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Significance 

Dinosaur footprints are iconic 
fossils, but it is challenging to 
identify their makers. This is 
illustrated by a long-standing 
debate about whether some 
footprints from the Late Triassic-
Early Jurassic belong to birds, 
which would be ~60 Ma older than 
the oldest skeletons. Recently, 
machine learning has been 
heralded as a tool for classifying 
and identifying tracks, but existing 
methods require researchers to 
supervise the process by labeling 
training data, which can 
perpetuate human biases. We use 
an unsupervised neural network to 
process a dataset of nearly 2,000 
dinosaur tracks, which recognizes 
eight ways in which they most vary, 
and which finds that the 
problematic bird-like tracks are 
more similar to modern and fossil 
birds than any other dinosaur. 

Machine learning holds great promise for classifying and identifying fossils, and has 
recently been marshaled to identify trackmakers of dinosaur footprints and address 
long-standing debates over whether some dinosaur tracks are the oldest birds or orni-
thopods (duck-billed herbivores and kin) in the fossil record, or alternatively were made 
by nonavian theropods. Existing methods in paleontology, however, require supervision 
and a priori labeling of training data by researchers, which can lead to bias. We employ 
an unsupervised machine learning technique for recognizing inherent patterns in shape 
data, using a disentangled variational autoencoder network, to a database of 1,974 
footprints, spanning a diversity of dinosaurs across their evolutionary history, including 
modern birds. Our neural network identified eight features of shape variation that most 
differentiate these tracks: overall load and shape (amount of ground contact area), digit 
spread, digit attachment, heel load, digit and heel emphasis, loading position, heel posi-
tion, and left–right load. With the unsupervised process finished, we a posteriori labeled 
each track based on published expert judgments, plotted them into morphospace, and 
applied distance metrics to group means and nearest neighbors, which showed 80 to 
93% agreement with expert identifications. Controversial Late Triassic-Early Jurassic 
bird-like tracks group with fossil and modern birds and some Middle Jurassic three-toed 
tracks with ornithopods, supporting an older origin for these groups than recorded 
by body fossils. We provide an app, DinoTracker, to make this process accessible, and 
source code that can be adapted to other cases where paleontologists or biologists are 
studying patterns of shape variation. 

dinosaurs | footprints | trace fossils | AI | machine learning 

In recent years, machine learning has been touted as a new frontier in classifying and 
identifying fossils (1   –3). Some of the first heralded case studies endeavored to identify 
trackmakers of dinosaur footprints (4     –7). This is an important goal, as footprints and 
other trace fossils such as burrows, which record the activities of ancient organisms, are 
often more numerous than bones, shells, and other physical remains of the organisms 
themselves (body fossils) (8 , 9). Because trace fossils reflect interactions between animals 
and their environments, they can reveal aspects of behavior difficult to discern from body 
fossils, such as preferred habitats and locomotion styles (10   –12). Furthermore, because 
trace fossils can be locally abundant and are embedded into the sediments in which they 
formed and cannot be transported like a body fossil, they provide critical information on 
the distribution and origination times of species and groups. Indeed, major groups such 
as tetrapods (limbed land-living vertebrates), amniotes (fully terrestrial tetrapods), and 
dinosauromorphs (dinosaurs and their closest kin) are purported to appear in the fossil 
record first as footprints, sometimes many millions of years before their oldest body 
 fossils (13   –15 ). 

It is difficult, however, to determine which features are most useful in distinguishing 
footprints from each other and in identifying their makers. Unless a skeleton is fossilized 
in its tracks, a footprint cannot be matched definitively with its creator. Sometimes unique 
features of a trackmaker’s foot can register in a footprint and help recognize a trackmaker, 
but this “synapomorphy-based” method (16 , 17) is limited because not all dinosaurs have 
bespoke attributes of their feet, and even if they do, they might be subtle and not easily 
preserved in footprints. Additionally, track shape is influenced by dynamic interaction of 
factors beyond the anatomy of the foot, including limb motion and substrate properties 
(18). Therefore, most dinosaur tracks are classified and assigned to general trackmaker 
groups based on their overall size and shape, as determined qualitatively or semiquanti-
tatively by experts. Occasionally this is straightforward and results in widespread agreement 
among experts, as with bathtub-sized footprints that could only be made by colossal 
sauropods (17). Often, however, it is challenging, as illustrated by long-standing debates D
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whether certain three-toed tracks were made by herbivorous orni-
thopods or carnivorous theropods (4 , 19   –21), and whether various 
bird-like tracks were made by true birds or closely related thero-
pods (22   –24). The latter conundrum, in particular, has broad 
implications for understanding the timing of avian origins, and 
the environments in which birds evolved flight. 

