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A B S T R A C T

Next Generation Risk Assessment (NGRA) promotes animal-free, exposure-informed, and hypothesis-driven 
approaches to chemical safety assessment. In silico tools, such as quantitative structure–activity relationship 
(QSAR) models, are valuable new approach methodologies (NAMs) for use in NGRA. However, the practical 
implementation of in silico NAMs remains limited by challenges in data availability, heterogeneity, and regu
latory acceptance. In this study, federated learning is introduced to advance chemical safety assessment while 
leveraging proprietary data domains. Federated learning is a decentralised machine learning approach where 
multiple organisations, devices or servers collaboratively train a model while keeping their data locally, sharing 
only model updates to preserve confidentiality and privacy. Three use cases were simulated with the Flower 
open-source federated learning framework, namely (i) federated analytics for dermal permeability (log Kp) 
screening; (ii) federated convolutional neural networks (CNNs) for mutagenicity prediction from SMILES strings, 
and (iii) federated eXtreme Gradient Boosting (XGBoost) models for predicting skin sensitisation potential using 
molecular fingerprints and descriptors. The results show that federated learning approaches can yield predictive 
performance comparable to centralised models while mitigating concerns over the visibility of, and access to, 
commercially sensitive data. Open challenges related to data curation, interpretability, and model governance, as 
well as future directions, are discussed. This work demonstrates that federated learning can facilitate secure 
collaboration across organisations, enhance the utility of distributed chemical datasets, and accelerate the 
adoption of in silico NAMs.

1. Introduction

Next Generation Risk Assessment (NGRA) is an emerging framework 
that advocates for exposure-informed, hypothesis-driven, and animal- 
free safety assessment of chemicals [1,2]. It relies heavily on new 
approach methodologies (NAMs), including in vitro assays and in silico 
tools. Despite increasing investment in non-animal alternatives, the 
uptake of NGRA approaches in regulatory settings has been slow across 
many regions and sectors, in part due to the current immaturity of the 
framework and the need for further development of underlying meth
odologies and case study evidence to demonstrate their robustness and 
protective capabilities [3]. However, developments and practical 

applications of NGRA, such as the Alternative Safety Profiling Algorithm 
(ASPA), offer a vision for its successful implementation [4].

Computational methods, such as quantitative structure–activity 
relationship (QSAR) models, are widely employed to address data gaps 
in chemical safety decision-making, particularly when experimental 
data are unavailable or inadequate. These models are valuable tools for 
hazard identification and prioritisation, but their use is not without 
limitations. The coverage of chemical space is often uneven, with certain 
compound classes overrepresented in publicly available sources due to 
historical testing practices [5]. This affects their applicability domain, 
which is not always clearly defined. In addition, the inherent variability 
in the data on which these models are trained can result in differences in 
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predictions for the same endpoint. Furthermore, many QSAR models are 
not routinely updated to reflect newly available data, limiting their 
relevance and robustness in evolving regulatory and research contexts 
[6].

Federated learning (FL), a decentralised machine learning paradigm 
introduced by McMahan et al. [7], enables collaborative model training 
without requiring direct data sharing. Instead, parameters from locally 
trained models are aggregated to update a global model. Originally 
developed for different domains, such as mobile and edge device use 
cases [8], FL has emerged as a viable approach for drug discovery ap
plications, with practical implementations such as MELLODY [9–11], 
and promising research results, such as data-centric federated knowl
edge distillation [12], drug-target binding affinity and drug-drug 
interaction [13], mechanism of action prediction based on cell paint
ing [14] and other molecular discovery applications [15]. These studies 
have shown that federated models can outperform locally trained 
models, particularly in scenarios where individual datasets are small or 
incomplete, by leveraging patterns learned from decentralised data silos 
while at the same time preserving data privacy and confidentiality. Such 
collaboration can lead to improved model generalisability and expanded 
applicability domains. In an NGRA context, FL offers a mechanism to 
jointly learn from distributed safety-relevant datasets to support hazard 
identification, problem formulation, and prioritisation of NAM testing 
without compromising proprietary data ownership. Federated analytics 
extends this paradigm beyond model training by enabling the compu
tation of aggregate statistics, feature distributions, and mechanistic 
signals across decentralised datasets without exposing individual-level 
data [16]. By facilitating privacy-preserving exploratory analysis and 
evidence synthesis, federated analytics can improve cross-organisation 
data diversity and clustering structure across decentralised chemical 
spaces [17], therefore, supporting more informed hazard hypothesis 
generation and prioritisation of NAM testing in early NGRA workflows.

