasets without exposing individual-level
data [16]. By facilitating privacy-preserving exploratory analysis and
evidence synthesis, federated analytics can improve cross-organisation
data diversity and clustering structure across decentralised chemical
spaces [17], therefore, supporting more informed hazard hypothesis
generation and prioritisation of NAM testing in early NGRA workflows.

Though a potentially valuable enabler of data-driven NAMs, FL re-
mains largely underexplored in learning from local proprietary data and
subsequent development of in silico NAMs for use in chemical safety
assessment. Its relevance could be substantial in NGRA for cosmetic
ingredients, where FL could unlock significant value. Unlike pharma-
ceuticals or biocides, cosmetics companies often operate within over-
lapping chemical spaces, in addition to facing stringent animal testing
bans [18]. They also benefit from extensive historical data resources.
However, safety-relevant data are often siloed, proprietary, and costly to
generate, which restricts collaborative modelling efforts and the scope of
QSARs for toxicological endpoints. Two recent examples of commercial
datasets that are not otherwise available for modelling were from Skare
et al. [19], who used a proprietary database of approximately 800,000
substances to identify analogues for PEG cocamines, while Gautier et al.
[20] identified two out of 25 resorcinol analogues through proprietary
data sources. Improved access to such datasets could significantly
enhance the accuracy, relevance, and applicability of predictive models.
A recent NGRA case study on coumarin in cosmetic products [21]
demonstrated how mechanistic understanding of skin sensitisation (e.g.,
pro-hapten behaviour) can be used to formulate hazard hypotheses and
guide the selection of appropriate NAMs, ultimately informing the
derivation of a human-relevant point of departure and margin-of-
exposure-based risk conclusions. FL could analogously strengthen
these steps by improving the collective learning used to frame hypoth-
eses, identify shared mechanistic signals, structural alerts and chemical
grouping, and exposure trends, and thus, supporting evidence-based
prioritisation of chemicals and pathways for targeted NAM testing.
However, legal, financial, and logistical barriers remain.

This study applied FL approaches for three use cases relevant to the
safety assessment of chemicals, including the cosmetics industry, i.e.
dermal permeability, mutagenicity, and skin sensitisation. These end-
points were selected because they address complementary local and
systemic toxicity. Dermal permeability determines the potential for
systemic exposure following topical application, mutagenicity provides
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an early indication of genotoxic hazard relevant to long-term systemic
exposure, and skin sensitisation evaluates the risk of local immune-
mediated adverse effects associated with repeated use. Through this
investigation, we demonstrate that FL-based approaches can effectively
harness siloed knowledge from fragmented data, yielding substantial
improvements in in silico toxicity prediction compared to traditional
centralised and isolated, siloed methods.

2. Materials and methods
2.1. Problem formulation

Three use cases were designed to evaluate the application of feder-
ated learning approaches to assist in the development of models and
analytics in chemical safety assessment:

1. Percutaneous dermal permeability potential (logarithm of the skin
permeability coefficient of chemical substances, log Kp) across the
epidermis and dermis using federated analytics for the skin pene-
tration assessment, motivated by the limited size and fragmented
nature of available experimental datasets, which constrain the
development of robust predictive models at individual organisations
In this setting, federated analytics enables privacy-preserving
exploratory analysis across decentralised datasets, facilitating the
identification of potential confounding factors, the assessment of
inter-laboratory variability, and the characterisation of data het-
erogeneity. This could support causal interpretation and uncertainty
assessment of skin permeability without the need for centralised data
pooling.

2. Prediction of mutagenicity based on SMILES strings using a federated
convolutional neural network (CNN), reflecting the limited avail-
ability of mechanistic information in the initial dataset that could
otherwise inform model design. A CNN architecture was selected to
demonstrate the applicability of federated learning to non-
traditional molecular modelling approaches, in which a global
model is initialised centrally and gradient information is communi-
cated to local models, while locally learned latent embeddings
derived from SMILES sequences are returned to the server to update
the global model. This setup could support privacy-preserving rep-
resentation learning while facilitating downstreamgenerative design
and structural similarity analysis.

3. Identification of skin sensitisation hazards based on molecular fin-
gerprints and descriptors using federated eXtreme Gradient Boosting
(XGBoost), selected for its predictive performance and explanatory
utility, which are critical for regulatory acceptance and decision-
making. In contrast to the representation-learning approach adop-
ted for mutagenicity, this use case employs parameter-level federa-
tion, whereby model parameters are updated and exchanged across
organisations rather than latent embeddings or gradients, enabling
interpretable feature attribution while preserving data privacy across
decentralised datasets.