Machine learning has great potential to recognize patterns in 
footprint shape and find matches with trackmakers. Recent studies 
have delivered promising results (4     –7), and demonstrate the poten-
tial for machine learning to contribute to paleontology with its 
ability to notice patterns, untangle variation, and classify data. Yet, 
previous studies have one key limitation: their computational neu-
ral networks need to be supervised. This is true of nearly every 
paleontological application of machine learning thus far (1 , but 
see ref. 25). For instance, in their pioneering study inaugurating 
the use of machine learning in identifying dinosaur tracks, 
Lallensack et al. (4) had to first train their neural network with a 
training dataset of tracks labeled as either theropod or ornithischian 
(~ornithopod), as determined a priori by human observers. If these 
identifications are wrong, then the output of the machine learning 
model will be biased. Unsupervised methods that circumvent this 
limitation are held as the future of machine learning in paleontol-
ogy, but are computationally challenging to implement (1 ). 

Here we provide a robust unsupervised method for recognizing 
inherent patterns in shape data of paleontological specimens, uti-
lizing a disentangled variational autoencoder (β-VAE), and apply 
it to a case study of dinosaur footprint shape. Unlike previous 
studies, our approach does not require a priori labeling of tracks 
(e.g., theropod vs. ornithopod) in a training phase, but rather the 
neural network algorithm searches in an unsupervised manner for 
those features that vary independently and that most differentiate 
the suite of tracks. Our focus, therefore, is fundamentally on char-
acterization of tracks based on their maximum degrees of shape 
variation. The neural network identifies the most meaningful fea-
tures of the footprints, and then with this information in hand, 
the human observer can interpret those features to present 
informed hypotheses for trackmaker identifications. We make this 
process user-friendly by providing an app, called DinoTracker 
(26), which can be downloaded to a mobile or desktop device, 
into which users can import a silhouette of any track—such as 
one recently collected in the field—and compare it with the foot-
prints in our dataset and the results of our model. We also provide 

the source code for our network, which can be adapted to other 
cases where patterns in fossil or biological shape are being studied. 

Results 

The analytical pipeline for our disentangled variational autoen-
coder method is shown in Fig. 1. It uses an artificial neural net-
work to process our dataset of 1,974 two-dimensional dinosaur 
footprint silhouettes, which are presented to the network  without 
any taxonomic labels such as “theropod” or “ornithopod.” Details 
of the network analysis are given in Materials and Methods and 
SI Appendix. During the encoding phase (Fig. 1A), the network 
processes the dataset through a dimensional bottleneck, creating 
a compressed disentangled representation of the entire dataset 
(Fig. 1B), which is philosophically akin to a multivariate method 
like principal component analysis (PCA). This creates a latent 
space that is interpretable for the human mind, unlike the strictly 
linear PCA that reduces datasets to principal components that are 
statistical abstractions and thus not necessarily able to be visualized 
by humans. Then, during the decoding phase (Fig. 1C), the net-
work reconstructs the data.        

Critical to the creation of the latent space is the β parameter, 
which determines the strength of the data disentanglement during 
encoding. β must be optimized, and is a tradeoff between accuracy 
of the resulting footprint reconstructions in the decoding phase 
and the number of parameters that the network identifies as key 
features of footprint variation. The lower the β value, the more 
accurate the final decoded footprint reconstructions, but the more 
parameters needed. Our sensitivity analyses show that β = 15 
delivers accurate footprints with a low number of used features in 
contrast to, for instance, β = 1 (Fig. 1C), and thus we chose to 
proceed with β = 15. 