Though a potentially valuable enabler of data-driven NAMs, FL re
mains largely underexplored in learning from local proprietary data and 
subsequent development of in silico NAMs for use in chemical safety 
assessment. Its relevance could be substantial in NGRA for cosmetic 
ingredients, where FL could unlock significant value. Unlike pharma
ceuticals or biocides, cosmetics companies often operate within over
lapping chemical spaces, in addition to facing stringent animal testing 
bans [18]. They also benefit from extensive historical data resources. 
However, safety-relevant data are often siloed, proprietary, and costly to 
generate, which restricts collaborative modelling efforts and the scope of 
QSARs for toxicological endpoints. Two recent examples of commercial 
datasets that are not otherwise available for modelling were from Skare 
et al. [19], who used a proprietary database of approximately 800,000 
substances to identify analogues for PEG cocamines, while Gautier et al. 
[20] identified two out of 25 resorcinol analogues through proprietary 
data sources. Improved access to such datasets could significantly 
enhance the accuracy, relevance, and applicability of predictive models. 
A recent NGRA case study on coumarin in cosmetic products [21]
demonstrated how mechanistic understanding of skin sensitisation (e.g., 
pro-hapten behaviour) can be used to formulate hazard hypotheses and 
guide the selection of appropriate NAMs, ultimately informing the 
derivation of a human-relevant point of departure and margin-of- 
exposure-based risk conclusions. FL could analogously strengthen 
these steps by improving the collective learning used to frame hypoth
eses, identify shared mechanistic signals, structural alerts and chemical 
grouping, and exposure trends, and thus, supporting evidence-based 
prioritisation of chemicals and pathways for targeted NAM testing. 
However, legal, financial, and logistical barriers remain.

This study applied FL approaches for three use cases relevant to the 
safety assessment of chemicals, including the cosmetics industry, i.e. 
dermal permeability, mutagenicity, and skin sensitisation. These end
points were selected because they address complementary local and 
systemic toxicity. Dermal permeability determines the potential for 
systemic exposure following topical application, mutagenicity provides 

an early indication of genotoxic hazard relevant to long-term systemic 
exposure, and skin sensitisation evaluates the risk of local immune- 
mediated adverse effects associated with repeated use. Through this 
investigation, we demonstrate that FL-based approaches can effectively 
harness siloed knowledge from fragmented data, yielding substantial 
improvements in in silico toxicity prediction compared to traditional 
centralised and isolated, siloed methods.

2. Materials and methods

2.1. Problem formulation

Three use cases were designed to evaluate the application of feder
ated learning approaches to assist in the development of models and 
analytics in chemical safety assessment: 

1. Percutaneous dermal permeability potential (logarithm of the skin 
permeability coefficient of chemical substances, log Kp) across the 
epidermis and dermis using federated analytics for the skin pene
tration assessment, motivated by the limited size and fragmented 
nature of available experimental datasets, which constrain the 
development of robust predictive models at individual organisations 
In this setting, federated analytics enables privacy-preserving 
exploratory analysis across decentralised datasets, facilitating the 
identification of potential confounding factors, the assessment of 
inter-laboratory variability, and the characterisation of data het
erogeneity. This could support causal interpretation and uncertainty 
assessment of skin permeability without the need for centralised data 
pooling.

2. Prediction of mutagenicity based on SMILES strings using a federated 
convolutional neural network (CNN), reflecting the limited avail
ability of mechanistic information in the initial dataset that could 
otherwise inform model design. A CNN architecture was selected to 
demonstrate the applicability of federated learning to non- 
traditional molecular modelling approaches, in which a global 
model is initialised centrally and gradient information is communi
cated to local models, while locally learned latent embeddings 
derived from SMILES sequences are returned to the server to update 
the global model. This setup could support privacy-preserving rep
resentation learning while facilitating downstreamgenerative design 
and structural similarity analysis.

3. Identification of skin sensitisation hazards based on molecular fin
gerprints and descriptors using federated eXtreme Gradient Boosting 
(XGBoost), selected for its predictive performance and explanatory 
utility, which are critical for regulatory acceptance and decision- 
making. In contrast to the representation-learning approach adop
ted for mutagenicity, this use case employs parameter-level federa
tion, whereby model parameters are updated and exchanged across 
organisations rather than latent embeddings or gradients, enabling 
interpretable feature attribution while preserving data privacy across 
decentralised datasets.