2.2. Data description

2.2.1. Dermal permeability

Three open-source datasets containing curated skin permeability
coefficient (Kp) from in vitro studies using human skin were selected to
simulate the federated analytics use case:

e HuskinDB [22] comprises 546 Kp values for 251 compounds, sourced
from 94 publications, and includes detailed experimental metadata,
such as skin source site, skin layer used, preparation technique,
storage conditions, temperature, pH, and types of donor and acceptor
solutions.

e SkinPiX [23] provides 202 Kp values for 109 compounds from 37
publications and includes additional parameters relevant to
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cutaneous absorption, such as steady-state flux (Jss), maximum flux
(Jmax), and lag time (tlag), along with comprehensive experimental
conditions.

e The database compiled by Stevens et al. [24] contains Kp data for 73
compounds and includes, among data types, diffusion coefficients
(D) and skin layer-specific information.

Compounds with log Kp values for the epidermis and dermis were
selected for federated analysis of individual skin layers, resulting in 124
compounds from HuskinDB, 88 compounds from SkinPiX, and 60
compounds from Stevens et al. [24]. Where a compound had multiple
log Kp per skin layer, the median value was calculated. Considerable
overlap was found between Stevens et al. [24] and SkinPiX, with 81.7%
of Stevens et al. compounds also present in SkinPiX, while HuskinDB
showed minimal overlap with either dataset, and only eight compounds
were common across all three.

2.2.2. Mutagenicity

A large open-source dataset of mutagenicity, compiled by Xu et al.
[25], was used. It includes 8,348 compounds classified as mutagenic or
non-mutagenic based on the in vitro Ames assay results collected from
previously published studies. Specific details regarding test outcomes for
individual Salmonella typhimurium strains or the presence/absence of S9
metabolic activation mix were not available within the large dataset
utilised for model development. Although smaller datasets are available,
this dataset was selected as the sole source to enable random sampling to
simulate a federated learning use case involving non-independent and
identically distributed (non-IID) data partitioning, in which data subsets
differ in their underlying feature distributions and activity patterns
across simulated organisations, thereby reflecting real-world institu-
tional heterogeneity [26].

2.2.3. Skin sensitisation

Two proprietary data sources were selected to simulate the collab-
orative co-training of a global federated model for hazard prediction
based on in vivo Local Lymph Node Assay (LLNA) results. The first
dataset was developed in-house by Al4Cosmetics and was compiled and
curated from 14 sources resulting in 370 compounds with LLNA classi-
fication [27-40]. The second dataset, Skin Doctor CP [41], was a curated
source containing LLNA hazard classifications for 1,285 compounds.
The overlap of compounds, determined based on chemical identity using
standardised canonical SMILES, consisted of 240 common compounds,
corresponding to 65.6% of the Al4Cosmetics dataset and 18.7% of the
Skin Doctor CP dataset, out of a total of 1,411 unique compounds.

2.3. Federated environment

The three use cases were implemented with the open-source Flower
v.1.23.0 framework, which provides built-in support for secure and
private decentralised model training [42]. The Flower framework em-
ploys a hub-and-spoke topology wherein a server coordinates federated
learning across multiple clients, with the server-side architecture
comprising SuperLink, i.e., a long-running process for task forwarding,
SuperExec, i.e., the process manager, and ServerApp, i.e., a short-lived,
project-specific code for strategy implementation [43,44]. In total,
Flower provides approximately 20+ built-in federated learning strate-
gies allowing for further customisation [45]. Flower also supports both
centralised and federated model evaluation: in centralised evaluation,
aggregated model parameters are evaluated server-side on a test dataset,
whereas during federated evaluation, model parameters are evaluated
across federation clients using their locally held test data [46]. For
example, the federated models for skin sensitisation and mutagenicity
classifications are loaded server-side and evaluated on a centralised
global shared test dataset. Lastly, tTo ensure no direct access to a client’s
data and prevent private information from being leaked from local
models, Flower provides secure aggregation protocols, such as SecAgg+
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[47] and Salvia [48]. Data visualisation was performed using Plotly
v.6.1.2. The code and documentation are available at https://github.
com/ai4cosmetics/fl-chemsafe.

