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Abstract

The molecular initiating event for many mechanisms of toxicological action comprise the 

reactive, covalent binding between an exogenous electrophile and an endogenous nucleophile. 

The target sites for electrophiles are typically peptides, proteins, enzymes or DNA. Of these, the 

formation of covalent adducts with proteins and DNA are perhaps the most established as they 

are most closely associated with skin sensitisation and genotoxicity endpoints. As such, being 

able to identify electrophilic features within a chemical structure provides a starting point to 

characterise its reactivity profile. There are a number of software tools that have been developed 

to help identify structural features indicative of electrophilic reactive potential to address various 

purposes, including: 1) to facilitate category formation for read-across of toxicity effects such as 

skin sensitisation potential, as well as 2) to profile substances to identify potential confounding 

factors to rationalise their activity in high-throughput screening (HTS) assays. Here, three such 

schemes that have been published in the literature as collections of SMARTS patterns and their 

associated chemical-biological reaction domains have been compared. The goals are 1) to better 

understand their scope and coverage, and 2) to assess their performance relative to a published 

skin sensitisation dataset where manual annotations to assign likely mechanistic domains based on 

expert judgement were already available. The 3 schemes were then applied to the Tox21 library 

and the consensus outcome was reported to highlight the proportion of chemicals likely to exhibit 

a reactivity response, specific to a mechanistic reaction domain, but non-specific with respect 

to target-tissue based activity. ToxPrint fingerprints were computed and activity enrichments 

computed to compare the structural features identified for the skin sensitisation dataset and Tox21 

*Correspondence: Grace Patlewicz: Tel: +1 919 541 1540, patlewicz.grace@epa.gov. 

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of 
the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or 
recommendation for use.

Conflict of Interest
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

EPA Public Access
Author manuscript
Comput Toxicol. Author manuscript; available in PMC 2023 September 11.

About author manuscripts | Submit a manuscript
Published in final edited form as:

Comput Toxicol. 2019 November 01; 12: 1–13. doi:10.1016/j.comtox.2019.100100.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



chemicals for each ‘consensus’ reaction domain. Enriched ToxPrints were also used to identify 

ToxCast assays potentially informative for reactivity.
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1. Introduction

As stated by Schultz et al. [1], ‘the identification of plausible molecular initiating events 

based on covalent reactions with nucleophiles such as peptides, proteins, and DNA provides 

the unifying concept for a framework for reactivity toxicity’. The formation of covalent 

adducts with proteins and DNA are perhaps the best-established examples as they are 

most closely associated with skin sensitisation and genotoxicity endpoints [2]. There are 

a number of software tools that have been developed to help identify structural features 

indicative of electrophilic reactive potential to assist in the assessment of skin sensitisation 

and mutagenicity endpoints. Examples include Derek Nexus (LHASA Ltd), which consists 

of a knowledgebase containing structural alerts for a range of different endpoints indicating 

potential toxicity. Other tools, such as the OECD (Q)SAR Toolbox, contain rulebases of 

alerts (known as profilers) that are intended to be used to group and profile chemicals 

based on their common structural/mechanistic/reactive potential to assist in the formation 

of categories for associated read-across [3, 4]. In this study, we considered three such 

rulebases/schemes that had been largely derived on the basis of skin sensitisation data, for 

which structural queries in the form of SMARTS (simplified molecular input line entry 

system (SMILES) arbitrary target specification) were published in the literature and/or 

implemented in publicly available open source tools. Given that the various schemes were 

derived from overlapping data sets and for common objectives, we were interested to 

assess the degree to which they overlap and to compare the breadth and coverage of the 

alerts relative to each other and in relation to manual expert assignments applied to a skin 

sensitisation dataset that had been compiled by Asturiol et al [5]. Two authors in this study 

had previously assigned the reaction mechanistic domains for the dataset in Asturiol et al [5] 

in a separate publication [6]. The expert assignments dataset from Asturiol et al [5] was used 

to pragmatically ‘ground truth’ the respective schemes in the absence of other experimental 

reactivity data.

The first scheme comprised a set of SMARTS published by Enoch et al [7] for each 

of the reaction domains that were first described by Aptula and Roberts [8] for skin 

sensitisation. These reaction mechanistic domains, namely Schiff Base formers, Michael 

addition, Acylating agents, SN2 (substitution nucleophilic bimolecular) and SNAr (aromatic 

nucleophilic substitution), are based on standard organic chemistry principles. The set of 

SMARTS described in [7] has also been implemented as a module in the open source tool, 

Toxtree (Ideaconsult Ltd).

The second scheme was a set of alerting groups reviewed by Enoch et al [9] and captured 

within the OECD Toolbox as a profiling scheme named ‘Protein binding alerts by OECD’. 
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This set of alerts were an expanded set based on a more extensive literature review rather 

than an attempt to encode the domains described by Aptula and Roberts [8].

