

Cross-National Evidence on Influencer-Driven Green Choice: A Moderated-Mediation model of Authenticity, Parasocial Ties, and Greenwashing Exposure

1 **Stefanos Balaskas^{1,*} and Ioanna Yfantidou²**

2 ¹eGovernment & eCommerce Lab (Innovation & Entrepreneurship), Department of Business
3 Administration, University of Patras, 26504 Patras, Greece

4 ²Department of Business and Management, Liverpool John Moores University (LJMU), Liverpool
5 L3 5UL, UK, i.yfantidou@ljmu.ac.uk

6 *** Correspondence:**

7 Stefanos Balaskas
8 s.balaskas@ac.upatras.gr

9 **Keywords:** influencer marketing, authenticity, parasocial relationship, green trust,
10 greenwashing, prior greenwashing exposure, cross-national comparison

11 Abstract

12 **Social media influencers are essential to sustainability communication, but the mechanisms**
13 **through which their messages convert into environmentally conscious consumer behavior**
14 **remain under-specified. This research examines two antecedents—perceived influencer**
15 **authenticity (AUTH) and parasocial relationship (PSR)—within a conditional-process**
16 **framework that identifies green trust (TRUST) as the proximal mechanism. The design**
17 **additionally involves two skepticism constructs: perceived greenwashing risk (PGR) at the post**
18 **level and prior greenwashing exposure (PGE) at the individual level. Utilizing recall-anchored,**
19 **cross-national survey data from Greece (n = 376) and the United Kingdom (n = 331), analyzed**
20 **through variance-based structural equation modeling (SEM), we examine direct, mediated, and**
21 **moderated-mediation relationships. AUTH and PSR exhibit positive associations with**
22 **sustainable purchase intention across the country and pooled samples, while TRUST offers**
23 **additional explication power. The conversion of TRUST into intention is weakened by PGE,**
24 **which functions as a late-stage boundary condition. Conditional-indirect analyses indicate that**
25 **PGR affects intention via TRUST in all samples, with effects diminishing as PGE rises; PSR**
26 **only shows a moderate negative mediated component via TRUST in addition to its positive**
27 **direct association with intention in the UK. Cross-national comparability is supported by**
28 **measurement and structural invariance. To maintain the conversion efficiency of trust in**
29 **green decision-making, the findings suggest prioritizing verifiable, value-congruent**
30 **authenticity, actively managing both PGR and PGE, and matching influencer content with**
31 **transparent substantiation practices.**

32 1 Introduction

33 Social media influencers are central conduits for sustainability messaging, yet the processes by which
34 their content converts attention into green consumer action remain insufficiently specified (Khurana

35 et al., 2025; Kılıç & Gürlek, 2024; Wang & Walker, 2023). Influencers marshal dedicated follower
36 bases whose trust can translate conversation into purchase behavior (Balaskas et al., 2025; Mustapa
37 & Kallas, 2025; Piracci et al., 2024). Prior work shows that credible messengers can shift pro-
38 environmental attitudes and intentions, but credibility alone is often necessary rather than sufficient
39 (Liu & Zheng, 2024; Piracci et al., 2024). A growing stream highlights authenticity—the perception
40 that the creator is sincere and value-consistent—as the catalyst that turns attention into verifiable
41 green action via trust (Bastounis et al., 2021; Chen et al., 2015). At the same time, consumer
42 skepticism is heightened by greenwashing—overstated or fabricated environmental claims—creating
43 a climate where repeated exposure to misleading claims depresses responsiveness, even to well-
44 intended messages (Bastounis et al., 2021; Chen et al., 2015). For influencers, whose person and
45 message are fused, any hint of insincerity or inaccuracy risks reputational and commercial harm
46 (Bastounis et al., 2021; Zhuang et al., 2021). Although many consumers report willingness to pay a
47 premium for genuinely sustainable products, that willingness is contingent on believing the claims
48 (Bastounis et al., 2021; Chen et al., 2015; Mustapa & Kallas, 2025). Regulators—particularly in the
49 EU—are moving toward stricter substantiation, specific disclosures, and scannable evidence,
50 increasing pressure on creators to be transparent without eroding perceived sincerity. Thus,
51 influencer-led green marketing has substantial potential, but success hinges on overcoming doubt,
52 providing verifiable content, and building green trust (Liu & Zheng, 2024; Piracci et al., 2024).

53 Perceived influencer authenticity (AUTH) and parasocial relationship (PSR) are two mechanisms that
54 are often mentioned in accounts of influencer persuasion for sustainability; however, they are
55 conceptually different and misinterpreted (Diao et al., 2025; Zatwarnicka-Madura et al., 2022;
56 Zhuang et al., 2021). Genuineness, honesty, and value congruence—alignment between stated
57 beliefs and observable behavior, voice consistency over time, and advocacy driven by intrinsic
58 motivation, are reflected in AUTH. Transparent sponsorship, alignment between endorsements and
59 the influencer's ethical persona, and trustworthy information are salient cues that elevate perceived
60 claim credibility and actionability by framing sustainability advice as principled opinion rather than
61 transactional rhetoric (Bastounis et al., 2021; Diao et al., 2025; Zhuang et al., 2021). PSR, on the
62 other hand, indicates the biased attachment that followers have to media personalities. Audiences
63 experience "felt closeness" through self-disclosure, repeated exposure, and sporadic interaction,
64 which can encourage imitation, loyalty, and receptivity (Khurana et al., 2025; Kılıç & Gürlek, 2024;
65 Mustapa & Kallas, 2025). In terms of advertising, a person's kindness and trust can be transferred to
66 the brand; higher PSR is linked to stronger purchase intentions, less uncertainty, and increased
67 confidence in claims, even in eco-lifestyle contexts (Chen et al., 2015; Liu & Zheng, 2024; Piracci et
68 al., 2024).

69 Integrating these strands, green trust—confidence that a product/brand/message is genuinely “green”
70 and will deliver on its environmental claims, serves as the proximal mechanism linking influencer
71 cues to downstream behavior. AUTH can build trust by lowering inferences of opportunism and
72 increasing perceived truthfulness; PSR can build trust by lowering perceived risk through relational
73 closeness. Once claim-level trust forms, intentions typically follow (selection, recommendation,
74 and—when added value is perceived—willingness to pay a premium) (Bastounis et al., 2021; Chen et
75 al., 2015; Zhuang et al., 2021). Two fundamental questions for theory and practice are raised by this
76 framing: which pathway has more influence on green trust when AUTH and PSR co-occur, and
77 under what circumstances. In a claim-saturated environment, how should content be designed to
78 maintain trust, which is positioned as the catalyst between behavior and communication, even in the
79 face of high skepticism (Diao et al., 2025; Zatwarnicka-Madura et al., 2022).

80 While there exists additional research underway on sustainability and influencer marketing, there still
81 remain four gaps. First, mechanism clarity: most studies merely examine at AUTH or PSR on their
82 own and fail to contrast their effects. Moreover, only a few studies few specify the full chain
83 AUTH/PSR on trust to sustainable outcomes (Bastounis et al., 2021; Khurana et al., 2025). Second,
84 boundary conditions: research scarcely conceptualizes prior greenwashing exposure (PGE) as an
85 individual-level moderator that can attenuate AUTH and PSR on trust when audiences are skeptical.
86 Third, cross-national portability: single-country designs leave open whether mechanisms generalize
87 across distinct regulatory/media ecosystems (e.g., EU vs. post-Brexit UK) and whether AUTH, PSR,
88 and trust are measurement-invariant. Fourth, ecological realism: vignette experiments dominate,
89 whereas recall-anchored, survey-only designs that capture real exposures and meet SEM standards
90 are scarce. We address these by (i) directly comparing AUTH and PSR in one model, (ii) specifying
91 green trust as the mediator to sustainable purchase intention (and willingness to pay), (iii) testing
92 PGE as a theory-grounded moderator (iv) evaluating cross-national invariance using a recall-
93 anchored SEM approach.

94 The contributions are threefold. Theoretically, we provide a head-to-head test of AUTH vs. PSR
95 within a conditional-process model, clarifying their relative power for green trust and, via trust,
96 intention (Skordoulis et al., 2025). We further employ PGE as a person-level moderator and set trait-
97 like skepticism (PGE) apart from state-like message suspicion (PGR), enabling us to establish a dual-
98 skepticism account (Higueras-Castillo et al., 2024; Kim et al., 2025). Methodologically, an
99 ecologically valid, recall-anchored survey utilizing SEM-ready measures is examined across cross-
100 national samples (UK, Greece), with multi-group analysis confirming measurement and structural
101 invariance (Glaveli, 2021; Kim et al., 2025; Strycharz & Segijn, 2024). We combine PLS-SEM
102 (moderated mediation, latent interactions, predictive assessment) along with fit checks in our
103 analysis. Practically, If AUTH dominates, creators and brands should focus on value-consistency,
104 explicit disclosure, and claims that can be verified instead of parasocial warmth, especially for high-
105 PGE audiences. The findings quantify the penalty of greenwashing legacies, motivating third-party
106 certification, rigorous substantiation, and careful #ad practices; more broadly, they support
107 accountable green claims (e.g., standardized evidence, machine-readable eco-metadata) to foster
108 trustworthy paths to green choice.

109 The paper proceeds as follows: Section 2 reviews influencer–sustainability literature and develops
110 hypotheses underpinning the model. Section 3 presents the conceptual framework with relations
111 among AUTH, PSR, trust, PGE, and outcomes. Section 4 details the cross-national survey, measures,
112 sampling (Greece, UK), and analytic strategy (conditional-process SEM with invariance tests).
113 Section 5 reports measurement validation and hypothesis tests. Section 6 discusses theoretical,
114 practical, and policy implications, limitations, and future research. Section 7 concludes with the
115 study’s core contributions to influencer-driven green consumer decision-making.

116 2 Literature Review

117 2.1 Influencer Persuasion in Sustainability

118 Perceived authenticity and parasocial relationship (PSR) are the two main factors that consistently
119 influence effectiveness in studies on influencer persuasion in sustainability, though the reported
120 effects vary depending on context and operationalization (Kothari et al., 2025). The source-credibility
121 pathway is a recurring theme in the literature, wherein assessments of green claims are influenced by
122 perceived authenticity and credibility, ultimately resulting in pro-environmental intentions, often
123 through mechanisms related to trust (Su et al., 2021; Wu et al., 2025; Wan et al., 2025). In this

124 regard, authenticity is considered an important diagnostic indicator that helps audiences discern
125 whether sustainability messaging represents genuine values or deliberate manipulation.

126 Through two complementary mechanisms, perceived greenwashing risk (PGR) could diminish the
127 intention toward sustainable purchases. First, in line with the predominant mechanism in the
128 literature, increased perceptions of greenwashing erode green trust by indicating opportunistic or
129 dishonest intentions, which in turn reduces downstream intention (Ha, 2022; Ye et al., 2024). Second,
130 because PGR acts as a risk/avoidance heuristic, it can also have a direct deterrent effect. Even in
131 cases where some baseline trust is maintained, consumers may completely disengage from an option
132 when they expect to be misled in order to avoid moral, financial, or reputational consequences.
133 Evidence that skepticism and motive inferences can inhibit behavioral responses in sustainability
134 advertising beyond purely evaluative judgments supports this reasoning (de Sio et al., 2022; Ye et al.,
135 2024). Therefore, we investigate whether PGR maintains an independent association with sustainable
136 purchase intention in addition to modeling green trust as a crucial mechanism.