2.3.1. Dermal permeability

Federated analytics were applied to dermal permeability, where each
dataset was treated as a hypothetical client (i.e., organisation) without
any pre-processing steps such as deduplication of records. Clients
computed local histograms of log Kp values per skin layer type,
epidermis and dermis. In the first round, raw histograms were shared; in
the follow-up round, Gaussian noise was added to each bin count to
ensure differential privacy [49]. The global aggregated histograms were
obtained by summing bin counts across clients, revealing the combined
distributions. Lower epsilon values indicated higher noise (larger sigma)
and stronger privacy, for example, with ¢ = 1, 6 = 1.0, introducing +1
log unit of noise per data point. This trade-off between privacy and
utility allowed data to remain close to their original values while
reducing the risk of inferring sensitive information. The approach
enabled the characterisation of the overall dermal permeability land-
scape across the three independently curated datasets without sharing
raw data, increasing statistical power while maintaining data privacy.

2.3.2. Mutagenicity

The experimental setup involved two stages: (1) data partitioning of
the initial data source into two training sets with different mutagenicity
distributions, and (2) collaborative co-training via federated learning.
After removing duplicates (n = 174), the dataset (8408 unique mole-
cules) was split randomly into training (80%) and test (20%) sets. The
training data were then partitioned into two hypothetical clients (i.e.,
organisations) with deliberately skewed distributions to simulate a non-
IID setting. Organisation A (n = 3137, ~80% mutagenic, 2606 + ve and
531 —ve) and Organisation B (n = 2776, ~20% mutagenic, 651 + ve and
2125 —ve), with no shared molecules between them. A shared test set (n
= 1480, 55% mutagenic) was prepared for evaluation.

Federated learning was implemented using the FedAvg algorithm [7]
over 10 communication rounds, combining local stochastic gradient
descent with server-side model averaging. Each client trained a local
CNN using SMILES strings as input. SMILES strings were standardised
using MolVS (v0.1.1) and validated with RDKit (v.2025.3.2). A
character-level vocabulary was constructed from all unique characters
across the entire list of SMILES. This shared vocabulary was applied
consistently across both organisation training sets and the global test set.
The CNN architecture consisted of a 32-dimensional character embed-
ding layer followed by two 1D convolutional layers (64 and 128 filters,
kernel size 3) with max pooling, global adaptive max pooling, and a fully
connected output layer for binary mutagenicity classification of SMILES
molecular sequences.

Model performance was evaluated using accuracy, precision, recall,
Fl-score, area under the ROC curve (AUC), and false negative rate
(FNR), comparing the federated model against individual local models
to evaluate the performance and the mutagenicity distribution of the
chemical space. This approach simulated a vertical federated learning
where participants hold the same samples, i.e., the same chemical space
sample, which may or may not be classified as mutagens, but a different
feature space, i.e., SMILES strings as characters.

2.3.3. Skin sensitisation

The experimental setup involved one round of federated training
using the FedXgbBagging aggregation method of the Flower framework
[42] to combine two locally trained models on independent datasets. It
applied a bagging technique that consisted of two stages: (i) a local
learning stage, where each client (i.e., organisation) trains a local
XGBoost model using its own dataset, and (ii) an aggregation stage,
where the central server averages the prediction results from the local
models to construct the global model. Each dataset was split into 80%
training and 20% testing subsets locally without deduplication of
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compounds to simulate a real-world scenario. The global test set was
formed by combining both local test sets. This scenario simulated a
horizontal federated learning setup, where clients share the same feature
space, i.e., molecular features, but hold different samples, i.e., a list of
chemicals.

For centralised learning, training sets were merged after removing
duplicate SMILES. SMILES strings were standardised using MolVS
(v0.1.1), and a combination of MACCS key fingerprints and molecular
descriptors was generated using RDKit v.2025.3.2. Preprocessing steps
included handling infinities and extreme values, followed by filtering
out constant, highly correlated, and low-variance features, resulting in
259 final features. The chemical space visualisation was performed
using Uniform Manifold Approximation and Projection (UMAP), with
hyperparameters n_neighbors = 15, min_dist = 0.1. The XGBoost model
employed a gradient boosting framework with 200 estimators (max
depth 6, learning rate 0.05).

The federated model was compared against two baselines: (i) Local
Learning (LL), where each client trained a model solely on their private
data to assess whether federated learning outperforms individual
models, and (ii) Centralised Learning (CL), where all data were pooled to
train a single model to evaluate how closely federated learning ap-
proximates compared to centralised performance while preserving data
privacy.

