

1 **BLINDED TITLE PAGE**

2

3 **Title:**

4 Acute Effect of Alternative Complex-Contrast Training Set Strategies on Vertical Jump

5 Propulsive Impulse and Rate of Force Development.

6

7 **Running head:**

8 Effect of Alternative Complex-Contrast Training Sets on Vertical Jump Propulsion.

9 **ABSTRACT**

10 Complex-contrast training (CCT) is an advanced training method that aims to augment
11 explosive force application through post-activation performance enhancement
12 (PAPE). However, the intra-contrast rest periods (ICRP) required to observe PAPE are
13 typically too long (5-12 minutes), making CCT impractical for most training scenarios.
14 This study, therefore, aimed to assess whether combining CCT with rest redistribution
15 (RR) strategies could reduce the total contrast rest period (TCRP) required to observe
16 PAPE in vertical jump metrics. Fifteen male subjects completed ten experimental
17 interventions across five data collection sessions in a counterbalanced cross-sectional
18 design. Interventions consisted of two vertical jump variations (countermovement jump
19 (CMJ) and squat jump (SJ)) and five TCRPs (TCRP; 60, 120, 180, 240, 300s),
20 partitioned as 0, 60, 120, 180, 240s ICRP, respectively, and 60s of RR. Within
21 interventions, participants performed a control condition consisting of one set of
22 vertical jumps (BASELINE), the assigned ICRP, then a second set of jumps (PRE-BS).
23 This was followed by an experimental condition consisting of 3RM back squats with
24 30s between repetitions, then the ICRP, and a final set of jumps (POST-BS). Vertical
25 jump propulsive impulse (J_{PROP}) and related force-time components were assessed. A
26 5x2x2 (TCRP*CONDITION*TIME) repeated measures ANOVA assessed differences
27 in force-time variables. Results showed no significant interaction of
28 TCRP*CONDITION*TIME for J_{PROP} , indicating that, regardless of intervention, neither
29 CMJ nor SJ J_{PROP} was enhanced. However, RR led to significant increases in both
30 peak and average CMJ rate of force development (RFD) and reduced propulsion time
31 (t_{PROP}) after TCRP180, TCRP240, and TCRP300, demonstrating a more explosive,
32 but not higher, jump. For SJ, no meaningful changes in RFD or t_{PROP} were observed.
33 Thus, RR may preserve J_{PROP} while augmenting explosive force application via
34 enhanced eccentric-concentric coupling and stretch-shortening cycle efficiency, but
35 PAPE remains insufficient to increase jump height in recreationally strong populations.
36 Practically, RR may reduce the time required within CCT sets to observe PAPE
37 through enhanced RFD. This combined approach may also be an effective tool for
38 increasing training density by maintaining explosive capacity during power phases
39 without impairing performance. However, longer rest may still be necessary when
40 maximising impulse is the primary goal.

41

42 Keywords: force, strength, conditioning, rest redistribution

43 LIST OF ABBREVIATIONS

1RM	One-repetition maximum
3RM	Three-repetition maximum
5RM	Five-repetition maximum
ANOVA	Analysis of variance
BS	Back squat
CA	Conditioning activity
CCT	Complex-contrast training
CMJ	Countermovement jump
EA	Explosive activity
GRF	Ground reaction force
ICC	Intra-class correlation coefficient
ICRP	Intra-contrast rest period
JPROP	Propulsive impulse
MF	Mean force
PAPE	Post-activation performance enhancement
PF	Peak force
RFD	Rate of force development
RR	Rest redistribution
SJ	Squat jump
SSC	Stretch-shortening cycle
SWC	Smallest worthwhile change
TCRP	Total contrast rest period
TE	Typical error
tPROP	Propulsion time
VMEAN	Mean velocity

44

45

46 **INTRODUCTION**

47 Strength and conditioning practitioners continually seek to refine and optimise training
48 strategies to efficiently enhance neuromuscular force application and rate of force
49 development (RFD). Complex-contrast training (CCT) is a popular and effective
50 training method for this endeavour, characterised by alternating a high-intensity
51 conditioning activity (CA) with a plyometric or explosive activity (EA) (Cormier et al.,
52 2022). Typically, CCT pairs a high-load CA, such as a three-repetition maximum (3RM)
53 back squat (BS), with a biomechanically similar, but velocity-dominant, EA, such as a
54 vertical jump. High-load CAs augment the performance of the EA through the
55 phenomenon of post-activation performance enhancement (PAPE), wherein
56 neuromuscular contractile history temporarily potentiates subsequent explosive efforts
57 through augmented rapid, synchronous high threshold motor unit recruitment, stretch-
58 shortening cycle (SSC) efficiency, increased tendon stiffness and muscle temperature
59 and muscle cell water content (Blazevich & Babault, 2019; Cormier et al., 2022). Post-
60 activation performance enhancement is thought to manifest through increased RFD
61 (Blazevich & Babault, 2019; Cormier et al., 2022; Tillin & Bishop, 2009). The
62 combination of enhanced rate and synchrony of high-threshold motor unit recruitment
63 and SSC efficiency results in more rapid force generation. Performance enhancement
64 cannot manifest as increased peak force (PF) or peak contraction velocity, because
65 the extremes of the force–velocity curve are reached only when neural drive and
66 contractile capacity are already maximised through high-frequency stimulation (Sale,
67 2002; Tillin & Bishop, 2009). Thus, conceptually, PAPE results in a flattening of the
68 force-velocity curve, with the middle of the curve shifting upward and to the right.

69 Complex-contrast training protocols inherently pose two problems. Firstly,
70 alongside PAPE, high-load CAs elicit acute neuromuscular fatigue, thereby masking
71 the benefits of PAPE. However, acute fatigue dissipates faster than PAPE and when
72 adequate rest is provided post-CA, fatigue sufficiently attenuates, allowing PAPE to
73 manifest as improved performance in subsequent activities (Cormier et al., 2022).
74 Secondly, muscular contractions are affected by contractile history. Within CCT
75 protocols, the characteristically slow contraction speed of high-load compound
76 movements may elicit movement pattern interference, in which the EA's contraction
77 speed is negatively affected by slow contraction rates (Blazevich & Babault, 2019;

78 Cormier et al., 2022; Tillin & Bishop, 2009). Thus, intra-contrast rest periods (ICRP)
79 are prescribed to facilitate sufficient recovery and minimise interference with
80 movement patterns that would prevent PAPE from manifesting. Athletes typically
81 require 5-12 minutes ICRP to allow sufficient recovery of metabolic and neuromuscular
82 function for enhanced performance to manifest (Crewther et al., 2011; Esformes &
83 Bampouras, 2013; Kilduff et al., 2008; Lowery et al., 2012; Scott et al., 2017). These
84 recommendations predominantly stem from CCT protocols that employ traditional set
85 structures (i.e., repetitions are performed continuously until the prescribed numbers
86 are completed, with ICRPs provided post-CA, prior to the EA) (Cormier et al., 2022;
87 Seitz & Haff, 2016; Thapa et al., 2024). Conversely, shorter rest periods may result in
88 fatigue accumulation, limited recovery and a diminished potentiation effect. This may
89 be particularly detrimental in athletic training scenarios where training time is limited.
90 Long ICRPs reduce training session efficiency, as training density and work completed
91 within specified timeframes may decrease. Therefore, it is pertinent to identify and
92 investigate strategies that may enhance the efficacy and practicality of CCT while
93 balancing fatigue, potentiation, and training time.

94 Rest redistribution (RR) is an alternative set strategy that has recently gained
95 popularity in the literature as an innovative approach to structuring rest within training
96 sessions (Latella et al., 2019; Tufano et al., 2017). Unlike traditional set structures,
97 where repetitions are completed continuously with longer inter-set rest intervals
98 (Tufano et al., 2017), RR partitions the total inter-set rest into shorter, more frequent
99 rest intervals between smaller groups of repetitions. This approach has been shown
100 to maintain force application and velocity across repetitions and sets by attenuating
101 fatigue accumulation compared to traditional sets (Boffey et al., 2021; Cuevas-Aburto
102 et al., 2022; Jukic & Tufano, 2022; Tufano et al., 2017). For example, Tufano et al.
103 (2017) demonstrated that RR preserved BS mean velocity (v_{MEAN}) and power
104 compared to traditional sets, when total volume and total rest were equated.
105 Furthermore, RR has been shown to reduce session RPE and increase intent,
106 strongly correlating with increased explosiveness (Chae et al., 2023; Jukic & Tufano,
107 2022; Ho et al., 2021). Thus, RR may provide a practical method for maintaining within-
108 CA performance by sufficiently limiting peripheral fatigue accumulation and movement
109 pattern interference, thereby reducing the total contrast rest period (TCRP) required
110 to observe enhanced explosive performance.

111 Despite promising evidence supporting the use of alternative set strategies as
112 a tool to maintain within-set performance of the same movement (Latella et al., 2019;
113 Tufano et al., 2017), the acute performance effect on subsequent movements remains
114 largely unexplored. For example, Cuevas-Aburto et al. (2022) observed no difference
115 in countermovement jump (CMJ) height after completing 18 BS repetitions, performed
116 at 10RM, using different set prescriptions (traditional, three sets of six repetitions with
117 three minutes inter-set rest; cluster sets, three sets of six repetitions, with 30 s
118 additional intra-set rest after every two repetitions and three minutes inter-set rest; RR,
119 nine sets of two repetitions, with 45 s inter-set rest). This study used 10RM, which
120 equated to lower body relative strength $\sim 1.0 \times$ body mass, which may suggest that
121 participants would not benefit from PAPE using continuous CA protocols (Seitz & Haff,
122 2016), due to an inability to recruit higher-order motor units effectively. This may have
123 been compounded by the training prescriptions, as participants performed sets of up
124 to six repetitions at 10RM intensity, which likely reduced the participants' proximity to
125 failure and further limited the likelihood of higher-order motor unit recruitment and
126 PAPE (Harmon et al., 2021; McManus et al., 2015). The combined effect of low relative
127 strength and limited fatigue suggest it is unlikely that PAPE would be exhibited (Seitz
128 & Haff, 2016). When stronger participants (relative strength, $1.5 \times$ body mass) and
129 higher intensities (5RM) were considered, Sirieiro et al. (2021) also observed no
130 difference in CMJ height at any time point between 0- and 12-minute post-5RM BS
131 when analysing sample means. However, analysis of individual peak performances
132 (i.e., best CMJ performance, regardless of time point) indicated that continuous CA
133 repetitions enhanced CMJ performance compared with protocols incorporating 30 s
134 rest between repetitions. Despite heavier absolute and relative loads, PAPE was still
135 not observed through sample means, limiting the generalisability of the results to wider
136 populations. Consequently, the CA protocols used in these studies may not have been
137 sufficiently intense enough to induce PAPE, fatigue, or movement pattern interference
138 that would necessitate set structure manipulation in participants with low to moderate
139 lower body strength. It therefore remains pertinent to assess the effect of RR within
140 CCT prescriptions that use heavier CAs and stronger participants, who are more likely
141 to benefit from PAPE.

142 Subsequently, a recent study examined the effect of RR within CCT sets on
143 vertical jump performance using $1.66 \times$ body mass, aiming to facilitate performance

enhancement with less total training time (Houlton et al., Under review). This study assessed the effect of a 15 s RR between 3RM BS repetitions (CA) on vertical jump (EA) propulsive impulse (J_{PROP}) and related force-time characteristics, with up to 5 minutes of total rest prescribed. RR resulted in no meaningful change in J_{PROP} across conditions and, therefore, no change in overall jump height. Furthermore, the inclusion of 15 s RR resulted in changes in propulsion strategy, where similar jump performance was achieved less explosively through longer propulsion time (t_{PROP}) and adverse effects on RFD. We concluded that RR may sufficiently limit fatigue and movement pattern interference to maintain overall jumping performance with shorter TCRPs than those currently suggested, even if this requires altering force-generation strategies, which may be helpful to practitioners in time-limited scenarios and specific sport and rehabilitation contexts. However, the observed attenuation of RFD suggests that either PAPE was not present (i.e., the CA did not sufficiently recruit higher-threshold motor units) or that the combination of CCT and RR did not sufficiently diminish fatigue and movement pattern interference within five minutes for PAPE to manifest as expected via RFD enhancements. As the 15 s RR used may not have been sufficient to allow enough recovery of phosphocreatine stores (Harries et al., 1976) to maintain CA performance, and only one RR strategy was considered, it is pertinent to investigate the effect of other RR strategies within CCT sets on vertical jump force application.

This study, therefore, aimed to assess the effect of redistributing 30 s of rest between three-repetition maximum (3RM) BS repetitions, when one to five minutes of TCRP is prescribed, on subsequent CMJ and squat jump (SJ) J_{PROP} and associated force-time components. We hypothesised that there would be a significant increase in J_{PROP} and RFD between conditions for CMJ-dependent variables, but no difference for SJ-dependent variables. Additionally, it was anticipated that longer TCRPs would further augment performance, but that RR would mitigate the need for excessively long rest periods for PAPE to manifest. Findings from this study may contribute to refining CCT methodologies by providing practical strategies for strength and conditioning practitioners to maximise explosive performance outcomes through optimising rest in time-limited scenarios.

174 **METHODS**

175 **Research Design**

176 This study aimed to assess the effect of RR on explosive vertical jump force during
177 lower-limb CCT sets. The BS was selected as the CA because it is commonly
178 prescribed by practitioners to enhance lower limb strength and power, and is frequently
179 used in CCT prescriptions due to its perceived biomechanical similarity to sprinting
180 and jumping variants (Myer et al., 2014).

181 Participants attended the facility on seven separate occasions. Sessions were
182 spaced one week apart and were consistently scheduled in the morning or afternoon,
183 depending on individual schedules. The first session was used for familiarisation to
184 ensure participants could perform the BS, CMJ and SJ safely and proficiently, adhering
185 to the technical models described by Brewer and Favre (2022), Acero et al. (2011),
186 and Arabatzi et al. (2014), respectively. A maximal-strength assessment was
187 conducted during the second session to determine participants' 3RM BS. Sessions
188 three to seven were used for data collection. Within these sessions, five TCRPs (of
189 60, 120, 180, 240 and 300 s duration; TCRP60, TCRP120, TCRP180, TCRP240 and
190 TCRP300, respectively and two vertical jumps (CMJ and SJ) were assigned evenly in
191 a counterbalanced, cross-sectional, repeated measures design to assess the effect of
192 redistributing 30 s between 3RM BS repetitions (60 s in total) from the assigned TCRP,
193 on vertical jump propulsive force application.

194 Participants completed two full interventions per session. Each intervention
195 consisted of a control condition (CON), one set of five jumps (BASELINE), an ICRP,
196 and another set of five vertical jumps (PRE-BS). A 10-minute rest period was provided
197 to minimise fatigue accumulation between conditions, after which the experimental
198 condition (EXP) was performed. EXP consisted of a CCT set; 3RM BS, with 30 s intra-
199 set rest between repetitions one and two and repetitions two and three, followed by
200 the same ICRP, then a final set of five jumps (POST-BS). The sum of total RR and
201 ICRP corresponded to the assigned TCRP. The best-performed jump repetition at
202 BASELINE, PRE-BS, and POST-BS, based on J_{PROP} , was selected for analysis.
203 BASELINE served as a comparison to PRE-BS within CON and to POST-BS within
204 EXP. Dependent variables (CMJ: J_{PROP} ; PF; mean force, MF; peak RFD, RFD_{PEAK};
205 average RFD, RFD_{AVE}; RFD index, RFD_{INDEX}; t_{PROP}. SJ: PF, MF, RFD_{AVE}, RFD over the

206 first 50-, 100- and 150 ms, RFD_{50} , RFD_{100} and RFD_{150} , respectively; t_{PROP}) were
207 calculated from force-time data. A 5 (TCRP; TCRP60, TCRP120, TCRP180, TCRP240
208 and TCRP300) x 2 (conditions; CON, EXP) x 2 (TIME; PRE (BASELINE), POST (PRE-
209 BS or POST-BS accordingly)) repeated measures ANOVA was used to assess for
210 differences.