137 Additionally, PSR includes the relational path to persuasion: people who feel a stronger one-sided
138 connection with an influencer are considered usually more credible and have better attitudes and
139 behaviors (Bi and Zhang, 2023). Research shows that PSR rises when people are exposed to the same
140 repeated stimuli over time and feel like they are similar in their minds, not in their demographics.
141 This backs up the idea that closeness in relationships can be a powerful tool for influencers to use
142 when they talk to people (Breves and Liebers, 2025, 2022; Möri and Fahr, 2023). Authenticity and
143 PSR are two different ideas. Authenticity pertains to assessments of the influencer's truthfulness and
144 genuineness, while PSR pertains to perceived interpersonal proximity. Still, it is expected that both
145 will converge on trust as a close mechanism through which influencer cues affect long-term
146 intentions (Su et al., 2021).

147 The current study is motivated by three tensions in this context. First, prior research often examines
148 PSR or authenticity separately; few studies assess their relative explanatory contributions within a
149 cohesive model, especially when it comes to whether their effects operate via a shared trust
150 mechanism (Omeish et al., 2025). Second, audiences' perceived risk of greenwashing can directly
151 reduce purchase intentions and raise the bar for trust-based persuasion, making sustainability
152 contexts especially prone to skepticism (Chen et al., 2022; Garg and Bakshi, 2024). Third, the variety
153 of stimuli and measurement options complicates synthesis, highlighting the significance of defining a
154 targeted model that uses theoretically related constructs to link influencer cues to intention.
155 Authenticity, parasocial relationship (PSR), perceived risk of greenwashing, and green trust are all
156 examined in this study as key indicators of sustainable purchase intention. Accordingly, we model
157 PGR as both a trust-eroding cue and a direct avoidance heuristic, thus, the following hypotheses are
158 proposed:

159 **H1. Perceived influencer authenticity (AUTH) is associated with sustainable purchase intention
160 (INTENT).**

161 **H2. Parasocial relationship with the influencer (PSR) is associated with sustainable purchase
162 intention (INTENT).**

163 **H3. Perceived greenwashing risk (PGR) is associated with sustainable purchase intention (INTENT).**

164 **H4. Green trust (TRUST) is associated with sustainable purchase intention (INTENT).**

165 **2.2 Green Trust as Mechanism**

166 According to multiple perspectives (Bhattacharya et al., 2024; Chauhan and Goyal, 2024; Ha, 2022),
167 green trust is a proximal psychological mechanism that converts sustainability communications into
168 downstream behavioral intentions (Bhattacharya et al., 2024; Chauhan and Goyal, 2024; Ha, 2022).
169 Beyond general attitudes toward sustainability, audiences are more inclined to select green options
170 when they perceive environmental claims as reliable, trustworthy, and non-opportunistic (Alhomaid,
171 2025; de Luis García, 2024; Ha, 2022). Combining this information, a meta-analysis of 79 studies
172 reveals that green trust has a strong but context-sensitive relationship with purchase intention and
173 associated outcomes. Trust formation is influenced by both affective and cognitive inputs, such as
174 warmth and identification and claim credibility and evidence quality (Chauhan and Goyal, 2024).

175 Green trust serves as a crucial link between creator cues and consumer reactions in influencer-
176 mediated sustainability persuasion. For instance, verification signals can improve perceived
177 credibility and trust, with effects dependent on influencer characteristics (e.g., stronger for micro-
178 influencers) (Liao et al., 2024), whereas congruence between influencer type and endorsement style
179 strengthens green purchase intention through trust-related processes (Zhao et al., 2024). Parasocial
180 ties can also result in persuasion through downstream credibility and attitudinal assessments that lead
181 to intention, which is consistent with relational accounts (Bi and Zhang, 2023). All of these streams
182 imply that trust is a mechanism through which cues based on relationships and authenticity gain
183 persuasive impact in green contexts, rather than just a correlate of sustainable intentions.

184 However, because sustainability messaging is particularly vulnerable to persuasion knowledge and
185 greenwashing concerns, establishing green trust is delicate. Greenwashing cues consistently
186 undermine green image and trust (Ha, 2022), and message framings can backfire when recipients
187 perceive strategic manipulation or assume impression-management motives (Ye et al., 2024).
188 According to related research, environmental knowledge can help build trust, but advertising
189 skepticism undermines intention and trust (de Sio et al., 2022). Crucially, the inconsistent pattern of
190 results across studies points to significant boundary conditions that can either maintain or undermine
191 trust, such as verifiability signals, disclosure policies, identity relevance, and audiences' past
192 experiences with deceptive eco-claims (Ha, 2022; Liao et al., 2024).

193 The current study advances two clarifications that directly inform our model, building on this
194 evidence. First, influencer antecedents like parasociality and authenticity are frequently studied
195 separately, which restricts conclusions regarding their relative significance for fostering green trust
196 within a cohesive framework (Alhomaid, 2025; Bhattacharya et al., 2024; Ha, 2022). Therefore, we
197 examine the indirect effects of perceived authenticity and parasocial relationships on sustainable
198 purchase intention (and willingness to pay, where applicable) and treat them as concurrent
199 antecedents of green trust. Second, despite the widespread recognition of skepticism and
200 greenwashing concerns, limited study has examined at previous exposure to greenwashing as an
201 individual-level factor influencing how easily trust is formed from influencer cues (de Sio et al.,
202 2022; Román-Augusto et al., 2023; Zhao et al., 2024). Our method clarifies when influencer cues
203 produce resilient green trust and when trust becomes more challenging to establish by combining
204 these mechanisms with boundary conditions—and evaluating cross-national portability through
205 measurement and structural invariance. We developed the following based on the aforementioned:

206 **H5a.** *Perceived influencer authenticity (AUTH) has an indirect effect on sustainable purchase
207 intention (INTENT) through Green trust (TRUST).*

208 **H5b.** *Parasocial relationship with the influencer (PSR) has an indirect effect on sustainable
209 purchase intention (INTENT) through Green trust (TRUST).*

210 **H5c. Perceived greenwashing risk (PGR) has an indirect effect on sustainable purchase intention**
211 *(INTENT) through Green trust (TRUST).*

212 **2.3 Greenwashing Exposure as Boundary Condition**

213 Evidence shows that greenwashing operates not only as a message attribute but as an accumulated
214 audience experience that reshapes persuasion (Nazish et al., 2025; Olbermann et al., 2024; Yadav et
215 al., 2025). Features that trigger assumptions of dishonesty or inaccuracy, such as vague claims,
216 impression-management cues, and sponsorship incongruity, consistently erode credibility and trust.
217 This renders consumers to evoke downstream choices via mediators such as green-ad skepticism,
218 brand shame, and even brand hate (Adil et al., 2024). Trust is the fulcrum: pro-environmental signals
219 build intention through green trust but collapse when revealed as whitewash (Munaier et al., 2022).
220 Effects are context-sensitive: green appeals that frame scarcity can backfire when people perceive
221 they are greenwashing (Ye et al., 2024); some brand-equity models show that green image and trust
222 can hurt a brand indirectly (not directly) (Ha, 2022), and at the firm level, greenwashing and
223 willingness to innovate may follow an inverted-U through performance-feedback dynamics (Lu et al.,
224 2025).

225 Recent research elucidates mechanisms and moderators. Disaggregating practices and involvement,
226 perceived greenwashing increases skepticism and negatively impacts attitudes through elaboration
227 pathways, with environmental knowledge serving as a moderating factor (Rehman et al., 2025).
228 Building on the Theory of Planned Behavior (TPB), greenwashing can undermine the intention-
229 behavior relationship, contesting models that assume a stable intention-behavior connection (Nazish
230 et al., 2025). Platform signals reinstate thresholds: verification badges boost trust and sharing by
231 transferring institutional credibility, especially for micro-influencers (Liao et al., 2024). On the other
232 hand, sponsorship disclosure also renders messages less credible, especially for human than virtual
233 endorsers, by expectation-violation (Lim et al., 2025). Influence endures when the alignment between
234 influencer and product enhances perceived expertise, especially for products with prominent green
235 features and significant self-disclosure; however, alignment cannot protect unverifiable assertions
236 (Shan and Xu, 2025). Similar "washing" (e.g., diversity-washing) diminishes brand evaluation and
237 purchase intention in ambiguous situations; significantly, heightened parasocial interaction may
238 enhance the identification of washing in these contexts (Olbermann et al., 2024). Endorser class and
239 cause cues (celebrity vs. influencer; cause-related framing; country-of-origin) can enhance advocacy
240 and intention, but only if trust and perceived ethicality are maintained (Kalam et al., 2024).

241 These patterns collectively indicate that prior exposure to greenwashing (PGE) influences later
242 message reception, resulting in learned resistance that undermines trust, even in the presence of high-
243 quality cues. Nevertheless, the vast majority of studies regard skepticism as either state-based or
244 general, hardly conceptualizing PGE as an individual-level moderator of trust development (Breves
245 and Liebers, 2022; Khanchel et al., 2024; Lim et al., 2025). Our research fills this gap by
246 conceptualizing PGE as a boundary condition that influences green trust and, subsequently,
247 sustainable purchase intention. Using latent interactions and conditional indirect effects, we test
248 whether learned resistance attenuates trust regardless of value-congruent sincerity or relational
249 intimacy. We also distinguish post-level perceived greenwashing risk (state) from PGE (trait) and
250 assess cross-national invariance to determine how media and governance contexts condition
251 mechanism resilience. To this end, the following hypothesis was formed:

252 H6. Prior greenwashing exposure (PGE) moderates the relationship between Green trust (TRUST)
253 and sustainable purchase intention (INTENT) such that the conditional effect of TRUST on INTENT
254 varies by the level of PGE (TRUST \times PGE \rightarrow INTENT).

255 **2.4 Cross-National Considerations**

256 Cross-national research indicates that institutional governance and socio-cultural influences
257 collectively determine audience perceptions of trust and skepticism regarding sustainability
258 messages; however, evidence specific to influencers remains limited (Colleoni et al., 2022; Kim et
259 al., 2025; Strycharz and Segijn, 2024). The UK's ASA/CAP and CMA combine guidance with active
260 enforcement (like the Green Claims Code and sector sweeps) on the regulatory side. The EU's
261 approach, which is relevant to Greece, focuses on standardized substantiation, third-party
262 verification, and life-cycle disclosure under the Greenwashing and Green Claims Directives. These
263 regimes converge normatively by limiting ambiguous assertions and increasing evidentiary
264 requirements; however, they differ in implementation pace, enforcement relevance, and signal clarity,
265 likely resulting in distinct informational environments for UK and EU audiences. In practice, little is
266 known about whether these differences in regimes lead to systematic changes in how trust is built at
267 the influencer level.

268 Pandemic-era CSR research indicates that cultural dimensions (individualism/collectivism, power
269 distance, uncertainty avoidance) can influence recall without consistently altering favorability,
270 suggesting that high-salience contexts may diminish cultural disparities (Colleoni et al., 2022).
271 Studies on "dataveillance" in advertising reveal that the U.S. had stronger chilling effects than the
272 Netherlands. This suggests how privacy rules and norms affect how audiences respond to persuasive
273 technologies (Glaveli, 2021; Kim et al., 2025; Strycharz and Segijn, 2024). Reviews of green social
274 media ads show consumers are becoming more aware of greenwashing and how various populations
275 react. Evidence from Greece-based tourism suggests younger followers are more likely to engage
276 with influencers but care less about sustainability. Authenticity and transparency are important for
277 reducing suspicion (Skordoulis et al., 2025).

278 Macro-level ideology is significant as cross-national studies associate various varieties of populism
279 with climate skepticism at both individual and national levels, influenced by globalization,
280 suggesting that political predispositions could establish thresholds for the acceptance of micro-level
281 influencer cues (Glaveli, 2021; Kim et al., 2025). Consumer reactions to CSR vary even among
282 neighboring nations (e.g., Greece vs. Bulgaria), indicating the necessity of empirical testing before
283 assuming structural equivalence (Ktisti et al., 2022; Nemes et al., 2022). Complementary typologies
284 of greenwashing enhance the assessment of claim quality and verifiability, yet they are infrequently
285 integrated into cross-national influencer research.