Tukey's Honest Significant Difference (HSD) test [50] in statsmodels
v0.14.4 with SciPy v1.16.3 was employed. This statistical method con-
trols for family-wise error rate when performing multiple pairwise
comparisons, making it appropriate for comparing more than two
models simultaneously. For models trained on the global test set (FL and
CL), performance metric distributions were generated using bootstrap
resampling with 100 iterations. This approach provided robust estimates
of the variance in model performance. For local models (Al4Cosmetics
and SkinDoctorCP), which were evaluated on separate test sets, boot-
strap distributions were simulated using a binomial approximation
based on the point estimates and sample sizes. The standard error for
each metric was calculated as SE = \/ (p(1-p)/n), where p is the observed
metric value and n is the test set size. Bootstrap samples were then
drawn from a normal distribution with the observed mean and calcu-
lated standard error, subsequently clipped to the valid range [0,1].
Model performance was evaluated using accuracy, precision, recall, F1-
score, AUC and FNR metrics.

3. Results and discussion

This study explored the potential of FL to support chemical safety
assessment within the NGRA framework, especially as we move towards
the regulatory adoption of NAMs. Three distinct applications were
simulated to determine what may be achievable when applied to
commercially sensitive data sets. These use cases demonstrate how FL
could enable collaborative modelling while preserving data privacy,
offering a viable path forward for unlocking distributed evidence across
the cosmetics sector and beyond.

3.1. Federated analytics captures local data variability

Federated data analysis encompasses any analytical process per-
formed across distributed datasets without moving the source data. This
includes data exploration and statistical analyses, such as calculating the
mean, sum, or histograms among the participating organisations. Thus,
instead of training a model, statistics of the distributed datasets are
computed without allowing explicit data sharing [16]. This could be
particularly useful for the assessment of the training datasets underlying
predictive models, such as QSARs.

Herein, histograms for dermal permeability coefficients across three
independent data sources were aggregated to simulate a federated an-
alytics scenario. This setup enabled a direct comparison between the
original centralised distributions and the federated ones with and
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without the Gaussian noise (Fig. 1 vs. Fig. 2). The discrepancies between
the datasets reflect non-IID effects commonly encountered in real-world
data collaborations and highlight the importance of applying stand-
ardisation protocols when performing federated analytics. Rather than
indicating redundancy, the presence of overlapping compounds un-
derscores the need to incorporate dataset-specific metadata and exper-
imental parameters that influence variations in permeability estimates.
The permeability through the epidermis was more prevalent in the lower
permeability range compared to the dermis. While direct comparison for
single compounds is not possible with the current federated setup, i.e.,
histogram aggregation approach, federated analytics, in general, can
help with the identification of typical permeability profiles for each skin
layer and detection of compounds with unusually high or low
permeability.

In chemical safety assessment, federated analytics have the potential
to enable organisations to analyse a variety of datasets of varying size, e.
g., high-throughput data, while gaining valuable insights without
compromising the sensitive aspect of data. Such methodologies can
facilitate the evaluation of data quality and consistency across sources,
the comparison of local versus systemic toxicity indications, data bias,
the retrieval of structural analogues to support read-across, the design of
wet experiments, and consensus learning approaches, including the
identification of reference compounds, learning about the overall data
landscape. Collectively, these capabilities enhance the extraction of
meaningful insights from distributed data, contributing to more robust
and transparent safety evaluations. For example, Bujotzek et al. [17]
demonstrated federated clustering as a practical federated analytics
approach for molecular diversity analysis across decentralised Phar-
maBench datasets.

3.2. Federated learning overcomes dataset-specific biases

A vertical federated learning scenario was simulated for mutage-
nicity prediction, where different parties hold different features (col-
umns, i.e., SMILES strings) of the same set of data samples (rows, i.e.,
compounds). Specifically, gradients of the CNN models were distributed
to each client, and the resulting embeddings were collected to update
the global federated CNN model. As shown in Fig. 3, the federated model
had a balanced performance (i.e., maintaining consistent performance
across clients with heterogeneous data) compared to the individual local
models, which were trained on different mutagenic compound distri-
butions. This performance stems from access to a broader, more diverse
chemical space, yielding more reliable and confident predictions. Such
an approach is particularly suited to scenarios where organisations train
local models on different modalities, including proprietary molecular
descriptors and in vitro data. For instance, Japanese regulations restrict
access to Ames test data for class B (positive) and C (negative) chemicals,
whilst class A (strong positive) chemicals are publicly available [52].