As an additional sensitivity analysis and to increase the training 
data size, we employed data augmentation techniques to test how 
well the model can reconstruct portions of known footprints if 
those portions are altered. We modified the footprint silhouettes 
so they were randomly rotated, mirrored, stretched, or com-
pressed, or to remove part of the track (SI Appendix, Fig. S1 ), as 
well as slight edge modifications. When the network reconstructed 
those modified or deleted parts, the reconstructions visually match 
closely to the original unmodified versions (Fig. 1D ), lending 
confidence to the decoding process. 
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Fig. 1. The disentangled variational autoencoder method. Silhouettes of dinosaur footprints (A) are processed through an artificial neural network (B) with a 
dimensional bottleneck in its center. Due to a disentanglement condition, whose strength is given by the β parameter, the compressed representation, created 
by the encoder part of the network and called the latent space z, is interpretable to the human mind. From this state, the decoder reconstructs the data (C). 
The reconstruction is shown for two different β values resulting in a different reconstruction quality and number of features. The method is capable of sensible 
reconstruction of missing parts (D). D
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We also analyzed the performance of the network by reserving 
4% of the original data (test data) from our 1,974-footprint data-
set that was not used in the original model training (train data). 
When confronted with test data the network is adept at recogniz-
ing and classifying variation in tracks that it has yet to see in the 
training data (SI Appendix, Fig. S2), demonstrating that network 
performance is robust and does not simply memorize. 

With the robustness of our approach established, we then ran 
the model (with β = 15). From a maximum number of 50 possible 
“representations” (limited by the network architecture)—the fea-
tures of variation among the footprints—the network generated 
10 disentangled features which are highlighted in Fig. 2 . Among 
these, two are augmentation features representing rotations and 
mirroring effects and were excluded (SI Appendix) from further 
analysis. The remaining eight are the features of maximum shape 
variation in the footprints, and thus the most useful ways to dis-
tinguish them. Based on a visual examination of their observed 
shape range among the tracks (Fig. 2A), we interpret them as 
representing: overall load and shape (amount of ground contact 
area), digit spread, digit attachment, heel load, digit and heel 
emphasis, loading position, heel position, and left–right load.        

With these features of maximum variation identified, we can 
interrogate how they relate to trackmaker identifications, by a 
posteriori labeling each track based on expert identifications in 
the literature. We classified the tracks into seven groups. Five of 
these are affirmatively identified by experts: ornithopods, nonavian 
theropods, fossil birds, extant birds, quadrupedal dinosaurs 
(including sauropods, stegosaurs, and ankylosaurs). The remaining 
two are equivocal: tracks that are bird-like but might belong to 
nonavian theropods (22   –24) and tracks from the Middle Jurassic 
of Scotland that could be either theropod or ornithopod (27 , 28 ). 
Average values and total distributions for each of the eight foot-
print features in these seven groups are shown in Fig. 2B . 

Feature 1, overall load and shape of the track, exhibits the max-
imum amount of variation, and thus is most important in distin-
guishing and classifying footprints. Tracks attributed to quadrupedal 
dinosaurs, ornithopods, nonavian theropods, fossil birds, and extant 
birds are clearly differentiated in average values, and the total spread 
of their values (ranges) is staggered relative to each other (Fig. 2A 1 ), 
meaning they map to distinct regions of trait space. Interestingly, 
tracks attributed to ornithopods and nonavian theropods are closer 

to each other in this feature than nonavian theropods are to their 
evolutionary descendants, fossil, and extant birds. The taxonomic 
groups are less consistently distinguished from each other for the 
other seven features, although individual traits are often useful in 
discriminating between certain of the groups—for instance, quad-
rupedal dinosaurs are highly different from ornithopods and thero-
pods in Feature 3, digit attachment (Fig. 2A 3 ). 