The third scheme was a set of SMARTS published by researchers at The Dow chemical 

company [10] as part of a KNIME workflow for identifying reactive groups helpful in the 

assessment of acute inhalation toxicity.

The utility of these reactivity alert schemes is several-fold: 1) to identify potential 

electrophilic features implicated in skin sensitisation by virtue of proposed molecular 

initiating events (MIE),– e.g., the alerts by Enoch et al [7] and Enoch et al [9] were 

specifically intended to codify protein binding; 2) to profile and categorise substances for 

the purposes of deriving read-across predictions within analogue and category approaches -, 

e.g., Roberts et al [11] have long posited the utility of these reaction domains to facilitate 

mechanistic read-across for skin sensitisation or for the development of Quantitative 

Mechanistic Models (QMMs) for the prediction of skin sensitisation; and 3) to profile 

substances to identify potential confounding factors that might rationalise the activity (or 

lack of activity) outcomes of substances tested in high-throughput screening (HTS) assays 

such as ToxCast [12, 13]. Our motivation was to compare these protein binding reactivity 

schemes for 3 main purposes: 1) to understand the scope and coverage of the different 

schemes and the extent to which they are comparable to each other; 2) to assess the 

performance of the alerts relative to manual expert assignments of reaction mechanistic 

domains made for chemicals in the dataset published by Asturiol et al. [5]; and 3) to profile 

the Tox21 library [14] using reactivity alerts to identify which substances are more likely to 

be non-target-specific, reactive chemicals within a ‘consensus’ set of mechanistic reaction 

domains. Both datasets (Tox21 and the Asturiol et al. [5]) were also characterised in terms of 

their structural fingerprints using ToxPrint chemotypes (Chemotyper.org; [15]) to enable an 

enrichment analysis for each of the consensus reaction domains relative to the whole dataset. 

The enriched ToxPrints were then compared with ToxCast assay enrichments to identify 

assays potentially informative for, or impacted by, reactivity.

2. Materials and Methods

2.1 Construction of the reaction domain profiling schemes

Each of the three profiling reactivity schemes comprised SMARTS patterns associated with 

one of the five main reaction mechanistic domains that had been previously described 

by Aptula and Roberts [8], namely, bimolecular nucleophilic substitution (SN2)-acting, 

Michael acceptors (MA), Acyl transfer agents, Schiff Base formers (SB) and nucleophilic 

aromatic substitution (SNAr)-acting. These reaction domains are based on organic chemistry 

principles describing the reactions that occur between electrophiles and nucleophiles.

In each case, the file of SMARTS and their associated reaction mechanistic domain was 

converted to a Python dictionary where the mechanistic domain formed the key and the 

set of SMARTS patterns, the values. RDKit’s python library (RDKit.org) was then used to 

transform the SMARTS strings into chemical substructures.
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2.2 Comparing and contrasting the performance of the reaction schemes using a dataset 
with known manually annotated reaction domains

The skin sensitisation dataset from Asturiol et al [5] that had been annotated with reaction 

domains by Patlewicz et al [6] was chosen as a ‘benchmark’ set to facilitate a comparison 

of how the 3 different schemes performed. This was a pragmatic approach in the absence 

of other experimental data that would objectively measure the reactivity and confirm the 

appropriate reaction domain, as well as in the absence of the complete training sets that were 

used to derive the original SMARTS in the respective schemes. The Asturiol et al [5] dataset 

will be referred to as the “JRC dataset” throughout this manuscript, where JRC refers to 

Asturiol’s affiliation at the European Commission’s Joint Research Centre. The JRC dataset 

included reported outcomes in in chemico, in vitro and in vivo tests for skin sensitisation. 

The local lymph node assay (LLNA) was the in vivo test result reported whereas the in 
chemico and in vitro tests make reference to 3 assays that have been mapped to key events 

(KEs) in the Adverse Outcome Pathway (AOP) for skin sensitisation [16]. The assays are 

namely the DRPA (direct reactivity peptide assay), an in chemico test for the molecular 

initiating event (MIE) [17], whereas the KeratinoSens test [18] and the h-CLAT (human cell 

line activation test) [19] are in vitro tests that characterise KEs 1 and 2, respectively. The 

benchmark dataset and the three reaction domain alert schemes are briefly summarised in 

Table 1.

DSSTox Substance Identifier (DTXSID) chemical IDs were identified and mapped to 

names and/or CAS registry numbers (CASRN) in the JRC dataset to facilitate the 

extraction of QSAR-ready SMILES from the EPA CompTox Chemicals Dashboard ([20]; 

https://comptox.epa.gov/dashboard, Accessed 29 January 2019). The DSSTox (Distributed 

Structure-Searchable Toxicity) database is underpinned by a chemical registration process 

to ensure the quality of structure mapping with chemical names, CASRN and INChIkeys. 

