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Machine learning holds great promise for classifying and identifying fossils, and has
recently been marshaled to identify trackmakers of dinosaur footprints and address
long-standing debates over whether some dinosaur tracks are the oldest birds or orni-
thopods (duck-billed herbivores and kin) in the fossil record, or alternatively were made
by nonavian theropods. Existing methods in paleontology, however, require supervision
and a priori labeling of training data by researchers, which can lead to bias. We employ
an unsupervised machine learning technique for recognizing inherent patterns in shape
data, using a disentangled variational autoencoder network, to a database of 1,974
footprints, spanning a diversity of dinosaurs across their evolutionary history, including
modern birds. Our neural network identified eight features of shape variation that most
differentiate these tracks: overall load and shape (amount of ground contact area), digit
spread, digit attachment, heel load, digit and heel emphasis, loading position, heel posi-
tion, and left—right load. With the unsupervised process finished, we a posteriori labeled
each track based on published expert judgments, plotted them into morphospace, and
applied distance metrics to group means and nearest neighbors, which showed 80 to
93% agreement with expert identifications. Controversial Late Triassic-Early Jurassic
bird-like tracks group with fossil and modern birds and some Middle Jurassic three-toed
tracks with ornithopods, supporting an older origin for these groups than recorded
by body fossils. We provide an app, DinoTracker, to make this process accessible, and
source code that can be adapted to other cases where paleontologists or biologists are
studying patterns of shape variation.
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In recent years, machine learning has been touted as a new frontier in classifying and
identifying fossils (1-3). Some of the first heralded case studies endeavored to identify
trackmakers of dinosaur footprints (4—7). This is an important goal, as footprints and
other trace fossils such as burrows, which record the activities of ancient organisms, are
often more numerous than bones, shells, and other physical remains of the organisms
themselves (body fossils) (8, 9). Because trace fossils reflect interactions between animals
and their environments, they can reveal aspects of behavior difficult to discern from body
fossils, such as preferred habitats and locomotion styles (10-12). Furthermore, because
trace fossils can be locally abundant and are embedded into the sediments in which they
formed and cannot be transported like a body fossil, they provide critical information on
the distribution and origination times of species and groups. Indeed, major groups such
as tetrapods (limbed land-living vertebrates), amniotes (fully terrestrial tetrapods), and
dinosauromorphs (dinosaurs and their closest kin) are purported to appear in the fossil
record first as footprints, sometimes many millions of years before their oldest body
fossils (13—15).

It is difficult, however, to determine which features are most useful in distinguishing
footprints from each other and in identifying their makers. Unless a skeleton is fossilized
in its tracks, a footprint cannot be matched definitively with its creator. Sometimes unique
features of a trackmaker’s foot can register in a footprint and help recognize a trackmaker,
but this “synapomorphy-based” method (16, 17) is limited because not all dinosaurs have
bespoke attributes of their feet, and even if they do, they might be subtle and not easily
preserved in footprints. Additionally, track shape is influenced by dynamic interaction of
factors beyond the anatomy of the foot, including limb motion and substrate properties
(18). Therefore, most dinosaur tracks are classified and assigned to general trackmaker
groups based on their overall size and shape, as determined qualitatively or semiquanti-
tatively by experts. Occasionally this is straightforward and results in widespread agreement
among experts, as with bathtub-sized footprints that could only be made by colossal
sauropods (17). Often, however, it is challenging, as illustrated by long-standing debates
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whether certain three-toed tracks were made by herbivorous orni-
thopods or carnivorous theropods (4, 19-21), and whether various
bird-like tracks were made by true birds or closely related thero-
pods (22-24). The latter conundrum, in particular, has broad
implications for understanding the timing of avian origins, and
the environments in which birds evolved flight.

Machine learning has great potential to recognize patterns in
footprint shape and find matches with trackmakers. Recent studies
have delivered promising results (4—7), and demonstrate the poten-
tial for machine learning to contribute to paleontology with its
ability to notice patterns, untangle variation, and classify data. Yet,
previous studies have one key limitation: their computational neu-
ral networks need to be supervised. This is true of nearly every
paleontological application of machine learning thus far (1, but
see ref. 25). For instance, in their pioneering study inaugurating
the use of machine learning in identifying dinosaur tracks,
Lallensack et al. (4) had to first train their neural network with a
training dataset of tracks labeled as either theropod or ornithischian
(~ornithopod), as determined a priori by human observers. If these
identifications are wrong, then the output of the machine learning
model will be biased. Unsupervised methods that circumvent this
limitation are held as the future of machine learning in paleontol-
ogy, but are computationally challenging to implement (1).