2.2. Data description

2.2.1. Dermal permeability
Three open-source datasets containing curated skin permeability 

coefficient (Kp) from in vitro studies using human skin were selected to 
simulate the federated analytics use case: 

• HuskinDB [22] comprises 546 Kp values for 251 compounds, sourced 
from 94 publications, and includes detailed experimental metadata, 
such as skin source site, skin layer used, preparation technique, 
storage conditions, temperature, pH, and types of donor and acceptor 
solutions.

• SkinPiX [23] provides 202 Kp values for 109 compounds from 37 
publications and includes additional parameters relevant to 
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cutaneous absorption, such as steady-state flux (Jss), maximum flux 
(Jmax), and lag time (tlag), along with comprehensive experimental 
conditions.

• The database compiled by Stevens et al. [24] contains Kp data for 73 
compounds and includes, among data types, diffusion coefficients 
(D) and skin layer-specific information.

Compounds with log Kp values for the epidermis and dermis were 
selected for federated analysis of individual skin layers, resulting in 124 
compounds from HuskinDB, 88 compounds from SkinPiX, and 60 
compounds from Stevens et al. [24]. Where a compound had multiple 
log Kp per skin layer, the median value was calculated. Considerable 
overlap was found between Stevens et al. [24] and SkinPiX, with 81.7% 
of Stevens et al. compounds also present in SkinPiX, while HuskinDB 
showed minimal overlap with either dataset, and only eight compounds 
were common across all three.

2.2.2. Mutagenicity
A large open-source dataset of mutagenicity, compiled by Xu et al. 

[25], was used. It includes 8,348 compounds classified as mutagenic or 
non-mutagenic based on the in vitro Ames assay results collected from 
previously published studies. Specific details regarding test outcomes for 
individual Salmonella typhimurium strains or the presence/absence of S9 
metabolic activation mix were not available within the large dataset 
utilised for model development. Although smaller datasets are available, 
this dataset was selected as the sole source to enable random sampling to 
simulate a federated learning use case involving non-independent and 
identically distributed (non-IID) data partitioning, in which data subsets 
differ in their underlying feature distributions and activity patterns 
across simulated organisations, thereby reflecting real-world institu
tional heterogeneity [26].

2.2.3. Skin sensitisation
Two proprietary data sources were selected to simulate the collab

orative co-training of a global federated model for hazard prediction 
based on in vivo Local Lymph Node Assay (LLNA) results. The first 
dataset was developed in-house by AI4Cosmetics and was compiled and 
curated from 14 sources resulting in 370 compounds with LLNA classi
fication [27–40]. The second dataset, Skin Doctor CP [41], was a curated 
source containing LLNA hazard classifications for 1,285 compounds. 
The overlap of compounds, determined based on chemical identity using 
standardised canonical SMILES, consisted of 240 common compounds, 
corresponding to 65.6% of the AI4Cosmetics dataset and 18.7% of the 
Skin Doctor CP dataset, out of a total of 1,411 unique compounds.

2.3. Federated environment

The three use cases were implemented with the open-source Flower 
v.1.23.0 framework, which provides built-in support for secure and 
private decentralised model training [42]. The Flower framework em
ploys a hub-and-spoke topology wherein a server coordinates federated 
learning across multiple clients, with the server-side architecture 
comprising SuperLink, i.e., a long-running process for task forwarding, 
SuperExec, i.e., the process manager, and ServerApp, i.e., a short-lived, 
project-specific code for strategy implementation [43,44]. In total, 
Flower provides approximately 20+ built-in federated learning strate
gies allowing for further customisation [45]. Flower also supports both 
centralised and federated model evaluation: in centralised evaluation, 
aggregated model parameters are evaluated server-side on a test dataset, 
whereas during federated evaluation, model parameters are evaluated 
across federation clients using their locally held test data [46]. For 
example, the federated models for skin sensitisation and mutagenicity 
classifications are loaded server-side and evaluated on a centralised 
global shared test dataset. Lastly, tTo ensure no direct access to a client’s 
data and prevent private information from being leaked from local 
models, Flower provides secure aggregation protocols, such as SecAgg+

[47] and Salvia [48]. Data visualisation was performed using Plotly 
v.6.1.2. The code and documentation are available at https://github. 
com/ai4cosmetics/fl-chemsafe.