286 Three gaps follow. First, Greece–UK comparisons of influencer sustainability communication are
287 scarce, and measurement-invariance checks are often absent, leaving open whether observed
288 differences reflect construct nonequivalence rather than genuine structural divergence. Second,
289 research seldom juxtaposes institutional context (claim governance, disclosure enforcement) with
290 person-level deception histories (prior greenwashing exposure), though both plausibly set trust
291 thresholds. Third, influencer findings are frequently platform- and cohort-specific, based on small
292 convenience samples, and rarely test moderated mediation. We address these gaps by treating country
293 as a boundary context: we establish measurement equivalence (MICOM) for authenticity, parasocial
294 relationship, and green trust; then test structural invariance of paths and their moderation by prior
295 greenwashing exposure. This strategy converts regulatory divergence (EU-aligned Greece vs. UK

296 domestic enforcement) and socio-cultural heterogeneity into testable propositions about mechanism
297 portability, avoiding cultural stereotyping while identifying when and where influencer-based green
298 persuasion travels. To this end, we pose the research question:

299 **RQ-CN.** *Do the measurement properties and structural mechanisms in the model generalize across*
300 *Greece and the United Kingdom?*

301 **3 Methods**

302 **3.1 Conceptual Model and Rationale**

303 Our model (Figure 1) explains how sustainability messaging by influencers translates into consumer
304 choice by positing Perceived Influencer Authenticity (AUTH) and Parasocial Relationship (PSR) as
305 distinct antecedents operating through Green Trust (TRUST), with Prior Greenwashing Exposure
306 (PGE) as a boundary condition. Drawing on signaling/attribution accounts (value-claim congruence)
307 and parasocial interaction/trust-transfer logic (relational closeness), AUTH and PSR provide
308 evidentiary and relational routes to claim credibility, respectively. TRUST is treated as the proximal
309 mechanism linking these cues to Sustainable Purchase Intention (INTENT). Because audiences
310 accumulate deception histories, PGE is modeled as a person-level moderator of the AUTH→TRUST
311 and PSR→TRUST links; we additionally control Perceived Greenwashing Risk (PGR) at the post
312 level to separate state suspicion from trait-like exposure. This design addresses three gaps: (i) few
313 studies pit AUTH and PSR in the same model to adjudicate their relative influence on TRUST; (ii)
314 person-level deception histories are rarely incorporated as moderators of trust formation; and (iii)
315 cross-national measurement/structural invariance is seldom tested. Our recall-anchored, survey-only
316 SEM (Greece, UK) therefore isolates mechanism, tests boundary conditions, and assesses portability
317 without advancing directional cultural claims.

318 **Figure 1: Conceptual model.**

319 **3.2 Data Collection and Sampling**

320 To investigate conditional processes in sustainable influencer marketing, we conducted a
321 quantitative, cross-sectional online survey (Kesmodel, 2018; Olsen & St George, 2004). Naturally
322 occurring exposures to influencer content (stimulus) were associated with sustainable purchase
323 intention (response) and perceived authenticity, parasocial relationships, and green trust (organism)
324 in accordance with a stimulus-organism-response framework. The design investigated latent
325 interactions, moderated mediation, and SEM requirements for validity and reliability (Campbell et
326 al., 2020; Nyimbili & Nyimbili, 2024; Suen et al., 2014). Purposive, stratified-quota sampling was
327 employed through professional panels in Greece and the UK. Respondents were screened to ensure
328 sure they were active social media users who had recently encountered sustainability-related
329 influencer posts. To estimate the active user base and secure cell sizes for multi-group and invariance
330 tests, country strata applied quotas for age bands (18–29, 30–44, 45–60, 60+), gender, and education.

331 After e-consent and eligibility checks, participants completed a recall-anchored survey (no
332 experimental stimuli). To standardize context while preserving ecological validity, each respondent
333 selected a creator they currently follow and recalled the most recent post (\leq six months) in which the
334 creator recommended or discussed a sustainable product/practice. Respondents reported platform,
335 product category, and approximate date of exposure and provided a one-sentence description to
336 verify the anchor. The questionnaire included: (a) eligibility/screening; (b) 5-point Likert scales for
337 all SEM constructs measured and validated (c) demographics; and (d) quality checks. To mitigate

338 common-method bias, item blocks were separated by brief fillers, items were randomized within
339 blocks, and a short marker scale (social desirability) was included for sensitivity analyses. Inclusion
340 required adults (≥ 18) who (i) use at least one influencer-heavy platform (Instagram, TikTok,
341 YouTube, Facebook, X) ≥ 3 days/week and (ii) reported a qualifying exposure within six months. Pre-
342 registered exclusions removed speeders, inattentive responders (failed instructed-response item),
343 straightliners, suspected duplicates/bots (IP/device, country mismatch), and anchor failures (unable to
344 describe the post or time window violations). Automated panel and in-survey checks enforced
345 criteria.

346 The target was $N \approx 600$ (≈ 300 per country), set to exceed $\approx 10:1$ observations-to-parameter ratios for
347 SEM, enable multi-group comparisons, and achieve .80–.90 power for small-to-moderate structural
348 effects, latent interactions ($PGE \times AUTH$; $PGE \times PSR \rightarrow TRUST$), and conditional indirect effects. For
349 single-country analyses, $N \geq 400$ was maintained to stabilize bootstrap intervals for moderated
350 mediation (Janadari et al., 2016; Kock & Hadaya, 2018; Wagner & Grimm, 2023). A pilot ($n \approx 60$ –80
351 per country) confirmed variance in AUTH/PSR, clarity of instructions, and item comprehension;
352 minor wording refinements followed cognitive interviews. In the main study, internal consistency (α ,
353 composite reliability), convergent validity ($AVE \geq .50$), and discriminant validity (HTMT) were
354 assessed; low-loading reflective items were retained only if construct reliability and AVE remained
355 adequate. Cross-context comparability was examined via MICOM (configural/compositional
356 invariance; equality tests) and corroborated with multi-group checks (Carranza et al., 2020; Götz et
357 al., 2010; Ringle et al., 2015). The protocol received institutional ethics approval. Participation was
358 voluntary; no direct identifiers were collected in-survey. Panel providers handled contact separately.
359 Data were anonymized/pseudonymized, stored on encrypted drives, and processed under GDPR
360 principles (lawfulness, transparency, purpose limitation, data minimization, storage limitation,
361 integrity/confidentiality). Only competent adults were enrolled; no vulnerable groups were targeted.
362 Overall, the survey-only plan delivers ecological validity of recalled exposures, sufficient power for
363 moderated mediation, cross-national comparability, and adherence to contemporary standards of
364 measurement quality and research ethics.

365 3.3 Measurement Scales

366 All focal constructs were assessed using multi-item, 5-point Likert-type scales (1 = strongly disagree,
367 5 = strongly agree) tailored to the influencer/sustainability context and anchored to the respondent's
368 most recent experience (Table A1, [Appendix A](#)). Perceived Influencer Authenticity (AUTH) 5 items,
369 adapted from (Campagna et al., 2023; Ilicic & Webster, 2016) measured value congruence, sincerity,
370 and consistency (e.g., "This creator appeared authentic in that post"; "The message aligned with the
371 creator's typical values/persona"). Parasocial Relationship (PSR), 5 items, adapted from (Rubin et
372 al., 1985; Sokolova & Kefi, 2020) measured felt closeness and one-sided intimacy (for example, "I
373 feel as if I know this creator"; "I would miss this creator if they quit posting"). Perceived
374 Greenwashing Risk (PGR) with 4 items (Chen & Chang, 2013; Hameed et al., 2021) assessed
375 message-level distrust (e.g., "This post might be exaggerating its credentials of being sustainable";
376 "There is a possibility the claims are not so accurate"). Green Trust (TRUST), 4 items adapted from
377 (Chen, 2010) assessed belief in environmental claims/brand performance (e.g., "I believe the
378 environmental claims in that post"). PGR items were reverse-coded so that higher values indicate
379 lower perceived greenwashing risk (i.e., higher perceived claim credibility). Prior Greenwashing
380 Exposure (PGE) (4 items, (Mohr et al., 1998)) has assessed learned experience with misleading green
381 claims (e.g., "In the last 12 months I have frequently been confronted with sustainability promises
382 that afterwards proved misleading"). Sustainable Purchase Intention (INTENT), 4 items, (Higueras-
383 Castillo et al., 2024; Spears & Singh, 2004), has measured intention to buy based on the endorsement

384 (e.g., "I intend to buy this sustainable product"). They were forward-back translated and reconciled
385 with the committee and conceptual equivalence cognitive interviews; reliability (Cronbach's α ,
386 composite reliability), convergent validity (AVE), and discriminant validity (HTMT) were assessed
387 before structural analyses.

388 3.4 Sample Profile

389 In total, 707 social media users from Greece (n = 376) and the UK (n = 331) participated (Table 1).
390 The majority of respondents were between the ages of 25 and 44, had relatively high levels of
391 education (Bachelor's degree or above), and the gender composition was similar across nations. In
392 general, followers reported having a well-established relationship with the focal influencer: 74.9% of
393 respondents in the UK and 78.2% of respondents in Greece had followed the influencer for at least
394 three months, with approximately one-third reporting a duration of one to two years. Overall,
395 respondents' familiarity with eco-labels ranged from moderate to high, and the majority had
396 previously bought a product based on an influencer's recommendation. Both samples were frequently
397 exposed to influencer content about sustainability. In Table 1, complete counts and percentages are
398 presented.

399 **Table 1: Sample characteristics by country (n, %)**

Demographic	Category	Greece (n=376)	UK (n=331)
Gender	Female	167 (44.4)	133 (40.2)
	Male	209 (55.6)	198 (59.8)
Age	18–24	48 (12.8)	50 (15.1)
	25–34	100 (26.6)	96 (29.0)
	35–44	102 (27.1)	83 (25.1)
	45–54	84 (22.3)	71 (21.5)
	55+	42 (11.2)	31 (9.4)
Education	Secondary/High School	116 (30.9)	119 (35.9)
	Bachelor's	146 (38.8)	119 (35.9)
	MSc and above	114 (30.3)	93 (28.1)

Duration following influencer	< 3 months	82 (21.8)	83 (25.1)
	3–11 months	121 (32.2)	110 (33.2)
	1–2 years	142 (37.8)	111 (33.5)
	3+ years	31 (8.2)	27 (8.2)
Eco-label familiarity	Very low	56 (14.9)	67 (20.2)
	Low	108 (28.7)	72 (21.8)
	Moderate	75 (19.9)	90 (27.2)
	High	99 (26.3)	71 (21.5)
	Very high	38 (10.1)	31 (9.4)
Exposure to sustainability influencer content	Never	47 (12.5)	44 (13.3)
	Rarely	81 (21.5)	66 (19.9)
	Sometimes	147 (39.1)	125 (37.8)
	Often	63 (16.8)	66 (19.9)
	Very often	38 (10.1)	30 (9.1)
Purchased from influencer recommendation	No	140 (37.2)	117 (35.3)
	Yes	236 (62.8)	214 (64.7)

400 **4 Data analysis and results**

401 Variance-based structural equation modeling was implemented in SmartPLS 4 (v4.1.1.4) to analyze
 402 the data. Since PLS-SEM emphasizes maximizing explained variance in endogenous constructs,
 403 which supports predictive assessment, it was chosen for use in business and social science
 404 applications (Hair & Alamer, 2022; Sarstedt et al., 2021). Multi-Group Analysis (MGA) was used to
 405 assess potential heterogeneity in order to compare structural paths among subpopulations and identify
 406 context-specific variations that traditional regression was unable to capture (Hair et al., 2006;

407 Stevens, 2002). The computation of path coefficients, standard errors, and reliability indices was
 408 done in accordance with established protocols (Hair & Alamer, 2022). The minimal threshold for
 409 convergent validity for reflective measures was determined to be indicator loadings $\geq .70$. This
 410 approach rendered it feasible to test the structural model rigorously and carefully assess the suggested
 411 mechanisms both within and between respondent groups.