Here we provide a robust unsupervised method for recognizing
inherent patterns in shape data of paleontological specimens, uti-
lizing a disentangled variational autoencoder (f-VAE), and apply
it to a case study of dinosaur footprint shape. Unlike previous
studies, our approach does not require a priori labeling of tracks
(e.g., theropod vs. ornithopod) in a training phase, but rather the
neural network algorithm searches in an unsupervised manner for
those features that vary independently and that most differentiate
the suite of tracks. Our focus, therefore, is fundamentally on char-
acterization of tracks based on their maximum degrees of shape
variation. The neural network identifies the most meaningful fea-
tures of the footprints, and then with this information in hand,
the human observer can interpret those features to present
informed hypotheses for trackmaker identifications. We make this
process user-friendly by providing an app, called DinoTracker
(26), which can be downloaded to a mobile or desktop device,
into which users can import a silhouette of any track—such as
one recently collected in the field—and compare it with the foot-
prints in our dataset and the results of our model. We also provide
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the source code for our network, which can be adapted to other
cases where patterns in fossil or biological shape are being studied.

Results

The analytical pipeline for our disentangled variational autoen-
coder method is shown in Fig. 1. It uses an artificial neural net-
work to process our dataset of 1,974 two-dimensional dinosaur
footprint silhouettes, which are presented to the network without
any taxonomic labels such as “theropod” or “ornithopod.” Details
of the network analysis are given in Materials and Methods and
SI Appendix. During the encoding phase (Fig. 14), the network
processes the dataset through a dimensional bottleneck, creating
a compressed disentangled representation of the entire dataset
(Fig. 1B), which is philosophically akin to a multivariate method
like principal component analysis (PCA). This creates a latent
space that is interpretable for the human mind, unlike the strictly
linear PCA that reduces datasets to principal components that are
statistical abstractions and thus not necessarily able to be visualized
by humans. Then, during the decoding phase (Fig. 1C), the net-
work reconstructs the data.

Critical to the creation of the latent space is the § parameter,
which determines the strength of the data disentanglement during
encoding. f must be optimized, and is a tradeoff between accuracy
of the resulting footprint reconstructions in the decoding phase
and the number of parameters that the network identifies as key
features of footprint variation. The lower the p value, the more
accurate the final decoded footprint reconstructions, but the more
parameters needed. Our sensitivity analyses show that f = 15
delivers accurate footprints with a low number of used features in
contrast to, for instance, f = 1 (Fig. 1C), and thus we chose to
proceed with f = 15.

As an additional sensitivity analysis and to increase the training
data size, we employed data augmentation techniques to test how
well the model can reconstruct portions of known footprints if
those portions are altered. We modified the footprint silhouettes
so they were randomly rotated, mirrored, stretched, or com-
pressed, or to remove part of the track (S/ Appendix, Fig. S1), as
well as slight edge modifications. When the network reconstructed
those modified or deleted parts, the reconstructions visually match
closely to the original unmodified versions (Fig. 1D), lending
confidence to the decoding process.
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Fig. 1. The disentangled variational autoencoder method. Silhouettes of dinosaur footprints (A) are processed through an artificial neural network (B) with a
dimensional bottleneck in its center. Due to a disentanglement condition, whose strength is given by the p parameter, the compressed representation, created
by the encoder part of the network and called the latent space z, is interpretable to the human mind. From this state, the decoder reconstructs the data (C).
The reconstruction is shown for two different p values resulting in a different reconstruction quality and number of features. The method is capable of sensible

reconstruction of missing parts (D).
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We also analyzed the performance of the network by reserving
4% of the original data (test data) from our 1,974-footprint data-
set that was not used in the original model training (train data).
When confronted with test data the network is adept at recogniz-
ing and classifying variation in tracks that it has yet to see in the
training data (S/ Appendix, Fig. S2), demonstrating that network
performance is robust and does not simply memorize.