3.3. Federated learning has comparable performance to central and local
models

Horizontal federated learning refers to a setting in which multiple
parties collaboratively train a machine learning model on datasets that
share the same feature space but contain different samples [8]. Herein,
two QSAR XGBoost models were independently trained on molecular
fingerprints and descriptors, using datasets with differing sample sizes.
This simulated the exchange of model parameters related to the skin
sensitisation endpoint across two organisations. The federated approach
aggregated complete tree models from each client, constructed a global
ensemble by combining the locally trained models, and returned an
aggregated model for inference.

Given the simulated nature of this study, it allows for a direct com-
parison of prediction confidence between the federated global model
and both local and centralised models. Fig. 4 illustrates the chemical
space of the training datasets and the shared test set used for
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Fig. 1. Distribution of log Kp values for epidermis and dermis across the initial datasets. The dashed line at log Kp = —3 indicates the threshold for high permeability
[51]. Most compounds fell below this value, suggesting low permeability. The Stevens et al. [24] dataset showed lower variability and clearer separation between
skin layers. The non-IID distribution reflects the inherent heterogeneity of each dataset, representative of real-world scenarios: HuskinDB (—11.36 to —4.42), SkinPiX

(—9.47 to —3.78), Stevens et al. [24] (—6.94 to —2.52).
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Fig. 2. Distribution of log Kp values for epidermis and dermis under different federated aggregation strategies. The left panel shows the baseline federated ag-
gregation (—11.36 to —2.52), which accurately captures the variability in the local histograms of log Kp. The right panel demonstrates the impact of differential
privacy, where Gaussian noise (¢ = 1) was added during aggregation (—12.1 to —1.89). The inclusion of noise broadens the distribution, reflecting a trade-off

between privacy and precision.

—Federated Model — Organisation A (~80% mut) —Organisation B (~20% mut)

Precision

Accuracy

Recall<~ AUC
\ 1.0

F1 FNR

Fig. 3. Federated learning performance with heterogeneous client participa-
tion. The federated model demonstrated balanced performance across accuracy,
precision, recall, F1-score, AUC and FNR metrics, effectively combining the
complementary strengths of individual models while maintaining robust
generalisation capabilities. Organisation A trained the model on a dataset with
~80% of 3,137 compounds being classified as mutagenic. Organisation B
trained the model on a dataset with ~80% of 2,776 compounds being classified
as non-mutagenic. Organisation A excels at finding known positive cases, being
overly conservative (high recall, no FNR), while Organisation B misses almost
all mutagenic compounds (high precision, high FNR).

performance evaluation. In real-world federated systems, however,
training data remain undisclosed. For example, in vitro data typically do
not leave the originating laboratories.

The comparative performance analysis based on the Tukey HSD tests
(Fig. 5) showed that the CL model achieved the highest performance
across most evaluation metrics, followed closely by the FL model,
whereas the LL models exhibited greater variability and generally lower
predictive capability. The FL model attained performance closely com-
parable to that of CL, with no statistically significant differences
observed in several key metrics, including recall and FNR. Nonetheless,
this marginal trade-off is outweighed by the intrinsic advantage of FL,
which enables privacy-preserving, distributed model training without
the need for centralised data aggregation.

Today, most open-source QSAR models are trained on the same
publicly available datasets. They differ in architecture and optimisation
methods. For example, Smaji¢ et al. [53] highlighted a significant bias in
models trained on public data, which tend to overpredict positive out-
comes, while models using industrial data more frequently predict
negative outcomes. Cronin et al. [54] highlighted several other reasons
for differences in performance across QSAR models trained on the same
data for mutagenicity, including a lack of appropriate descriptors related
to the endpoint and mechanism of action. Similarly, it was observed
herein that the AI4Cosmetic model prioritises finding known sensitisers
(high recall) while the model trained on Wilm et al. [41] data excels at
discrimination (high FNR). Thus, the horizontal FL approach can lead to
a broader chemical space domain for both toxicity screening and
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regulatory applications.