412 **4.1 Common Method Bias (CMB)**

413 We utilized (Podsakoff et al., 2012) methods to check for common method bias. Harman's single-
 414 factor test (unrotated principal factor analysis) revealed that the first factor explained only 26.491%
 415 of the total variance, which is much lower than the standard 50% threshold. This means that CMB is
 416 not likely to affect the results. Clear reporting of these diagnostics bolsters construct validity and the
 417 reliability of interconstruct relationships by alleviating apprehensions regarding systematic
 418 measurement error (Podsakoff et al., 2003, 2012).

419 **4.2 Measurement Model**

420 In accordance with (Hair et al., 2016; Hair & Alamer, 2022), evaluation commenced with the
 421 reflective measurement models, evaluating composite reliability (CR), indicator reliability,
 422 convergent validity, and discriminant validity before interpreting the structural paths. Outer loadings,
 423 which represent the variance in each item explained by its latent construct, were employed to
 424 operationalize indicator reliability (Hair et al., 2014). Loadings $\geq .70$ were deemed satisfactory in
 425 accordance with (Wong, 2013) and (Chin, 1998), yet item removal was not automatic due to common
 426 social-science constraints (Chin, 2009). Instead, decisions were made based on (Hair et al., 2014)
 427 advice: indicators with loadings between .40 and .70 were only removed if doing so significantly
 428 improved CR or AVE, which improved psychometric quality without hurting content validity. By
 429 following these rules and using (Gefen & Straub, 2005) decision logic, the model was cleaned up by
 430 getting rid of AUTH5, PSR5, and PGE4 (loadings $< .50$) for both overall and country-specific data.
 431 Table 2 shows that this simple improvement made the measurements better (CR, AVE) without
 432 making the coverage of the constructs worse.

433 **Table 2: Factor loading reliability and convergent validity.**

Constructs	Overall Sample						Greece						United Kingdom					
	Items	λ	Alpha	rho A	CR	AVE	λ	Alpha	rho A	CR	AVE	λ	Alpha	rho A	CR	AVE		
Perceived Influencer Authenticity	AUTH1	0.807	0.818	0.824	0.879	0.645	0.807	0.808	0.820	0.873	0.632	0.812	0.827	0.826	0.886	0.660		
	AUTH2	0.794					0.748					0.844						
	AUTH3	0.780					0.797					0.746						
	AUTH4	0.832					0.827					0.843						
Sustainable Purchase Intention	INTENT1	0.823	0.816	0.830	0.891	0.731	0.804	0.834	0.837	0.901	0.752	0.833	0.795	0.819	0.879	0.709		
	INTENT2	0.916					0.914					0.919						
	INTENT3	0.822					0.880					0.768						
Prior Greenwashing Exposure	PGE1	0.880	0.804	0.827	0.883	0.717	0.888	0.797	0.818	0.880	0.710	0.873	0.810	0.837	0.887	0.724		
	PGE2	0.797					0.827					0.769						
	PGE3	0.860					0.811					0.905						
Perceived Greenwashing Risk	PGR1	0.821	0.864	0.874	0.901	0.647	0.829	0.855	0.865	0.896	0.633	0.810	0.875	0.883	0.909	0.666		
	PGR2	0.761					0.756					0.769						
	PGR3	0.833					0.814					0.858						

	PGR4	0.767					0.744					0.795			
	PGR5	0.836					0.830					0.844			
Parasocial Relationship	PSR1	0.898	0.898	0.919	0.927	0.761	0.914	0.912	0.939	0.937	0.787	0.869	0.879	0.886	0.916
	PSR2	0.895					0.908					0.865			
	PSR3	0.865					0.882					0.858			
	PSR4	0.829					0.843					0.829			
Green Trust	TRUST1	0.831	0.871	0.893	0.913	0.727	0.828	0.864	0.918	0.909	0.718	0.827	0.883	0.896	0.920
	TRUST2	0.927					0.935					0.933			
	TRUST3	0.933					0.944					0.931			
	TRUST4	0.700					0.646					0.746			

434 We utilized Cronbach's alpha, ρ_A , and composite reliability (CR) to assess for reliability. The CR
 435 values for all focal constructs (AUTH, INTENT, PGE, PGR, PSR, TRUST) met or came close to the
 436 .70 benchmark, which indicates that the internal consistency was satisfactory (Gefen & Straub, 2005;
 437 Henseler et al., 2015). As anticipated, ρ_A values resided between alpha and CR, typically being \geq
 438 .70, thereby reinforcing reliability in both the overall and country-specific samples (Henseler et al.,
 439 2015, 2016). Convergent validity was confirmed whereas the average variance extracted (AVE)
 440 surpassed .50, in certain cases where AVE was marginally below .50, a composite reliability (CR)
 441 greater than .60 satisfied, the Fornell–Larcker acceptability criterion (Fornell & Larcker, 1981). The
 442 Fornell–Larcker test confirmed that discriminant validity was legitimate as the square root of each
 443 construct's AVE was higher than its inter-construct correlations. The HTMT ratios were all below the
 444 conservative .85 threshold (Henseler et al., 2015, 2016). Overall, the measures demonstrate strong
 445 internal consistency and construct validity. Full statistics for alpha, ρ_A , CR, AVE, inter-construct
 446 correlations, and HTMT are reported in Table 3 and Table 4.

447 **Table 3: HTMT ratio**

Complete							
	AUTH	INTENT	PGE	PGR	PSR	TRUST	PGE x TRUST
AUTH							
INTENT	0.670						
PGE	0.509	0.681					
PGR	0.077	0.064	0.082				
PSR	0.731	0.543	0.414	0.077			
TRUST	0.144	0.269	0.117	0.436	0.094		
PGE x TRUST	0.118	0.122	0.090	0.043	0.061	0.093	

Greece Sample							
	AUTH	INTENT	PGE	PGR	PSR	TRUST	PGE x TRUST
AUTH							
INTENT	0.723						
PGE	0.505	0.575					
PGR	0.102	0.055	0.087				
PSR	0.763	0.594	0.420	0.075			
TRUST	0.084	0.156	0.091	0.444	0.071		
PGE x TRUST	0.112	0.131	0.114	0.052	0.132	0.051	
UK Sample							
	AUTH	INTENT	PGE	PGR	PSR	TRUST	PGE x TRUST
AUTH							
INTENT	0.603						
PGE	0.508	0.789					
PGR	0.082	0.114	0.105				
PSR	0.694	0.478	0.409	0.107			
TRUST	0.256	0.397	0.158	0.426	0.174		
PGE x TRUST	0.281	0.175	0.075	0.044	0.254	0.191	

Complete

	AUTH	INTENT	PGE	PGR	PSR	TRUST
AUTH	0.803					
INTENT	0.568	0.855				
PGE	0.404	0.573	0.846			
PGR	0.017	0.037	-0.020	0.804		
PSR	0.646	0.481	0.352	0.052	0.872	
TRUST	-0.009	0.211	0.069	0.389	-0.034	0.853
Greece Sample						
	AUTH	INTENT	PGE	PGR	PSR	TRUST
AUTH	0.795					
INTENT	0.605	0.867				
PGE	0.403	0.480	0.843			
PGR	0.034	-0.002	-0.046	0.795		
PSR	0.690	0.534	0.367	0.061	0.887	
TRUST	0.064	0.121	0.058	0.400	0.049	0.847
UK Sample						
	AUTH	INTENT	PGE	PGR	PSR	TRUST
AUTH	0.812					
INTENT	0.517	0.842				
PGE	0.399	0.661	0.851			

PGR	-0.005	0.077	0.008	0.816		
PSR	0.595	0.420	0.335	0.036	0.855	
TRUST	-0.094	0.307	0.086	0.382	-0.139	0.863

449 4.3 Structural Model

450 We evaluated coefficients of determination (R^2), predictive relevance (Q^2), and the significance of
 451 path estimates to test the structural model. The model explained a moderate proportion of variance in
 452 the pooled sample (R^2 : TRUST = .155; INTENT = .532). Subsample analyses indicated similar
 453 explanatory power for Greece (R^2 : TRUST = .163; INTENT = .467) and a greater variance explained
 454 for the UK (R^2 : TRUST = .169; INTENT = .629). Cross-validated redundancy indicated that out-of-
 455 sample predictive relevance was supported in all cases: pooled (Q^2 : TRUST = .148; INTENT = .470),
 456 Greece (Q^2 : TRUST = .146; INTENT = .430), and the UK (Q^2 : TRUST = .149; $Q^2_{\text{predict INTENT}}$
 457 = .513). Collectively, these indices indicate adequate explanatory capacity and robust predictive
 458 performance across contexts. Hypotheses were evaluated for the statistical significance of inter-
 459 construct paths through nonparametric bootstrapping, yielding path coefficients and standard errors
 460 (Hair et al., 2011). We applied bias-corrected, one-tailed bootstraps based on 10,000 resamples to
 461 obtain accurate confidence intervals for the indirect effects (Preacher & Hayes, 2008; Streukens &
 462 Leroi-Werelds, 2016). These approaches validate the model's structural adequacy and predictive
 463 validity. Table 5 illustrates all of the results.

464 Hypotheses were tested for the statistical significance of inter-construct paths using nonparametric
 465 bootstrapping to obtain path coefficients and standard errors (Hair et al., 2011). Indirect effects were
 466 estimated with bias-corrected, one-tailed bootstraps based on 10,000 resamples to yield precise
 467 confidence intervals (Preacher & Hayes, 2008; Streukens & Leroi-Werelds, 2016). These procedures
 468 support the model's structural adequacy and predictive validity. Full results appear in Table 5.

469 **Table 5: Hypotheses testing**

Hypoth.	Path	Overall Sample				Greece				United Kingdom			
		Coeff. (β)	SD	t-Value	p-Value	Coeff. (β)	SD	t-Value	p-Value	Coeff. (β)	SD	t-Value	p-Value
H1	AUTH → INTENT	0.335	0.034	9.746	0.000	0.373	0.049	7.566	0.000	0.295	0.050	5.927	0.000
H2	PSR → INTENT	0.148	0.037	4.023	0.000	0.163	0.056	2.931	0.002	0.162	0.048	3.361	0.000
H3	PGR → INTENT	-0.049	0.029	1.683	0.046	-0.053	0.041	1.282	0.100	-0.053	0.039	1.356	0.088
H4	TRUST → INTENT	0.199	0.034	5.861	0.000	0.095	0.051	1.864	0.031	0.314	0.049	6.392	0.000

Note. AUTH = perceived influencer authenticity; PSR = parasocial relationship; PGR = perceived greenwashing risk; TRUST = green trust; INTENT = sustainable purchase intention.