To encapsulate and visualize the range of variation among track-
maker groups, and to aid identification of problematic tracks, 
we distilled information from all eight features into a single 
two-dimensional β-VAE morphospace map, using t-distributed 
stochastic neighbor embedding (t-SNE) (Fig. 3). This plot shows 
broad overlap in places between nonavian theropods and ornitho-
pods, but generally ornithopods have more negative values and 
nonavian theropods more positive values on the Y axis (second 
t-SNE component), which helps to distinguish end-members of 
each group. Quadrupedal dinosaurs form their own cluster at the 
upper left, and interestingly there are two distinct clusters that 
both mix modern and extinct birds. Some, but not all, problematic 
Middle Jurassic tracks cluster more tightly with theropods than 
ornithopods, and nearly all problematic bird-like tracks group 
more closely with birds than nonavian theropods.        

To more confidently hypothesize trackmaker identifications, 
we constructed eight-dimensional morphospaces using the eight 
features of maximum variation identified by the network (Fig. 4 ), 
and used distance metrics to compare each track—both those 
affirmatively identified in the literature and those that are prob-
lematic—to potential groups. When nonavian theropods are com-
pared to ornithopods, approximately 80% of affirmative tracks 
fall within their expected group in the histograms, and the prob-
lematic Middle Jurassic tracks are mostly placed within the thero-
pod side of the histograms but some overlap with the ornithopod 
range. When nonavian theropods are compared to birds, more 
than 93% of literature identifications are corroborated, and most 
of the bird-like tracks are placed within the bird range.          

Discussion 

Our disentangled variational autoencoder method demonstrates 
that unsupervised machine learning can be applied to paleontolog-
ical data to generate meaningful results and address long-standing 

Fig. 2. Analysis of the latent space: Ten features are created by the network; these represent the features of maximum independent variation of the tracks. 
After removal of two related to mirroring and rotation in augmentation, this leaves eight key features in which the tracks vary. (A) The influence of each individual 
feature is shown by varying the feature’s value in the range of [−3,3] while all other features remain unchanged, showing the influence of the respective feature 
on the reconstruction for the average track of the entire dataset, which is the track shown in the central column. (B) The average value and distribution of each 
key feature are shown for theropods, ornithopods, fossil birds, extant birds, quadrupedal dinosaurs, problematic bird-like tracks, and problematic tracks from 
Brothers’ Point, Scotland, that may belong to nonavian theropods or ornithopods. D
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problems in fossil classification and identification. Our method 
produces sensible output, in terms of the quality of reconstructed 
dinosaur footprints when portions are removed, and more impor-
tantly, in distilling the complexities of track shape among ~2,000 
samples into a set of key features that explain maximum variation 
and have anatomical and biological meaning. Importantly, our net-
work identifies a particular feature (Feature 1, overall load and shape 
of the track) that differentiates footprints that experts have classified 
into nonavian theropod, fossil bird, extant bird, ornithopod, and 
quadrupedal dinosaur categories. Thus, classes that have been con-
ceived by the human mind are also evident when the footprints are 
mathematically analyzed without providing information about 
those classes to the neural network. This speaks to the power of 
machine learning methods that do not require a priori assumptions 
in a training phase, but can confront a wealth of paleontological 
data with an unbiased view and sort through it unsupervised. It also 
reassures that such methods are not computational “black boxes,” 
but enumerate patterns that humans have noticed. 

Our neural network summarizes the most important variation 
among a range of dinosaur tracks, spanning bipeds and quadru-
peds, titanic giants to tiny species, runners and walkers to fliers, 
over more than 200 Ma of history from Triassic origins to the 
birds of today. We identify the overall load and shape of the 
track—in other words, the amount of ground contact area—as 
the principal feature of variation among all dinosaurs. Furthermore, 
aspects of heel load and digit spread, emphasis, and attachment 
are also important differences. Untangling these features reveals 
why it has traditionally been difficult to distinguish many non-
avian theropod and ornithopod tracks (19   –21): they have similar 
averages and ranges of variation even in overall load and shape— 
the feature of maximum disparity among dinosaurs—such that 
nonavian theropods are closer to ornithopods than even their own 
descendants, birds. Nonavian theropods and ornithopods are also 
extremely similar in the seven other key traits, and it is only minor 
differences in average load and digit spread and attachment that 
can best differentiate them. 