3.4. Open challenges

How the training data underlying the local QSAR models are treated
and preprocessed remains an open challenge in federated chemical
safety assessment. The concern lies in the quality, heterogeneity, and
interpretability of locally held data, often originating from assays with
differing mechanistic relevance and inconsistently reported metadata
[55]. For example, determining whether a compound is mutagenic,
hepatotoxic, or neurotoxic may depend heavily on the assay design, e.g.,
bacterial strain, solvent, cytotoxicity, and biological coverage, which
can vary significantly across organisations, especially in the case of non-
standardised experimental protocols being used. Recent guidance, such
as the OECD (Q)SAR Assessment Framework (QAF) [56], emphasises the
importance of transparency, scientific rigour, and structured metadata
in evaluating model predictions, principles which are equally critical for
the federated modelling reporting to achieve regulatory acceptance. If
the local QSARs have available the corresponding QSAR Model
Reporting Format (QMRF) and/or provide those details, there should be
no additional challenge in the regulatory acceptance of a federated
QSAR. In principle, this is no different than the option to provide mul-
tiple QMRFs for the individual QSARs in a consensus model (such as
CATMoS for acute toxicity prediction; [57] or the need to provide
multiple QMRFs when multiple QSARs are integrated on an ad hoc basis
to generate QSAR results following the OECD QSAR Assessment
Framework [56].

Comprehensive metadata would increase the interpretability and
confidence in predictions. This reinforces the need for organisations to
engage in collaborative efforts to delineate applicability domain
boundaries, such as through nearest-neighbour or similarity-based
methods. For example, the choice between horizontal and vertical FL
depends primarily on data alignment across clients, as well as the
objective of the collaboration, to expand the number of samples to
improve generalisation, as in horizontal FL, or to enrich the feature
space for better predictions, as in vertical FL.

Since data preprocessing and standardisation are typically the re-
sponsibility of each data custodian, harmonised data cleaning protocols
are essential for trustworthy federated analytics and model

development. Heyndrickx et al. [9], as part of the MELLODY con-
sortium, published a manual to ensure that all data of the contributing
partners, mainly the input structure activity data, are prepared for the
federated machine learning according to the same standards and prin-
ciples. This leads to a consistent representation of chemical structures
and the biological activity data. These protocols were executed by each
data custodian individually on its own compute platform, and only the
output of this process was made accessible to the federated machine
learning. Thus, in the absence of this type of preparatory work, FL can
aggregate poor data, which could result in increased noise and lower
prediction rates.

Federated QSAR is constrained by the absence of standardised
benchmarks in both datasets and model baselines, making it difficult to
assess whether the performance of a global model is meaningful or
simply reflective of well-explored chemical space. Applicability domains
remain inconsistently defined, and neither being inside nor outside an
applicability domain reliably predicts performance. Even consensus
modelling can compound weaknesses when constituent models poorly
cover chemical space.

Lastly, adopting federated learning across organisational boundaries
necessitates rethinking how models are governed, maintained, and
applied in diverse regulatory and scientific contexts. Unlike conven-
tional modelling approaches, federated systems involve multiple stake-
holders contributing data, infrastructure, or expertise. This imbalance
can create structural inequities and introduce complexity into decision-
making, particularly when models are applied in high-stakes regulatory
uses. Some data holders may have more to gain from the collaboration,
e.g., access to broader chemical space, or more to lose, e.g., potential
commercial or regulatory sensitivity of their data. Effective governance
must not only control access and permissions, for example, who can
retrain, validate, or interpret the model, but also establish foundational
principles such as Findable, Accessible, Interoperable, and Reusable
(FAIR) data and model stewardship [58]. Incentives for participation
may vary, from regulatory preparedness to scientific discovery or
commercial advantage. Thus, aligning expectations early for a sustain-
able and effective federated collaboration is essential. Without such
frameworks, the adoption and credibility of federated QSAR models will
remain limited.
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Fig. 5. Pairwise model comparison using Tukey's Honest Significant Difference (HSD) test. It shows the mean differences with 95% confidence intervals for all
pairwise comparisons across the six performance metrics (accuracy, AUC, F1, FNR, precision, and recall). Comparisons were colour-coded: blue indicates the first
model significantly outperformed the second (p < 0.05), red indicates the first model significantly underperformed, and grey indicates no statistically significant
difference. Federated Learning achieves nearly the same performance as Centralised Learning, and both outperform Local Learning across all metrics. Local Learning
(LL); Centralised Learning (CL); Federated Learning (FL); False Negative Rate (FNR). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

3.5. Opportunities and future directions

Federated decentralised architecture provides a pathway for col-
laborations in chemical safety assessment by enabling joint analysis and
modelling across distributed datasets without requiring centralised data
pooling. It reduces risks of data leakage (i.e., compromising data
confidentiality) and supports compliance with data protection regula-
tions. It facilitates secure, permission-based access, e.g., via application
programming interfaces (APIs), promoting interoperability while pre-
serving data ownership and local control.