470 In the total sample, perceived influencer authenticity (AUTH) significantly predicted sustainable
471 purchase intention (INTENT), $\beta = .335$, $SE = .034$, $t = 9.75$, $p < .001$, thereby supporting H1. The
472 parasocial relationship (PSR) exhibited a strong association with INTENT, $\beta = .148$, $SE = .037$, $t =$
473 4.02 , $p < .001$, thereby supporting H2. Perceived greenwashing risk (PGR) demonstrated a minor
474 negative impact on INTENT, $\beta = -.049$, $SE = .029$, $t = 1.68$, $p = .046$; consequently, H3 garnered
475 limited support in the overall data. Green trust (TRUST) positively predicted INTENT, $\beta = .199$, SE
476 $= .034$, $t = 5.86$, $p < .001$, thereby supporting H4. Consequently, all hypotheses were validated for the
477 overall sample. Estimates for each country were in line with the overall results. In Greece, AUTH (β
478 $= .373$, $SE = .049$, $t = 7.57$, $p < .001$) and PSR ($\beta = .163$, $SE = .056$, $t = 2.93$, $p = .002$) were able to
479 predict INTENT (H1–H2 supported). PGR was not significant ($\beta = -.053$, $SE = .041$, $t = 1.28$, $p =$
480 $.100$), providing no Greek support for H3. TRUST exhibited a diminished yet significant correlation
481 with INTENT ($\beta = .095$, $SE = .051$, $t = 1.86$, $p = .031$), thereby corroborating H4. Consequently, only
482 H3 was unsupported for the Greek sample, whereas H1, H2, and H4 were supported. AUTH ($\beta =$
483 $.295$, $SE = .050$, $t = 5.93$, $p < .001$) and PSR ($\beta = .162$, $SE = .048$, $t = 3.36$, $p < .001$) again predicted
484 INTENT in the UK (H1–H2 supported). PGR was not significant ($\beta = -.053$, $SE = .039$, $t = 1.36$, $p =$
485 $.088$), thus not supporting H3. TRUST had a stronger effect on INTENT ($\beta = .314$, $SE = .049$, $t =$
486 6.39 , $p < .001$), which supports H4. Likewise, in the UK sample, H3 was not corroborated, whereas
487 H1, H2, and H4 were confirmed. Overall, the results indicate that both "being real" (AUTH) and
488 "being close" (PSR) influence intention, and TRUST provides another direct way to INTENT.
489 Learned skepticism (PGE), on the other hand, makes it more challenging for TRUST to turn into
490 intention in both countries. This shows that there is a boundary at the decision stage.

491 4.4 Mediation Analysis

492 We examined the indirect effects of authenticity (AUTH), parasocial relationship (PSR), and
493 perceived greenwashing risk (PGR) on sustainable purchase intention (INTENT) through green trust
494 (TRUST) utilizing bias-corrected bootstrapping with 10,000 resamples. The indirect effects were
495 assessed independently for the total sample and by nation. So, H5c was supported for the whole
496 sample, but H5a and H5b were not. In the overall sample, the indirect effect of AUTH → TRUST →
497 INTENT was not significant, with $\beta = .007$, $SE = .009$, $t = 0.75$, and $p = .225$ (H5a not supported).
498 The PSR → TRUST → INTENT pathway was not significant, $\beta = -.015$, $SE = .010$, $t = 1.60$, $p =$
499 $.055$ (H5b not supported). On the other hand, the PGR → TRUST → INTENT indirect effect was
500 significant and positive, $\beta = .078$, $SE = .014$, $t = 5.43$, $p < .001$ (H5c supported). This sign should be
501 interpreted in light of the coding of PGR: higher scores reflect lower perceived likelihood of
502 greenwashing (i.e., greater perceived claim credibility). Accordingly, the positive indirect effect
503 indicates that lower perceived greenwashing risk increases TRUST, which in turn increases INTENT.
504 This indicates that the way individuals perceived about risk at the post-level affected INTENT
505 indirectly through TRUST.

506 In the same way, H5c was supported, but H5a and H5b were not. In Greece, neither AUTH →
507 TRUST → INTENT ($\beta = .006$, $SE = .007$, $t = 0.87$, $p = .193$) nor PSR → TRUST → INTENT ($\beta =$
508 $-.002$, $SE = .007$, $t = 0.28$, $p = .390$) achieved statistical significance (H5a, H5b not supported). The
509 indirect effect from PGR to TRUST to INTENT was significant, with $\beta = .038$, $SE = .021$, $t = 1.82$,
510 and $p = .035$ (H5c supported). Conversely, the UK sample corroborated H5c and H5b, while H5a
511 was not substantiated. In the United Kingdom, the indirect effect of AUTH → TRUST → INTENT
512 was not significant, with $\beta = -.001$, $SE = .022$, $t = 0.04$, and $p = .486$ (H5a not supported). The PSR

513 → TRUST → INTENT indirect effect was significant and negative, $\beta = -.047$, $SE = .022$, $t = 2.18$, $p = .015$ (H5b supported, negative sign), indicating that, after accounting for other paths, the TRUST-mediated component of PSR was detrimental to INTENT. The indirect effect from PGR to TRUST to INTENT was important and positive, with a value of $\beta = .122$, $SE = .022$, $t = 5.51$, and $p < .001$ (H5c supported). Overall, mediation via TRUST was consistently observed for PGR (H5c) in all samples, absent for AUTH (H5a), and sample-contingent for PSR (H5b; significant and negative in the UK only).

520 **Table 6: Bias-corrected bootstrap indirect effects for mediation hypotheses in the overall**
 521 **sample and by country**

	Paths	Overall Sample				Greece				United Kingdom			
		Coeff. (β)	SD	t-value	p-value	Coeff. (β)	SD	t-value	p-value	Coeff. (β)	SD	t-value	p-value
H5a	AUTH → TRUST → INTENT	0.007	0.009	0.754	0.225	0.006	0.007	0.866	0.193	-0.001	0.022	0.036	0.486
H5b	PSR → TRUST → INTENT	-0.015	0.010	1.597	0.055	-0.002	0.007	0.278	0.390	-0.047	0.022	2.178	0.015
H5c	PGR → TRUST → INTENT	0.078	0.014	5.429	0.000	0.038	0.021	1.816	0.035	0.122	0.022	5.511	0.000

Note. AUTH = perceived influencer authenticity; PSR = parasocial relationship; PGR = perceived greenwashing risk; TRUST = green trust; INTENT = sustainable purchase intention. PGR is coded such that higher values indicate lower perceived likelihood of greenwashing (i.e., higher perceived claim credibility); therefore, positive indirect effects for PGR reflect the pathway: lower perceived greenwashing risk → higher TRUST → higher INTENT. Indirect effects significant at $p < .05$ are interpreted as evidence of mediation.

522 4.5 Moderation and Conditional indirect effects

523 We examined whether prior greenwashing exposure (PGE) influences the relationship between green
 524 trust (TRUST) and sustainable purchase intention (INTENT) (Table 7). The addition of the
 525 interaction term (PGE \times TRUST) enhanced the explained variance in INTENT across all samples:
 526 the overall model R^2 rose from .398 to .532 ($\Delta R^2 = .134$), in Greece from .403 to .467 ($\Delta R^2 = .064$),
 527 and in the United Kingdom from .432 to .629 ($\Delta R^2 = .197$), signifying significant incremental
 528 predictive power.

529 **Table 7: Late-Stage Moderation (PGE \times TRUST) on INTENT and Model Fit by Country**

Metric	Greece	United Kingdom	Overall
R^2_{INTENT} (base)	.403	.432	.398
R^2_{INTENT} (+ interaction)	.467	.629	.532
ΔR^2	.064	.197	.134
H6: PGE \times TRUST → INTENT, β (SE)	-.098 (.047)	-.118 (.031)	-.130 (.024)
t-value	2.10	3.85	5.36

<i>p</i> -value	.018	< .001	< .001
-----------------	------	--------	--------

530 In line with H6, the moderation was negative and statistically significant in each sample, indicating
 531 that higher PGE diminishes the positive correlation between TRUST and INTENT (Overall: $\beta =$
 532 $-.130$, SE = .024, $t = 5.36$, $p < .001$; Greece: $\beta = -.098$, SE = .047, $t = 2.10$, $p = .018$; UK: $\beta = -.118$,
 533 SE = .031, $t = 3.85$, $p < .001$). Simple-slope patterns show that the TRUST → INTENT effect is
 534 strongest when PGE is low and gets weaker as PGE gets higher (Figure 2).

535 **Figure 2: Simple slopes of TRUST predicting INTENT at low (−1 SD), mean, and high (+1 SD)**
 536 **levels of PGE (standardized, mean-centered). Panels display conditional effects of TRUST on**
 537 **INTENT by PGE for the overall sample, Greece, and the United Kingdom. Lines represent**
 538 **predicted INTENT across TRUST for PGE at −1 SD, 0, and +1 SD. In all samples, the slope of**
 539 **TRUST → INTENT decreases as PGE increases, consistent with a negative late-stage**
 540 **moderation.**

541 4.6 Conditional Indirect Effects (Moderated Mediation)

542 PGE moderates the TRUST → INTENT path, therefore any TRUST-mediated paths to INTENT are
 543 conditional on PGE. So, indirect effects obtained through TRUST (such as authenticity, a parasocial
 544 relationship, or a perceived risk of greenwashing) become weaker as PGE rises. Consequently,
 545 formal conditional indirect estimates must be interpreted at representative PGE levels (e.g.,
 546 low/mean/high); under this framework, larger mediated effects are anticipated at low PGE and
 547 smaller effects at high PGE, consistent with the negative PGE × TRUST interaction. We assessed the
 548 conditional indirect effects of AUTH, PSR, and PGR on INTENT through TRUST at three levels of
 549 PGE, employing the PROCESS tool of SMART-PLS4. In the overall sample, only the PGR →
 550 TRUST → INTENT pathway was significant and decreased with higher PGE (low PGE: $b=.135$,
 551 95% BCa CI [.102,.169], $p < .001$; mean PGE: $b=.089$, CI [.064,.117], $p < .001$; high PGE: $b=.043$, CI
 552 [.013,.075], $p = .012$). At any PGE level, AUTH and PSR did not have any indirect effects that were
 553 significant.

554 In Greece, the PGR → TRUST → INTENT indirect was significant at low and mean PGE but not at
 555 high PGE. This shows that the effect gets weaker as PGE increases (low: $b=.077$, CI [.027,.135],
 556 $p = .009$; mean: $b=.045$, CI [.013,.085], $p = .019$; high: $b=.013$, CI [-.022,.055], $p = .282$). Indirects
 557 through AUTH and PSR were not significant. We observed two patterns in the UK sample. Initially,
 558 the relationship PGR → TRUST → INTENT exhibited substantial positive indirect effects that
 559 diminished yet remained significant as PGE escalated (low: $b=.175$, CI [.131,.225], $p < .001$; mean:
 560 $b=.133$, CI [.096,.178], $p < .001$; high: $b=.091$, CI [.047,.144], $p = .001$). Second, PSR → TRUST →
 561 INTENT led to negative conditional indirect effects across all PGE levels (low: $b=-.074$, CI [-.124,-
 562 .025], $p = .006$; mean: $b=-.057$, CI [-.101,-.020], $p = .010$; high: $b=-.039$, CI [-.085,-.012], $p = .033$).
 563 Indirects through AUTH were not significant.

564 In conjunction with the previously reported significant PGE × TRUST interaction, these findings
 565 suggest late-stage moderated mediation: mediated effects conveyed through TRUST are most
 566 pronounced when audiences indicate reduced prior greenwashing exposure and diminish as PGE
 567 increases. This attenuation is most consistent for PGR in both countries; in the UK, PSR also has a
 568 small negative mediated effect that gets weaker (but stays the same) as PGE rises.

Table 8: Significant conditional indirect effects at levels of PGE.

Sample	Mediator (X)	PGE level	Indirect effect (b)	95% BCa CI	P-value
Overall	PGR	-1 SD	.135	[.102, .169]	< .001
	PGR	Mean	.089	[.064, .117]	< .001
	PGR	+1 SD	.043	[.013, .075]	.012
Greece	PGR	-1 SD	.077	[.027, .135]	.009
	PGR	Mean	.045	[.013, .085]	.019
	PGR	+1 SD	.013	[-.022, .055]	.282
United Kingdom	PGR	-1 SD	.175	[.131, .225]	< .001
	PGR	Mean	.133	[.096, .178]	< .001
	PGR	+1 SD	.091	[.047, .144]	.001
United Kingdom	PSR	-1 SD	-.074	[-.124, -.025]	.006
	PSR	Mean	-.057	[-.101, -.020]	.010
	PSR	+1 SD	-.039	[-.085, -.012]	.033
Note. PGE = Prior Greenwashing Exposure; PGR = Perceived Greenwashing Risk; PSR = Parasocial Relationship; AUTH = Perceived Influencer Authenticity (no significant conditional indirects in any sample). All estimates are unstandardized; variables for PROCESS were mean-centered within country.					