2.3.1. Dermal permeability
Federated analytics were applied to dermal permeability, where each 

dataset was treated as a hypothetical client (i.e., organisation) without 
any pre-processing steps such as deduplication of records. Clients 
computed local histograms of log Kp values per skin layer type, 
epidermis and dermis. In the first round, raw histograms were shared; in 
the follow-up round, Gaussian noise was added to each bin count to 
ensure differential privacy [49]. The global aggregated histograms were 
obtained by summing bin counts across clients, revealing the combined 
distributions. Lower epsilon values indicated higher noise (larger sigma) 
and stronger privacy, for example, with ε = 1, σ = 1.0, introducing ±1 
log unit of noise per data point. This trade-off between privacy and 
utility allowed data to remain close to their original values while 
reducing the risk of inferring sensitive information. The approach 
enabled the characterisation of the overall dermal permeability land
scape across the three independently curated datasets without sharing 
raw data, increasing statistical power while maintaining data privacy.

2.3.2. Mutagenicity
The experimental setup involved two stages: (1) data partitioning of 

the initial data source into two training sets with different mutagenicity 
distributions, and (2) collaborative co-training via federated learning. 
After removing duplicates (n = 174), the dataset (8408 unique mole
cules) was split randomly into training (80%) and test (20%) sets. The 
training data were then partitioned into two hypothetical clients (i.e., 
organisations) with deliberately skewed distributions to simulate a non- 
IID setting. Organisation A (n = 3137, ~80% mutagenic, 2606 + ve and 
531 − ve) and Organisation B (n = 2776, ~20% mutagenic, 651 + ve and 
2125 − ve), with no shared molecules between them. A shared test set (n 
= 1480, 55% mutagenic) was prepared for evaluation.

Federated learning was implemented using the FedAvg algorithm [7]
over 10 communication rounds, combining local stochastic gradient 
descent with server-side model averaging. Each client trained a local 
CNN using SMILES strings as input. SMILES strings were standardised 
using MolVS (v0.1.1) and validated with RDKit (v.2025.3.2). A 
character-level vocabulary was constructed from all unique characters 
across the entire list of SMILES. This shared vocabulary was applied 
consistently across both organisation training sets and the global test set. 
The CNN architecture consisted of a 32-dimensional character embed
ding layer followed by two 1D convolutional layers (64 and 128 filters, 
kernel size 3) with max pooling, global adaptive max pooling, and a fully 
connected output layer for binary mutagenicity classification of SMILES 
molecular sequences.

Model performance was evaluated using accuracy, precision, recall, 
F1-score, area under the ROC curve (AUC), and false negative rate 
(FNR), comparing the federated model against individual local models 
to evaluate the performance and the mutagenicity distribution of the 
chemical space. This approach simulated a vertical federated learning 
where participants hold the same samples, i.e., the same chemical space 
sample, which may or may not be classified as mutagens, but a different 
feature space, i.e., SMILES strings as characters.

2.3.3. Skin sensitisation
The experimental setup involved one round of federated training 

using the FedXgbBagging aggregation method of the Flower framework 
[42] to combine two locally trained models on independent datasets. It 
applied a bagging technique that consisted of two stages: (i) a local 
learning stage, where each client (i.e., organisation) trains a local 
XGBoost model using its own dataset, and (ii) an aggregation stage, 
where the central server averages the prediction results from the local 
models to construct the global model. Each dataset was split into 80% 
training and 20% testing subsets locally without deduplication of 
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compounds to simulate a real-world scenario. The global test set was 
formed by combining both local test sets. This scenario simulated a 
horizontal federated learning setup, where clients share the same feature 
space, i.e., molecular features, but hold different samples, i.e., a list of 
chemicals.

For centralised learning, training sets were merged after removing 
duplicate SMILES. SMILES strings were standardised using MolVS 
(v0.1.1), and a combination of MACCS key fingerprints and molecular 
descriptors was generated using RDKit v.2025.3.2. Preprocessing steps 
included handling infinities and extreme values, followed by filtering 
out constant, highly correlated, and low-variance features, resulting in 
259 final features. The chemical space visualisation was performed 
using Uniform Manifold Approximation and Projection (UMAP), with 
hyperparameters n_neighbors = 15, min_dist = 0.1. The XGBoost model 
employed a gradient boosting framework with 200 estimators (max 
depth 6, learning rate 0.05).

The federated model was compared against two baselines: (i) Local 
Learning (LL), where each client trained a model solely on their private 
data to assess whether federated learning outperforms individual 
models, and (ii) Centralised Learning (CL), where all data were pooled to 
train a single model to evaluate how closely federated learning ap
proximates compared to centralised performance while preserving data 
privacy.