With the robustness of our approach established, we then ran
the model (with p = 15). From a maximum number of 50 possible
“representations” (limited by the network architecture)—the fea-
tures of variation among the footprints—the network generated
10 disentangled features which are highlighted in Fig. 2. Among
these, two are augmentation features representing rotations and
mirroring effects and were excluded (S7 Appendix) from further
analysis. The remaining eight are the features of maximum shape
variation in the footprints, and thus the most useful ways to dis-
tinguish them. Based on a visual examination of their observed
shape range among the tracks (Fig. 24), we interpret them as
representing: overall load and shape (amount of ground contact
area), digit spread, digit attachment, heel load, digit and heel
emphasis, loading position, heel position, and left—right load.

With these features of maximum variation identified, we can
interrogate how they relate to trackmaker identifications, by a
posteriori labeling each track based on expert identifications in
the literature. We classified the tracks into seven groups. Five of
these are affirmatively identified by experts: ornithopods, nonavian
theropods, fossil birds, extant birds, quadrupedal dinosaurs
(including sauropods, stegosaurs, and ankylosaurs). The remaining
two are equivocal: tracks that are bird-like but might belong to
nonavian theropods (22-24) and tracks from the Middle Jurassic
of Scotland that could be either theropod or ornithopod (27, 28).
Average values and total distributions for each of the eight foot-
print features in these seven groups are shown in Fig. 2B.

Feature 1, overall load and shape of the track, exhibits the max-
imum amount of variation, and thus is most important in distin-
guishing and classifying footprints. Tracks attributed to quadrupedal
dinosaurs, ornithopods, nonavian theropods, fossil birds, and extant
birds are clearly differentiated in average values, and the total spread
of their values (ranges) is staggered relative to each other (Fig. 241),
meaning they map to distinct regions of trait space. Interestingly,
tracks attributed to ornithopods and nonavian theropods are closer
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to each other in this feature than nonavian theropods are to their
evolutionary descendants, fossil, and extant birds. The taxonomic
groups are less consistently distinguished from each other for the
other seven features, although individual traits are often useful in
discriminating between certain of the groups—for instance, quad-
rupedal dinosaurs are highly different from ornithopods and thero-
pods in Feature 3, digit attachment (Fig. 243).

To encapsulate and visualize the range of variation among track-
maker groups, and to aid identification of problematic tracks,
we distilled information from all eight features into a single
two-dimensional B-VAE morphospace map, using t-distributed
stochastic neighbor embedding (t-SNE) (Fig. 3). This plot shows
broad overlap in places between nonavian theropods and ornitho-
pods, but generally ornithopods have more negative values and
nonavian theropods more positive values on the Y axis (second
t-SNE component), which helps to distinguish end-members of
each group. Quadrupedal dinosaurs form their own cluster at the
upper left, and interestingly there are two distinct clusters that
both mix modern and extinct birds. Some, but not all, problematic
Middle Jurassic tracks cluster more tightly with theropods than
ornithopods, and nearly all problematic bird-like tracks group
more closely with birds than nonavian theropods.

To more confidently hypothesize trackmaker identifications,
we constructed eight-dimensional morphospaces using the eight
features of maximum variation identified by the network (Fig. 4),
and used distance metrics to compare each track—both those
affirmatively identified in the literature and those that are prob-
lematic—to potential groups. When nonavian theropods are com-
pared to ornithopods, approximately 80% of affirmative tracks
fall within their expected group in the histograms, and the prob-
lematic Middle Jurassic tracks are mostly placed within the thero-
pod side of the histograms but some overlap with the ornithopod
range. When nonavian theropods are compared to birds, more
than 93% of literature identifications are corroborated, and most

of the bird-like tracks are placed within the bird range.