Figure 3 shows a clear pattern of moderated mediation in the late stage. As PGE goes up, the PGR → TRUST → INTENT indirect effect goes down (downward line). In Greece, it goes from .077 to a nonsignificant .013, and in the UK, it goes from .175 to .091 (all significant). So, TRUST has the strongest effect on PGR when PGE is low and the weakest effect when PGE is high. In the UK, PSR → TRUST → INTENT is negative at all PGE levels (CIs exclude 0) and gradually becomes less negative as PGE increases. There were no significant conditional indirects through AUTH. In general, the mediated effects of TRUST are strongest for low-PGE audiences yet become weaker when they have experienced greenwashing before.

578 **Figure 3: Moderated mediation: conditional indirect effects via TRUST across prior**
 579 **greenwashing exposure (PGE). Indirect paths: PGR → TRUST → INTENT (black) and PSR**
 580 **→ TRUST → INTENT (gray). Points depict effects at PGE = -1 SD, Mean, +1 SD; dashed lines**
 581 **show 95% BCa confidence intervals; asterisks mark effects with CIs excluding zero. Variables**
 582 **are standardized and mean-centered.**

583 **4.7 Cross-National Multi-Group Results (Greece vs. United Kingdom)**

584 Prior to comparing paths, we examined measurement invariance. Configural and compositional
 585 invariance were validated, facilitating meaningful multi-group comparisons of structural
 586 relationships. Multi-group tests revealed that PGE → INTENT and TRUST → INTENT were
 587 significantly weaker in Greece compared to the UK ($\Delta\beta = -.199$, $p = .001$; $\Delta\beta = -.219$, $p = .001$).
 588 Additionally, the indirect effect of PGR → TRUST → INTENT was also diminished in Greece ($\Delta\beta =$
 589 $-.084$, $p = .003$). On the contrary, the indirect path from PSR to TRUST to INTENT was stronger in
 590 Greece ($\Delta\beta = +.046$, $p = .019$); the difference from PSR to TRUST was small ($\Delta\beta = +.131$, $p = .056$).
 591 In overall, trust is a stronger predictor of intention in the UK, while PSR-based trust transmission is
 592 stronger in Greece (Table 9).

593 **Table 9: Significant Cross-National Multi-Group path.**

Path / Indirect Effect	$\Delta\beta$ (GR-UK)	p (two-tailed)
PGE → INTENT	−0.199	.001
TRUST → INTENT	−0.219	.001
PSR → TRUST	+0.131	.056
PGR → TRUST → INTENT (indirect)	−0.084	.003
PSR → TRUST → INTENT (indirect)	+0.046	.019

Note. Negative $\Delta\beta$ indicates a smaller coefficient in Greece than in the UK; positive $\Delta\beta$ indicates a larger coefficient in Greece.

594 **5 Discussion**

595 With green trust (TRUST) as the proximal mechanism and prior greenwashing exposure (PGE) as a
 596 boundary condition, this study set out to determine how "being real" (perceived influencer
 597 authenticity, AUTH) and "being close" (parasocial relationship, PSR) translate sustainability
 598 communication into green consumer choice. We find a consistent pattern across two national
 599 contexts (Greece, UK) using variance-based SEM with nonparametric bootstrapping (Hair et al.,
 600 2011) and bias-corrected (BCa) procedures for indirect effects: AUTH and PSR are both direct,
 601 positive predictors of sustainable purchase intention (INTENT), TRUST adds incremental
 602 explanatory power, and learned skepticism (PGE) consistently reduces the payoff of TRUST at the
 603 decision stage. Additionally, conditional indirect effects show that while PSR has a minor negative

604 mediated component in the UK, which is consistent with persuasion-knowledge activation, over-
605 familiarity, and expectation-violation dynamics in disclosure-salient contexts, post-level perceived
606 greenwashing risk (PGR) functions via TRUST.

607 5.1 Mechanisms: Distinct routes to intention, a shared hinge in trust

608 The notion that AUTH and PSR are non-redundant antecedents of sustainable choice is first
609 supported by the direct effects. AUTH → INTENT and PSR → INTENT are both positive and
610 significant across the pooled sample and within each country, with AUTH generally being the
611 stronger predictor (H1–H2). This aligns with research demonstrating that parasocial ties increase
612 receptivity and perceived benevolence, which can permeate endorsed claims (Bi & Zhang, 2023; Liu
613 & Zheng, 2024; Ye et al., 2024), as well as work positioning authenticity as value-congruent,
614 evidence-compatible signaling that lowers inferences of opportunism and raises claim credibility
615 (Bastounis et al., 2021; Chen et al., 2022; Wan et al., 2025). According to meta-analytic evidence,
616 green trust is a proximal driver of green purchase intentions net of attitudes (Chauhan & Goyal,
617 2024; Ha, 2022). Additionally, TRUST directly predicts INTENT in both countries (H4).

618 At the same time, mediation patterns illustrate how these paths operate when trait- and state-level
619 skepticism are employed together. The PGR → TRUST → INTENT path is strongly positive (in
620 general and by country). This means that when people think a certain post is less likely to involve
621 greenwashing, TRUST carries that evaluation into intention. This is consistent with research on claim
622 credibility, verifiability, and institutional signals (like verification badges) as factors that affect trust
623 (Liao et al., 2024; Román-Augusto et al., 2023). Although AUTH has a strong direct effect on
624 INTENT, the AUTH → TRUST → INTENT path is not significant. This suggests that once PGE and
625 PGR are included in the model, authenticity may exert a sufficiency-type heuristic ("real enough to
626 act") rather than operating primarily through trust. According to persuasion-knowledge theories, in
627 highly commercialized or contested green contexts, relational closeness can invite scrutiny or
628 attribution of impression-management. In our specification, TRUST is explained primarily by post-
629 level claim diagnostics (PGR), with learned skepticism (PGE) further shaping how trust translates
630 into intention, which may leave limited incremental variance for AUTH to explain within the trust
631 equation. In this manner, authenticity appears to work primarily as a cue for sufficiency and value
632 alignment ("real enough" and in line with my standards), directly affecting INTENT instead of
633 through building more trust once PGR and PGE are taken into account. This does not imply that
634 authenticity is unrelated to trust in general; rather, it suggests that in the presence of stronger state-
635 and trait-skepticism indicators, AUTH contributes chiefly through a direct evaluative route.

636 The UK exhibits a small negative mediated component for PSR (PSR → TRUST → INTENT) (Ye et
637 al., 2024). One interpretation is that a stronger PSR renders commercial intent and "ought-to-be-
638 authentic" standards more significant. When closeness is high, audiences may expect the influencer
639 to be more consistent and open, so any ambiguity in green claims or disclosure cues is seen as a
640 violation of those expectations, which lowers TRUST even though affinity remains the same. This
641 mechanism aligns with over-familiarity accounts (where proximity alters perceptions from
642 "relatable" to "strategic persona") and with persuasion-knowledge activation (where awareness of
643 persuasive intent induces discounting), resulting in a minor negative trust-channel effect. The fact
644 that PSR still has a positive direct effect on INTENT means that there are two opposite mechanisms
645 at work: warmth and familiarity, which assist individuals in arriving at choices directly, and a trust-
646 channel penalty, which works against it when people are skeptical. This mediated penalty is
647 significant as it is exclusive to the UK, which may reflect heightened attention to disclosure and
648 advertising-intent cues, resulting in a more sensitive trust calculus in the presence of high PSR.

649 **5.2 Dual skepticism: Trait PGE versus state PGR**

650 A crucial contribution is the concurrent analysis of trait-like PGE and state-like PGR. PGR, assessed
651 at the post level, indicates that reduced perceived risk fosters trust growth, subsequently enhancing
652 intention (positive mediation). PGE—accumulated experience with misleading green claims—does
653 not aim to foster trust in our specification; instead, it diminishes the benefits of trust at the final stage
654 (H6). Adding the PGE \times TRUST interaction significantly raises the explained variance in INTENT
655 ($\Delta R^2 = .134$ overall; .064 Greece; .197 UK), and the interaction is negative in both countries. Simple-
656 slope patterns show that TRUST \rightarrow INTENT is steepest when PGE is low and flattens out as PGE
657 goes up. The conditional indirects work the same way: PGR \rightarrow TRUST \rightarrow INTENT is most
658 powerful low PGE and weakest at higher PGE (still significant overall and in the UK, but not in
659 Greece). These findings collectively endorse a late-stage moderated mediation: even when trust is
660 established, its transformation into intention is less effective among audiences with extensive
661 histories of deception. This dual-skepticism framework aids in reconciling inconsistent findings in
662 the literature by differentiating state suspicion regarding a particular post (PGR) from trait resistance
663 grounded in previous experience (PGE) (de Sio et al., 2022; Nazish et al., 2025; Rehman et al., 2025;
664 Skordoulis et al., 2025).

665 **5.3 Cross-national portability and differences**

666 Once configural and compositional invariance are confirmed, cross-national contrasts can be
667 effectively analyzed. Two systematic differences became apparent. First, TRUST has a more
668 significant connection to INTENT in the UK than in Greece, and PGE has a stronger relationship to
669 INTENT in the UK. These patterns align with an information environment influenced by more
670 disclosure-salient and enforcement-visible advertising norms, including proactive UK enforcement
671 (ASA/CAP/CMA) and the prominence of the Green Claims Code, which may increase the diagnostic
672 weight placed on trust judgments and heighten sensitivity to “learned” greenwashing history. Second,
673 the mediated PGR \rightarrow TRUST \rightarrow INTENT path is less potent in Greece, while the PSR-based
674 mediation is stronger there. One interpretation posits that UK audiences depend more on claim-
675 quality signals and penalize PSR through the trust channel under skepticism, whereas Greek
676 audiences attribute greater significance to relational cues in establishing trust once measurement
677 equivalence is guaranteed. These variations are consistent with research demonstrating that
678 governance regimes and socio-cultural priors co-produce responses to persuasive technologies and
679 green messages (Colleoni et al., 2022; Kim & Wang, 2024; Strycharz & Segijn, 2024). However, we
680 are careful not to over-attribute to regulation or culture alone. The findings render it obvious that
681 TRUST is a proximal hinge whose marginal impact depends on PGE, while AUTH and PSR are
682 parallel, partially independent routes to intention. By (a) directly contrasting AUTH and PSR in one
683 model, (b) identifying PGE as a late-stage moderator rather than a generic covariate, and (c)
684 illustrating moderated mediation in which the magnitude, and occasionally the sign, of indirect
685 effects varies with learned skepticism, this expands conditional-process perspectives in sustainability
686 persuasion. The PSR result in the UK aligns with persuasion-knowledge theories: in a context where
687 commercial intent and disclosure cues are more likely to be foregrounded, greater perceived
688 closeness can amplify scrutiny and make trust more vulnerable to perceived ambiguity, while warmth
689 directly reinforces intention.