211

212 Participants

213 Fifteen recreational male participants (age = 26.0 ± 2.6 years, stature = 1.75 ± 0.08
214 m, weight = 82.49 ± 5.32 kg, BS 3RM = 141.33 ± 13.64 kg, relative strength = $1.72 \pm$
215 0.15) were recruited for this study via convenience sampling from local strength and
216 conditioning facilities, universities and amateur sports teams. Similar to previous
217 studies that have used recreational samples, recreational participation in sport and
218 exercise was defined as participating in resistance training or sport two to four times
219 a week, with training not explicitly aligned with sports performance (Hendker & Elis,
220 2021; Jagim & Oliver, 2015). Participants were required to have had no history of
221 musculoskeletal injury within the three months prior to the start of data collection, a
222 minimum of 12 months of free-weight resistance training experience, and a lower-body
223 relative strength >1.50 (measured as the ratio between 3RM strength and body mass).
224 Initially, BS 3RM loads were self-reported before being formally assessed during the
225 maximal strength assessment. Although the inclusion criteria did not specify that only
226 males could participate, no females that could meet the criteria volunteered. As such,
227 only male participants were recruited. Prior to data collection, participants received a
228 comprehensive briefing on the expectations and requirements. They were also
229 provided with a participant information sheet and made aware of their right to withdraw
230 from the study at any time. Participants subsequently completed a health
231 questionnaire and signed an informed consent form. Ethical approval for this study
232 was provided by the Institutional Review Board at the BLINDED FOR REVIEW
233 PURPOSES (Project reference: PGR-7607, approved on 18/05/2023).

234

235 Experimental Procedures

236 *Anthropometrics*

237 Stature and body mass data were collected for each participant prior to the 3RM
238 assessment. Stature was measured with a calibrated stadiometer (Seca 217, Seca,
239 UK), and body mass was measured with calibrated scales (Seca 899, Seca, UK).

240

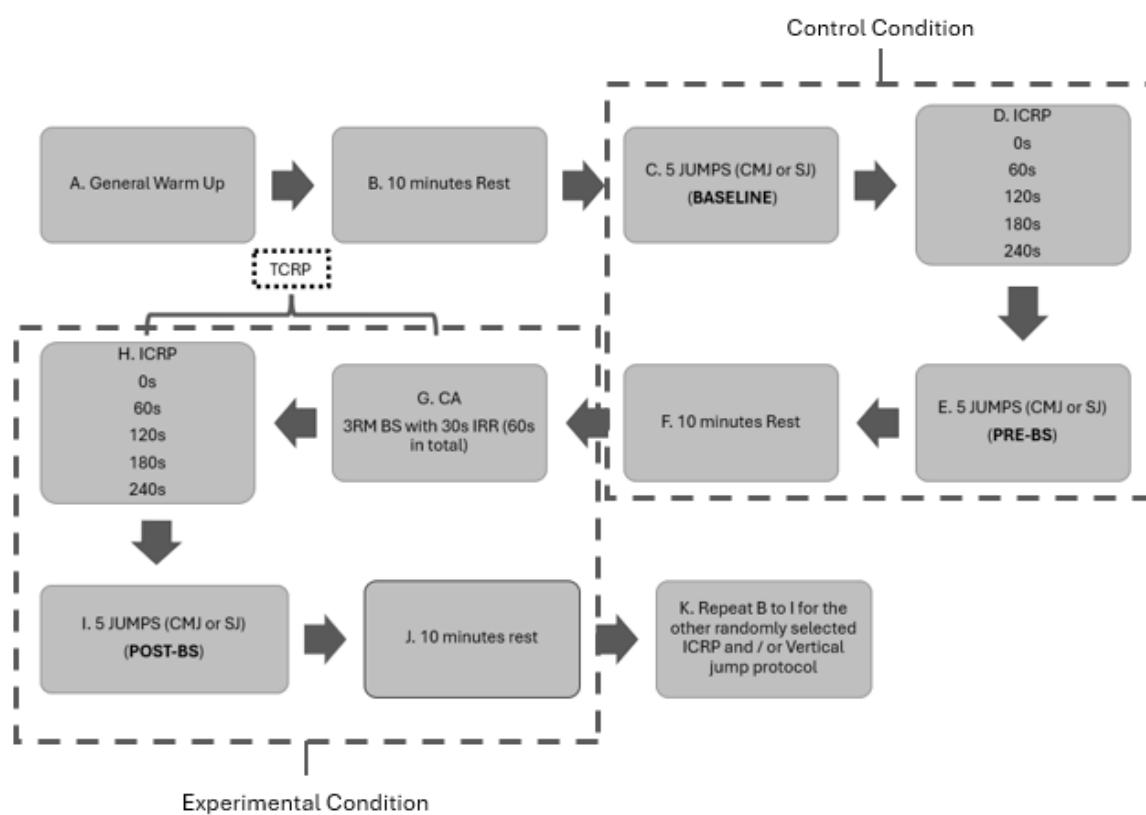
241 *Maximal Strength Assessment*

242 Upon arrival at the testing facility for the maximal strength assessment, participants
243 completed a dynamic warm-up consisting of static bike, walking lunges, inchworms,
244 deadbugs, glute bridges, and bodyweight squats. Participants then completed a 3RM
245 assessment following the guidelines for recreational or amateur athletes provided by
246 Shephard and Triplett (2016, pp. 452-454). Briefly, participants initially self-reported
247 their 3RM BS. Five warm-up sets that progressively increased in load by 10-20% up
248 to 90% of each participant's 3RM were calculated based on their self-reported 3RM.
249 After completing the final warm-up set, participants continued to perform sets at
250 increasingly heavier loads until they were unable to complete all three repetitions with
251 correct execution form. Three minutes of inter-set rest was provided between all warm-
252 up sets and 3RM attempts. Participants took a median of 4 (interquartile range = 1) to
253 establish 3RM BS. The heaviest completed set was recorded as participants' 3RM.

254 All BS repetitions during the maximal strength assessment and subsequent
255 data collection were conducted using a 20 kg Olympic barbell, competition bumper
256 plates, collars and a squat rack (Werk San, Ankara, Turkey, provided by TechnoGym,
257 UK). All repetitions were monitored for correct execution by a United Kingdom Strength
258 and Conditioning Association accredited strength and conditioning coach (L.J.H.). For
259 repetitions to count, participants' hip axis had to pass below the knee axis and return
260 to standing, with the feet remaining in full contact with the ground. Barbell v_{MEAN} was
261 measured for all three repetitions of each attempt to ensure a true 3RM was achieved.
262 The v_{MEAN} of the final repetition of a BS repetition maximum assessment is typically
263 $\leq 0.30 \text{ m}\cdot\text{s}^{-1}$ (Mann, 2022). When this threshold is reached, it is unlikely participants
264 will be able to complete another repetition, and thus the repetition maximum is
265 reached. Thus, subsequent attempts were estimated based on the proximity of the
266 final repetition to $0.30 \text{ m}\cdot\text{s}^{-1}$. Participants were permitted to continue to attempt heavier

267 loads until they could no longer complete all three repetitions. However, if all
268 repetitions at a particular load could not be completed, the heaviest set in which the
269 final repetition was $\leq 0.30 \text{ m}\cdot\text{s}^{-1}$ was recorded as 3RM.

270 Mean velocity was measured using a Vitruve encoder (Vitruve Fit, Spain).
271 Vitruve encoder reliability has been reported by Kilgallon et al. (2022). The coefficient
272 of variation (CV) and intra-class correlation coefficient (ICC) for measuring V_{MEAN} at
273 90% of 1RM (a similar intensity to 3RM) were reported as 8.8% and 0.77, respectively.


274

275 *Experimental Procedure*

276 For data collection, participants were required to report to the testing facility two hours
277 postprandial. They were instructed to refrain from caffeine intake for the six hours
278 preceding data collection and from alcohol intake and rigorous exercise for 48 hours
279 prior to data collection. Participants were also asked to confirm verbally that they had
280 adhered to these instructions and that they remained injury-free and healthy enough
281 to complete data collection.

282 Each session included two separate interventions (i.e. two different TCRPs and
283 a jump type). Each intervention consisted of the CON and EXP conditions
284 corresponding to the assigned TCRP and jump. Participants completed the same
285 standardised dynamic warm-up as the maximal strength assessment session,
286 followed by 10 minutes of rest. Subsequently, they performed 5 vertical jumps
287 (BASELINE), with the type of jump (SJ or CMJ) randomly allocated, followed by a
288 randomly allocated ICRP (i.e. 0, 60, 120, 180 or 240s, calculated as TCRP minus 60s
289 RR) and another set of 5 jumps (PRE-BS). This completed the CON condition of the
290 intervention. After a further 10-minute recovery, participants performed the EXP
291 condition. EXP started with a specific BS warm-up consisting of 5 sets, up to 90% of
292 their established 3RM. All warm-up sets were performed continuously and separated
293 by 2 minutes. After the final warm-up set, a three-minute rest period was provided
294 before initiation of the CCT set. The CCT set consisted of 3RM BS with 30s between
295 repetitions (i.e. RR). Participants were instructed to complete BS repetitions maximally
296 and, consistent with the maximal strength assessment, V_{MEAN} was assessed for all
297 three repetitions. Upon completion of the third BS repetition, the barbell was racked,
298 and the ICRP started. The sum of RR and ICRP equalled the TCRP. Immediately after

299 the ICRP, participants completed the final set of 5 jumps (POST-BS). Finally, following
 300 another 10 minutes of rest, the experimental procedure was repeated for a second
 301 randomly allocated vertical jump and TCRP intervention. During all rest periods,
 302 participants were seated. A schematic overview of the session is presented in Figure
 303 1, and the breakdown of rest period durations within each intervention are shown in
 304 Table 1. The independent variables (vertical jump (2) and TCRP (5)) were assigned in
 305 a randomised, counterbalanced design using a random number generator in Microsoft
 306 Excel (Microsoft, USA).

307

308 **Figure 1.** Schematic overview of the experimental procedure for a single session.
 309 Participants performed 5 jumps (BASELINE) of a randomly allocated vertical jump type
 310 (C). A randomly allocated ICRP is then used for rest (D), followed by another set of 5
 311 jumps (PRE-BS) (E). After 10 minutes rest, the subjects performed a 3RM BS with 60s
 312 equally distributed between the repetitions (G), followed by the ICRP (H) and the final
 313 set of 5 jumps (POST-BS) (I). The sum of G and H times represents TCRP. C, D and
 314 E and F represent the CON condition. G, H and I and J represent the EXP condition.
 315 Following 10 minutes of rest, the above process was repeated with another randomly
 316 allocated vertical jump type and ICRP.

317 **Table 1.** Intra-contrast rest and rest redistribution duration within each total contrast
318 rest period.

TCRP (s)	ICRP (s)	RR (s)
60	0	60
120	60	60
180	120	60
240	180	60
300	240	60

319 TCRP, total contrast rest period; ICRP, intra-contrast rest period; RR, rest redistribution.

320

321 Vertical jump ground reaction force (GRF) data were collected using dual force
322 platforms (PS-2141, Pasco, Roseville, CA, USA) with a sampling rate of 1000 Hz and
323 recorded using commercial software (Pasco Capstone 2.0, Pasco, Roseville, CA,
324 USA). The GRF from both platforms were summed to calculate the total GRF
325 (GRF_{TOTAL}). The raw force-time data were transferred to Microsoft Excel for processing
326 and analysis.

327 *Data Processing*

328 Countermovement jump and SJ raw data were transferred to custom-made Microsoft
329 Excel templates to extract dependent variables. Body weight was calculated as the
330 mean of the first 2000 force data points of the weighing phase (McMahon et al., 2018).
331 Body weight was subtracted from all subsequent GRF_{TOTAL} data points to obtain net
332 GRF (GRF_{NET}) and, subsequently, impulse via force-time curve integration (Hansen et
333 al., 2011; McBride et al., 2010).

334 Countermovement jump propulsion was considered to start at the
335 instantaneous point where the negative centre of mass velocity ceased at the end of
336 the unweighting phase, coinciding with the peak negative centre of mass displacement
337 (McMahon et al., 2018). Squat jump propulsion was considered to have begun at the
338 data point at which GRF_{NET} first exceeded 50 N (Perez-Castilla et al., 2021). For both
339 jumps, propulsion was considered to have ceased when GRF_{TOTAL} returned to 0 N.

340 Dependent variables were subsequently calculated from the propulsive phase.
341 Propulsive impulse was calculated as the sum of all instantaneous impulse data points
342 in the propulsive phase. Peak force was calculated as the highest instantaneous
343 GRF_{TOTAL} datapoint. The MF was calculated as the average of all GRF_{TOTAL} data
344 points. Propulsion time was calculated as the difference between the time points
345 corresponding to the instantaneous start and end of the propulsive phase.

346 Rate of force development variables were calculated by differentiating the
347 force-time curve. For CMJ, RFD was calculated for CMJ repetitions using the
348 equations described by Boullosa et al. (2018) and Perez-Castilla et al. (2019).
349 RFD_{PEAK} was defined as the highest instantaneous RFD value during the propulsive
350 phase. RFD_{AVE} was calculated as the difference between instantaneous PF and
351 instantaneous GRF_{TOTAL} at the start of the propulsive phase, divided by the
352 corresponding difference in time. RFD_{INDEX} was calculated as RFD_{PEAK} divided by the
353 difference in time between RFD_{PEAK} and the start of the propulsive phase. For SJ,
354 RFD_{AVE} was calculated similarly to CMJ (McLellan et al., 2011). RFD₅₀, RFD₁₀₀ and
355 RFD₁₅₀ were calculated as the difference between the instantaneous GRF_{TOTAL} at 50,
356 100, and 150 ms and the instantaneous GRF_{TOTAL} at the start of the propulsive phase,
357 divided by 50, 100 and 150 ms, respectively (Hansen et al., 2011; Torres Laett et al.,
358 2021).

359 Statistical Analysis

360 To inform recruitment, an a priori sample size estimation was completed. A similar
361 study using vertical jumps pre- and post-3RM BS reported J_{PROP} effect sizes (Cohen's
362 d) of 0.53 and 0.62 for two BS variants. Converting these effect sizes to Cohen's f
363 values and for a one-way within-subjects ANOVA, alpha = 0.05 and power = 80%, 14-
364 19 subjects would be required (Faul et al., 2007).