Fig. 3. β-VAE morphospace showing the overall spread of variation in the footprints in our database, each assigned to a group a posteriori after the neural 
network analysis based on expert identification in the literature. The t-SNE algorithm was used to condense the eight-dimensional space (for the eight key 
footprint features) to a 2D map. Positions of problematic Brothers’ Point (theropod-or-ornithopod) and bird-like tracks are indicated, showing which definitively 
identified tracks they most closely correspond to. Examples of individual footprints belonging to groups are shown as silhouettes, color-coded to group identity. 
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Yet, nontheropod and ornithopod tracks can usually be distin-
guished from each other, when all eight key features are pooled 
together as in our two-dimensional morphospace and when dis-
tance metrics are used to cross-validate track identifications in the 
literature. Although there is overlap between their ranges in mor-
phospace, around 80% of the time the distance metrics agree with 
human expert evaluations of individual tracks as either nonavian 
theropod or ornithopod. This does mean, however, that some tracks 
are genuinely difficult to classify into either group. The debated 
footprints that we focus on, from the Middle Jurassic of Scotland 
(28), mainly fall within the theropod part of morphospace and the 
distance histograms, but they are in close proximity to, and overlap 
with, some ornithopod tracks. We conclude that there is more 
evidence for theropod affinities for most of these tracks, but some 
are more liable to be ornithopods, which would make them among 
the oldest members of the group in the global fossil record. 

There is considerable debate as to whether some small, three-toed 
footprints from the Triassic and Early Jurassic were made by birds, 
as their slender and highly divergent toe impressions are similar to 
modern bird tracks (22   –24). If so, they would predate the oldest 
bird body fossils by ~60 Ma, necessitating radical revision of the 
timing and mode of avian origins. When we analyzed seven of these 
tracks with our neural network, most fell within the bird-dominated 
region of morphospace and the distance histograms, distinct from 
nonavian theropods. This included the oldest of these disputed 
tracks, from the Triassic of South Africa (23). The machine learning 
analysis, therefore, corroborates patterns noticed by researchers: 
these tracks greatly resemble birds. One possibility is that these 
tracks belonged to true birds, which originated much earlier than 
thought, before the Triassic-Jurassic extinction, but whose body 

fossils have yet to be found or were not preserved, perhaps because 
these birds were rare or lived in specific environments not amenable 
to bone preservation. Alternatively, as widely hypothesized, these 
tracks may have been made by small Triassic-Jurassic nonavian 
dinosaurs with feet and/or ground locomotion styles highly con-
vergent on those of birds (i.e., widely divaricated gracile digits) (23 , 
29), or which made bird-like tracks with traditional nonavian thero-
pod feet simply by chance, because of substrate properties. For 
example, digits may appear increasingly gracile in wet substrates, 
leading to the formation of penetrative tracks, or as widely divari-
cated as bird tracks due to increased mediolateral stability (29 , 30 ). 
Regardless, body fossils will be required to solve this riddle. 

Among the benefits of our approach is that it is explicit and 
user-friendly. The neural network identifies key features of track 
shape variation that are understandable to the human eye and can 
be interpreted to have anatomical or biological meaning. To provide 
easy access to the network and the analysis pipeline for scientists 
without machine learning or coding expertise, we provide an app, 
called DinoTracker, which is described in detail in SI Appendix . It 
allows the users to import their own track silhouette, obtain its 
encoded features and decoded reconstruction, manipulate the values 
of the eight key features to gauge their relation to footprint shape, 
and identify and display tracks in our database that are most similar. 