QSAR-ready SMILES are the result of a structure standardisation process where structures 

are normalised and desalted as described by Mansouri et al [21]. Mapping the JRC dataset 

identifiers to DTXSIDs would also aid subsequent comparisons with lists such as the Tox21 

screening library, used in this study. A total of 222 chemicals with unique SMILES were 

identified. RDKit was then used to perform a substructure match for each SMILES string 

against any of the SMARTS in each alert scheme to identify any and all mechanistic 

domains associated for a given chemical.

The JRC dataset was profiled using each of the 3 reaction domain rulebases and the 

outcomes were compared to the expert-derived assignments. Performance metrics including 

precision, recall, F1 score, Matthews correlation coefficient (MCC), and Cohen’s Kappa 

were calculated for each profiling scheme relative to the expert judgement calls. The 

discordant assignments relative to the expert judgement calls were also reviewed and 

rationalised to identify whether any potential refinements were merited, or gaps existed 

for the alerts themselves. The formulas for the different metrics are provided below:

Precision or positive predictive value (PPV) is defined as:

TP
TP + FP
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Recall or True positive rate is also referred to for 2 class problems as the sensitivity. It is 

defined as the:

TP
TP + FN

F1 score is the harmonic mean of precision and recall and is defined as:

2TP
2TP + FP + FN

Mathews correlation coefficient (MCC) is defined as:

TP × TN − FP × FN
TP + FN FN + TP TN + FP TN + FN

Cohen’s kappa coefficient (κ) measures inter-rater agreement for categorical items that takes 

into account the possibility of agreement occurring by chance [22].

Performance metrics were calculated using available functions within the 

Scikit-learn (v0.19.1) (https://scikit-learn.org/stable/#), StatsModels (v0.9.0) (http://

www.statsmodels.org/dev/index.html) and NumPy (v1.14.5) (www.numpy.org) python 

packages where version numbers are provided in parentheses.

2.3 Profiling of the ToxCast/Tox21 substances

The Tox21 Screening Library (Tox21SL) list of 8947 chemicals was downloaded from 

the EPA CompTox Chemicals Dashboard (available at: https://comptox.epa.gov/dashboard/

chemical_lists/TOX21SL). This list was filtered to retain substances that were discrete 

organics with normalised structures, i.e. only substances that had an associated QSAR-ready 

SMILES record. There were 8360 chemicals with unique DTXSID identifiers and QSAR-

ready SMILES after deduplication. Each of the 3 profiling schemes was applied to this set 

of chemicals and an overall ‘consensus’ reaction domain was predicted for each chemical 

based on the following logic. If the outcome from all 3 schemes was identical, this formed 

the final ‘consensus’ prediction. If 2 schemes were identical this consensus was reported as 

the final ‘consensus’ prediction. If only one scheme flagged one or more domains, this result 

was given a higher weight than a negative and served as the final prediction. In cases where 

the predicted reaction domains (or no domain) for all 3 schemes conflicted with each other, 

the final prediction was labeled as inconclusive.

Chemical structural fingerprints were generated for both the JRC dataset and the Tox21 

database using the 729 Toxprint set of chemotypes [15], downloaded from the EPA 

CompTox Chemicals Dashboard as a tsv file (Chemotyper format) using the batch search 

capability. ToxPrint chemotypes were selected since these are a publicly available approach 

for representing molecules and are specifically tailored to provide good coverage of 

environmental, regulatory and commercial use chemical space. ToxPrints were used to 

explore whether particular structural features were enriched for each of the expert-assigned 
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or consensus predicted reaction domains relative to the whole dataset, for both the JRC 

dataset and the Tox21 dataset. A ToxPrint with an odds ratio equal or greater than 3, a p 

value less than or equal to 0.05 and the number of True Positives (TPs) greater than or equal 

to 3 (i.e., at least 3 chemicals within the reaction domain contain the ToxPrint) was defined 

as being significantly enriched in the reaction domain subset relative to the whole. The 

enriched ToxPrints within each ‘consensus’ reaction domain of the Tox21 screening library 

dataset were compared with the enriched ToxPrints within each expert-assigned reaction 

domains of the JRC dataset.

All of the above analyses were performed in Python 3.6 using NumPy 

(v1.14.5), Pandas (v0.23.3), RDKit (v2018.03.3.0), and Scikit-learn (v0.19.1). 