365 Dependent variables were tested for normality and confirmed using the
366 Shapiro-Wilks test and visual inspection of Q-Q plots of the residuals. Each variable
367 was assessed with ICCs to estimate relative reliability and with typical error (TE) to
368 estimate absolute reliability. Intra-class correlation coefficients were calculated
369 between the first and second repetitions of BASELINE completed during the first data
370 collection session (Table 2). 0.00–0.10, 0.10–0.30, 0.30–0.50, 0.50–0.70, 0.70–0.90,
371 and 0.90–1.00 were classed as trivial, small, moderate, large, very large, and nearly

372 perfect ICCs, respectively (Hopkins et al., 2009). Typical error was calculated as the
373 standard deviation of the difference between the first and second repetitions of
374 BASELINE divided by $\sqrt{2}$ (Swinton et al., 2018) using standard deviations and ICCs
375 calculated between the same repetitions (Table 2). The smallest worthwhile change
376 (SWC) was calculated as 0.35 times the standard deviation of the first BASELINE
377 repetition, with 0.35 deemed a more appropriate smallest effect size for this population
378 (Rhea, 2004). The relationship between TE and SWC was examined to assess the
379 ability to detect true changes across timepoints or interventions (Pojskic et al., 2020).
380 True changes were considered detectable when TE was smaller than SWC, indicating
381 that observed differences exceeded measurement error and individual variability.
382 Conversely, when TE exceeded SWC, true differences were deemed less detectable
383 due to greater measurement noise.

384 The difference in 3RM BS v_{MEAN} between TCRP conditions was assessed using
385 a repeated measures ANOVA. The difference in dependent variables between peak
386 BASELINE, PRE-BS and POST-BS repetitions was examined across TCRP
387 conditions using a 5x2x2 (TCRP*CONDITION*TIME) repeated-measures ANOVA.
388 Sphericity was assessed, and ANOVA results are reported accordingly following the
389 recommendations of Verma et al. (2015). Significant interactions and main effects
390 were further examined, followed, where necessary, by pairwise comparisons corrected
391 using Holm's Sequential Bonferroni stepwise adjustment, with corrected values
392 reported. The overall effect size was calculated using partial eta-squared (η_p^2), where
393 effect sizes of 0.01, 0.06, and 0.14 were considered small, medium, and large,
394 respectively (Cohen, 1988). Bias-corrected pairwise effect sizes (Hedge's g) with 95%
395 confidence intervals were also calculated when a significant difference between pairs
396 was revealed. Based on a sample of recreationally trained participants, effect sizes
397 were categorised as trivial (<0.35), small (0.35–0.80), moderate (0.81–1.50), and large
398 (>1.50) (Rhea, 2004). All data are presented as mean \pm SD unless otherwise stated.
399 Significance was set at $p < 0.05$. All data were statistically analysed in IBM SPSS
400 Statistics for Windows, version 26.0 (IBM Corp., Armonk, N.Y., USA).

401 **RESULTS**

402 **Reliability**

403 Intraclass correlation coefficients, TE and SWC are presented in Table 2. All metrics
 404 displayed very large or nearly perfect ICCs, except for RFD_{INDEX}, which showed a large
 405 ICC, demonstrating acceptable reliability similar to Perez-Castilla et al. (2019).

406 **Table 2. Intra-class** correlation coefficients, typical error and smallest worthwhile
 407 change with 95% confidence intervals. For both vertical jump types, propulsive
 408 impulse, peak and mean force, and propulsion time are reported. For
 409 countermovement jumps, peak, average and index RFD are reported. For squat
 410 jumps, average RFD, and RFD over the first 50, 100 and 150 ms of propulsion are
 411 reported.

Jump	Variable	ICC	TE	SWC
CMJ	Propulsive Impulse (N·s)	0.92 (0.84-1.00)	6.37 (1.81-10.92)	6.00 (-2.676-14.678)
	Peak Force (N)	0.94 (0.86-0.98)	77.48 (22.03-132.93)	63.43 (-28.28-155.15)
	Mean Force (N)	0.95 (0.85-0.98)	30.63 (8.71-52.55)	43.49 (-19.39-106.38)
	Peak RFD (N·s ⁻¹)	0.78 (0.47-0.92)	1242.61 (353.30-2131.92)	878.46 (-391.70-2148.62)
	Average RFD (N·s ⁻¹)	0.91 (0.75-0.97)	454.87 (129.33-780.41)	487.75 (-217.48-1192.97)
	RFD Index (N·s ⁻²)	0.59 (0.14-0.84)	23445.89 (6666.19-40225.58)	12382.63 (-5521.29-30286.53)
	Propulsion Time (s)	0.98 (0.93-0.99)	0.01 (0.00-0.01)	0.01 (-0.01-0.03)
SJ	Propulsive Impulse (N·s)	0.98 (0.93-0.99)	5.57 (1.58-9.56)	11.52 (-5.14-28.19)
	Peak Force (N)	0.97 (0.92-0.99)	49.40 (14.05-84.75)	92.73 (-41.35-226.82)
	Mean Force (N)	0.94 (0.83-0.98)	28.20 (8.02-48.38)	36.88 (-16.44-90.20)
	Average RFD (N·s ⁻¹)	0.88 (0.68-0.96)	627.84 (178.51-1077.16)	587.48 (-261.95-1436.91)
	RFD 50 ms (N·s ⁻¹)	0.93 (0.81-0.98)	728.71 (207.19-1250.24)	908.27 (-404.98-2221.52)
	RFD 100 ms (N·s ⁻¹)	0.88 (0.68-0.96)	753.14 (214.13-1292.15)	704.91 (-314.31-1724.12)
	RFD 150 ms (N·s ⁻¹)	0.96 (0.90-0.99)	344.51 (97.95-591.07)	582.33 (-259.65-1424.32)
412 413	Propulsion Time (s)	0.97 (0.92-0.99)	0.01 (0.00-0.02)	0.02 (-0.01-0.06)

CMJ, countermovement jump; SJ, squat jump; ICC, intraclass correlation coefficient; TE, typical error; SWC, smallest worthwhile change; RFD, rate of force development.

414 Back Squat Mean Velocity

415 The BS V_{MEAN} for the maximal strength assessment and all jump conditions is
 416 presented in Table 3. Repeated-measures ANOVA showed a significant main effect of
 417 CONDITION ($F_{6.229, 87.208} = 3.424, p < 0.001, \eta_p^2 = 0.197$). Post hoc analysis showed
 418 3RM V_{MEAN} was significantly lower than all CMJ and SJ experimental BS V_{MEAN} (Table
 419 3). Within CMJ experimental conditions, TCRP120 V_{MEAN} was significantly lower than
 420 TCRP300 ($t_{14} = -2.156, p = 0.049, g = -0.526$ (-1.034, -0.002)). Within SJ experimental
 421 conditions, TCRP120 V_{MEAN} was significantly lower than TCRP240 ($t_{14} = -2.256, p =$
 422 $0.041, g = -0.551$ (-1.062, -0.023)), and TCRP240 was significantly higher than
 423 TCRP300 ($t_{14} = 2.199, p = 0.045, g = 0.537$ (0.011, 1.046)). No other significant
 424 differences were observed within the CMJ or SJ conditions.

425 **Table 3.** Back squat mean velocity, presented as individual repetitions and the average
 426 of the individual repetitions within the three-repetition maximum assessment and
 427 within each experimental condition. Hedge's g with 95% confidence intervals between
 428 3RM and experimental condition back squat mean velocity are also presented.

JUMP	TCRP (s)	R1 ($m \cdot s^{-1}$)	R2 ($m \cdot s^{-1}$)	R3 ($m \cdot s^{-1}$)	Average ($m \cdot s^{-1}$)	g
CMJ	-	0.37 ± 0.05	0.33 ± 0.03	0.28 ± 0.04	0.32 ± 0.05	-
	60	0.38 ± 0.08	0.37 ± 0.06	0.35 ± 0.07	0.36 ± 0.07^a	0.762 (-1.306, -0.198)
	120	0.37 ± 0.07	0.36 ± 0.08	0.35 ± 0.08	0.36 ± 0.07^a	0.505 (-1.010, -0.016)
	180	0.38 ± 0.08	0.37 ± 0.07	0.34 ± 0.09	0.36 ± 0.08^a	0.624 (-1.145, -0.085)
	240	0.39 ± 0.08	0.38 ± 0.09	0.36 ± 0.08	0.38 ± 0.08^a	0.805 (-1.356, -0.232)
	300	0.40 ± 0.07	0.38 ± 0.06	0.36 ± 0.07	0.38 ± 0.07^a	1.088 (-1.699, -0.453)
	60	0.38 ± 0.07	0.37 ± 0.08	0.36 ± 0.07	0.37 ± 0.07^a	0.862 (-1.425, -0.278)
	120	0.37 ± 0.08	0.38 ± 0.08	0.34 ± 0.08	0.36 ± 0.08^a	0.627 (-1.148, -0.087)
	180	0.38 ± 0.08	0.37 ± 0.07	0.34 ± 0.09	0.36 ± 0.08^a	0.785 (-1.333, -0.216)
	240	0.39 ± 0.06	0.39 ± 0.06	0.37 ± 0.08	0.38 ± 0.06^a	1.412 (-2.105, -0.696)
	300	0.38 ± 0.08	0.37 ± 0.07	0.33 ± 0.08	0.36 ± 0.08^a	0.741 (-1.281, -0.180)

429 TCRP, total-contrast rest period; R1-3, repetition one, two and three; Average, mean of three repetitions; CMJ, countermovement
 430 jump; SJ, squat jump.

431 ^a significantly different to 3RM ($p < 0.05$).

432 Countermovement Jump

433 Countermovement jump descriptive statistics are reported in Table 4, and the

434 repeated-measures ANOVA results are presented in Table 5.

Table 4. Countermovement jump dependent variable descriptive statistics, expressed as mean \pm SD.

Dependent Variable									
TCRP (s)	CONDITION	TIME	Propulsive Impulse (N·s)	Peak Force (N)	Mean Force (N)	Peak RFD (N·s ⁻¹)	Average RFD (N·s ⁻¹)	RFD Index (N·s ⁻²)	Propulsion Time (s)
60	CON	BASELINE	220.42 \pm 20.34	1942.11 \pm 187.38	1560.60 \pm 115.69	5562.00 \pm 1951.86	2061.51 \pm 855.36	48253.80 \pm 46294.84	0.28 \pm 0.03
		PRE_BS	221.85 \pm 22.59	1919.25 \pm 185.77	1552.56 \pm 98.72	5188.00 \pm 2211.89	2145.80 \pm 771.11	39300.33 \pm 25448.11	0.30 \pm 0.03
	EXP	BASELINE	220.42 \pm 20.34	1942.11 \pm 187.38	1560.60 \pm 115.69	5562.00 \pm 1951.86	2061.51 \pm 855.36	48253.80 \pm 46294.84	0.28 \pm 0.03
		POST_BS	220.95 \pm 20.58	1954.49 \pm 155.29	1550.98 \pm 102.09	5453.33 \pm 1894.27	1992.91 \pm 763.21	58776.03 \pm 49575.70	0.32 \pm 0.03
120	CON	BASELINE	222.21 \pm 15.68	1942.34 \pm 164.18	1573.21 \pm 118.14	5124.00 \pm 2321.85	2250.46 \pm 953.14	46713.87 \pm 30573.71	0.28 \pm 0.03
		PRE_BS	223.52 \pm 17.06	1985.34 \pm 135.59	1581.47 \pm 115.39	4902.67 \pm 1911.92	2244.07 \pm 677.01	57552.72 \pm 44011.87	0.29 \pm 0.03
	EXP	BASELINE	222.21 \pm 15.68	1942.34 \pm 164.18	1573.21 \pm 118.14	5124.00 \pm 2321.85	2250.46 \pm 953.14	46713.87 \pm 30573.71	0.28 \pm 0.03
		POST_BS	228.10 \pm 16.95	2013.21 \pm 123.02	1581.80 \pm 120.40	5118.00 \pm 2017.71	2617.05 \pm 873.51	49115.91 \pm 34887.41	0.30 \pm 0.03
180	CON	BASELINE	223.92 \pm 20.77	1977.13 \pm 123.65	1611.31 \pm 125.58	4353.33 \pm 1602.84	2126.80 \pm 851.81	64083.53 \pm 65461.10	0.29 \pm 0.04
		PRE_BS	224.05 \pm 22.20	2012.50 \pm 130.55	1615.16 \pm 107.70	4508.67 \pm 1570.95	2240.75 \pm 904.96	51341.44 \pm 35534.71	0.28 \pm 0.03
	EXP	BASELINE	223.92 \pm 20.77	1977.13 \pm 123.65	1611.31 \pm 125.58	4353.33 \pm 1602.84	2126.80 \pm 851.81	64083.53 \pm 65461.10	0.29 \pm 0.04
		POST_BS	229.28 \pm 18.60	1960.55 \pm 130.00	1575.36 \pm 117.46	4726.00 \pm 1716.79	2540.18 \pm 843.01	63418.42 \pm 69293.28	0.27 \pm 0.03
240	CON	BASELINE	224.29 \pm 21.75	1945.93 \pm 184.37	1563.35 \pm 128.71	4727.33 \pm 1625.14	2143.16 \pm 945.63	34789.76 \pm 19653.70	0.30 \pm 0.03

Dependent Variable									
TCRP (s)	CONDITION	TIME	Propulsive Impulse (N·s)	Peak Force (N)	Mean Force (N)	Peak RFD (N·s ⁻¹)	Average RFD (N·s ⁻¹)	RFD Index (N·s ⁻²)	Propulsion Time (s)
300	EXP	PRE_BS	224.15 ± 20.68	1944.17 ± 136.04	1570.62 ± 112.03	4218.53 ± 1920.80	2187.93 ± 875.81	37774.52 ± 45275.80	0.29 ± 0.03
		BASELINE	224.29 ± 21.75	1945.93 ± 184.37	1563.35 ± 128.71	4727.33 ± 1625.14	2143.16 ± 945.63	34789.76 ± 19653.70	0.30 ± 0.03
		POST_BS	230.07 ± 20.68	1942.01 ± 172.76	1546.12 ± 140.84	5453.33 ± 1919.59	2432.18 ± 945.84	33129.26 ± 14030.29	0.28 ± 0.03
436	CON	BASELINE	223.95 ± 16.87	1947.79 ± 136.18	1576.06 ± 127.00	4500.67 ± 1651.23	2210.73 ± 611.48	35655.98 ± 15576.11	0.29 ± 0.04
		PRE_BS	223.15 ± 18.63	1985.09 ± 133.63	1566.32 ± 152.46	4244.67 ± 1573.33	2159.06 ± 795.56	35409.65 ± 22109.02	0.29 ± 0.04
	EXP	BASELINE	223.95 ± 16.87	1947.79 ± 136.18	1576.06 ± 127.00	4500.67 ± 1651.23	2210.73 ± 611.48	35655.98 ± 15576.11	0.29 ± 0.04
		POST_BS	227.97 ± 17.50	1943.09 ± 148.35	1552.60 ± 138.81	5126.00 ± 1645.97	2459.67 ± 715.17	43841.84 ± 34862.16	0.28 ± 0.04

TCRP, total contrast rest period; CON, control condition; EXP, experimental condition; BASELINE, best performed repetition from the baseline set of jumps in the control condition; PRE-BS, best performed repetition from the post-ICRP set of jumps in the control condition; POST-BS, best performed repetition from the post-ICRP set of jumps in the experimental condition; RFD, rate of force development.

436
437
438
439

440 **Table 5.** Countermovement jump repeated measures ANOVA results. Significant interactions and main effects are shown in bold.