Tukey's Honest Significant Difference (HSD) test [50] in statsmodels 
v0.14.4 with SciPy v1.16.3 was employed. This statistical method con
trols for family-wise error rate when performing multiple pairwise 
comparisons, making it appropriate for comparing more than two 
models simultaneously. For models trained on the global test set (FL and 
CL), performance metric distributions were generated using bootstrap 
resampling with 100 iterations. This approach provided robust estimates 
of the variance in model performance. For local models (AI4Cosmetics 
and SkinDoctorCP), which were evaluated on separate test sets, boot
strap distributions were simulated using a binomial approximation 
based on the point estimates and sample sizes. The standard error for 
each metric was calculated as SE = √(p(1-p)/n), where p is the observed 
metric value and n is the test set size. Bootstrap samples were then 
drawn from a normal distribution with the observed mean and calcu
lated standard error, subsequently clipped to the valid range [0,1]. 
Model performance was evaluated using accuracy, precision, recall, F1- 
score, AUC and FNR metrics.

3. Results and discussion

This study explored the potential of FL to support chemical safety 
assessment within the NGRA framework, especially as we move towards 
the regulatory adoption of NAMs. Three distinct applications were 
simulated to determine what may be achievable when applied to 
commercially sensitive data sets. These use cases demonstrate how FL 
could enable collaborative modelling while preserving data privacy, 
offering a viable path forward for unlocking distributed evidence across 
the cosmetics sector and beyond.

3.1. Federated analytics captures local data variability

Federated data analysis encompasses any analytical process per
formed across distributed datasets without moving the source data. This 
includes data exploration and statistical analyses, such as calculating the 
mean, sum, or histograms among the participating organisations. Thus, 
instead of training a model, statistics of the distributed datasets are 
computed without allowing explicit data sharing [16]. This could be 
particularly useful for the assessment of the training datasets underlying 
predictive models, such as QSARs.

Herein, histograms for dermal permeability coefficients across three 
independent data sources were aggregated to simulate a federated an
alytics scenario. This setup enabled a direct comparison between the 
original centralised distributions and the federated ones with and 

without the Gaussian noise (Fig. 1 vs. Fig. 2). The discrepancies between 
the datasets reflect non-IID effects commonly encountered in real-world 
data collaborations and highlight the importance of applying stand
ardisation protocols when performing federated analytics. Rather than 
indicating redundancy, the presence of overlapping compounds un
derscores the need to incorporate dataset-specific metadata and exper
imental parameters that influence variations in permeability estimates. 
The permeability through the epidermis was more prevalent in the lower 
permeability range compared to the dermis. While direct comparison for 
single compounds is not possible with the current federated setup, i.e., 
histogram aggregation approach, federated analytics, in general, can 
help with the identification of typical permeability profiles for each skin 
layer and detection of compounds with unusually high or low 
permeability.

In chemical safety assessment, federated analytics have the potential 
to enable organisations to analyse a variety of datasets of varying size, e. 
g., high-throughput data, while gaining valuable insights without 
compromising the sensitive aspect of data. Such methodologies can 
facilitate the evaluation of data quality and consistency across sources, 
the comparison of local versus systemic toxicity indications, data bias, 
the retrieval of structural analogues to support read-across, the design of 
wet experiments, and consensus learning approaches, including the 
identification of reference compounds, learning about the overall data 
landscape. Collectively, these capabilities enhance the extraction of 
meaningful insights from distributed data, contributing to more robust 
and transparent safety evaluations. For example, Bujotzek et al. [17]
demonstrated federated clustering as a practical federated analytics 
approach for molecular diversity analysis across decentralised Phar
maBench datasets.

3.2. Federated learning overcomes dataset-specific biases

A vertical federated learning scenario was simulated for mutage
nicity prediction, where different parties hold different features (col
umns, i.e., SMILES strings) of the same set of data samples (rows, i.e., 
compounds). Specifically, gradients of the CNN models were distributed 
to each client, and the resulting embeddings were collected to update 
the global federated CNN model. As shown in Fig. 3, the federated model 
had a balanced performance (i.e., maintaining consistent performance 
across clients with heterogeneous data) compared to the individual local 
models, which were trained on different mutagenic compound distri
butions. This performance stems from access to a broader, more diverse 
chemical space, yielding more reliable and confident predictions. Such 
an approach is particularly suited to scenarios where organisations train 
local models on different modalities, including proprietary molecular 
descriptors and in vitro data. For instance, Japanese regulations restrict 
access to Ames test data for class B (positive) and C (negative) chemicals, 
whilst class A (strong positive) chemicals are publicly available [52].