Plots were created in Seaborn (v0.9.0) and Matplotlib (v2.2.2). All code 

and datasets are available in associated Jupyter (v1.0.0) notebooks as 

part of the supplementary information available at https://gaftp.epa.gov/Comptox/

NCCT_Publication_Data/PatlewiczGrace/CompTox-Protein_binding_alerts-comptoxicol/.

The enriched ToxPrints for each consensus reaction domain for both datasets were 

also compared with ToxCast assay enrichments to identify which HTS assays might be 

informative for reactivity. ToxPrint enrichment calculations in the ToxCast assay space 

were computed previously using the Chemotyper Enrichment Workflow (CTEW) code base 

developed by EPA researchers for application to ToxCast HTS datasets (see e.g. [23]). The 

CTEW employs the same odds ratio, p-value and TP statistical thresholds as applied in the 

current analysis to the JRC and Tox21 datasets. Enrichments were previously calculated and 

stored for all 1192 unique ToxCast assay endpoints, with the latter represented as baseline 

(binary) hit calls from level 5 (Mc%) within the ToxCast public data release (invitrodb_v2) 

(https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data).

3. Results and Discussion

3.1 Comparing and contrasting the reaction schemes

The 3 schemes were first compared by the number of alerts present in each of the reaction 

domains. The OECD alerts comprised 102 SMARTS patterns in contrast to the Enoch alerts 

which consisted of 66 SMARTS patterns and the Dow alerts that contained 71 SMARTS 

patterns. Based on visual inspection (Figure 1), each scheme appeared particularly enriched 

with alerts characterising the Michael acceptor (MA) domain whereas far fewer alerts 

captured the SNAr domain. The Enoch scheme was unusual in that it comprised almost the 

same number of alerts for the SNAr domain as the SN2, but far fewer alerts in the SN2 

domain than the other schemes. The Dow scheme comprised only 4 alerts for Schiff base 

formers (SB) and the OECD alerts comprised only 1 alert for SNAr.

The profile of the number of SMARTS patterns relative to each domain mirrors the expected 

profile for how chemicals tested for their skin sensitisation are categorised by domain. This 

is unsurprising given how many of these alerts were originally devised through evaluating 

the chemistry of skin sensitisation datasets. One related example, published by Roberts 

et al [24], for a dataset consisting of 210 chemicals, showed that Michael acceptors and 

SN2 chemicals were the most abundant reaction domains based on expert derived manual 
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assignments (see Figure 2 that summarises the number of chemicals assigned to each 

domain).

However, it should be noted that the number of alerts per domain within the schemes does 

not necessarily reflect the breadth of chemical space covered; some alerts are more general 

than others, thus spanning more diverse chemicals, and some alerts are nested within others 

or may frequently co-occur with others, thus spanning fewer chemicals. Hence, a relevant 

reference dataset is needed to assess relative coverage of the three schemes. In this respect, 

comparing a dataset of pre-assigned mechanistic domains with the domains identified by 

each scheme would provide a better understanding of the coverage and applicability of 

the alerts. The reaction domain assignments applied to the JRC dataset were informed by 

mechanistically relevant chemical and biological knowledge and data, in addition to purely 

structural considerations, and thus serve as the baseline “ground truth” for the present 

analyses. The JRC dataset comprised 222 chemicals for which QSAR-ready SMILES were 

extracted from the EPA CompTox Chemicals Dashboard. The set of chemicals were profiled 

through each of the schemes using the 3 sets of SMARTS patterns to assign all and any 

reaction domain(s). The profiled domains together with the expert-assigned domains were 

formatted for consistency to enable comparisons to be made and performance metrics to be 

computed.

The comparisons were complicated by 2 factors: 1) although there were only 5 specific 

reaction domains identified by the respective profiling schemes, some chemicals flagged 

more than 1 domain; and 2) the expert assignments included additional pathways (denoted 

as ‘special case’) to account for chemicals undergoing other transformations such as 

autoxidation. For the JRC dataset, there were 15 unique expert judgement assignments 

(which captured both additional pathways as well as combinations of the 5 reaction 

domains) whereas the Enoch profiler gave rise to 11 different reaction domain combinations 

(i.e. only 1 or more of the 5 reaction domains). The OECD and Dow profilers produced 8 

different assignments. Table 2 provides the macro average performance characteristics for 

the 3 schemes relative to the expert judgement calls, whereby the precision and recall for 

each reaction domain(s) is computed first and then averaged across the number of domain 

outcomes.