Discussion

Our disentangled variational autoencoder method demonstrates
that unsupervised machine learning can be applied to paleontolog-
ical data to generate meaningful results and address long-standing
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After removal of two related to mirroring and rotation in augmentation, this leaves eight key features in which the tracks vary. (A) The influence of each individual
feature is shown by varying the feature’s value in the range of [-3,3] while all other features remain unchanged, showing the influence of the respective feature
on the reconstruction for the average track of the entire dataset, which is the track shown in the central column. (B) The average value and distribution of each
key feature are shown for theropods, ornithopods, fossil birds, extant birds, quadrupedal dinosaurs, problematic bird-like tracks, and problematic tracks from
Brothers' Point, Scotland, that may belong to nonavian theropods or ornithopods.
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Fig. 3. B-VAE morphospace showing the overall spread of variation in the footprints in our database, each assigned to a group a posteriori after the neural
network analysis based on expert identification in the literature. The t-SNE algorithm was used to condense the eight-dimensional space (for the eight key
footprint features) to a 2D map. Positions of problematic Brothers’ Point (theropod-or-ornithopod) and bird-like tracks are indicated, showing which definitively
identified tracks they most closely correspond to. Examples of individual footprints belonging to groups are shown as silhouettes, color-coded to group identity.

problems in fossil classification and identification. Our method
produces sensible output, in terms of the quality of reconstructed
dinosaur footprints when portions are removed, and more impor-
tantly, in distilling the complexities of track shape among ~2,000
samples into a set of key features that explain maximum variation
and have anatomical and biological meaning. Importantly, our net-
work identifies a particular feature (Feature 1, overall load and shape
of the track) that differentiates footprints that experts have classified
into nonavian theropod, fossil bird, extant bird, ornithopod, and
quadrupedal dinosaur categories. Thus, classes that have been con-
ceived by the human mind are also evident when the footprints are
mathematically analyzed without providing information about
those classes to the neural network. This speaks to the power of
machine learning methods that do not require a priori assumptions
in a training phase, but can confront a wealth of paleontological
data with an unbiased view and sort through it unsupervised. It also
reassures that such methods are not computational “black boxes,”
but enumerate patterns that humans have noticed.

https://doi.org/10.1073/pnas.2527222122

Our neural network summarizes the most important variation
among a range of dinosaur tracks, spanning bipeds and quadru-
peds, titanic giants to tiny species, runners and walkers to fliers,
over more than 200 Ma of history from Triassic origins to the
birds of today. We identify the overall load and shape of the
track—in other words, the amount of ground contact area—as
the principal feature of variation among all dinosaurs. Furthermore,
aspects of heel load and digit spread, emphasis, and attachment
are also important differences. Untangling these features reveals
why it has traditionally been difficult to distinguish many non-
avian theropod and ornithopod tracks (19-21): they have similar
averages and ranges of variation even in overall load and shape—
the feature of maximum disparity among dinosaurs—such that
nonavian theropods are closer to ornithopods than even their own
descendants, birds. Nonavian theropods and ornithopods are also
extremely similar in the seven other key traits, and it is only minor
differences in average load and digit spread and attachment that
can best differentiate them.
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Fig. 4. Identifying problematic footprints with distance metrics. (A) Histogram of nearest-neighbor distances for nonavian theropods vs. ornithopods. (B)
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although some fall within the ornithopod range. Most bird-like tracks fall within the bird-dominated regions, and three lie squarely within the bird quadrant.

Yet, nontheropod and ornithopod tracks can usually be distin-
guished from each other, when all eight key features are pooled
together as in our two-dimensional morphospace and when dis-
tance metrics are used to cross-validate track identifications in the
literature. Although there is overlap between their ranges in mor-
phospace, around 80% of the time the distance metrics agree with
human expert evaluations of individual tracks as either nonavian
theropod or ornithopod. This does mean, however, that some tracks
are genuinely difficult to classify into either group. The debated
footprints that we focus on, from the Middle Jurassic of Scotland
(28), mainly fall within the theropod part of morphospace and the
distance histograms, but they are in close proximity to, and overlap
with, some ornithopod tracks. We conclude that there is more
evidence for theropod affinities for most of these tracks, but some
are more liable to be ornithopods, which would make them among
the oldest members of the group in the global fossil record.