Dependent Variable							
Effect	Propulsive Impulse (N·s)	Peak Force (N)	Mean Force (N)	Peak RFD (N·s ⁻¹)	Average RFD (N·s ⁻¹)	RFD Index (N·s ⁻²)	Propulsion Time (s)
TCRP	F_{4, 56} = 1.093 <i>p</i> = 0.371 η_p^2 = 0.072	F_{4, 56} = 0.796 <i>p</i> = 0.515 η_p^2 = 0.054	F_{4, 56} = 1.680 <i>p</i> = 0.185 η_p^2 = 0.107	F_{4, 56} = 3.153 <i>p</i> = 0.021 η_p^2 = 0.184	F_{4, 56} = 0.579 <i>p</i> = 0.679 η_p^2 = 0.040	F_{2,040, 28,564} = 0.2366 <i>p</i> = 0.111 η_p^2 = 0.145	F_{4, 56} = 1.536 <i>p</i> = 0.204 η_p^2 = 0.099
	CONDITION						
	F_{1, 14} = 17.959 <i>p</i> < 0.001 η_p^2 = 0.562	F_{1, 14} = 0.538 <i>p</i> = 0.475 η_p^2 = 0.037	F_{1, 14} = 5.641 <i>p</i> = 0.032 η_p^2 = 0.287	F_{1, 14} = 54.817 <i>p</i> < 0.001 η_p^2 = 0.797	F_{1, 14} = 7.373 <i>p</i> = 0.017 η_p^2 = 0.345	F_{1, 14} = 1.372 <i>p</i> = 0.261 η_p^2 = 0.089	F_{1, 14} = 0.545 <i>p</i> = 0.473 η_p^2 = 0.037
TIME	F_{1, 14} = 25.256 <i>p</i> < 0.001 η_p^2 = 0.656	F_{1, 14} = 1.802 <i>p</i> = 0.201 η_p^2 = 0.114	F_{1, 14} = 1.417 <i>p</i> = 0.254 η_p^2 = 0.092	F_{1, 14} = 0.364 <i>p</i> = 0.556 η_p^2 = 0.025	F_{1, 14} = 12.439 <i>p</i> = 0.003 η_p^2 = 0.470	F_{1, 14} = 0.046 <i>p</i> = 0.866 η_p^2 = 0.003	F_{1, 14} = 2.288 <i>p</i> = 0.153 η_p^2 = 0.140
	TCRP*CONDITION						
	F_{4, 56} = 2.258 <i>p</i> = 0.090 η_p^2 = 0.139	F_{4, 56} = 2.251 <i>p</i> = 0.077 η_p^2 = 0.139	F_{4, 56} = 1.460 <i>p</i> = 0.238 η_p^2 = 0.094	F_{4, 56} = 4.052 <i>p</i> = 0.006 η_p^2 = 0.224	F_{4, 56} = 12.439 <i>p</i> = 0.003 η_p^2 = 0.208	F_{2,196, 30,751} = 1.113 <i>p</i> = 0.346 η_p^2 = 0.074	F_{4, 56} = 12.950 <i>p</i> < 0.001 η_p^2 = 0.481
TCRP*TIME	F_{4, 56} = 0.530 <i>p</i> = 0.688 η_p^2 = 0.035	F_{4, 56} = 0.990 <i>p</i> = 0.407 η_p^2 = 0.066	F_{4, 56} = 0.503 <i>p</i> = 0.728 η_p^2 = 0.035	F_{4, 56} = 2.034 <i>p</i> = 0.102 η_p^2 = 0.127	F_{4, 56} = 0.736 <i>p</i> = 0.571 η_p^2 = 0.050	F_{1,896, 26,550} = 0.168 <i>p</i> = 0.864 η_p^2 = 0.012	F_{4, 56} = 23.378 <i>p</i> < 0.001 η_p^2 = 0.625
	CONDITION*TIME						
	F_{1,14} = 17.959 <i>p</i> < 0.001 η_p^2 = 0.562	F_{1, 14} = 0.538 <i>p</i> = 0.475 η_p^2 = 0.037	F_{1, 14} = 5.641 <i>p</i> = 0.032 η_p^2 = 0.287	F_{1, 14} = 54.817 <i>p</i> < 0.001 η_p^2 = 0.797	F_{1, 14} = 7.373 <i>p</i> = 0.017 η_p^2 = 0.345	F_{1, 14} = 1.372 <i>p</i> = 0.261 η_p^2 = 0.089	F_{1, 14} = 0.545 <i>p</i> = 0.473 η_p^2 = 0.037
TCRP*CONDITION*TIME	F_{4, 56} = 2.258 <i>p</i> = 0.090 η_p^2 = 0.139	F_{4, 56} = 2.251 <i>p</i> = 0.077 η_p^2 = 0.139	F_{4, 56} = 1.460 <i>p</i> = 0.238 η_p^2 = 0.094	F_{4, 56} = 4.052 <i>p</i> = 0.006 η_p^2 = 0.224	F_{4, 56} = 3.671 <i>p</i> = 0.010 η_p^2 = 0.208	F_{2,196, 30,751} = 1.113 <i>p</i> = 0.346 η_p^2 = 0.074	F_{4, 56} = 12.950 <i>p</i> < 0.001 η_p^2 = 0.481

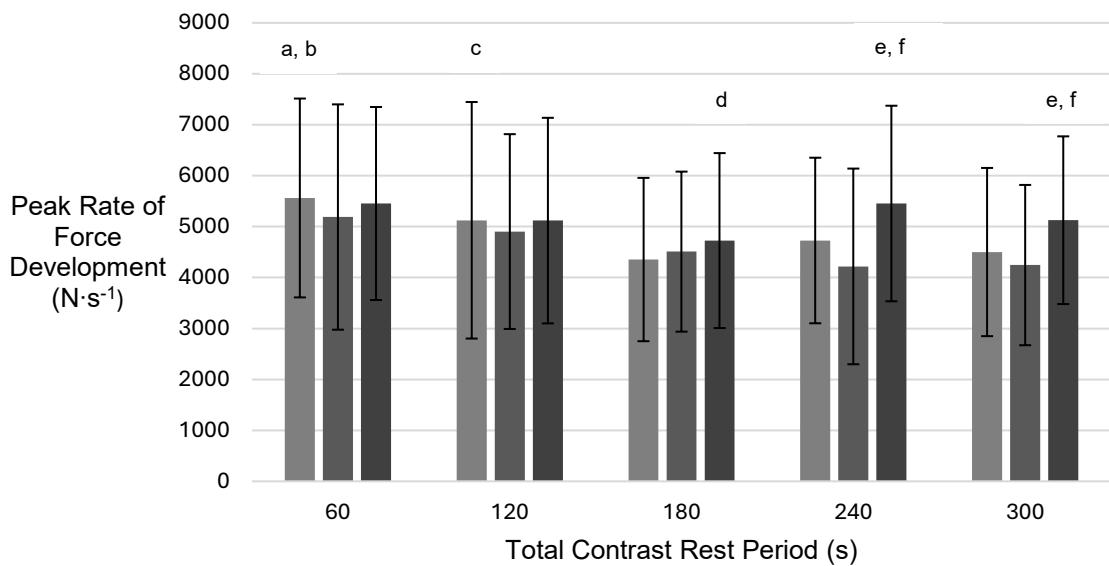
441 TCRP, total contrast rest period; CONDITION, control or experimental; TIME, pre-ICRP or post-ICRP.

442

443

444 Analysis of J_{PROP} revealed a significant interaction of CONDITION*TIME. Post
 445 hoc analysis showed that POST-BS was higher than PRE-BS and higher than
 446 BASELINE. There was no difference between PRE-BS and BASELINE (Table 6).
 447 There was a main effect of TIME, with POST-ICRP being higher than PRE-ICRP. There
 448 was a main effect of CONDITION with EXP being higher than CON. No other
 449 significant interactions or effects were observed for J_{PROP} . No significant interactions
 450 or main effects were observed for PF. For MF, a significant interaction was found for
 451 CONDITION*TIME. Further analysis showed that POST-BS was lower than PRE-BS.
 452 There was no difference between POST-BS and BASELINE or PRE-BS and
 453 BASELINE (Table 6). There was a main effect of CONDITION, with CON being higher
 454 than EXP. No other significant interactions or effects were observed for MF.

455


456 **Table 6.** Countermovement jump CONDITION x TIME post hoc analysis. Pairwise
 457 significance and effect size between collapsed variables where a significant interaction
 458 was found. Effect size (g) is reported with 95% confidence intervals. Significant effect
 459 sizes are highlighted in bold.

Variable	Pairwise Comparison	<i>p</i>	<i>g</i>	CI
Propulsive Impulse (N·s)	POST-BS – PRE-BS	<0.001	1.065	0.450, 1.681
	POST-BS - BASELINE	<0.001	1.702	0.895, 2.485
	PRE-BS - BASELINE	0.570	0.146	-0.352, 0.639
Mean Force (N)	POST-BS – PRE-BS	0.032	0.613	0.050, 1.158
	POST-BS - BASELINE	0.063	0.507	-0.027, 1.026
	PRE-BS - BASELINE	0.481	0.012	-0.481, 0.504
Peak RFD (N·s ⁻¹)	POST-BS – PRE-BS	<0.001	1.860	1.008, 2.689
	POST-BS - BASELINE	<0.001	1.237	0.555, 1.894
	PRE-BS - BASELINE	0.015	0.694	0.130, 1.239
Average RFD (N·s ⁻¹)	POST-BS – PRE-BS	0.017	0.682	0.120, 1.225
	POST-BS - BASELINE	<0.001	1.334	0.628, 2.016
	PRE-BS - BASELINE	0.576	0.144	-0.354, 0.637

460 BASELINE, collapsed variable calculated as the mean of the best performed repetition from the baseline set of jumps in the
 461 control condition from each total contrast rest period (TCRP) intervention; PRE-BS, collapsed variable calculated as the mean of
 462 the best performed repetition from the post-ICRP set of jumps in the control condition from each TCRP intervention; POST-BS,
 463 collapsed variable calculated as the mean of the best performed repetition from the post-ICRP set of jumps in the experimental
 464 condition from each TCRP intervention; RFD, rate of force development.

465

466 Analysis of RFD_{PEAK} revealed a significant interaction for
 467 TCRP*CONDITION*TIME. Significant pairwise comparisons and effect sizes are
 468 reported in Figure 2. A significant interaction was found for CONDITION*TIME. Post
 469 hoc analysis showed that POST-BS was higher than PRE-BS and PRE-BS was lower
 470 than BASELINE (Table 6).

471 BASELINE, best performed repetition from the baseline set of jumps in the control condition; PRE-BS, best performed
 472 repetition from the post-ICRP set of jumps in the control condition; POST-BS, best performed repetition from the post-
 473 ICRP set of jumps in the experimental condition.

474 ^a Significant moderate effect with TCRP240_PRE-BS ($p < 0.05$, $g = 0.81-1.50$).

475 ^b Significant small effect with TCRP300_PRE-BS ($p < 0.05$, $g = 0.35-0.81$).

476 ^c Significant small effect with TCRP300_PRE-BS ($p < 0.05$, $g = 0.35-0.81$).

477 ^d Significant small effect with BASELINE ($p < 0.05$, $g = 0.35-0.81$).

478 ^e Significant moderate effect with BASELINE ($p < 0.05$, $g = 0.81-1.50$).

479 ^f Significant moderate effect with PRE-BS ($p < 0.05$, $g = 0.81-1.50$).

480 **Figure 2.** Countermovement jump peak rate of force development. Data is presented
 481 as mean \pm SD. Pairwise significant differences and effect sizes between- and within-
 482 total contrast rest periods are represented with letters corresponding to footnote
 483 definitions.

481 A significant interaction was also found for TCRP*CONDITION. Post hoc
482 analysis is shown in Table 7. Within-TCRP analysis showed that TCRP120_EXP was
483 higher TCRP120_CON, TCRP180_EXP was higher than TCRP180_CON,
484 TCRP240_EXP was higher than TCRP240_CON, and TCRP300_EXP was higher
485 than TCRP300_CON. Between-TCRP analysis showed that TCRP60_CON was
486 higher than TCRP180_CON, TCRP240_CON and TCRP300_CON. TCRP120_CON
487 was higher than TCRP 240_CON. TCRP60_EXP was higher than TCRP180_EXP,
488 and TCRP300_EXP. No other differences were observed. There was a significant
489 effect of CONDITION, with EXP being higher than CON. There was a significant effect
490 of TCRP. Pairwise comparisons showed TCRP60 was significantly higher than
491 TCRP300 ($p = 0.010$). No other significant interactions or effects were observed for
492 RFD_{PEAK}.

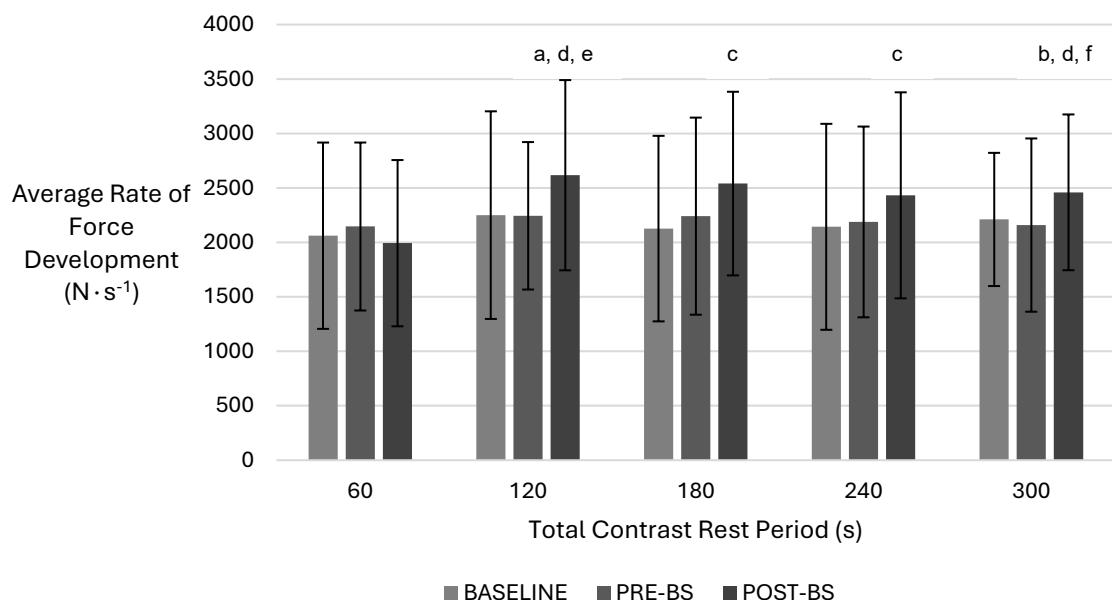
493 **Table 7.** Countermovement jump TCRP x CONDITION post hoc analysis. Pairwise significance and effect size between collapsed
 494 variables where a significant interaction was found. Effect size (g) is reported with 95% confidence intervals. Significant effect sizes
 495 are highlighted in bold.