The MCC, defined earlier, is a useful measure to summarise the overall performance, where 

the minimum value is −1 and the best value is +1. On the basis of this metric, the Enoch 

alerts were overall ‘the best’ at classifying the JRC dataset into their respective domains 

relative to the expert judgement calls, whereas the OECD alerts were a close second. A 

factor that contributes to the performance characteristics could also be the coverage of the 

SMARTS patterns that were flagged for the chemicals in the JRC dataset relative to the total 

of SMARTS patterns that exist for each scheme. The number of unique SMARTS patterns 

for each of the schemes is 66 for the Enoch scheme, 71 for the Dow scheme and 102 for 

the OECD as referenced in Figure 1. The number of unique SMARTS patterns that were 

matched for the JRC chemicals was 47 for the Enoch scheme, 32 for the Dow scheme and 

38 for the OECD scheme. Thus 47/66 (71%) of the Enoch SMARTS were triggered for 

the JRC scheme whereas fewer SMARTS patterns were flagged for the other two schemes, 

32/71 (45%) for the Dow scheme and 38/102 (37%) for the OECD scheme. Interestingly, 
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even though the Enoch scheme contained the fewest total number of alerts (66), these were 

better aligned to, and represented within the corresponding JRC expert-assigned reaction 

domains than the much larger set of OECD scheme alerts. This can perhaps be attributed 

to the closer proximity and overlap of the JRC dataset studies to the earlier Enoch, 2008 

study. The proportion of alerts that were flagged could be another factor in why the 

Enoch scheme appeared to perform slightly better in comparison to the other 2 schemes. 

Table 2 provides the micro per domain performance metrics for the 3 schemes relative to 

the expert judgement calls for the 5 principal reaction domains only. The intent was to 

evaluate whether one scheme was better at matching one specific domain relative to another 

scheme. Robust performance characteristics could not be computed for the multi-domain 

combinations and are not reflected in Table 3. Indeed, for inconclusive multi-domain cases, 

further evaluation would be needed to determine which reaction domain dominated either 

through analysis of the frontier molecular orbitals (using the shapes and energies of the 

Lowest Unoccupied Molecular Orbital) or through generating relevant in chemico data [7].

The Enoch scheme appears to be overall the best performing for 4 of the 5 domains listed 

based on the F1 score. The Dow and OECD schemes appear to be better at correctly 

assigning chemicals within the SN2 domain, albeit requiring many more alerts, i.e., 23 and 

39, respectively, vs. only 9 alerts for the Enoch scheme. By the same token, the 23 patterns 

characterising the SN2 domain in the Dow scheme appear to be sufficient to cover the scope 

of SN2 reacting chemicals in this dataset. In other cases, such as the Enoch scheme for 

predicting in the Acyl domain, fewer alerts (9) appeared to perform as well or better than 

the 11 or 17 alerts for the Dow and OECD schemes, respectively. Clearly, however, relative 

performance of these schemes in assigning reaction domains on a reference dataset, such as 

the JRC dataset in this case, would be expected to depend on the reaction domain knowledge 

base, or training set, used in their development. Hence, the better performance of the Enoch 

scheme on the JRC dataset may be due to closer alignment of those studies. The JRC dataset 

was also profiled to showcase which SMARTS pattern was triggered for each substance to 

result in its associated reaction domain score (Figure 3). Actual SMARTS patterns were 

coded to designate source origin for ease of plotting. Although this provided an overall 

visual perspective of the consistency in reaction domain assignment across the schemes and 

allowed some inspection of which SMARTS pattern(s) were responsible in case, it also 

highlighted how difficult it was to reconcile one SMARTS pattern relative to another from a 

different scheme. This difficulty in part prompted the subsequent exploration of enrichments 

using ToxPrints that are objective and well-defined features.

The dataset was then filtered to consider the set of substances for which all 3 schemes were 

in agreement with each other, but in conflict with the expert judgement assignments. There 

were 25 substances identified that met these conditions, with 21 of these being cases where 

no alerts were triggered by any of the 3 schemes. These are listed in Table 4 together with 

their 2D chemical structural representation.

Of the 25 cases, 3 of the original expert assignments appeared to be erroneous as discussed 

in Table 4; correcting these would result in only 22 cases where all 3 schemes were in 

agreement with each other but in conflict with the expert assignments. These included 

1-Benzoylacetone (changed from Acyl to SB), and Hexyl salicylate and 5-Dodecanolide, 
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both changed to likely non-reactive. The conflicts were typically observed for substances 

that were expected to act by an alternative pathway, either directly via SN1 (unimolecular 

nucleophilic substitution) or indirectly by a free radical mechanism as a result of oxidation. 

This is not a specific limitation in this study as our primary interest was to have a means of 

identifying inherently electrophilic reactivity.