There is considerable debate as to whether some small, three-toed
footprints from the Triassic and Early Jurassic were made by birds,
as their slender and highly divergent toe impressions are similar to
modern bird tracks (22-24). If so, they would predate the oldest
bird body fossils by ~60 Ma, necessitating radical revision of the
timing and mode of avian origins. When we analyzed seven of these
tracks with our neural network, most fell within the bird-dominated
region of morphospace and the distance histograms, distinct from
nonavian theropods. This included the oldest of these disputed
tracks, from the Triassic of South Africa (23). The machine learning
analysis, therefore, corroborates patterns noticed by researchers:
these tracks greatly resemble birds. One possibility is that these
tracks belonged to true birds, which originated much earlier than
thought, before the Triassic-Jurassic extinction, but whose body

PNAS 2026 Vol.123 No.5 2527222122

fossils have yet to be found or were not preserved, perhaps because
these birds were rare or lived in specific environments not amenable
to bone preservation. Alternatively, as widely hypothesized, these
tracks may have been made by small Triassic-Jurassic nonavian
dinosaurs with feet and/or ground locomotion styles highly con-
vergent on those of birds (i.e., widely divaricated gracile digits) (23,
29), or which made bird-like tracks with traditional nonavian thero-
pod feet simply by chance, because of substrate properties. For
example, digits may appear increasingly gracile in wet substrates,
leading to the formation of penetrative tracks, or as widely divari-
cated as bird tracks due to increased mediolateral stability (29, 30).
Regardless, body fossils will be required to solve this riddle.
Among the benefits of our approach is that it is explicit and
user-friendly. The neural network identifies key features of track
shape variation that are understandable to the human eye and can
be interpreted to have anatomical or biological meaning. To provide
easy access to the network and the analysis pipeline for scientists
without machine learning or coding expertise, we provide an app,
called DinoTracker, which is described in detail in ST Appendix. It
allows the users to import their own track silhouette, obtain its
encoded features and decoded reconstruction, manipulate the values
of the eight key features to gauge their relation to footprint shape,
and identify and display tracks in our database that are most similar.
Our study should not be viewed as the development of an
all-knowing oracle but rather a type of investigator with a different
perspective—an unbiased expert brought to the table. Our specific
protocol is a starting point, as it analyzes two-dimensional footprint
silhouettes only, and these must be drawn by the user, which could
contribute error. We must also remember that substrate variations,
trackmaker locomotion, and preservational artifacts can influence

https://doi.org/10.1073/pnas.2527222122 5 of 7
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the shapes of footprints as preserved, and this will be reflected in
the drawn silhouettes (29-31). Therefore, users should be aware
that, when inputting silhouettes of unusual tracks such as swim
traces and those with extradigital features (e.g., webbing, long met-
atarsal impressions), our network will only reconstruct the eight
features (Fig. 2A) present in these tracks rather than whole track
morphology. Future implementations can build on our approach,
automate the outlining of the tracks, and take into account more
information for each footprint: three-dimensional shape and depth,
size, substrate type, and age. And regardless, human experts will
still be needed to not only provide the source data, but interpret
the output of the analysis, as we have done here by interpreting the
biological meaning of the eight key track features and comparing
the model results to footprint identifications in the literature.

Opverall, however, our unsupervised machine learning approach
is less biased than a human observer in recognizing variation, and
has potential to expand into other areas of paleontology where
data need to be sorted, variation catalogued, and classification
conflicts settled—such as in phylogenetics and study of macroev-
olutionary trends over time.

Materials and Methods

Dinosaur Track Dataset. We compiled a dataset of 1,974 dinosaur tracks from
the literature and our own fieldwork. We began with the published dataset of
Lallensack et al. (4 and references therein), which includes 961 tracks identified
as nonavian theropod and 616 identified as ornithopod. To this, we added 117
tracks of extant birds from various literature sources and field observations; 97
tracks of quadrupedal dinosaurs sourced from the literature (including ref. 4),
including those attributed to sauropods, stegosaurs, and ankylosaurs; seven
images of controversial "bird-like" tracks from the literature (22-24); and 13
Middle Jurassic tridactyl tracks our team has studied on the Isle of Skye, Scotland,
which are debated to belong to either theropods or ornithopods (27, 28). For
one of these Scottish tracks, we produced two versions to consider different track
margins that may help with identification. The full dataset and sources for each
track are provided in S/ Appendix. Note that, in building our dataset we aimed to
be inclusive and targeted a variety of tracks assigned by experts to many different
dinosaur groups, but our machine learning algorithm is not informed of these
group assignments. The algorithm only sees the track itself.