3.3. Federated learning has comparable performance to central and local 
models

Horizontal federated learning refers to a setting in which multiple 
parties collaboratively train a machine learning model on datasets that 
share the same feature space but contain different samples [8]. Herein, 
two QSAR XGBoost models were independently trained on molecular 
fingerprints and descriptors, using datasets with differing sample sizes. 
This simulated the exchange of model parameters related to the skin 
sensitisation endpoint across two organisations. The federated approach 
aggregated complete tree models from each client, constructed a global 
ensemble by combining the locally trained models, and returned an 
aggregated model for inference.

Given the simulated nature of this study, it allows for a direct com
parison of prediction confidence between the federated global model 
and both local and centralised models. Fig. 4 illustrates the chemical 
space of the training datasets and the shared test set used for 
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performance evaluation. In real-world federated systems, however, 
training data remain undisclosed. For example, in vitro data typically do 
not leave the originating laboratories.

The comparative performance analysis based on the Tukey HSD tests 
(Fig. 5) showed that the CL model achieved the highest performance 
across most evaluation metrics, followed closely by the FL model, 
whereas the LL models exhibited greater variability and generally lower 
predictive capability. The FL model attained performance closely com
parable to that of CL, with no statistically significant differences 
observed in several key metrics, including recall and FNR. Nonetheless, 
this marginal trade-off is outweighed by the intrinsic advantage of FL, 
which enables privacy-preserving, distributed model training without 
the need for centralised data aggregation.

Today, most open-source QSAR models are trained on the same 
publicly available datasets. They differ in architecture and optimisation 
methods. For example, Smajić et al. [53] highlighted a significant bias in 
models trained on public data, which tend to overpredict positive out
comes, while models using industrial data more frequently predict 
negative outcomes. Cronin et al. [54] highlighted several other reasons 
for differences in performance across QSAR models trained on the same 
data for mutagenicity, including a lack of appropriate descriptors related 
to the endpoint and mechanism of action. Similarly, it was observed 
herein that the AI4Cosmetic model prioritises finding known sensitisers 
(high recall) while the model trained on Wilm et al. [41] data excels at 
discrimination (high FNR). Thus, the horizontal FL approach can lead to 
a broader chemical space domain for both toxicity screening and 

Fig. 1. Distribution of log Kp values for epidermis and dermis across the initial datasets. The dashed line at log Kp = − 3 indicates the threshold for high permeability 
[51]. Most compounds fell below this value, suggesting low permeability. The Stevens et al. [24] dataset showed lower variability and clearer separation between 
skin layers. The non-IID distribution reflects the inherent heterogeneity of each dataset, representative of real-world scenarios: HuskinDB (− 11.36 to − 4.42), SkinPiX 
(− 9.47 to − 3.78), Stevens et al. [24] (− 6.94 to − 2.52).

Fig. 2. Distribution of log Kp values for epidermis and dermis under different federated aggregation strategies. The left panel shows the baseline federated ag
gregation (− 11.36 to − 2.52), which accurately captures the variability in the local histograms of log Kp. The right panel demonstrates the impact of differential 
privacy, where Gaussian noise (ε = 1) was added during aggregation (− 12.1 to − 1.89). The inclusion of noise broadens the distribution, reflecting a trade-off 
between privacy and precision.

Fig. 3. Federated learning performance with heterogeneous client participa
tion. The federated model demonstrated balanced performance across accuracy, 
precision, recall, F1-score, AUC and FNR metrics, effectively combining the 
complementary strengths of individual models while maintaining robust 
generalisation capabilities. Organisation A trained the model on a dataset with 
~80% of 3,137 compounds being classified as mutagenic. Organisation B 
trained the model on a dataset with ~80% of 2,776 compounds being classified 
as non-mutagenic. Organisation A excels at finding known positive cases, being 
overly conservative (high recall, no FNR), while Organisation B misses almost 
all mutagenic compounds (high precision, high FNR).
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regulatory applications.