3.2 Pairwise comparison of the 3 schemes

Cohen’s kappa coefficient was used to measure the inter-rater agreement for the results of 

the 3 schemes pairwise across the reaction domain assignments. The kappa value for each of 

the pairs of reaction domain schemes was >0.6 (values were 0.69 for the OECD and Enoch 

pair, 0.67 for the OECD and Dow pair, and 0.61 for the Enoch and Dow pair), indicating 

that whilst the schemes have good agreement with one another, no scheme was completely 

replicated by another scheme. Accordingly, rather than excluding any particular scheme for 

any subsequent profiling activity or application, a ‘consensus’ from all three schemes was 

used.

3.3 Profiling of the Tox21 substances

The Tox21 list was identified from the EPA CompTox Chemicals Dashboard and all 

substances in the list were ‘sent’ to the batch search to download additional chemical 

information, including QSAR-ready SMILES where available and the ToxPrint fingerprints. 

The list was filtered to remove all inorganics and mixtures, resulting in a set of 8360 unique 

substances with QSAR-ready SMILES. Six SMILES could not be resolved by RDKit, such 

that the final Tox21 dataset used in the remainder of the analysis comprised 8354 substances 

with QSAR-ready SMILES. Each of the Tox21 SMILES was processed through the 3 

protein binding alert schemes to predict their reaction mechanism domain(s). These were 

then aggregated into a ‘consensus’ outcome as described in Materials & Methods. Figure 

4 shows the profile of the Tox21 chemicals across the consensus reaction domains, which 

include the 5 main domains, the inconclusive category, as well as 13 combination domains 

(in absolute terms and on a log-scale).

Over 55% of the Tox21 substances lacked an alerting feature suggesting either that they 

were either not inherently reactive or the knowledgebase was insufficient to categorise them 

as reactive. However, the 45% that remained are indicated to have the potential to act as 

electrophiles on the basis of the alerts: 12% of the library was categorised as acyl transfer 

agents (Acyl), 8% as SN2 acting and 7% as Michael acceptors and Schiff base formers. 

For the 7% that were categorised as inconclusive, some degree of reactivity is indicated, 

but there is insufficient consensus to assign the chemical to a particular reaction mechanism 

domain. In these cases, alerts from 2 or more schemes triggered an alert in a substance, 

but they were associated with different reaction domains. For example, a chemical could 

be assigned as MA based on the Enoch scheme, SB based on the OECD scheme, and both 

[MA, SB] based on the Dow scheme. Given the large proportion of substances highlighting 

an alert, ongoing work should be focused on exploring approaches to evaluate the robustness 

of these alerts (given many of them are strongly influenced by human experts and bounded 

by the chemicals assessed for skin sensitisation potential), and investigate the feasibility 

of deriving new alerts by comparison to actual reactivity data. A new cross-partner Tox21 
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project has just commenced to generate experimental reactivity data to serve such a purpose 

(https://tox21.gov/projects/).

3.4 ToxPrint chemotype characterisation and enrichment of the Tox21 library

ToxPrint chemotype fingerprints (ChemoTyper format) were extracted from the EPA 

CompTox Chemicals dashboard for the Tox21SL chemical list and merged with the 

consensus reaction domain prediction based on presence or absence of alerting features. 

There are 729 ToxPrints in total, though many of these are structured in a hierarchy of 

different levels representing more-to-less generalised chemical features. For profiling of the 

library, a reduced number of higher level (more general) ToxPrints were used, so-called level 

2 ToxPrints of which there are 70 in total. These were defined on the basis of taking the first 

and second name elements from the original ToxPrint name; e.g., if the full original ToxPrint 

name was ‘bond:C#N_cyano_acylcyanide’ the corresponding Level 2 name would take the 

first and second name components, hence ‘bond:C#N’. The ToxPrints computed for the 

Tox21 library were mapped to the level 2 ToxPrints for profiling purposes. Figure 5 shows 

the profile of the Tox21 library using ToxPrints projected onto the 5 main consensus-alert 

reaction domain assignments.

Upon inspection of the barplots in Figure 5, the types of ToxPrints represented in each 

domain appear similar, though their relative frequencies differ. To better parse out ToxPrints 

that might be more specific to each domain, an enrichment analysis was performed 

to identify which ToxPrints were significantly enriched in each consensus-alert defined 

reaction domain relative to the full set of Tox21 chemicals. Table 5 shows the top 5 enriched 

chemotypes (by odds ratios) for each of the 5 main consensus reaction domains for the 

Tox21 chemical set.

Noteworthy is that there are no overlaps of ToxPrints across the 5 reaction mechanism 

domains, i.e., no ToxPrint in the top 5 enriched set is in more than one reaction mechanism 

domain. Hence, these particular ToxPrints are highly specific to each distinct reaction 

mechanism domain.

The enrichment was also compared with that for the JRC dataset used earlier in the study to 

compare and contrast which ToxPrints were enriched in each domain and how this differed 

for the 2 datasets. For comparative reasons, the consensus domain was predicted for the JRC 

set and used for the enrichment analysis. The top 5 odds ratios and chemotype comparisons 

for the JRC dataset is reflected in Table 6.