Our study should not be viewed as the development of an 
all-knowing oracle but rather a type of investigator with a different 
perspective—an unbiased expert brought to the table. Our specific 
protocol is a starting point, as it analyzes two-dimensional footprint 
silhouettes only, and these must be drawn by the user, which could 
contribute error. We must also remember that substrate variations, 
trackmaker locomotion, and preservational artifacts can influence 

Ornithopod vs. theropod Bird vs. theropod 

A 

C 

B 

D 

F 

E 

Fig. 4. Identifying problematic footprints with distance metrics. (A) Histogram of nearest-neighbor distances for nonavian theropods vs. ornithopods. (B) 
Histogram of trait-based distances for nonavian theropods vs. ornithopods. (C) Two-dimensional plot comparing the nearest-neighbor and trait-based distances 
for nonavian theropods, ornithopods, and problematic tracks. (D) Histogram of nearest-neighbor distances for nonavian theropods vs. birds. (E) Histogram 
of trait-based distances for nonavian theropods vs. birds. (F) Two-dimensional plot comparing the nearest-neighbor and trait-based distances for nonavian 
theropods, birds, and problematic tracks. In the quadrant maps (C, F), tracks in the upper left quadrant are identified as nonavian theropods by the trait-based 
metric and as ornithopods or birds by the nearest-neighbor metric. Tracks in the upper right quadrant are identified as nonavian theropods by both metrics. 
Tracks in the lower left quadrant are identified as ornithopods or birds by both metrics. Tracks in the lower right quadrant are identified as ornithopods or birds 
by the trait-based metric and as nonavian theropods by the nearest-neighbor metric. Positions of problematic Brothers’ Point (theropod–ornithopod) tracks 
and bird-like tracks are shown as black dots, indicating the quadrants to which they are most similar. Most Brothers’ Point tracks fall in theropod-like quadrants, 
although some fall within the ornithopod range. Most bird-like tracks fall within the bird-dominated regions, and three lie squarely within the bird quadrant. 
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the shapes of footprints as preserved, and this will be reflected in 
the drawn silhouettes (29   –31). Therefore, users should be aware 
that, when inputting silhouettes of unusual tracks such as swim 
traces and those with extradigital features (e.g., webbing, long met-
atarsal impressions), our network will only reconstruct the eight 
features (Fig. 2A) present in these tracks rather than whole track 
morphology. Future implementations can build on our approach, 
automate the outlining of the tracks, and take into account more 
information for each footprint: three-dimensional shape and depth, 
size, substrate type, and age. And regardless, human experts will 
still be needed to not only provide the source data, but interpret 
the output of the analysis, as we have done here by interpreting the 
biological meaning of the eight key track features and comparing 
the model results to footprint identifications in the literature. 

Overall, however, our unsupervised machine learning approach 
is less biased than a human observer in recognizing variation, and 
has potential to expand into other areas of paleontology where 
data need to be sorted, variation catalogued, and classification 
conflicts settled—such as in phylogenetics and study of macroev-
olutionary trends over time. 

Materials and Methods 

Dinosaur Track Dataset. We compiled a dataset of 1,974 dinosaur tracks from 
the literature and our own fieldwork. We began with the published dataset of 
Lallensack et al. (4 and references therein), which includes 961 tracks identified 
as nonavian theropod and 616 identified as ornithopod. To this, we added 117 
tracks of extant birds from various literature sources and field observations; 97 
tracks of quadrupedal dinosaurs sourced from the literature (including ref. 4), 
including those attributed to sauropods, stegosaurs, and ankylosaurs; seven 
images of controversial “bird-like” tracks from the literature (22–24); and 13 
Middle Jurassic tridactyl tracks our team has studied on the Isle of Skye, Scotland, 
which are debated to belong to either theropods or ornithopods (27, 28). For 
one of these Scottish tracks, we produced two versions to consider different track 
margins that may help with identification. The full dataset and sources for each 
track are provided in SI Appendix. Note that, in building our dataset we aimed to 
be inclusive and targeted a variety of tracks assigned by experts to many different 
dinosaur groups, but our machine learning algorithm is not informed of these 
group assignments. The algorithm only sees the track itself. 

Each dinosaur track is represented by a two-dimensional black filled silhouette 
on a white background. Each image has a dimensionality of 100 × 100 pixels and 
silhouettes are stored in binary form, meaning each pixel has a value of 0 or 1 (see 
Fig. 1A for an exemplary image data). For training of the neural network, 96% of 
the data is used while the remaining 4% are reserved for validation and testing. 