Each dinosaur track is represented by a two-dimensional black filled silhouette
on awhite background. Each image has a dimensionality of 100 x 100 pixels and
silhouettes are stored in binary form, meaning each pixel hasavalue of 0 or 1 (see
Fig. 14 for an exemplary image data). For training of the neural network, 96% of
the data is used while the remaining 4% are reserved for validation and testing.

Machine Learning Method. The disentangled variational autoencoder, known
as B-VAE (32), uses a neural network to encode the high-dimensional data into
a low-dimensional latent space, denoted as z, as shown in Fig. 1. From this com-
pressed state, the data are reconstructed by the decoder part of the network. In
addition to the reconstruction loss L, the network is also evaluated based on a
disentanglement criterion Ly, which ensures thatan independent variation in the
raw input data be reflected in one specific component of the compressed state,
resulting in an interpretable representation of the data. This contribution to the
overall loss L, is balanced by a scaling factor f:

I'all = I'rec + ﬁLdiS'

Finding the optimum B value is challenging (3233, 34), reflecting the question
of whether the reconstruction quality and the interpretability of the created fea-
tures are satisfactory. The disentanglement tries to have the features vary inde-
pendently. Compared to PCA, a popular method in paleontology for distilling
large datasets into more manageable components, where often components
are plotted versus each other to show the distributions of different classes of
the raw data, the -VAE features should always show a 2D Gaussian distribution
on these maps (S/ Appendix, Fig. S3). The neural network is trained solely on
the raw data without any a priori knowledge; that is, the features are created
without any label or supervision. While the trade-off between reconstruction

https://doi.org/10.1073/pnas.2527222122

and disentanglement is reflected in B, an additional effect of B is the number of
created features. To prioritize the reconstruction quality, in our case, a  value of
1 might be suitable. However, this creates more than 30 features which are useful
for specific characterizations of the footprint-a number that we feel is too large,
as many of these are subtle variations which do not appear to have anatomical or
biological consequence. Here, we aim to focus on the extraction of the underlying
core principle-the subset of biologically and anatomically meaningful features
in which the footprints vary. Through sensitivity analyses, we find that this is
best achieved by tuning f to 15, improving disentanglement and decreasing
the number of key footprint features to eight, after two augmentation features
are removed (Fig. 1C). All reconstructions shown in this study are performed on
unseen test data which was not part of the training process.

Sensitivity Analyses. A challenge is the limited number of available samples.
The task of intelligent compression and effective reconstruction necessitates com-
plex networks with numerous free parameters, which must be learned through
an optimization procedure. If such networks are trained with small datasets,
they tend to memorize the data-they perform perfectly on the training data,
while proving ineffective when applied to unseen validation and test data. To
overcome this obstacle, we employed various data augmentation techniques. In
short, the silhouette of the footprint was randomly rotated, mirrored, stretched,
or compressed, a toe or a section of the track was removed, and the edge of the
footprint was randomly displaced by a small number of pixels. Fig. 1D displays
reconstructions for missing parts used as input for the neural network. It is cru-
cial to emphasize that the presented footprints are not included in the training
process. The alignment of the reconstructed parts with the original ones is con-
vincing, in that they clearly resemble silhouettes of real footprints, demonstrating
the network’s ability to generalize. This capability could be particularly valuable
for incomplete fossil tracks. The architecture of the neural network is based on
dividing the image into patches and processing them via multiple convolutional
layers. The motivation for this approach is to have a network that is capable of
identifying complicated dependencies but at the same time have the less possible
number of free parameters to learn. A detailed description of the augmentation,
the neural architecture, and the training process can be found in S/ Appendix.