690 **6 Implications for practice**

691 Evidence suggests that creators and brands should use a proof-first authenticity strategy, especially in
692 high-PGE segments. This involves making claims that can be verified, providing third-party
693 evidence, offering life-cycle information easy to scan, and transferring credibility at the platform

694 level (for example, through verification) to raise TRUST's baseline (Liao et al., 2024; Román-
695 Augusto et al., 2023). PSR is nevertheless useful for attracting people's attention and receptivity, but
696 warmth without proof can hurt trust among users who are skeptical, as seen most clearly in the UK
697 results. PGE's audience segmentation is useful as trust-led narratives can easily move low-PGE
698 groups, while high-PGE segments need more evidence, claim traceability, and a better match
699 between the product and the influencer's area of expertise. The results support moves toward
700 standardized eco-metadata and enforceable substantiation that lower ambient skepticism and bring
701 forward the conversion efficiency of trust. This is in line with EU trends and the UK's approach of
702 enforcement plus guidance.

703 7 Conclusions, Limitations and future research

704 In conclusion, authenticity and parasocial connection are important for sustainable decision-making,
705 but trust is crucial, and its success depends on audiences' histories with greenwashing. While learned
706 resistance (PGE) hinders the conversion of trust into action, post-level risk assessments (PGR)
707 positively influence trust and intention. The architecture generalizes across Greece and the UK, while
708 differing in magnitude in ways that are consistent with informational climate and enforcement
709 salience. In practical terms, it implies that influencer sustainability campaigns should be anchored by
710 proven authenticity rather than just warmth, especially for high-skeptic segments. Theoretically,
711 identifying moderation at the late decision stage and modeling dual skepticism (state vs. trait)
712 clarifies when otherwise potent cues lose their effectiveness and how to increase green trust
713 conversion efficiency.

714 Several constraints merit acknowledgment. First, the design is cross-sectional and recall-anchored;
715 panel designs or field experiments that alter disclosure regimes or claim verifiability over time would
716 corroborate causal claims. Second, the dependent variable is intention rather than verified behavior;
717 external validity would be improved by incorporating behavioral telemetry (click-through, basket
718 data) or incentive-compatible choice. Third, we modeled a person-level moderator (PGE); additional
719 boundary conditions such as identity centrality, environmental knowledge, or regulatory literacy
720 could be included in future research. Fourth, broader samples (such as non-European contexts or
721 markets with weaker consumer protection) would test portability under different governance and
722 cultural priors, even though we established measurement/structural invariance for Greece and the
723 UK. Lastly, given documented variations in how verification, disclosure, and "machine heuristic"
724 cues shape trust, creator heterogeneity (micro vs. macro; human vs. virtual) should be investigated
725 within the same conditional-process framework (Breves & Liebers, 2025; Chen et al., 2022; Kalam et
726 al., 2024; Kim & Wang, 2024).

727 8 Appendix A

728 **Table A1: Measurement scales used in data collection.**

Perceived Influencer Authenticity (AUTH)		
AUTH1	The message was consistent with the creator's usual values/persona.	Adapted from (Campagna et al., 2023; Ilicic & Webster, 2016)
AUTH2	The sustainability claims felt sincere.	

AUTH3	The creator truly supports the product/practice.	
AUTH4	Overall, the creator came across as authentic.	
AUTH5	This creator seemed genuine in that post. (<i>deleted</i>)	
Parasocial Relationship (PSR)		
PSR1	I feel like I know this creator.	Adapted from (Rubin et al., 1985; Sokolova & Kefi, 2020)
PSR2	I would miss this creator if they stopped posting.	
PSR3	I often look forward to this creator's content.	
PSR4	I feel this creator understands people like me.	
PSR5	I sometimes think about this creator when I'm not viewing their content. (<i>deleted</i>)	
Perceived Greenwashing Risk (PGR)		
PGR1	This post might exaggerate its sustainability claims.	Adapted from (Chen & Chang, 2013; Hameed et al., 2021)
PGR2	The claims in this post may be misleading.	
PGR3	This post makes sustainability claims without clear proof or verification.	
PGR4	Some information in the post seemed too good to be true.	
PGR5	The environmental benefits in this post may be overstated.	
Green Trust (TRUST)		
TRUST1	I trust the environmental claims made in that post.	Adapted from (Chen, 2010)
TRUST2	The sustainability information provided seemed reliable.	
TRUST3	The environmental performance implied by this post seemed dependable.	

TRUST4	Overall, I trust this recommendation regarding its environmental claims.	
Prior Greenwashing Exposure (PGE)		
PGE1	In the past 12 months, I have often encountered sustainability claims that later proved misleading.	Adapted from (Mohr et al., 1998)
PGE2	In the past, I have felt deceived by “green” branding.	
PGE3	I have seen brands exaggerate environmental benefits.	
PGE4	Because of past experiences, I regularly question sustainability claims. (<i>deleted</i>)	
Sustainable Purchase Intention (INTENT)		
INTENT1	I intend to buy this sustainable product.	Adapted from (Higueras-Castillo et al., 2024; Spears & Singh, 2004)
INTENT2	I am likely to choose this over a non-sustainable alternative.	
INTENT3	I would recommend this product because of its sustainability.	

729 **9 Conflict of Interest**

730 *The authors declare that the research was conducted in the absence of any commercial or financial*
 731 *relationships that could be construed as a potential conflict of interest.*

732 **10 Author Contributions**

733 SB: Writing – review & editing, Funding acquisition, Validation, Writing – original draft, Writing –
 734 review & editing, Formal analysis, Methodology, Data curation, Visualization, Conceptualization.
 735 IY: Writing – review & editing, Project administration, Conceptualization, Methodology.

736 **11 Funding**

737 This research did not receive any specific grant from funding agencies in the public, commercial, or
 738 not-for-profit sectors.

739 **12 Data Availability Statement**

740 The raw data supporting the conclusions of this article will be made available by the authors, without
 741 undue reservation.

742 **13 References**

743 Balaskas, S., Stamatiou, I., Komis, K., & Nikolopoulos, T. (2025). Perceptions of Greenwashing and
744 Purchase Intentions: A Model of Gen Z Responses to ESG-Labeled Digital Advertising. *Risks*,
745 13(8). <https://doi.org/10.3390/risks13080157>

746 Bastounis, A., Buckell, J., Hartmann-boyce, J., Cook, B., King, S., Potter, C., Bianchi, F., Rayner, M., &
747 Jebb, S. A. (2021). The impact of environmental sustainability labels on willingness-to-pay for
748 foods: A systematic review and meta-analysis of discrete choice experiments. In *Nutrients* (Vol.
749 13, Number 8). MDPI AG. <https://doi.org/10.3390/nu13082677>

750 Bi, N. C., & Zhang, R. (2023). "I will buy what my 'friend' recommends": the effects of parasocial
751 relationships, influencer credibility and self-esteem on purchase intentions. *Journal of Research*
752 in *Interactive Marketing*, 17(2), 157–175. <https://doi.org/10.1108/JRIM-08-2021-0214>

753 Breves, P., & Liebers, N. (2025). The Impact of Following Duration on the Perception of Influencers
754 and Their Persuasive Effectiveness Explained by Parasocial Relationship Stages. *Journal of*
755 *Current Issues and Research in Advertising*, 46(1), 1–18.
756 <https://doi.org/10.1080/10641734.2024.2320186>

757 Campagna, C. L., Donthu, N., & Yoo, B. (2023). Brand authenticity: literature review, comprehensive
758 definition, and an amalgamated scale. *Journal of Marketing Theory and Practice*, 31(2), 129–
759 145. <https://doi.org/10.1080/10696679.2021.2018937>

760 Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., & Walker, K.
761 (2020). Purposive sampling: complex or simple? Research case examples.
762 *Journals.Sagepub.Com*, 25(8), 652–661. <https://doi.org/10.1177/1744987120927206>

763 Carranza, R., Díaz, E., Martín-Consuegra, D., & Fernández-Ferrín, P. (2020). PLS-SEM in business
764 promotion strategies. A multigroup analysis of mobile coupon users using MICOM. *Industrial*
765 *Management & Data Systems*, 120(12), 2349–2374. <https://doi.org/10.1108/IMDS-12-2019-0726>

767 Chauhan, S., & Goyal, S. (2024). A meta-analysis of antecedents and consequences of green trust. In
768 *Journal of Consumer Marketing* (Vol. 41, Number 4, pp. 459–473). Emerald Publishing.
769 <https://doi.org/10.1108/JCM-10-2023-6335>

770 Chen, X., Hyun, S. S., & Lee, T. J. (2022). The effects of parasocial interaction, authenticity, and self-
771 congruity on the formation of consumer trust in online travel agencies. *International Journal of*
772 *Tourism Research*, 24(4), 563–576. <https://doi.org/10.1002/jtr.2522>

773 Chen, Y. S. (2010). The drivers of green brand equity: Green brand image, green satisfaction, and
774 green trust. *Journal of Business Ethics*, 93(2), 307–319. <https://doi.org/10.1007/s10551-009-0223-9>

776 Chen, Y. S., & Chang, C. H. (2013). Greenwash and Green Trust: The Mediation Effects of Green
777 Consumer Confusion and Green Perceived Risk. *Journal of Business Ethics*, 114(3), 489–500.
778 <https://doi.org/10.1007/s10551-012-1360-0>

779 Chen, Y. S., Lin, C. Y., & Weng, C. S. (2015). The influence of environmental friendliness on green
780 trust: The mediation effects of green satisfaction and green perceived quality. *Sustainability*
781 (*Switzerland*), 7(8), 10135–10152. <https://doi.org/10.3390/su70810135>

782 Chin, W. W. (1998). The partial least squares approach to structural equation modeling. *Modern*
783 *Methods for Business Research*, 295(2), 295–336.

784 Chin, W. W. (2009). How to write up and report PLS analyses. In *Handbook of partial least squares:*
785 *Concepts, methods and applications* (pp. 655–690). Springer.

786 Colleoni, E., Romenti, S., Valentini, C., Badham, M., Choi, S. I., Kim, S., & Jin, Y. (2022). Does Culture
787 Matter? Measuring Cross-Country Perceptions of CSR Communication Campaigns about
788 COVID-19. *Sustainability (Switzerland)*, 14(2). <https://doi.org/10.3390/su14020889>

789 de Sio, S., Zamagni, A., Casu, G., & Gremigni, P. (2022). Green Trust as a Mediator in the
790 Relationship between Green Advertising Skepticism, Environmental Knowledge, and Intention
791 to Buy Green Food. *International Journal of Environmental Research and Public Health*, 19(24).
792 <https://doi.org/10.3390/ijerph192416757>

793 Diao, Y., Liang, M., Jin, C. H., & Woo, H. K. (2025). Virtual Influencers and Sustainable Brand
794 Relationships: Understanding Consumer Commitment and Behavioral Intentions in Digital
795 Marketing for Environmental Stewardship. *Sustainability (Switzerland)*, 17(13).
796 <https://doi.org/10.3390/su17136187>

797 Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable
798 variables and measurement error. *Journal of Marketing Research*, 18(1), 39–50.

799 Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and
800 annotated example. *Communications of the Association for Information Systems*, 16(1), 5.

801 Glaveli, N. (2021). Two Countries, Two Stories of CSR, Customer Trust and Advocacy Attitudes and
802 Behaviors? A Study in the Greek and Bulgarian Telecommunication Sectors. *European*
803 *Management Review*, 18(1), 151–166. <https://doi.org/10.1111/emre.12417>

804 Götz, O., Liehr-Gobbers, K., & Krafft, M. (2010). Evaluation of Structural Equation Models Using the
805 Partial Least Squares (PLS) Approach. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang
806 (Eds.), *Handbook of Partial Least Squares* (pp. 691–711). Springer Berlin Heidelberg.
807 https://link.springer.com/10.1007/978-3-540-32827-8_30

808 Ha, M. T. (2022). Greenwash and green brand equity: The mediating role of green brand image,
809 green satisfaction, and green trust, and the moderating role of green concern. *PLoS ONE*, 17(11
810 November). <https://doi.org/10.1371/journal.pone.0277421>

811 Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second
812 language and education research: Guidelines using an applied example. *Research Methods in*
813 *Applied Linguistics*, 1(3), 100027.