Machine Learning Method. The disentangled variational autoencoder, known 
as β-VAE (32), uses a neural network to encode the high-dimensional data into 
a low-dimensional latent space, denoted as z, as shown in Fig. 1. From this com-
pressed state, the data are reconstructed by the decoder part of the network. In 
addition to the reconstruction loss Lrec, the network is also evaluated based on a 
disentanglement criterion Ldis, which ensures that an independent variation in the 
raw input data be reflected in one specific component of the compressed state, 
resulting in an interpretable representation of the data. This contribution to the 
overall loss Lall is balanced by a scaling factor β: 

L all = L rec + βL dis. 

Finding the optimum β value is challenging (3233, 34), reflecting the question 
of whether the reconstruction quality and the interpretability of the created fea-
tures are satisfactory. The disentanglement tries to have the features vary inde-
pendently. Compared to PCA, a popular method in paleontology for distilling 
large datasets into more manageable components, where often components 
are plotted versus each other to show the distributions of different classes of 
the raw data, the β-VAE features should always show a 2D Gaussian distribution 
on these maps (SI Appendix, Fig. S3). The neural network is trained solely on 
the raw data without any a priori knowledge; that is, the features are created 
without any label or supervision. While the trade-off between reconstruction 

and disentanglement is reflected in β, an additional effect of β is the number of 
created features. To prioritize the reconstruction quality, in our case, a β value of 
1 might be suitable. However, this creates more than 30 features which are useful 
for specific characterizations of the footprint—a number that we feel is too large, 
as many of these are subtle variations which do not appear to have anatomical or 
biological consequence. Here, we aim to focus on the extraction of the underlying 
core principle—the subset of biologically and anatomically meaningful features 
in which the footprints vary. Through sensitivity analyses, we find that this is 
best achieved by tuning β to 15, improving disentanglement and decreasing 
the number of key footprint features to eight, after two augmentation features 
are removed (Fig. 1C). All reconstructions shown in this study are performed on 
unseen test data which was not part of the training process. 

Sensitivity Analyses. A challenge is the limited number of available samples. 
The task of intelligent compression and effective reconstruction necessitates com-
plex networks with numerous free parameters, which must be learned through 
an optimization procedure. If such networks are trained with small datasets, 
they tend to memorize the data—they perform perfectly on the training data, 
while proving ineffective when applied to unseen validation and test data. To 
overcome this obstacle, we employed various data augmentation techniques. In 
short, the silhouette of the footprint was randomly rotated, mirrored, stretched, 
or compressed, a toe or a section of the track was removed, and the edge of the 
footprint was randomly displaced by a small number of pixels. Fig. 1D displays 
reconstructions for missing parts used as input for the neural network. It is cru-
cial to emphasize that the presented footprints are not included in the training 
process. The alignment of the reconstructed parts with the original ones is con-
vincing, in that they clearly resemble silhouettes of real footprints, demonstrating 
the network’s ability to generalize. This capability could be particularly valuable 
for incomplete fossil tracks. The architecture of the neural network is based on 
dividing the image into patches and processing them via multiple convolutional 
layers. The motivation for this approach is to have a network that is capable of 
identifying complicated dependencies but at the same time have the less possible 
number of free parameters to learn. A detailed description of the augmentation, 
the neural architecture, and the training process can be found in SI Appendix. 

To analyze the performance of the network, a subsection of the data was not 
used in the training process and reserved for validation and testing. This is to 
further assess how good the network is at analyzing data it has not seen before. 
SI Appendix, Fig. S2A shows the overall loss during the training process for the 
training and test data.The generalization of the network can be observed since both 
curves are on top of each other. As the main contribution of this study is the unsu-
pervised identification of features of maximum variation (=creation of footprint fea-
tures), the average values of features for the classes “Quadrupedal,” “Ornithopod,” 
“Brothers’ Point,” “Theropod,” “Bird-like,” “Bird,” and “Extant” were calculated and 
their resulting reconstructions are shown in SI Appendix, Fig. S2B in comparison 
with the average image. Assuming the features represent independently varying 
attributes of the tracks, one should be able to create random feature combinations 
and use the decoder part of the network to create resulting tracks. This generative 
aspect of the network is shown in SI Appendix, Fig. S2C where some examples of 
these “fake” tracks are shown—these clearly are realistic silhouettes of what could 
be real dinosaur tracks, which lends credence to our approach. 