3.4. Open challenges

How the training data underlying the local QSAR models are treated 
and preprocessed remains an open challenge in federated chemical 
safety assessment. The concern lies in the quality, heterogeneity, and 
interpretability of locally held data, often originating from assays with 
differing mechanistic relevance and inconsistently reported metadata 
[55]. For example, determining whether a compound is mutagenic, 
hepatotoxic, or neurotoxic may depend heavily on the assay design, e.g., 
bacterial strain, solvent, cytotoxicity, and biological coverage, which 
can vary significantly across organisations, especially in the case of non- 
standardised experimental protocols being used. Recent guidance, such 
as the OECD (Q)SAR Assessment Framework (QAF) [56], emphasises the 
importance of transparency, scientific rigour, and structured metadata 
in evaluating model predictions, principles which are equally critical for 
the federated modelling reporting to achieve regulatory acceptance. If 
the local QSARs have available the corresponding QSAR Model 
Reporting Format (QMRF) and/or provide those details, there should be 
no additional challenge in the regulatory acceptance of a federated 
QSAR. In principle, this is no different than the option to provide mul
tiple QMRFs for the individual QSARs in a consensus model (such as 
CATMoS for acute toxicity prediction; [57] or the need to provide 
multiple QMRFs when multiple QSARs are integrated on an ad hoc basis 
to generate QSAR results following the OECD QSAR Assessment 
Framework [56].

Comprehensive metadata would increase the interpretability and 
confidence in predictions. This reinforces the need for organisations to 
engage in collaborative efforts to delineate applicability domain 
boundaries, such as through nearest-neighbour or similarity-based 
methods. For example, the choice between horizontal and vertical FL 
depends primarily on data alignment across clients, as well as the 
objective of the collaboration, to expand the number of samples to 
improve generalisation, as in horizontal FL, or to enrich the feature 
space for better predictions, as in vertical FL.

Since data preprocessing and standardisation are typically the re
sponsibility of each data custodian, harmonised data cleaning protocols 
are essential for trustworthy federated analytics and model 

development. Heyndrickx et al. [9], as part of the MELLODY con
sortium, published a manual to ensure that all data of the contributing 
partners, mainly the input structure activity data, are prepared for the 
federated machine learning according to the same standards and prin
ciples. This leads to a consistent representation of chemical structures 
and the biological activity data. These protocols were executed by each 
data custodian individually on its own compute platform, and only the 
output of this process was made accessible to the federated machine 
learning. Thus, in the absence of this type of preparatory work, FL can 
aggregate poor data, which could result in increased noise and lower 
prediction rates.

Federated QSAR is constrained by the absence of standardised 
benchmarks in both datasets and model baselines, making it difficult to 
assess whether the performance of a global model is meaningful or 
simply reflective of well-explored chemical space. Applicability domains 
remain inconsistently defined, and neither being inside nor outside an 
applicability domain reliably predicts performance. Even consensus 
modelling can compound weaknesses when constituent models poorly 
cover chemical space.

Lastly, adopting federated learning across organisational boundaries 
necessitates rethinking how models are governed, maintained, and 
applied in diverse regulatory and scientific contexts. Unlike conven
tional modelling approaches, federated systems involve multiple stake
holders contributing data, infrastructure, or expertise. This imbalance 
can create structural inequities and introduce complexity into decision- 
making, particularly when models are applied in high-stakes regulatory 
uses. Some data holders may have more to gain from the collaboration, 
e.g., access to broader chemical space, or more to lose, e.g., potential 
commercial or regulatory sensitivity of their data. Effective governance 
must not only control access and permissions, for example, who can 
retrain, validate, or interpret the model, but also establish foundational 
principles such as Findable, Accessible, Interoperable, and Reusable 
(FAIR) data and model stewardship [58]. Incentives for participation 
may vary, from regulatory preparedness to scientific discovery or 
commercial advantage. Thus, aligning expectations early for a sustain
able and effective federated collaboration is essential. Without such 
frameworks, the adoption and credibility of federated QSAR models will 
remain limited.

Fig. 4. Chemical space of the training and test sets. All datasets span a broad chemical space coverage, with the AI4Cosmetics training set (pink) presenting limited 
diversity due to the data size collected and curated from peer-reviewed open sources. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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3.5. Opportunities and future directions

Federated decentralised architecture provides a pathway for col
laborations in chemical safety assessment by enabling joint analysis and 
modelling across distributed datasets without requiring centralised data 
pooling. It reduces risks of data leakage (i.e., compromising data 
confidentiality) and supports compliance with data protection regula
tions. It facilitates secure, permission-based access, e.g., via application 
programming interfaces (APIs), promoting interoperability while pre
serving data ownership and local control.

A clear opportunity is to integrate public and proprietary datasets 
across organisations, where participating parties may specialise in 
distinct chemical domains, such as surfactants, fragrances, or industrial 
compounds. This thereby enhances both the diversity of the underlying 
evidence and the representativeness of the resulting predictive models. 
This broader integration can strengthen scientific understanding of the 
data landscape and reduce fragmentation across historically siloed 
datasets.