814 Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. (2006). *Multivariate data analysis*.
815 *Uppersaddle River*. NJ: Pearson Prentice Hall.

816 Hair, J., Sarstedt, M., Matthews, L. M., & Ringle, C. M. (2016). Identifying and treating unobserved
817 heterogeneity with FIMIX-PLS: part I-method. *European Business Review*, 28(1), 63–76.

818 Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural
819 equation modeling (PLS-SEM): An emerging tool in business research. *European Business
820 Review*, 26(2), 106–121.

821 Hameed, I., Hyder, Z., Imran, M., & Shafiq, K. (2021). Greenwash and green purchase behavior: an
822 environmentally sustainable perspective. *Environment, Development and Sustainability*, 23(9),
823 13113–13134. <https://doi.org/10.1007/s10668-020-01202-1>

824 Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research:
825 updated guidelines. *Industrial Management & Data Systems*, 116(1), 2–20.

826 Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity
827 in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*,
828 43, 115–135.

829 Higueras-Castillo, E., Liébana-Cabanillas, F., Santos, M. A. Dos, Zulauf, K., & Wagner, R. (2024). Do
830 you believe it? Green advertising skepticism and perceived value in buying electric vehicles.
831 *Sustainable Development*, 32(5), 4671–4685. <https://doi.org/10.1002/sd.2932>

832 Ilicic, J., & Webster, C. M. (2016). Being True to Oneself: Investigating Celebrity Brand Authenticity.
833 *Psychology and Marketing*, 33(6), 410–420. <https://doi.org/10.1002/mar.20887>

834 Janadari, M. P. N., Sri Ramalu, S., & Wei, C. (2016). *Evaluation of measurement and structural model
835 of the reflective model constructs in PLS-SEM*.
836 <https://dspace152.healthnet.org.np/items/1fc5f460-cf9b-4839-b5c3-bcbe9bdff18e>

837 Kalam, A., Goi, C. L., & Tiong, Y. Y. (2024). Celebrity endorsers and social media influencers for
838 leveraging consumer advocacy and relationship intentions – a multivariate mediation analysis.
839 *Marketing Intelligence and Planning*, 42(1), 84–119. <https://doi.org/10.1108/MIP-04-2023-0184>

841 Kesmodel, U. S. (2018). Cross-sectional studies—what are they good for? *Acta Obstetricia et
842 Gynecologica Scandinavica*, 97(4), 388–393.

843 Khurana, T., Pannu, S., Dalal, G., Vyas, P., & Rani, P. (2025). How Do Social Media Influencers'
844 Credibility and Brand Trust Drive Purchase Intentions for Green Cosmetics? Insights from SOBC
845 Approach. *NMIMS Management Review*, 33(3), 171–185.
846 <https://doi.org/10.1177/09711023251352318>

847 Kim, D., & Wang, Z. (2024). Social media influencer vs. virtual influencer: The mediating role of
848 source credibility and authenticity in advertising effectiveness within AI influencer marketing.

849 *Computers in Human Behavior: Artificial Humans*, 2(2), 100100.
850 <https://doi.org/10.1016/j.chbah.2024.100100>

851 Kim, J., Henry, E. A., Carter, J., & Soysal, Y. N. (2025). Globalization, populism, and climate
852 skepticism: untangling varieties and pathways. *Environmental Sociology*, 1–23.
853 <https://doi.org/10.1080/23251042.2025.2536342>

854 Kılıç, İ., & Gürlek, M. (2024). Green influencer marketing: conceptualization, scale development, and
855 validation: an application to tourism products. *Journal of Sustainable Tourism*, 32(10), 2181–
856 2206. <https://doi.org/10.1080/09669582.2023.2273755>

857 Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root
858 and gamma-exponential methods. *Information Systems Journal*, 28(1), 227–261.
859 <https://doi.org/10.1111/isj.12131>

860 Liao, C. H., Hsieh, J. K., & Kumar, S. (2024). Does the verified badge of social media matter? The
861 perspective of trust transfer theory. *Journal of Research in Interactive Marketing*, 18(6), 1017–
862 1033. <https://doi.org/10.1108/JRIM-10-2023-0339>

863 Liu, X., & Zheng, X. (2024). The persuasive power of social media influencers in brand credibility and
864 purchase intention. *Humanities and Social Sciences Communications*, 11(1).
865 <https://doi.org/10.1057/s41599-023-02512-1>

866 Mohr, L. A., Eroğlu, D., & Ellen, P. S. (1998). The development and testing of a measure of
867 skepticism toward environmental claims in marketers' communications. *Journal of Consumer
868 Affairs*, 32(1), 30–55. <https://doi.org/10.1111/j.1745-6606.1998.tb00399.x>

869 Mustapa, M. A. C., & Kallas, Z. (2025). Meta-Analysis of Consumer Willingness to Pay for Short Food
870 Supply Chain Products. *Global Challenges*, 9(3). <https://doi.org/10.1002/gch2.202400154>

871 Nazish, M., Khan, Z., Khan, A., Naved Khan, M., & Ramkissoon, H. (2025). "Green Intentions, Green
872 Actions": The Power of Social Media and the Perils of Greenwashing. *Journal of Global
873 Marketing*, 38(3), 214–233. <https://doi.org/10.1080/08911762.2024.2429517>

874 Nyimbili, F., & Nyimbili, L. (2024). *Types of purposive sampling techniques with their examples and
875 application in qualitative research studies*. <https://doi.org/10.37745/bjmas.2022.0419>

876 Olsen, C., & St George, D. M. M. (2004). Cross-sectional study design and data analysis. *College
877 Entrance Examination Board*, 26(03), 2006.

878 Piracci, G., Lamonaca, E., Santeramo, F. G., Boncinelli, F., & Casini, L. (2024). On the willingness to
879 pay for food sustainability labelling: A meta-analysis. *Agricultural Economics (United Kingdom)*,
880 55(2), 329–345. <https://doi.org/10.1111/agec.12826>

881 Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in
882 behavioral research: a critical review of the literature and recommended remedies. *Journal of
883 Applied Psychology*, 88(5), 879.

884 Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social
885 science research and recommendations on how to control it. *Annual Review of Psychology*, 63,
886 539–569.

887 Preacher, K. J., & Hayes, A. F. (2008). *Assessing mediation in communication research*. The Sage
888 sourcebook of advanced data analysis methods for communication

889 Rehman, A. U., Kumar, S., Alghafes, R., Broccardo, L., & Patel, A. K. (2025). Role of Greenwashing in
890 Influencing Brand Attitude and Consumption: Identifying Sustainable Business Strategies.
891 *Business Strategy and the Environment*. <https://doi.org/10.1002/bse.4300>

892 Ringle, C., Da Silva, D., & Bido, D. (2015). Structural equation modeling with the SmartPLS. *Bido, D.,*
893 *Da Silva, D., & Ringle, C. (2014). Structural Equation Modeling with the Smartpls. Brazilian*
894 *Journal Of Marketing*, 13(2). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2676422

895 Román-Augusto, J. A., Garrido-Lecca-Vera, C., Lodeiros-Zubiria, M. L., & Mauricio-Andia, M. (2023).
896 How to Reach Green Word of Mouth through Green Trust, Green Perceived Value and Green
897 Satisfaction. *Data*, 8(2). <https://doi.org/10.3390/data8020025>

898 Rublin, A. M., Perse, E. M., & Powell, R. A. (1985). LONELINESS, PARASOCIAL INTERACTION, AND
899 LOCAL TELEVISION NEWS VIEWING. In *Human Communication Research* (Vol. 12, Number 2).

900 Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equation modeling. In
901 *Handbook of market research* (pp. 587–632). Springer.

902 Skordoulis, M., Vrentzou, A. D., Arsenou, E., Kalantonis, P., & Papagrigoriou, A. (2025). Effectiveness
903 of Social Media Influencers in Tourism Marketing: The Case of Eco-Friendly Hotels in Greece.
904 *Springer Proceedings in Business and Economics*, 909–917. https://doi.org/10.1007/978-3-031-81962-9_98

906 Sokolova, K., & Kefi, H. (2020). Instagram and YouTube bloggers promote it, why should I buy? How
907 credibility and parasocial interaction influence purchase intentions. *Journal of Retailing and*
908 *Consumer Services*, 53. <https://doi.org/10.1016/j.jretconser.2019.01.011>

909 Spears, N., & Singh, S. N. (2004). Measuring attitude toward the brand and purchase intentions.
910 *Journal of Current Issues and Research in Advertising*, 26(2), 53–66.
911 <https://doi.org/10.1080/10641734.2004.10505164>

912 Stevens, J. (2002). *Applied multivariate statistics for the social sciences* (Vol. 4). Lawrence Erlbaum
913 Associates Mahwah, NJ.

914 Streukens, S., & Leroi-Werelds, S. (2016). Bootstrapping and PLS-SEM: A step-by-step guide to get
915 more out of your bootstrap results. *European Management Journal*, 34(6), 618–632.

916 Strycharz, J., & Segijn, C. M. (2024). Ethical side-effect of dataveillance in advertising: Impact of data
917 collection, trust, privacy concerns and regulatory differences on chilling effects. *Journal of*
918 *Business Research*, 173. <https://doi.org/10.1016/j.jbusres.2023.114490>

919 Suen, L.-J. W., Huang, H.-M., & Lee, H.-H. (2014). A comparison of convenience sampling and
920 purposive sampling. *Hu Li Za Zhi*, 61(3), 105.
921 <https://search.proquest.com/openview/56f5d21e88d7b1f484434edd4b42f210/1?pq-origsite=gscholar&cbl=866377>
922

923 Wagner, R., & Grimm, M. S. (2023). Empirical Validation of the 10-Times Rule for SEM. In L.
924 Radomir, R. Ciornea, H. Wang, Y. Liu, C. M. Ringle, & M. Sarstedt (Eds.), *State of the Art in
925 Partial Least Squares Structural Equation Modeling (PLS-SEM)* (pp. 3–7). Springer International
926 Publishing. https://link.springer.com/10.1007/978-3-031-34589-0_1

927 Wan, C., Lee, D., Ng, P. M. L., & Leung, T. C. H. (2025). Going Green with AI-Powered Virtual
928 Influencers: The Role of Social Cues, Source Credibility and Environmental Identity.
929 *International Journal of Human-Computer Interaction*.
930 <https://doi.org/10.1080/10447318.2025.2561771>

931 Wang, D., & Walker, T. (2023). How to Regain Green Consumer Trust after Greenwashing:
932 Experimental Evidence from China. *Sustainability (Switzerland)*, 15(19).
933 <https://doi.org/10.3390/su151914436>

934 Wong, K. K.-K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using
935 SmartPLS. *Marketing Bulletin*, 24(1), 1–32.

936 Ye, S., Liu, G., Lin, Y., Lin, Z., Shi, Y., & Huang, Z. (2024). Research on the negative effect of product
937 scarcity appeals on the purchase intention of green products and its mechanism. *Frontiers in
938 Psychology*, 15. <https://doi.org/10.3389/fpsyg.2024.1225011>

939 Zatwarnicka-Madura, B., Nowacki, R., & Wojciechowska, I. (2022). Influencer Marketing as a Tool in
940 Modern Communication—Possibilities of Use in Green Energy Promotion amongst Poland's
941 Generation Z. *Energies*, 15(18). <https://doi.org/10.3390/en15186570>

942 Zhuang, W., Luo, X., & Riaz, M. U. (2021). On the Factors Influencing Green Purchase Intention: A
943 Meta-Analysis Approach. *Frontiers in Psychology*, 12.
944 <https://doi.org/10.3389/fpsyg.2021.644020>

945