Variable	Pairwise Comparison	p	g	CI
Peak RFD (N·s ⁻¹)	TCRP60_EXP vs TCRP60_CON	0.302	0.269	-0.237, 0.767
	TCRP120_EXP vs TCRP120_CON	0.124	0.411	-0.111, 0.919
	TCRP180_EXP vs TCRP180_CON	0.232	0.314	-0.197, 0.814
	TCRP240_EXP vs TCRP240_CON	<0.001	0.992	0.369, 1.593
	TCRP300_EXP vs TCRP300_CON	<0.001	1.107	0.457, 1.734
	TCRP60_CON vs TCRP120_CON	0.410	0.213	-0.289, 0.728
	TCRP60_CON vs TCRP180_CON	0.020	0.659	0.101, 1.198
	TCRP60_CON vs TCRP240_CON	0.017	0.679	0.117, 1.221
	TCRP60_CON vs TCRP300_CON	0.001	1.106	0.456, 1.732
	TCRP120_CON vs TCRP180_CON	0.088	0.460	-0.067, 0.974
	TCRP120_CON vs TCRP240_CON	0.028	0.617	0.066, 1.150
	TCRP120_CON vs TCRP300_CON	0.073	0.487	-0.044, 1.003
	TCRP180_CON vs TCRP240_CON	0.891	0.035	-0.458, 0.527
	TCRP180_CON vs TCRP300_CON	0.823	0.057	-0.437, 0.549
	TCRP240_CON vs TCRP300_CON	0.717	0.093	-0.402, 0.585
	TCRP60_EXP vs TCRP120_EXP	0.377	0.229	-0.274, 0.725

Variable	Pairwise Comparison	<i>p</i>	<i>g</i>	CI
Average RFD (N·s ⁻¹)	TCRP60_EXP vs TCRP180_EXP	0.011	0.736	0.164, 1.287
	TCRP60_EXP vs TCRP240_EXP	0.348	0.244	-0.260, 0.740
	TCRP60_EXP vs TCRP300_EXP	0.007	0.800	0.216, 1.362
	TCRP120_EXP vs TCRP180_EXP	0.085	0.465	-0.063, 0.979
	TCRP120_EXP vs TCRP240_EXP	0.909	0.029	-0.464, 0.521
	TCRP120_EXP vs TCRP300_EXP	0.362	0.237	-0.267, 0.733
	TCRP180_EXP vs TCRP240_EXP	0.122	0.413	-0.109, 0.921
	TCRP180_EXP vs TCRP300_EXP	0.374	0.231	-0.273, 0.726
	TCRP240_EXP vs TCRP300_EXP	0.322	0.258	-0.248, 0.755
	TCRP60_EXP vs TCRP60_CON	0.374	0.224	-0.265, 0.746
	TCRP120_EXP vs TCRP120_CON	0.009	0.739	0.179, 1.279
	TCRP180_EXP vs TCRP180_CON	0.042	0.545	0.018, 1.055
	TCRP240_EXP vs TCRP240_CON	0.04	0.554	0.026, 1.065
	TCRP300_EXP vs TCRP300_CON	0.002	0.944	0.343, 1.524
	TCRP60_CON vs TCRP120_CON	0.427	0.200	0.288, 0.680
	TCRP60_CON vs TCRP180_CON	0.731	0.076	-0.405, 0.554
	TCRP60_CON vs TCRP240_CON	0.782	0.069	-0.411, 0.547
	TCRP60_CON vs TCRP300_CON	0.598	0.132	-0.351, 0.610

Variable	Pairwise Comparison	<i>p</i>	<i>g</i>	CI
	TCRP120_CON vs TCRP180_CON	0.690	0.099	-0.382, 0.578
	TCRP120_CON vs TCRP240_CON	0.581	0.138	0.345, 0.617
	TCRP120_CON vs TCRP300_CON	0.667	0.107	-0.375, 0.585
	TCRP180_CON vs TCRP240_CON	0.916	0.026	-0.453, 0.504
	TCRP180_CON vs TCRP300_CON	0.995	0.002	-0.477, 0.480
	TCRP240_CON vs TCRP300_CON	0.901	0.031	-0.448, 0.509
	TCRP60_EXP vs TCRP120_EXP	0.081	0.459	-0.056, 0.959
	TCRP60_EXP vs TCRP180_EXP	0.306	0.259	-0.233, 0.743
	TCRP60_EXP vs TCRP240_EXP	0.332	0.245	-0.246, 0.728
	TCRP60_EXP vs TCRP300_EXP	0.063	0.492	-0.027, 0.996
	TCRP120_EXP vs TCRP180_EXP	0.634	0.119	-0.364, 0.597
	TCRP120_EXP vs TCRP240_EXP	0.472	0.180	-0.306, 0.660
	TCRP120_EXP vs TCRP300_EXP	0.564	0.144	-0.340, 0.623
	TCRP180_EXP vs TCRP240_EXP	0.816	0.058	-0.422, 0.536
	TCRP180_EXP vs TCRP300_EXP	0.992	0.002	-0.476, 0.481
	TCRP240_EXP vs TCRP300_EXP	0.775	0.071	-0.409, 0.549
Propulsion Time (s)	TCRP60_EXP vs TCRP60_CON	<0.001	1.181	0.513, 1.825
	TCRP120_EXP vs TCRP120_CON	0.042	0.562	0.019, 1.087

Variable	Pairwise Comparison	<i>p</i>	<i>g</i>	CI
	TCRP180_EXP vs TCRP180_CON	0.027	0.622	0.070, 1.156
	TCRP240_EXP vs TCRP240_CON	0.004	0.867	0.270, 1.442
	TCRP300_EXP vs TCRP300_CON	0.005	0.849	0.255, 1.421
	TCRP60_CON vs TCRP120_CON	0.380	0.228	-0.276, 0.723
	TCRP60_CON vs TCRP180_CON	0.349	0.243	-0.261, 0.739
	TCRP60_CON vs TCRP240_CON	0.419	0.209	-0.293, 0.704
	TCRP60_CON vs TCRP300_CON	1.000	0.000	-0.492, 0.492
	TCRP120_CON vs TCRP180_CON	0.959	0.013	-0.479, 0.505
	TCRP120_CON vs TCRP240_CON	0.085	0.465	-0.063, 0.979
	TCRP120_CON vs TCRP300_CON	0.404	0.216	-0.286, 0.711
	TCRP180_CON vs TCRP240_CON	0.087	0.462	-0.066, 0.975
	TCRP180_CON vs TCRP300_CON	0.476	0.184	-0.316, 0.678
	TCRP240_CON vs TCRP300_CON	0.390	0.223	-0.280, 0.718
	TCRP60_EXP vs TCRP120_EXP	0.107	0.432	-0.092, 0.943
	TCRP60_EXP vs TCRP180_EXP	<0.001	1.256	0.570, 1.918
	TCRP60_EXP vs TCRP240_EXP	0.189	0.347	-0.168, 0.849
	TCRP60_EXP vs TCRP300_EXP	0.005	0.839	0.248, 1.409
	TCRP120_EXP vs TCRP180_EXP	0.065	0.502	-0.031, 1.020


Variable	Pairwise Comparison	<i>p</i>	<i>g</i>	CI
	TCRP120_EXP vs TCRP240_EXP	1.000	0.000	-0.492, 0.492
	TCRP120_EXP vs TCRP300_EXP	0.427	0.205	-0.296, 0.700
	TCRP180_EXP vs TCRP240_EXP	0.096	0.449	-0.077, 0.961
	TCRP180_EXP vs TCRP300_EXP	0.367	0.234	-0.270, 0.730
	TCRP240_EXP vs TCRP300_EXP	0.486	0.180	-0.320, 0.673

496 TCRP, total contrast rest period; CON, collapsed variable calculated as the mean of the pre-ICRP and post-ICRP measurement within the control condition; EXP, collapsed variable calculated as the
 497 mean of the pre-ICRP and post-ICRP measurement within the experimental condition; RFD, rate of force development.

498

499

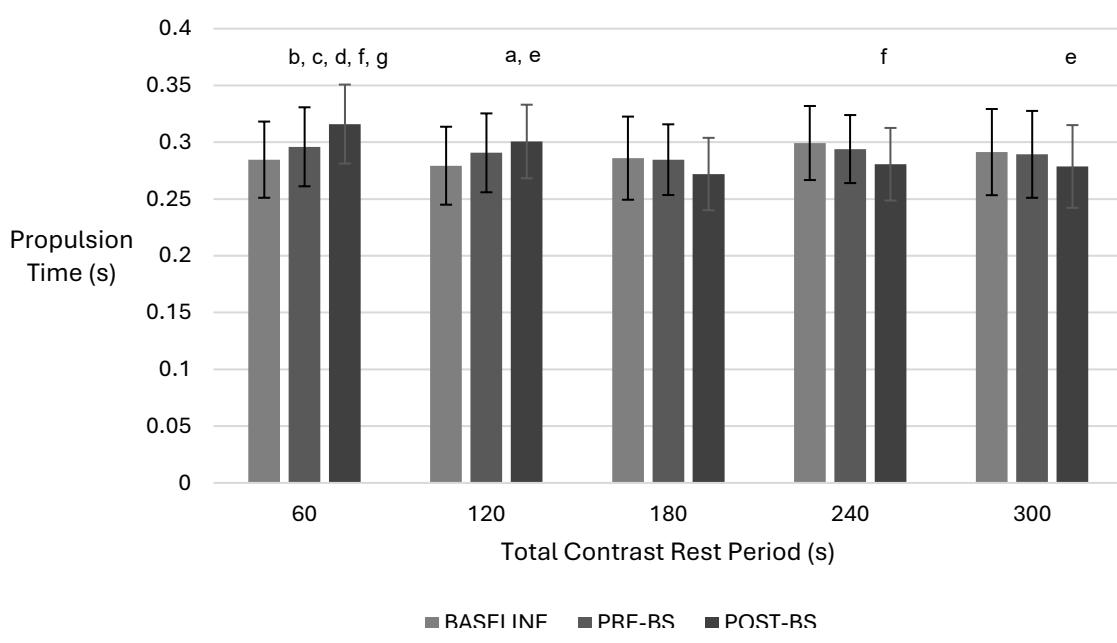
500 Analysis of RFD_{AVE} showed a significant interaction was found for
 501 TCRP*CONDITION*TIME. Significant pairwise comparisons and effect sizes are
 502 reported in Figure 3. A significant interaction was found for CONDITION*TIME. Post
 503 hoc analysis is presented in Table 6. Further analysis showed that POST-BS was
 504 higher than PRE-BS and BASELINE. There was no difference between PRE-BS and
 505 BASELINE. A significant interaction was found for TCRP*CONDITION. Post hoc
 506 analysis is presented in Table 7. Within-TCRP analysis showed that for TCRP120,
 507 TCRP180, TCRP240 and TCRP300, EXP was higher than CON. No significant
 508 differences were observed between-TCRPs. There was a significant effect of TIME,
 509 with POST-ICRP being higher than PRE-ICRP. There was a significant effect of
 510 CONDITION, with EXP being higher than CON. No other significant interactions or
 511 effects were observed for RFD_{AVE} . **No significant interactions or effects were observed**
 512 **for RFD_{INDEX} .**

513 BASELINE, best performed repetition from the baseline set of jumps in the control condition; PRE-BS, best performed
 514 repetition from the post-ICRP set of jumps in the control condition; POST-BS, best performed repetition from the post-
 ICRP set of jumps in the experimental condition.

515 ^a Significant small effect with TCRP60_POST-BS ($p < 0.05$, $g = 0.35-0.81$).

516 ^b Significant moderate effect with TCRP60_POST-BS ($p < 0.05$, $g = 0.81-1.50$).

517 ^c Significant small effect with BASELINE ($p < 0.05$, $g = 0.35-0.81$).


518 ^d Significant moderate effect with BASELINE ($p < 0.05$, $g = 0.81-1.50$).

519 ^e Significant small effect with PRE-BS ($p < 0.05$, $g = 0.35-0.81$).

520 ^f Significant moderate effect with PRE-BS ($p < 0.05$, $g = 0.81-1.50$).

521 **Figure 3.** Countermovement jump average rate of force development. Data is
 522 presented as mean \pm SD. Pairwise significant differences and effect sizes between-
 523 and within-total contrast rest periods are represented with letters corresponding to
 524 footnote definitions.

522 Analysis of t_{PROP} showed a significant interaction was found for
 523 TCRP*CONDITION*TIME. Significant pairwise comparisons and effect sizes are
 524 reported in Figure 4. A significant interaction was found for TCRP*CONDITION. Post
 525 hoc analysis is presented in Table 7. Within-TCRP analysis showed that TCRP60_EXP
 526 was higher than TCRP60_CON. TCRP120_EXP was higher than TCRP120_CON,
 527 TCRP180_EXP was lower than TCRP180_CON, TCRP240_EXP was lower than
 528 TCRP240_CON, and TCRP300_EXP was lower than TCRP300_CON. Between-
 529 TCRP analysis showed TCRP180_EXP was lower than TCRP60_EXP and
 530 TCRP300_EXP. No other differences were found.

531 BASELINE, best performed repetition from the baseline set of jumps in the control condition; PRE-BS, best performed
 532 repetition from the post-ICRP set of jumps in the control condition; POST-BS, best performed repetition from the post-
 533 ICRP set of jumps in the experimental condition.

534 ^a Significant moderate effect with TCRP180_POST-BS ($p < 0.05$, $g = 0.81-1.50$).

535 ^b Significant moderate effect with TCRP240_POST-BS ($p < 0.05$, $g = 0.81-1.50$).

536 ^c Significant moderate effect with TCRP300_POST-BS ($p < 0.05$, $g = 0.81-1.50$).

537 ^d Significant large effect with TCRP180_POST-BS ($p < 0.05$, $g > 1.50$).

538 ^e Significant moderate effect with BASELINE ($p < 0.05$, $g = 0.81-1.50$).

539 ^f Significant large effect with BASELINE ($p < 0.05$, $g > 1.50$).

540 ^g Significant moderate effect with PRE-BS ($p < 0.05$, $g = 0.81-1.50$).

541 **Figure 4.** Countermovement jump propulsion time. Data is presented as mean \pm SD.
 542 Pairwise significant differences and effect sizes between- and within-total contrast rest
 543 periods are represented with letters corresponding to footnote definitions.

540 There was a significant interaction of TCRP*TIME. Post hoc analysis is
541 presented in Table 8. Within-TCRP analysis showed that TCRP60_POST was higher
542 than TCRP60_PRE, TCRP120_POST was higher than TCRP120_PRE,
543 TCRP240_POST was lower than TCRP240_PRE, TCRP300_POST was lower than
544 TCRP300_PRE. Between-TCRP analysis revealed that TCRP180_POST was lower
545 than TCRP60_POST, TCRP240_POST was lower than TCRP60_POST,
546 TCRP300_POST was lower than TCRP60_POST and TCRP180_POST was lower
547 than TCRP120_POST. No other significant differences were observed. No significant
548 effects of TCRP, CONDITION or TIME were found.

549 **Table 8.** Countermovement jump TCRP x TIME post hoc analysis. Pairwise significance and effect size between collapsed variables
 550 where a significant interaction was found. Effect size (g) is reported with 95% confidence intervals. Significant effect sizes are
 551 highlighted in bold.

Variable	Pairwise Comparison	p	g	CI
Propulsion Time (s)	TCRP60_POST vs TCRP60_PRE	<0.001	1.578	0.806, 2.325
	TCRP120_POST vs TCRP120_PRE	0.009	0.757	0.181, 1.312
	TCRP180_POST vs TCRP180_PRE	0.073	0.486	-0.045, 1.002
	TCRP240_POST vs TCRP240_PRE	<0.001	1.216	0.540, 1.869
	TCRP300_POST vs TCRP300_PRE	0.020	0.659	0.101, 1.198
	TCRP60_PRE vs TCRP120_PRE	0.389	0.223	-0.280, 0.718
	TCRP60_PRE vs TCRP180_PRE	0.806	0.063	-0.431, 0.555
	TCRP60_PRE vs TCRP240_PRE	0.064	0.505	-0.029, 1.023
	TCRP60_PRE vs TCRP300_PRE	0.086	0.464	-0.064, 0.978
	TCRP120_PRE vs TCRP180_PRE	0.552	0.153	-0.345, 0.646
	TCRP120_PRE vs TCRP240_PRE	0.128	0.406	-0.115, 0.914
	TCRP120_PRE vs TCRP300_PRE	0.829	0.055	-0.438, 0.547
	TCRP180_PRE vs TCRP240_PRE	0.050	0.538	0.000, 1.060
	TCRP180_PRE vs TCRP300_PRE	0.461	0.191	-0.310, 0.685
	TCRP240_PRE vs TCRP300_PRE	0.309	0.265	-0.241, 0.763
	TCRP60_POST vs TCRP120_POST	0.133	0.400	-0.120, 0.908

TCRP60_POST vs TCRP180_POST	<0.001	1.742	0.924, 2.537
TCRP60_POST vs TCRP240_POST	0.041	0.567	0.024, 1.093
TCRP60_POST vs TCRP300_POST	0.002	0.925	0.316, 1.512
TCRP120_POST vs TCRP180_POST	0.007	0.789	0.208, 1.350
TCRP120_POST vs TCRP240_POST	0.241	0.307	-0.203, 0.807
TCRP120_POST vs TCRP300_POST	0.108	0.432	--0.093, 0.942
TCRP180_POST vs TCRP240_POST	0.197	0.340	-0.173, 0.843
TCRP180_POST vs TCRP300_POST	0.427	0.205	-0.296, 0.700
TCRP240_POST vs TCRP300_POST	0.628	0.125	-0.372, 0.617

552 TCRP, total contrast rest period; PRE, collapsed variable calculated as the mean of pre-intervention measurements from the experimental condition and control condition; POST, collapsed variable
 553 calculated as the mean of post-intervention measurements from the experimental and control condition.