A clear opportunity is to integrate public and proprietary datasets
across organisations, where participating parties may specialise in
distinct chemical domains, such as surfactants, fragrances, or industrial
compounds. This thereby enhances both the diversity of the underlying
evidence and the representativeness of the resulting predictive models.
This broader integration can strengthen scientific understanding of the
data landscape and reduce fragmentation across historically siloed
datasets.

For academia, federated infrastructures may enable access to sub-
stantially larger and more diverse training corpora than are typically
available in the public domain, supporting methodological innovation
and more realistic benchmarking against industry-relevant chemical
domains. For regulators, federated approaches could support more
evidence-rich decision-making by enabling privacy-preserving interro-
gation of otherwise inaccessible datasets, facilitating independent vali-
dation across multiple data holders, and improving confidence in
conclusions for chemicals that sit close to decision thresholds. For the
industry, federated learning offers a practical route to collaborative
model development that reduces duplication of experimental testing and
strengthens safety substantiation by improving predictive performance
of internal models and decision-making workflows without exposing
proprietary assets. However, realising these benefits across all stake-
holder groups depends on sufficiently broad participation and dataset
diversity. Without contributions from large, well-resourced organisa-
tions, federated efforts may be constrained, limiting both regulatory
relevance and the potential for scientific democratisation. In addition to
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following the OECD QSAR Assessment Framework [56], evaluation
strategies may also benefit from existing guidance on best practices for
machine learning in toxicological QSAR development [59]. Together,
these resources support an opportunity to benchmark models and clearly
define both toxicological and chemical applicability domains.

The absence of accessible datasets necessitates alternatives to stan-
dard validation approaches. This aligns with emerging efforts to estab-
lish scientific confidence in NAMs, such as the framework proposed by
van der Zalm et al. [60], which, although focused on in vitro methods,
offers relevant principles to be adopted by federated collaborations. In
particular, for NAMs that contain intellectual property (protected ele-
ments in Test Guidelines), the OECD provides tools to maintain trans-
parency, including reasonable and non-discriminatory terms (“RAND”)
for licensing commitments [61]. Protected elements can include, for
example, computational algorithms and associated datasets. An example
of how proprietary data can be protected while deriving new structural
alerts for skin sensitisation is illustrated by MacMillan et al. [62]. As
frameworks for the validation and regulatory acceptance of computa-
tional models continue to evolve, it is important to reconcile IPR con-
siderations with the need for transparency during the validation and
peer review processes.

Future research should explore other federated approaches, such as
federated transfer learning and federated retrieval-augmented genera-
tion, for example, to support the scalable development and validation of
knowledge constructs such as adverse outcome pathways. In parallel,
reverse engineering methods will be essential to formally verify that
local model execution does not result in unintended information
leakage. Lastly, more research on all elements of acceptability, ranging
from validation, verification, FAIRness, to reusability of these models, is
vital.

4. Conclusions

Three use cases, namely federated analytics for dermal permeability
assessment, vertical federated learning for mutagenicity assessment, and
horizontal federated learning for skin sensitisation assessment, were
simulated and implemented using the open-source federated learning
framework Flower. Together, these examples illustrate that diverse
molecular data modalities and modelling approaches, ranging from
feature distributions to XGBoost and CNNs, can be implemented in a
federated setting. The results demonstrate the feasibility of federated
approaches for knowledge sharing, bridging critical information gaps
between exposure and hazard. By enabling collaboration without direct
data sharing, federated learning and analytics preserve data privacy
while improving the performance and generalisability of local models
and datasets for toxicity endpoints of critical regulatory interest.
Decentralised learning can handle isolated datasets, such as for dermal
permeability, and complex models, such as for mutagenicity and skin
sensitisation, minimising the risk of data breaches and ensuring effi-
cient, private, and robust training across distributed systems. This can
strengthen the weight of evidence for chemicals prioritising targeted
additional data generation where margins of safety are limited. Overall,
decentralised approaches offer a promising route to advance NGRA and
create new opportunities for regulatory science through more holistic
and collaborative risk assessment across organisational boundaries.
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