For academia, federated infrastructures may enable access to sub
stantially larger and more diverse training corpora than are typically 
available in the public domain, supporting methodological innovation 
and more realistic benchmarking against industry-relevant chemical 
domains. For regulators, federated approaches could support more 
evidence-rich decision-making by enabling privacy-preserving interro
gation of otherwise inaccessible datasets, facilitating independent vali
dation across multiple data holders, and improving confidence in 
conclusions for chemicals that sit close to decision thresholds. For the 
industry, federated learning offers a practical route to collaborative 
model development that reduces duplication of experimental testing and 
strengthens safety substantiation by improving predictive performance 
of internal models and decision-making workflows without exposing 
proprietary assets. However, realising these benefits across all stake
holder groups depends on sufficiently broad participation and dataset 
diversity. Without contributions from large, well-resourced organisa
tions, federated efforts may be constrained, limiting both regulatory 
relevance and the potential for scientific democratisation. In addition to 

Fig. 5. Pairwise model comparison using Tukey's Honest Significant Difference (HSD) test. It shows the mean differences with 95% confidence intervals for all 
pairwise comparisons across the six performance metrics (accuracy, AUC, F1, FNR, precision, and recall). Comparisons were colour-coded: blue indicates the first 
model significantly outperformed the second (p < 0.05), red indicates the first model significantly underperformed, and grey indicates no statistically significant 
difference. Federated Learning achieves nearly the same performance as Centralised Learning, and both outperform Local Learning across all metrics. Local Learning 
(LL); Centralised Learning (CL); Federated Learning (FL); False Negative Rate (FNR). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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following the OECD QSAR Assessment Framework [56], evaluation 
strategies may also benefit from existing guidance on best practices for 
machine learning in toxicological QSAR development [59]. Together, 
these resources support an opportunity to benchmark models and clearly 
define both toxicological and chemical applicability domains.

The absence of accessible datasets necessitates alternatives to stan
dard validation approaches. This aligns with emerging efforts to estab
lish scientific confidence in NAMs, such as the framework proposed by 
van der Zalm et al. [60], which, although focused on in vitro methods, 
offers relevant principles to be adopted by federated collaborations. In 
particular, for NAMs that contain intellectual property (protected ele
ments in Test Guidelines), the OECD provides tools to maintain trans
parency, including reasonable and non-discriminatory terms (“RAND”) 
for licensing commitments [61]. Protected elements can include, for 
example, computational algorithms and associated datasets. An example 
of how proprietary data can be protected while deriving new structural 
alerts for skin sensitisation is illustrated by MacMillan et al. [62]. As 
frameworks for the validation and regulatory acceptance of computa
tional models continue to evolve, it is important to reconcile IPR con
siderations with the need for transparency during the validation and 
peer review processes.

Future research should explore other federated approaches, such as 
federated transfer learning and federated retrieval-augmented genera
tion, for example, to support the scalable development and validation of 
knowledge constructs such as adverse outcome pathways. In parallel, 
reverse engineering methods will be essential to formally verify that 
local model execution does not result in unintended information 
leakage. Lastly, more research on all elements of acceptability, ranging 
from validation, verification, FAIRness, to reusability of these models, is 
vital.

4. Conclusions

Three use cases, namely federated analytics for dermal permeability 
assessment, vertical federated learning for mutagenicity assessment, and 
horizontal federated learning for skin sensitisation assessment, were 
simulated and implemented using the open-source federated learning 
framework Flower. Together, these examples illustrate that diverse 
molecular data modalities and modelling approaches, ranging from 
feature distributions to XGBoost and CNNs, can be implemented in a 
federated setting. The results demonstrate the feasibility of federated 
approaches for knowledge sharing, bridging critical information gaps 
between exposure and hazard. By enabling collaboration without direct 
data sharing, federated learning and analytics preserve data privacy 
while improving the performance and generalisability of local models 
and datasets for toxicity endpoints of critical regulatory interest. 
Decentralised learning can handle isolated datasets, such as for dermal 
permeability, and complex models, such as for mutagenicity and skin 
sensitisation, minimising the risk of data breaches and ensuring effi
cient, private, and robust training across distributed systems. This can 
strengthen the weight of evidence for chemicals prioritising targeted 
additional data generation where margins of safety are limited. Overall, 
decentralised approaches offer a promising route to advance NGRA and 
create new opportunities for regulatory science through more holistic 
and collaborative risk assessment across organisational boundaries.
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