554

555

556 Squat Jump

557 Squat jump descriptive statistics are reported in Table 9, and the repeated-measures
558 ANOVA results are presented in Table 10.

559

Table 9. Squat jump dependent variable descriptive statistics, expressed as mean \pm SD.

Dependent Variable										
TCRP	PREDITION	TIME	Propulsive Impulse (N·s)	Peak Force (N)	Mean Force (N)	Average RFD (N·s ⁻¹)	RFD 50 ms (N·s ⁻¹)	RFD 100 ms (N·s ⁻¹)	RFD 150 ms (N·s ⁻²)	Propulsion Time (s)
60	CON	BASELINE	227.90 \pm 27.22	1928.93 \pm 272.27	1380.29 \pm 149.69	3817.37 \pm 1776.97	3708.87 \pm 2749.23	4394.63 \pm 2513.07	4040.13 \pm 1909.45	0.40 \pm 0.08
		PRE_BS	227.37 \pm 25.39	1922.91 \pm 218.15	1372.22 \pm 129.71	3910.49 \pm 1797.65	4780.61 \pm 2927.82	4839.56 \pm 2183.01	4137.80 \pm 1796.62	0.40 \pm 0.09
	EXP	BASELINE	227.90 \pm 27.22	1928.93 \pm 272.27	1380.29 \pm 149.69	3817.37 \pm 1776.97	3708.87 \pm 2749.23	4394.63 \pm 2513.07	4040.13 \pm 1909.45	0.40 \pm 0.08
		POST_BS	225.67 \pm 25.89	1908.96 \pm 274.40	1363.70 \pm 134.14	3753.84 \pm 1603.22	4360.60 \pm 2250.01	4735.29 \pm 1839.52	4207.92 \pm 1692.11	0.40 \pm 0.08
120	CON	BASELINE	229.98 \pm 28.78	1917.74 \pm 270.26	1373.14 \pm 109.14	3867.58 \pm 1626.27	4026.03 \pm 2215.20	4727.28 \pm 1750.23	4069.21 \pm 1491.38	0.40 \pm 0.06
		PRE_BS	229.58 \pm 24.88	1939.73 \pm 305.70	1371.29 \pm 123.15	3735.21 \pm 1714.72	3804.81 \pm 2436.35	4272.75 \pm 2124.67	3929.14 \pm 1720.99	0.40 \pm 0.06
	EXP	BASELINE	229.98 \pm 28.78	1917.74 \pm 270.26	1373.14 \pm 109.14	3867.58 \pm 1626.27	4026.03 \pm 2215.20	4727.28 \pm 1750.23	4069.21 \pm 1491.38	0.40 \pm 0.06
		POST_BS	235.21 \pm 26.04	1937.96 \pm 264.08	1383.34 \pm 125.70	3734.60 \pm 1402.90	4195.21 \pm 2627.88	4492.09 \pm 1870.08	3865.76 \pm 1394.04	0.40 \pm 0.06
180	CON	BASELINE	229.24 \pm 28.83	1929.00 \pm 245.27	1376.40 \pm 118.59	3836.87 \pm 1409.62	4220.48 \pm 2023.79	4622.71 \pm 1802.73	4005.57 \pm 1684.67	0.39 \pm 0.06
		PRE_BS	228.78 \pm 27.67	1903.53 \pm 263.06	1378.39 \pm 118.79	3690.17 \pm 1340.23	4204.08 \pm 2024.81	4689.72 \pm 1575.56	4140.52 \pm 1388.14	0.39 \pm 0.06
	EXP	BASELINE	229.24 \pm 28.83	1929.00 \pm 245.27	1376.40 \pm 118.59	3836.87 \pm 1409.62	4220.48 \pm 2023.79	4622.71 \pm 1802.73	4005.57 \pm 1684.67	0.39 \pm 0.06
		POST_BS	239.07 \pm 26.94	1879.32 \pm 272.44	1359.41 \pm 119.14	3531.58 \pm 1364.58	4305.35 \pm 2499.79	4587.99 \pm 1897.86	3821.31 \pm 1409.57	0.40 \pm 0.07
240	CON	BASELINE	233.93 \pm 22.21	1898.65 \pm 220.06	1395.84 \pm 94.59	3753.04 \pm 1153.96	4898.07 \pm 2123.51	5200.21 \pm 1676.68	4300.86 \pm 1457.88	0.38 \pm 0.05

		PRE_BS	231.42 ± 24.89	1877.81 ± 211.05	1372.79 ± 62.74	3484.52 ± 889.94	4066.57 ± 1641.78	4635.99 ± 1295.75	4150.00 ± 808.89	0.40 ± 0.05
300	EXP	BASELINE	233.93 ± 22.21	1898.65 ± 220.06	1395.84 ± 94.59	3753.04 ± 1153.96	4898.07 ± 2123.51	5200.21 ± 1678.68	4300.86 ± 1457.88	0.38 ± 0.05
		POST_BS	237.41 ± 26.85	1897.46 ± 220.62	1374.19 ± 89.59	3728.02 ± 1329.44	4755.61 ± 2733.66	4983.06 ± 1919.03	4144.70 ± 1567.73	0.39 ± 0.06
		CON	233.30 ± 27.89	1905.57 ± 270.35	1362.00 ± 119.88	3692.49 ± 1414.99	4426.16 ± 2173.88	4778.28 ± 1842.18	4021.43 ± 1683.52	0.39 ± 0.06
561	EXP	PRE_BS	230.73 ± 24.06	1871.43 ± 247.98	1352.99 ± 104.72	3750.69 ± 1613.17	4179.49 ± 2501.48	4443.39 ± 1863.25	3835.12 ± 1384.11	0.40 ± 0.06
		BASELINE	233.30 ± 27.89	1905.57 ± 270.35	1362.00 ± 119.88	3692.49 ± 1414.99	4426.16 ± 2173.88	4778.28 ± 1842.18	4021.43 ± 1683.52	0.39 ± 0.06
		POST_BS	239.60 ± 25.86	1879.02 ± 267.32	1331.88 ± 128.44	3638.15 ± 1568.38	3470.27 ± 2329.01	3917.78 ± 2085.60	3638.57 ± 1708.50	0.42 ± 0.08

TCRP, total contrast rest period; CON, control condition; EXP, experimental condition; BASELINE, best performed repetition from the baseline set of jumps in the control condition; PRE-BS, best performed repetition from the post-ICRP set of jumps in the control condition; POST-BS, best performed repetition from the post-ICRP set of jumps in the experimental condition; RFD, rate of force development.

561
562
563

564

565

566 **Table 10.** Squat jump repeated measures ANOVA results. Significant interactions and main effects are shown in bold.

Effect	Dependent Variable							
	Propulsive Impulse (N·s)	Peak Force (N)	Mean Force (N)	Average RFD (N·s ⁻¹)	RFD 50 ms (N·s ⁻¹)	RFD 100 ms (N·s ⁻¹)	RFD 150 ms (N·s ⁻²)	Propulsion Time (s)
TCRP	$F_{4, 56} = 1.057$ $p = 0.386$ $\eta_p^2 = 0.070$	$F_{4, 56} = 0.786$ $p = 0.539$ $\eta_p^2 = 0.053$	$F_{2,178, 30,493} = 0.764$ $p = 0.485$ $\eta_p^2 = 0.052$	$F_{4, 56} = 0.299$ $p = 0.877$ $\eta_p^2 = 0.021$	$F_{4, 56} = 1.113$ $p = 0.357$ $\eta_p^2 = 0.074$	$F_{4, 56} = 1.002$ $p = 0.414$ $\eta_p^2 = 0.067$	$F_{4, 56} = 0.795$ $p = 0.502$ $\eta_p^2 = 0.054$	$F_{4, 56} = 1.130$ $p = 0.352$ $\eta_p^2 = 0.075$
CONDITION	$F_{1, 14} = 20.243$ $p < 0.001$ $\eta_p^2 = 0.591$	$F_{1, 14} = 0.116$ $p = 0.738$ $\eta_p^2 = 0.008$	$F_{1, 14} = 1.107$ $p = 0.311$ $\eta_p^2 = 0.073$	$F_{1, 14} = 0.123$ $p = 0.731$ $\eta_p^2 = 0.009$	$F_{1, 14} = 0.002$ $p = 0.965$ $\eta_p^2 = 0.000$	$F_{1, 14} = 0.048$ $p = 0.829$ $\eta_p^2 = 0.003$	$F_{1, 14} = 1.638$ $p = 0.221$ $\eta_p^2 = 0.105$	$F_{1, 14} = 535$ $p = 0.476$ $\eta_p^2 = 0.037$
TIME	$F_{1, 14} = 1.332$ $p = 0.268$ $\eta_p^2 = 0.087$	$F_{1, 14} = 2.353$ $p = 0.147$ $\eta_p^2 = 0.144$	$F_{1, 14} = 3.369$ $p = 0.088$ $\eta_p^2 = 0.194$	$F_{1, 14} = 1.548$ $p = 0.234$ $\eta_p^2 = 0.100$	$F_{1, 14} = 0.053$ $p = 0.822$ $\eta_p^2 = 0.004$	$F_{1, 14} = 1.309$ $p = 0.272$ $\eta_p^2 = 0.086$	$F_{1, 14} = 0.845$ $p = 0.374$ $\eta_p^2 = 0.057$	$F_{1, 14} = 3.830$ $p = 0.071$ $\eta_p^2 = 0.215$
TCRP*CONDITION	$F_{4, 56} = 1.454$ $p = 0.228$ $\eta_p^2 = 0.094$	$F_{4, 56} = 0.523$ $p = 0.719$ $\eta_p^2 = 0.036$	$F_{4, 56} = 0.868$ $p = 0.489$ $\eta_p^2 = 0.058$	$F_{4, 56} = 0.632$ $p = 0.642$ $\eta_p^2 = 0.043$	$F_{4, 56} = 1.571$ $p = 0.195$ $\eta_p^2 = 0.101$	$F_{2,531, 35,427} = 0.890$ $p = 0.441$ $\eta_p^2 = 0.060$	$F_{4, 56} = 0.488$ $p = 0.745$ $\eta_p^2 = 0.034$	$F_{4, 56} = 1.401$ $p = 0.246$ $\eta_p^2 = 0.091$
TCRP*TIME	$F_{4, 56} = 0.542$ $p = 0.663$ $\eta_p^2 = 0.037$	$F_{4, 56} = 1.538$ $p = 0.204$ $\eta_p^2 = 0.099$	$F_{4, 56} = 0.628$ $p = 0.644$ $\eta_p^2 = 0.043$	$F_{2,379, 33,292} = 0.286$ $p = 0.789$ $\eta_p^2 = 0.020$	$F_{2,436, 34,104} = 1.862$ $p = 0.164$ $\eta_p^2 = 0.117$	$F_{4, 56} = 1.514$ $p = 0.211$ $\eta_p^2 = 0.098$	$F_{4, 56} = 0.751$ $p = 0.562$ $\eta_p^2 = 0.051$	$F_{4, 56} = 1.137$ $p = 0.349$ $\eta_p^2 = 0.075$
CONDITION*TIME	$F_{1, 14} = 17.17.959$ $p < 0.001$ $\eta_p^2 = 0.591$	$F_{1, 14} = 0.116$ $p = 0.738$ $\eta_p^2 = 0.008$	$F_{1, 14} = 1.107$ $p = 0.311$ $\eta_p^2 = 0.073$	$F_{1, 14} = 0.123$ $p = 0.731$ $\eta_p^2 = 0.009$	$F_{1, 14} = 0.002$ $p = 0.965$ $\eta_p^2 = 0.000$	$F_{1, 14} = 0.048$ $p = 0.829$ $\eta_p^2 = 0.003$	$F_{1, 14} = 1.638$ $p = 0.221$ $\eta_p^2 = 0.105$	$F_{1, 14} = 0.535$ $p = 0.476$ $\eta_p^2 = 0.037$
TCRP*CONDITION*TIME	$F_{4, 56} = 1.454$ $p = 0.228$ $\eta_p^2 = 0.094$	$F_{4, 56} = 0.523$ $p = 0.719$ $\eta_p^2 = 0.036$	$F_{4, 56} = 0.868$ $p = 0.489$ $\eta_p^2 = 0.058$	$F_{4, 56} = 0.632$ $p = 0.642$ $\eta_p^2 = 0.043$	$F_{4, 56} = 1.571$ $p = 0.195$ $\eta_p^2 = 0.101$	$F_{2,531, 35,427} = 0.890$ $p = 0.441$ $\eta_p^2 = 0.060$	$F_{4, 56} = 0.488$ $p = 0.745$ $\eta_p^2 = 0.034$	$F_{4, 56} = 1.401$ $p = 0.246$ $\eta_p^2 = 0.091$

567 TCRP, total contrast rest period; CONDITION, control or experimental; TIME, pre-ICRP or post-ICRP.

568

569 Analysis of J_{PROP} revealed a significant interaction for CONDITION*TIME ($F_{1,14}$
570 $= 17.959, p < 0.001, \eta^2 = 0.591$). Post hoc analysis is presented in Table 11. POST-
571 BS was higher than PRE-BS and BASELINE. There was no difference between PRE-
572 BS and BASELINE. There was a main effect of CONDITION with EXP being higher
573 than CON. No significant interactions or effects were revealed for any other variables.

574

575 **Table 11.** Squat jump CONDITION x TIME post hoc analysis. Pairwise significance
576 and effect size between collapsed variables where a significant interaction was found.
577 Effect size (g) is reported with 95% confidence intervals. Significant effect sizes are
578 highlighted in bold.

Variable	Pairwise Comparison	p	g	CI
Propulsive Impulse (N·s)	POST-BS – PRE-BS	<0.001	1.130	0.475, 1.762
	POST-BS - BASELINE	0.030	0.608	0.059, 1.140
	PRE-BS - BASELINE	0.268	0.290	-0.219, 0.789

579 BASELINE, collapsed variable calculated as the mean of the best performed repetition from the baseline set of jumps in the
580 control condition from each total contrast rest period (TCRP) intervention; PRE-BS, collapsed variable calculated as the mean of
581 the best performed repetition from the post-ICRP set of jumps in the control condition from each TCRP intervention; POST-BS,
582 collapsed variable calculated as the mean of the best performed repetition from the post-ICRP set of jumps in the experimental
583 condition from each TCRP intervention; RFD, rate of force **development**.