Once again, there is no overlap in the sets of top 5 (or less) chemotypes within the JRC 

set, indicating distinct chemical feature signatures for each of these reaction mechanism 

domains. In addition, and perhaps more surprisingly, there was minimal overlap in the top 

5 chemotypes for 4 of the 5 reaction mechanism domains when comparing the consensus 

reaction domain results for Tox21 (Table 5) to those for the JRC dataset (Table 6). The MA 

and SNAr/SN2 domains all shared only 1 ToxPrint in common. The SN2 domain shared no 

ToxPrints whereas 4/5 ToxPrints were common in both datasets for the SB domain.
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The JRC dataset is largely made up of chemicals used in the cosmetics sector which 

have prompted the study of skin sensitisation. In addition, 181 of the chemicals in the 

JRC dataset overlapped with the Tox21 dataset. Many of these chemicals are fragrances, 

whereas the Tox21 library covers a much broader spectrum of environmental chemicals 

and use-categories in the Industrial sector, including drugs and pesticides [13]. Given the 

much larger size of Tox21 in relation to the JRC dataset (40:1), and the intentional structure 

diversity of the former versus a narrowed bias of the latter based on testing and concern for 

skin sensitisation, it is also possible, and perhaps likely, that Tox21 covers a larger domain 

of reactive chemistry than is captured by the JRC dataset. If this were the case, the 55% 

of Tox21 chemicals lacking an alerting feature might contain “false negatives” in reaction 

chemistry space. Likewise, the much larger structural diversity of Tox21 in relation to the 

small JRC dataset in the “active” region, i.e., in the nearly 4000 Tox21 chemicals containing 

a reactive alerting feature, opens up possibilities for refining or expanding the expert-based 

or consensus alerts if additional confirmational HTS data could be generated.

A comparison of the ToxPrints significantly enriched within each consensus reaction domain 

for the 2 datasets was performed and is available in the supplementary information. In total 

for the MA domain, there were 33 enriched ToxPrints in Tox21 and 14 in the JRC dataset. 

Of these, 13 enriched ToxPrints were in common to both datasets, 1 ToxPrint was unique to 

the JRC dataset, and 20 chemotypes were unique to the Tox21 library, the latter indicating 

a richer capture of structural diversity in relation to the alert-based reaction groups. Table 7 

lists the number of unique and commonly enriched ToxPrints for each of the 5 consensus 

reaction domains.

As an illustration, the enriched chemotypes for the MA domain were mapped back to the 

original chemical structures in the respective datasets to showcase the types of chemicals 

that alerted for this domain. Tables 8 and 9 show illustrative chemicals for the common 

enriched chemotypes and those unique to the Tox21 set, respectively.

3.5 Enriched ToxPrints projected in the ToxCast assay space

The enriched ToxPrints derived from the JRC and Tox21 datasets were projected in the 

ToxCast assay space to identify assays sharing these particular enrichments that would 

be potentially informative for, or impacted by, reactivity. Full results are provided in the 

supplementary information. Here, we only consider the assays that are enriched with the 

same ToxPrints as are also enriched for the consensus MA domain within the JRC dataset.

In this case, there were 14 enriched ToxPrints, which if projected on the ToxCast assay 

space identified 359 different assays that were, likewise, significantly enriched for those 

ToxPrints within the assay active “hit” space. The assays covered a spectrum of different 

vendors (9) with a wide range of assays per vendor; from 6 Tanquay assays to 238 

Bioseek assays (Table 10). For more specific ToxPrints such as ‘bond: C=0_carbonyl_ab-

unsaturated_aliphatic_(michael_acceptors)’, a more targeted set of assays (22) were found 

which covered 6 different vendors (ATG, BSK, CEETOX, TOX21, OT and NVS).
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4. Summary & Conclusions

In this study, three schemes which encode protein binding structural alerts for 5 major 

reaction mechanism domains as captured in SMARTS queries, were compared. Their 

relative information content and coverage was assessed by comparing the number of 

SMARTS queries in each of the 5 reaction domains and how their domain assignments 

for each chemical, i.e. based on presence/absence of alerting features, contrasted relative to 

manual expert assignments that had been annotated in a published skin sensitisation dataset. 

The overall performance of the 3 alert schemes relative to the manual assignments were 

reasonable; differences were observed on a per reaction domain basis, with the scheme by 

Enoch [8] generally performing better perhaps due to a closer alignment with the benchmark 

study that provided expert reaction domain assignments. Inspecting the cases where all 3 

of the schemes were the same, but conflicted with the manual expert assignments, revealed 

that these largely included cases where an alternative reaction pathway could be postulated 

that fell outside of the 5 reaction domains and, typically, where some transformation was 

required.