To analyze the performance of the network, a subsection of the data was not
used in the training process and reserved for validation and testing. This is to
further assess how good the network is at analyzing data it has not seen before.
SI Appendix, Fig. S24 shows the overall loss during the training process for the
training and test data. The generalization of the network can be observed since hoth
curves are on top of each other. As the main contribution of this study is the unsu-
pervised identification of features of maximum variation (=creation of footprint fea-
tures), the average values of features for the classes "Quadrupedal,” "Omithopod,”
"Brothers' Point," "Theropod," "Bird-like," "Bird," and "Extant" were calculated and
their resulting reconstructions are shown in S/ Appendix, Fig. S2B in comparison
with the average image. Assuming the features represent independently varying
attributes of the tracks, one should be able to create random feature combinations
and use the decoder part of the network to create resulting tracks. This generative
aspect of the network is shown in S/ Appendix, Fig. S2C where some examples of
these "fake” tracks are shown-these clearly are realistic silhouettes of what could
be real dinosaur tracks, which lends credence to our approach.

Trackmaker Identification Hypotheses. Only after the training process (when
the final network exists and is no longer modified) did we compare the created
features to the human labels for each track.To do so, we classified tracks into seven
groups based on expert identification in the literature: orithopods, nonavian
theropods, fossil birds, extant birds, quadrupedal dinosaurs, plus two groups of
tracks whose affinities are debated: 13 tracks from the Middle Jurassic of Scotland
that might belong to nonavian theropods or ornithopods, and eight tracks that
might belong to fossil birds or bird-like nonavian theropods.

To summarize the total variation among trackmakers in the eight key footprint
features, and to visually depict separations and overlaps among the taxonomic
groups, we created a B-VAE morphospace. In data science, t-SNE is a powerful
technique for visualizing high-dimensional data in a two-dimensional space,
analogous to morphospace plots based on PCA commonly used in paleontology
(81 Appendix, Fig. S3). In our case, the eight-dimensional feature space derived
from the disentangled variational autoencoder is projected onto two dimensions
using t-SNE, which considers all eight features during the dimensionality reduc-
tion process. Unlike PCA, which relies on linear transformations, t-SNE captures
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nonlinear relationships, making it particularly suitable for revealing clustering
patterns in complex feature spaces.

To more directly inform trackmaker identification for the two sets of problem-
atic tracks, we created an eight-dimensional morphospace defined by the key
features identified by the neural network. We used distance measurements to
make an informed hypothesis of trackmaker identity for the equivocal tracks, by
comparing them to the labeled tracks to quantitatively enumerate which indi-
vidual labeled tracks are most similar to the equivocal tracks. We employed two
distance metrics: 1)a nearest-neighbor calculation, and 2) an average trait-hased
distance measurement. These metrics were calculated separately for two subsets
of our entire footprint dataset, relevant to the debate at hand: the firstincluded all
nonavian theropods, ornithopods, and the problematic tracks that could belong
to either group (Fig. 4 A-C); the second included all nonavian theropods, fossil,
and modern birds, and the problematic tracks that could belong to either group
(Fig. 4 D-F).

For both subsets, in order to provide context both distance metrics were cal-
culated for each track in the dataset, not only the problematic tracks. For the
nearest-neighbor metric, we identified the closest seven tracks to each given
track, and calculated the percentage belonging to orithopods and nonavian
theropods. For the average trait-based metric, each given track was compared
to the average of all nonavian theropod tracks and the average of all ornithopod
tracks in trait space. For each metric, we calculated the distance of each footprint
to each group. Then, we gathered these results in a histogram. If the track belongs
to group A (in this case, ornithopods or birds, respectively) then the difference
is negative; if it belongs to group B (in both cases, nonavian theropods), then
the difference is positive. The absolute value of the difference depends on the
strength of the difference. Results are shown in Fig. 4, with the problematic tracks
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placed onto the histograms. As a consistency check, the two distance metrics were
plotted against each other (Fig. 4 Cand F), showing that they correspond and thus
approximating the same signal.

As not all eight features might have the same importance for the distance
metrics, we utilized an autoscaling method giving greater weight to those of
the eight features more important to the distance measurements, which returns
similar results (S/ Appendix, Figs. S4 and S5).

Data, Materials, and Software Availability. Data have been deposited
in GitHub (https://github.com/gregh83/DinoTracker) (26). All other data are
included in the manuscript and/or supporting information. Previously published
data were used for this work. [The raw data (silhouettes of footprints) were col-
lected from various sources that have been published. A detailed list can be found
in Dataset S1).]
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