584

585 **DISCUSSION**

586 This study assessed the effect of partial redistribution of the ICRP within CCT
587 prescriptions on vertical jump propulsive force application. While we previously
588 examined the impact of RR of different TCRPs (Houlton et al., Under review), this was
589 the first study to explore redistributing larger proportions of rest, to reorganise CCT
590 prescriptions to enhance the practical effectiveness of CCT by reducing CA-induced
591 fatigue and movement pattern interference, thereby enabling earlier detection of PAPE
592 compared to standard CCT prescriptions.

593 No significant interaction of TCRP*CONDITION*TIME was observed for J_{PROP}
594 (Tables 5 and 10), suggesting that CMJ and SJ height was unaffected by up to 5
595 minutes post-CA. However, significant CONDITION*TIME interactions indicate that
596 J_{PROP} was significantly greater at POST-BS than at PRE-BS and BASELINE for both
597 jumps, independent of TCRP (Tables 6 and 11). In both cases, numerical mean
598 differences between timepoints were similar to TE and SWC (Table 2), meaning it is

599 unclear whether J_{PROP} was truly enhanced or the difference observed was the result
600 of measurement 'noise'.

601 Regarding the propulsion strategy, CMJ ANOVA revealed significant
602 TCRP*CONDITION*TIME interactions for RFD_{PEAK} , RFD_{AVE} , and t_{PROP} (Table 5),
603 whereas no further interactions were observed for SJ. Increases in RFD and
604 decreases in t_{PROP} at POST-BS within- and between-TCRPs suggest that, while overall
605 CMJ performance was unaffected, participants produced similar J_{PROP} more
606 explosively after TCRP180, TCRP240 and TCRP300 interventions. No further
607 interactions or effects were observed for SJ variables, suggesting the interventions did
608 not affect jump performance or jumping strategy when the SSC and excitation-
609 contraction coupling were minimised. These results suggest that reorganising CCT
610 prescriptions using RR may have positive effects on RFD and explosive force
611 application via enhanced coupling and SSC efficiency. Practitioners may consider
612 alternative set strategies to enhance RFD during SSC-based vertical jump variants if
613 RFD, rather than overall jump height, is the primary objective.

614 Despite significant CONDITION*TIME interactions and subsequent observed
615 POST-BS increases in J_{PROP} compared to PRE-BS and BASELINE, the proximity of
616 these differences to TE and SWC (Table 2) suggests it is unlikely that J_{PROP} was
617 affected by any intervention for either CMJ or SJ when ≤ 300 s is prescribed. This is
618 consistent with the current literature, which suggests that at least 300 s of rest is
619 required to observe potentiated jump performance (Kilduff et al., 2008; Esformes &
620 Bampouras, 2013; Seitz & Haff, 2016). For example, Esformes et al. (2013) and Kilduff
621 et al. (2008) reported increased CMJ performance 5 minutes and 8 minutes post-ICRP,
622 respectively, after completing variations of the BS as the CA. This may be explained
623 by differences in relative strength. Participants in these studies were semi-professional
624 and professional rugby players with relative strength of ~ 2.10 and ~ 1.97 , respectively,
625 compared to the recreational sample in the present study, which demonstrated lower
626 relative strength (1.72 ± 0.15) (Esformes & Bampouras, 2013; Kilduff et al., 2008). This
627 is consistent with the notion that enhanced CMJ performance is more likely to occur
628 in stronger athletes (relative strength > 1.75 (Seitz & Haff, 2016)), who typically recruit
629 larger numbers of higher threshold motor units, required to produce higher J_{PROP} .
630 Thus, redistribution of the TCRP may not reduce the total rest required within CCT
631 sets to observe potentiation in overall jump performance. However, it should also be

632 noted that combining RR with CCT did not hinder J_{PROP} , whereas previous studies
633 have shown reductions in J_{PROP} or jump height at time points prior to observation of
634 enhanced performance (Comyns et al., 2006; Crewther et al., 2011; Jenson & Ebben,
635 2003; Kilduff et al., 2008). This is noteworthy, as in time-constrained environments or
636 in populations of moderately strong athletes, where there may be diminishing returns
637 on time required to enhance lower body strength further. This approach may lead to
638 increased training density and efficiency of combined strength and power training
639 sessions without negatively affecting jump performance.

640 Regarding propulsion strategy, significant interactions of
641 TCRP*CONDITION*TIME for RFD_{PEAK} , RFD_{AVE} , and t_{PROP} suggest that the CMJ
642 propulsion strategy changed post-CA, depending on TCRP. TCRP180, TCRP240 and
643 TCRP300 interventions enhanced RFD_{PEAK} at POST-BS compared with other
644 timepoints (Figure 2). Moderate effect sizes for TCRP240 and TCRP300 suggest that
645 these rest periods enhanced RFD_{PEAK} more than TCRP180, for which a small effect
646 was observed. Similarly, RFD_{AVE} increased at POST-BS compared to PRE-BS and
647 BASELINE after TCRP120, TCRP180, TCRP240 and TCRP300 interventions
648 (Figure 3). Larger differences were observed between timepoints within TCRP300
649 than between timepoints within TCRP120, TCRP180, and TCRP240. However,
650 increases in RFD did not enhance J_{PROP} . This may be explained by considering t_{PROP}
651 results, where POST-BS at TCRP240 and TCRP300 was significantly lower than
652 corresponding BASELINE values (Figure 4). Combined RFD and t_{PROP} results suggest
653 propulsive force application was shorter and more explosive, but reduced t_{PROP} may
654 have limited the total force applied during propulsion.

655 This observation may be explained by considering the effect RR may have on
656 the potentiation-fatigue relationship and the relative strength of the sample.
657 Conceptually, RR may limit the potentiation and fatigue effect of the CA. Completing
658 the CA as single repetitions may facilitate recovery and maintain performance between
659 repetitions (Tufano et al., 2017). However, this may limit the recruitment of higher
660 threshold motor units (Carpentier et al., 2001), which would better contribute to
661 increased total force application. Less total rest may be sufficient for recovery to
662 observe enhanced RFD in lower-threshold motor units.

663 Regarding participants' strength, the lower relative strength of the present
664 sample may suggest a limited ability to efficiently recruit high-threshold motor units to
665 produce higher peak forces more rapidly than stronger populations. Despite significant
666 post-CA increases, the potentiated RFD values reported in this study (Table 4) are
667 lower than those typically reported for sprinters (Boullosa et al., 2018) and experienced
668 strength-and-power-trained athletes (Earp et al., 2011), who more efficiently recruit
669 high-threshold motor units. This may suggest that participants in the present study
670 were either not sufficiently experienced or not sufficiently strong to recruit higher-order
671 motor units effectively, and therefore may require longer t_{PROP} to produce more force.

672 Mechanistically, observed changes in RFD may be explained by considering
673 the types of jump assessed in this study and the neuromuscular and metabolic effects
674 of fatigue on explosive performance. The limited effect on SJ variables (Table 10)
675 suggested that observed changes in CMJ propulsion may be attributed to enhanced
676 eccentric-concentric coupling and SSC efficiency (Linthorne, 2001), rather than to
677 concentric-only motor unit recruitment. Therefore, enhanced RFD may result from
678 enhanced crossbridge formation during coupling and, subsequently, from enhanced
679 contractile velocity (Fenwick et al., 2017). Enhanced crossbridge formation within
680 lower-threshold motor units may also contribute to changes in muscle stiffness, with
681 more efficient use of stored elastic energy within contractile units rather than through
682 tendon recoil dynamics, which may be associated with stronger, more athletic
683 populations (Arampatzis et al., 2007).

684 Regarding fatigue, lower-threshold motor units, while producing less force,
685 recover from fatigue faster than higher-threshold motor units and may not readily
686 exhibit twitch force decrements associated with contractile history (Farina et al., 2009).
687 Furthermore, lower-threshold motor units are more likely to sustain contractile velocity
688 for longer, resulting in less CA-induced interference with movement patterns. The
689 combination of shorter TCRPs and RR between CA repetitions may have sufficiently
690 limited CA-induced peripheral fatigue by facilitating partial recovery of
691 phosphocreatine and adenosine triphosphate and partial reduction in intramuscular
692 acidity between repetitions (Chae et al., 2023; Girman et al., 2014; Tufano et al., 2017).
693 This may be inferred from the higher CA v_{MEAN} observed compared to 3RM (Table 3).
694 Reductions in intramuscular pH and phosphocreatine are directly related to reduced
695 SSC efficiency (Wilson & Flanagan, 2008) and inhibited motor unit recruitment

696 (Ortega-Auriol et al., 2018) as high-intensity exercise-induced fatigue results in longer
697 amortisation phases due to slower eccentric-concentric coupling (Turner & Jeffreys,
698 2010). While incorporating RR may not have enhanced J_{PROP} , it may have reduced
699 fatigue sufficiently to optimise the intramuscular environment and neuromuscular
700 stimulus post-CA, enabling earlier observation of PAPE through RFD enhancement
701 compared with traditional CCT sets (Kilduff et al., 2008).

702 The homogeneous sample may have limited the generalisability of the results
703 to wider populations. It remains unclear how stronger populations with more training
704 experience, who are more likely to benefit from PAPE, would respond to the alternative
705 CCT set strategies implemented in this study. As no females volunteered, it is
706 uncertain how females, who typically have more type I muscle fibres (Nuzzo, 2024),
707 faster high-intensity exercise recovery (Davies et al., 2018), and more compliant jump
708 propulsion strategies (Márquez et al., 2017), would respond to these protocols. Lastly,
709 this study has considered the effect of one alternative set strategy (RR) on CCT
710 explosive force application, while the effects of other RR strategies and alternative set
711 strategies, such as cluster sets, remain unexplored. Therefore, future research should
712 consider the effect of RR within CCT prescriptions on EA performance in stronger
713 populations and the female population. Furthermore, longitudinal studies should be
714 considered to elucidate the long-term effects of combined training methods on lower-
715 limb explosive force.

716 CONCLUSION

717 The results of this study show that incorporating RR strategies within CCT sets may
718 minimise CA-induced fatigue, enabling PAPE to be observed earlier than in traditional
719 CCT sets. Enhanced RFD variables and decreased t_{PROP} after TCRP180, TCRP240
720 and TCRP300 suggest that RR may augment CMJ propulsive force application via
721 enhanced coupling and SSC efficiency. However, it remains unclear whether the
722 enhanced propulsion strategy increased J_{PROP} and, therefore, jump height. While not
723 augmented, RR sufficiently limited fatigue to maintain J_{PROP} . This is an important
724 observation that shows RR strategies may be applied in time-constrained
725 environments to improve training density when strength and power training are
726 prescribed using CCT. Practitioners are recommended to consider the training
727 objective. If the goal is to enhance J_{PROP} , then longer ICRPs may still be required for

728 PAPE to manifest in this way. If enhanced RFD is the primary aim, then RR strategies
729 may reduce the training time required to observe enhanced performance. These
730 results may also inform programming decisions during specific phases of training. For
731 example, during strength phases, traditional CCT may be used with longer ICRPs to
732 maximise neuromuscular adaptations in the CA and prioritise EA impulse. However,
733 during power phases, RR may be incorporated to prioritise RFD of the EA and enhance
734 propulsion strategies. Lastly, based on reliability metrics, experimentation at the
735 individual level is recommended to optimise CCT prescriptions using alternative set
736 **strategies.**

737 **ACKNOWLEDGEMENTS**

738 The authors thank the participants who volunteered for our study. Without them, this
739 work would not have been possible. They would also like to thank the Ministry of
740 Defence for facilitating the use of the force platforms used for data collection in this
741 study. The authors declare they have no conflicts of interest.

742 **REFERENCES**

743 Acero, R. M., Fernandez-del Olmo, M., Sanchez, J. A., Otero, X. L., Aguado, X., &
744 Rodriguez, F. A. (2011). Reliability of Squat and Countermovement Jump tests
745 in Children 6 to 8 Years of Age. *Pediatric Exercise Science*, 23(1), 151-160.

746 Arabatzi, F., Patikas, D., Zafeiridis, A., Giavroudis, K., Kannas, T., Gourgoulis, V., &
747 Kotzamanidis, C. M. (2014). The Post-Activation Potentiation Effect on Squat
748 Jump performance: Age and Sex Effect. *Pediatric Exercise Science*, 26(2), 187-
749 194.

750 Arampatzis, A., Karamanidis, K., Morey-Klapsing, G., De Monte, G., & Stafilidis, S.
751 (2007). Mechanical Properties of the Triceps Surae Tendon and Aponeurosis in
752 Relation to Intensity of Sport Activity. *Journal of Biomechanics*, 40(9), 1946-
753 1952. <https://doi.org/10.1016/j.jbiomech.2006.09.005>

754 Blazevich, A. J., & Babault, N. (2019). Post-activation Potentiation Versus Post-
755 activation Potentiation Enhancement in Humans: Historical Perspective,
756 Underlying Mechanisms and Current Issues. *Frontiers in Physiology*, 10, 1-19.

757 Boffey, D., Clark, N. W., & Fukuda, D. H. (2021). Effect of rest redistribution during
758 squats: Considerations for strength and sex. *Journal of Strength and
759 Conditioning Research*, 35(3), 586-595.
760 <https://doi.org/https://doi.org/10.1519/JSC.0000000000003893>

761 Boullosa, D., Abreu, L., Conceicao, F., Cordero, Y., & Jimenez-Reyes, P. (2018). The
762 Influence of Training Background on Different Rate of Force Development
763 Calculations During Countermovement Jump. *Kinesiology*, 50, 90-95.

764 Brewer, C., & Favre, M. (2022). Weightlifting for Sports Performance. In I. Jeffreys, &
765 J. Moody, *Strength and Conditioning for Sports Performance* (2 ed., pp. 278-
766 283). Abingdon, Oxon: Routledge.

767 Carpentier, A., Duchateay, J., & Hainaut, K. (2001). Motor Unit Behaviour and
768 Contractile Changes During Fatigue in the Human First Dorsal Interosseus.
769 *Journal of Physiology*, 534(3), 903-912. <https://doi.org/10.1111/j.1469-7793.2001.00903.x>

771 Chae , S., Hill, D. W., Bailey, C. A., Moses, S. A., McMullen, S. M., & Vingren, J. L.
772 (2023). Acute Physiological and Perceptual Responses to Rest Redistribution
773 With Heavier Loads in Resistance-Trained Men. *Journal of Strength and*
774 *Conditioning Research*, 37(5), 994-1000.
775 <https://doi.org/10.1519/JSC.0000000000004366>

776 Cohen, J. (1988). *Statistical Power Analysis for Behavioural Sciences* (2nd ed.).
777 Hillsdale, NJ, USA: Lawrence Erlbaum Associates.

778 Comyns, T. M., Harrison, A. J., Hennessy, L. K., & Jensen, R. L. (2006). The Optimal
779 Complex Training Rest Interval for Athletes from Anaerobic Sports. *Journal of*
780 *Strength and Conditioning Research*, 20(3), 471-476.