Trackmaker Identification Hypotheses. Only after the training process (when 
the final network exists and is no longer modified) did we compare the created 
features to the human labels for each track.To do so, we classified tracks into seven 
groups based on expert identification in the literature: ornithopods, nonavian 
theropods, fossil birds, extant birds, quadrupedal dinosaurs, plus two groups of 
tracks whose affinities are debated: 13 tracks from the Middle Jurassic of Scotland 
that might belong to nonavian theropods or ornithopods, and eight tracks that 
might belong to fossil birds or bird-like nonavian theropods. 

To summarize the total variation among trackmakers in the eight key footprint 
features, and to visually depict separations and overlaps among the taxonomic 
groups, we created a β-VAE morphospace. In data science, t-SNE is a powerful 
technique for visualizing high-dimensional data in a two-dimensional space, 
analogous to morphospace plots based on PCA commonly used in paleontology 
(SI Appendix, Fig. S3). In our case, the eight-dimensional feature space derived 
from the disentangled variational autoencoder is projected onto two dimensions 
using t-SNE, which considers all eight features during the dimensionality reduc-
tion process. Unlike PCA, which relies on linear transformations, t-SNE captures D
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nonlinear relationships, making it particularly suitable for revealing clustering 
patterns in complex feature spaces. 

To more directly inform trackmaker identification for the two sets of problem-
atic tracks, we created an eight-dimensional morphospace defined by the key 
features identified by the neural network. We used distance measurements to 
make an informed hypothesis of trackmaker identity for the equivocal tracks, by 
comparing them to the labeled tracks to quantitatively enumerate which indi-
vidual labeled tracks are most similar to the equivocal tracks. We employed two 
distance metrics: 1) a nearest-neighbor calculation, and 2) an average trait-based 
distance measurement. These metrics were calculated separately for two subsets 
of our entire footprint dataset, relevant to the debate at hand: the first included all 
nonavian theropods, ornithopods, and the problematic tracks that could belong 
to either group (Fig. 4 A–C); the second included all nonavian theropods, fossil, 
and modern birds, and the problematic tracks that could belong to either group 
(Fig. 4 D–F). 

For both subsets, in order to provide context both distance metrics were cal-
culated for each track in the dataset, not only the problematic tracks. For the 
nearest-neighbor metric, we identified the closest seven tracks to each given 
track, and calculated the percentage belonging to ornithopods and nonavian 
theropods. For the average trait-based metric, each given track was compared 
to the average of all nonavian theropod tracks and the average of all ornithopod 
tracks in trait space. For each metric, we calculated the distance of each footprint 
to each group. Then, we gathered these results in a histogram. If the track belongs 
to group A (in this case, ornithopods or birds, respectively) then the difference 
is negative; if it belongs to group B (in both cases, nonavian theropods), then 
the difference is positive. The absolute value of the difference depends on the 
strength of the difference. Results are shown in Fig. 4, with the problematic tracks 

placed onto the histograms. As a consistency check, the two distance metrics were 
plotted against each other (Fig. 4 C and F), showing that they correspond and thus 
approximating the same signal. 

As not all eight features might have the same importance for the distance 
metrics, we utilized an autoscaling method giving greater weight to those of 
the eight features more important to the distance measurements, which returns 
similar results (SI Appendix, Figs. S4 and S5). 

Data, Materials, and Software Availability. Data have been deposited 
in GitHub (https://github.com/gregh83/DinoTracker) (26). All other data are 
included in the manuscript and/or supporting information. Previously published 
data were used for this work. [The raw data (silhouettes of footprints) were col-
lected from various sources that have been published. A detailed list can be found 
in Dataset S1).] 
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