781 Cormier, P., Freitas, T. T., Lotruco, I., Turner, A., Virgile, A., Haff, G. G., Blazevich, A.
782 J., Agar-Newman, D., Henneberry, M., Baker, D. G., McGuigan, M., Alcaraz, P.,
783 & Bishop, C. (2022). Within Session Exercise Sequencing During Programming
784 for Complex Training: Historical Perspectives, Terminology, and Training
785 Considerations. *Sports Medicine*, 52, 2371-2389.
786 <https://doi.org/10.1007/s40279-022-01715-x>

787 Crewther, B. T., Kilduff, L. P., Cook, C. J., Middleton, M. K., Bunce, P. J., & Yang, G. Z.
788 (2011). The Acute Potentiating Effects of Back Squats on Athlete Performance.
789 *Journal of Strength and Conditioning Research*, 25(12), 3319-3325.
790 <https://doi.org/10.1519/JSC.0b013e318215f560>

791 Cuevas-Aburto, J., Jukic, I., Chirosa-Rios, L. J., Gonzalez-Hernandez, J. M.,
792 Janicijevic, D., Barboza-Gonzalez, P., Guede-Rojas, F., & Garcia-Ramos, A.
793 (2022). Effect of Traditional, Cluster, and Rest Redistribution Set Configurations
794 on Neuromuscular and Perceptual Responses During Strength-Oriented
795 Resistance Training. *Journal of Strength and Conditioning Research*, 36(6),
796 1490-1497. <https://doi.org/10.1519/JSC.0000000000003658>

797 Davies, R. W., Carson, B. P., & Jakeman, P. M. (2018). Sex Differences in the Temporal
798 Recovery of Neuromuscular Function Following Resistance Training in
799 Resistance Trained Men and Women 18 to 35 Years. *Frontiers in Physiology*,
800 9, 1480. <https://doi.org/10.3389/fphys.2018.01480>

801 Esformes, J. I., & Bampouras, T. M. (2013). Effect of back squat depth on lower-body
802 postactivation potentiation. *Journal of Strength and Conditioning Research*,
803 27(11), 2997-3000.

804 Farina, D., Holobar, A., Gazzoni, M., Zazula, D., Merletti, R., & Enoka, R. M. (2009).
805 Adjustments Differ Among Low-Threshold Motor Units During Intermittent,
806 Isometric Contractions. *Journal of Neurophysiology*, 101(1), 350-359.
807 <https://doi.org/10.1152/jn.90968.2008>

808 Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible
809 statistical power analysis program for the social, behavioral, and biomedical
810 sciences. *Behavior Research Methods*, 39, 175-191.

811 Fenwick, A. J., Wood, A. M., & Tanner, B. C. (2017). Effects of Cross-Bridge
812 Compliance on the Force-Velocity Relationship and Muscle Power Output. *PLoS
813 One*, 12(12), Article e0190335.
814 <https://doi.org/doi.org/10.1371/journal.pone.0190335>

815 Girman, J. C., Jones, M. T., Matthews, T. D., & Wood, R. J. (2014). Acute Effects of a
816 Cluster-Set Protocol on Hormonal, Metabolic and Performance Measures in
817 Resistance-Trained Males. *European Journal of Sports Science*, 14(2), 151-
818 159. <https://doi.org/10.1080/17461391.2013.775351>

819 Hansen, K., Cronin, J., & Newton, M. (2011). Three methods of calculating force-time
820 variables in the rebound jump squat. *Journal of Strength and Conditioning
821 Research*, 25(3), 867-871.

822 Hansen, K., Cronin, J., Pickering, S., & Douglas, L. (2011). Do Force-Time and Power-
823 Time Measures in a Loaded Jump Squat Differentiate Between Speed
824 Performance and Playing Level in Elite and Elite Junior Rugby Union Players?
825 *Journal of Strength and Conditioning Research*, 25(9), 2382-2391.

826 Harmon, K. K., Hamilton, A. S., Johnson, B. D., Bartek, F. J., Girts, R. M., MacLennan,
827 R. J., Hahs-Vaughn, D. L., & Stock, M. S. (2021). Motor Unit Action potential
828 Amplitude During Low Torque Fatiguing Contractions Versus High Torque Non-
829 Fatiguing Contractions: A Multilevel Analysis. *European Journal of Applied
830 Physiology*, 121(4), 1145-1157. <https://doi.org/10.1007/s00421-021-04606-7>

831 Harries, R. C., Edwards, R. H., & Hultman, E. (1976). The Time Course of
832 Phosphorylcreatine Resynthesis During Recovery of the Quadriceps Muscle in
833 Man. *European Journal of Physiology*, 367(2), 137-142.
834 <https://doi.org/10.1007/BF00585149>

835 Hendker, A., & Elis, E. (2021). A Group-Based 8-Week Functional Interval-Type
836 Outdoor Training Program Improves Physical Performance in Recreationally
837 Active Adults. *Frontiers in Sports and Active Living*, 3, Article 627853.
838 <https://doi.org/10.3389/fspor.2021.627853>

839 Ho, I. M., Luk, J. T., Ngo, J. K., & Wong, D. P. (2021). Effects of Different Intra-set Rest
840 Durations on Lifting Performance and Self-Perceived Exertion During Bench
841 Press Exercise. *Journal of Strength and Conditioning Research*, 35(8), 2114-
842 2120. <https://doi.org/10.1519/JSC.00000000000003101>

843 Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive
844 statistics for studies in sports medicine and exercise science. *Medicine and*
845 *Science in Sports and Exercise*, 41, 3-13.

846 Houlton, L. J., Moody, J. A., Bampouras, T. M., & Esformes, J. I. (Under review). Acute
847 Effect of Intra-Contrast Rest Redistribution Within Complex-Contrast Training
848 Set Strategies on Vertical Jump Propulsive Force. *[Manuscript submitted for*
849 *publication]*.

850 Jagim, A., & Oliver, J. (2015). Associations between Testosterone, Body Composition,
851 and Performance Measures of Strength and Power in Recreational,
852 Resistance-Trained Men. *Journal of Athletic Enhancement*, 4.
853 <https://doi.org/10.4172/2324-9080.1000191>

854 Jenson, R. L., & Ebben, W. P. (2003). Kinetic analysis of complex training rest interval
855 effect on vertical jump performance. *Journal of Strength and Conditioning*
856 *Research*, 17, 345-349.

857 Jukic, I., & Tufano, J. J. (2022). Acute Effects of Shorter but More Frequent Rest
858 Periods on Mechanical and Perceptual Fatigue During a Weightlifting Derivative
859 at Different Loads in Strength-Trained Men. *Sports Biomechanics*, 21(9), 1122-
860 1135. <https://doi.org/10.1080/14763141.2020.1747530>

861 Kilduff, L. P., Owen, N., Bevan, H., Bennett, M., Kingsley, M. I., & Cunningham, D.
862 (2008). Influence of Recovery Time on Post-Activation Potentiation in
863 Professional Rugby Players. *Journal of Sports Sciences*, 26(8), 795-802.
864 <https://doi.org/10.1080/02640410701784517>

865 Kilgallon, J., Cushion, E., Joffe, S., & Tallent, J. (2022). Reliability and validity of
866 velocity measures and regression methods to predict maximal strength ability
867 in the back-squat using a novel linear position transducer. *Journal of Sports
868 Engineering and Technology*, 0(0), 1-14.

869 Latella, C., Teo, W., Drinkwater, E., Kendall, K., & Haff, G. G. (2019). The Acute
870 Neuromuscular Responses to Cluster Set Resistance Training: A Systematic
871 Review and Meta-Analysis. *Sports Medicine*, 49(12), 1861-1877.
872 <https://doi.org/10.1007/s40279-019-01172-z>

873 Linthorne, N. (2001). Analysis of Standing Vertical Jumps Using a Force Platform.
874 *American Journal of Physiology*, 69(11), 1198-1204.

875 Lowery, R. P., Duncan, N. M., Loenneke, J. P., Sikorski, E. M., Naimo, M. A., Brown,
876 L. E., Wilson, F. G., & Wilson, J. M. (2012). The Effects of Potentiating Stimuli
877 Intensity Under Varying Rest Periods on Vertical Jump Performance and Power.
878 *Journal of Strength and Conditioning Research*, 26(12), 3320–3325.

879 Mann, B. (2022). Velocity-Based Training. In J. Moody, & I. Jeffreys, *Strength and
880 Conditioning for Sports Performance* (2 ed., pp. 529-534). Abingdon, Oxon:
881 Routledge.

882 Márquez, G., Alegre, L. M., Jaen, D., Martin-Casado, L., & Aguado, X. (2017). Sex
883 Differences in Kinetic and Neuromusclar Control During Jumping and Landing.
884 *Journal of Musculoskeletal & Neuronal Interactions*, 17(1), 409-416.

885 McBride, J. M., Kirby, T. J., Haines, T. L., & Skinner, J. (2010). Relationship between
886 relative net vertical impulse and jump height in jump squats performed to
887 various squat depths and with various loads. *International Journal of Sports
888 Physiology and Performance*, 5, 484-496.

889 McLellan, C. P., Lovell, D. I., & Gass, G. C. (2011). The Role of Rate of Force
890 Development on Vertical Jump Performance. *Journal of Strength and*
891 *Conditioning Research*, 25(2), 379-385.

892 McMahon, J. J., Suchomel, T. J., Lake, J. P., & Comfort, P. (2018). Understanding the
893 Key Phases of the Countermovement Jump Force-Time Curve. *Strength and*
894 *Conditioning Journal*, 40(4), 96-106.

895 McManus, L., Hu, X., Rymer, W. Z., Lowery, M. M., & Suresh, N. L. (2015). Changes
896 in Motor Unit Behavior Following Isometric Fatigue of the First Dorsal
897 Interosseous Muscle. *Journal of Neurophysiology*, 113(9), 3186-3196.
898 <https://doi.org/10.1152/jn.00146.2015>

899 Myer, G. D., Kushner, A. M., Brent, J. L., Schoenfeld, B. J., Hugentobler, J., Lloyd, R.
900 S., Vermeil, A. I., Chu, D. A., Harbin, J., & McGill, S. M. (2014). The back squat:
901 A proposed assessment of functional deficits and technical factors that limit
902 performance. *Strength and Conditioning Journal*, 36(6), 4-27.

903 Nuzzo, J. L. (2024). Sex Differences in Skeletal Muscle Fiber Types: A Meta-Analysis.
904 *Clinical Anatomy (New York)*, 37(1), 81-91. <https://doi.org/10.1002/ca.24091>

905 Ortega-Auriol, P. A., Besier, T. F., Byblow, W. D., & McMorland, A. J. (2018). Fatigue
906 Influences the Recruitment, but not Structure, or Muscle Synergies. *Frontiers*
907 *in Human Neuroscience*, 12, Article 217.
908 <https://doi.org/10.3389/fnhum.2018.00217>

909 Perez-Castilla, A., Rojas, F. J., & Garcia-Ramos, A. (2019). Assessment of Unloaded
910 and Loaded Squat Jump Performance with a Force Platform - Which Jump
911 Starting Threshold Provides More Reliable Outcomes? *Journal of*
912 *Biomechanics*, 92, 19-28. <https://doi.org/10.1016/j.jbiomech.2019.05.022>

913 Perez-Castilla, A., Rojas, F. J., Gomez-Martinez, F., & Garcia-Ramos, A. (2021).
914 Vertical jump performance is affected by the velocity and depth of the
915 countermovement. *Sports Biomechanics*, 20(8), 1015-1030.

916 Pojskic, H., McGawley, K., Gustafsson, A., & Behm, D. (2020). The Reliability and
917 Validity of a Novel Sport-Specific Balance Test to Differentiate Performance

918 Levels in Elite Curling Players. *Journal of Sports Science and Medicine*, 19(2),
919 337-346.

920 Rhea, M. R. (2004). Determining the Magnitude of Treatment Effects in Strength
921 Training Research Through the Use of the Effect Size. *Journal of Strength and
922 Conditioning Research*, 18(4), 918-920.

923 Sale, D. G. (2002). Postactivation Potentiation: Role in Human Performance. *Exercise
924 and Sports Science*, 30(3), 138-143. [https://doi.org/10.1097/00003677-
925 200207000-00008](https://doi.org/10.1097/00003677-200207000-00008).

926 Scott, D. J., Ditrilo, M., & Marshall, P. A. (2017). Complex training: the effect of
927 exercise selection and training status on postactivation potentiation in rugby
928 league players. *Journal of Strength and Conditioning Research*, 31(10), 2694-
929 2703.

930 Seitz, L. B., & Haff, G. G. (2016). Factors Modulating Post-Activation Potentiation of
931 Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic
932 Review and Met-Analysis. *Sports Medicine*, 46(2), 231-240.
933 <https://doi.org/10.1007/s40279-015-0415-7>

934 Sheppard, J. M., & Triplett, N. T. (2016). Program Design for Resistance Training. In
935 G. G. Haff, & N. T. Triplett, *Essentials of Strength Training and Conditioning* (4
936 ed., pp. 452-454). Champaign, IL, USA: Human Kinetics.

937 Sirieiro, P., Nasser, I., Dobbs, W. C., Willardson, M., & Miranda, H. (2021). The Effect
938 of Set Configuration and Load on Post-Activation Potentiation on Vertical Jump
939 in Athletes. *International Journal of Exercise Science*, 14(4), 902-911.
940 <https://doi.org/10.70252/CCLW6758>

941 Swinton, P. A., Hemingway, B. S., Saunders, B., Gualano, B., & Dolan, E. (2018). A
942 Statistical Framework to Interpret Individual Response to Intervention: Paving
943 the Way for Personalised Nutrition and Exercise Prescription. *Frontiers in
944 Nutrition*, 5(41), 1-14.

945 Thapa, R. K., Weldon, A., Frietas, T. T., Boullosa, D., Afonso, J., Granacher, U., &
946 Ramirez-Campillo, R. (2024). What do we Know about Complex-Contrast

947 Training? A Systematic Scoping Review. *Sports Medicine*, 10(1), 1-16.
948 <https://doi.org/10.1186/s40798-024-00771-z>

949 Tillin, N., & Bishop, D. (2009). Factors modulating post-activation potentiation and its
950 effect on performance of subsequent explosive activities. *Sports Medicine*, 39,
951 147-166.

952 Torres Laett, C., Cossich, V., Araujo Goes, R., Gavilao, U., Rites, A., & Gomes de
953 Oliveira, C. (2021). Relationship between vastus lateralis muscle ultrasound
954 echography, knee extensors rate of torque development, and jump height in
955 professional soccer athletes. *Sport Sciences for Health*, 17, 299-306.

956 Tufano, J. J., Brown, L. E., & Haff, G. G. (2017). Theoretical and Practical Aspects of
957 Different Cluster Set Structures: A Systematic Review. *Journal of Strength and
958 Conditioning Research*, 31(3), 848-867.
959 <https://doi.org/10.1519/JSC.0000000000001581>

960 Tufano, J. J., Conlon, J. A., Nimphius, S., Brown, L. E., Petkovic, A., Frick, J., & Haff,
961 G. G. (2017). Effects of Cluster Sets and Rest-Redistribution on Mechanical
962 Responses to Back Squats in Trained Men. *Journal of Human Kinetics*, 58, 35-
963 43. <https://doi.org/https://doi.org/10.1515/hukin-2017-0069>

964 Turner, A., & Jeffreys, I. (2010). The Stretch-Shortening Cycle: Proposed Mechanisms
965 and Methods for Enhancement. *Strength and Conditioning Journal*, 32(4), 87-
966 99. <https://doi.org/10.1519/SSC.0b013e3181e928f9>

967 Verma, J. P. (2015). *Repeated Measures Design for Empirical Researchers* (1 ed.).
968 Wiley.

969 Wilson, J., & Flanagan, E. (2008). The Role of Elastic Energy in Activities with High
970 Force and Power Requirements: A Brief Review. *Journal of Strength and
971 Conditioning Research*, 22(5), 1705-1715.
972 <https://doi.org/10.1519/JSC.0b013e31817ae4a7>

973