The Tox21 screening library was then profiled with the 3 schemes to derive a consensus 

alert outcome. In the case of Tox21, we hypothesised that the presence of an alerting feature 

for reactivity might provide a marker for a non-specific reactivity response, i.e. one in 

which a specific enzyme target interaction is likely not taking place. A large fraction of 

the Tox21 library (45% of the total) alerted for 1 or more reaction domains. The profile 

of these predicted reaction domains was explored using the publicly available ToxPrint 

chemotypes, which offer a more transparent, interpretable, and standardized means for 

representing chemical features than SMARTS. ToxPrints provided a means to characterise 

the reactivity subsets relative to the whole Tox21 set, as well as to compare different sets of 

chemicals within each reaction domain through a common chemical interface. The types of 

chemotypes appeared to be broadly similar for chemicals in each of the predicted consensus 

reaction domains but their frequencies within the domains differed.

A chemotype enrichment analysis was performed for both the JRC dataset and the Tox21 

library to identify which chemotypes were particularly enriched for a specific reaction 

domain, to what extent they differed, and to what extent the JRC and Tox21 results 

overlapped. In both cases, the top 5 enriched chemotypes in each consensus reaction 

domain were highly specific to that domain, with very few enriched chemotypes spanning in 

multiple domains. In addition, and somewhat surprisingly, there were very few overlapping 

chemotypes in this top 5 enriched set when comparing the results for the Tox21 library with 

those of the JRC dataset. This is likely due to the very different chemical constituents of the 

two datasets. Expanding the comparison to the more complete set of ToxPrint enrichments 

in each case reveals a much larger degree of overlapping enrichments. This and the greater 

size and diversity of the Tox21 library in relation to the JRC dataset was illustrated for the 

MA domain, where there was 1 ToxPrint specific to the JRC dataset, 20 unique to the Tox21 

library, and 13 common to both datasets. Example chemicals that presented these enriched 

ToxPrints are highlighted for the MA domain. The enriched ToxPrints were projected on to 

the ToxCast assay space to identify assays sharing these particular enrichments that would 

be potentially informative for, or impacted by, reactivity. For the consensus MA domain, 
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within the JRC dataset, there were 359 potentially informative assays for the 14 enriched 

ToxPrints, covering a number of different vendors. A broader look at assays across all the 

consensus domains might be more informative to readily identify a subset of assays that 

are more indicative of general reactivity. The profiled consensus alert-predicted reaction 

domains and the ToxPrints that were identified as enriched within these domains will be 

investigated in greater detail as part of a cross partner Tox21 project where in chemico 
reactivity data will be generated to evaluate the utility and relevance of the alerting schemes 

and ToxPrints.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors wish to acknowledge Dr Steve Enoch, Liverpool John Moores University, for kindly providing the 
SMARTS patterns for the Protein binding schemes in an electronic form.

References

[1]. Schultz TW, Carlson RE, Cronin MT, Hermens JL, Johnson R, O’Brien PJ, Roberts DW, Siraki 
A, Wallace KB, Veith GD. A conceptual framework for predicting the toxicity of reactive 
chemicals: moderlling soft electrophilicity. SAR QSAR Environ Res. 17 (2006) 413–428. 
[PubMed: 16920662] 

[2]. Schwöbel JA, Koleva YK, Enoch SJ, Bajot F, Hewitt M, Madden JC, Roberts DW, Schultz TW, 
Cronin MT. Measurement and estimation of electrophilic reactivity for predictive toxicology. 
Chem Rev. 111 (2011) 2562–2596. doi: 10.1021/cr100098n. [PubMed: 21401043] 

[3]. Dimitrov SD, Diderich R, Sobanski T, Pavlov TS, Chankov GV, Chapkanov AS, Karakolev YH, 
Temelkov SG, Vasilev RA, Gerova KD, Kuseva CD, Todorova ND, Mehmed AM, Rasenberg M, 
Mekenyan OG. QSAR Toolbox - workflow and major functionalities. SAR QSAR Environ Res. 
19 (2016) 1–17.

[4]. Patlewicz G, Helman G, Pradeep P, Shah I. Navigating through the minefield of read-across tools: 
A review of in silico tools for grouping. Computational Toxicology. 3 (2017) 1–18. doi: 10.1016/
j.comtox.2017.05.003 [PubMed: 30221211] 

[5]. Asturiol D, Casati S, Worth A. Consensus of classification trees for skin sensitisation hazard 
prediction. Toxicol In Vitro. 36 (2016) 197–209. doi: 10.1016/j.tiv.2016.07.014. [PubMed: 
27458072] 

[6]. Patlewicz G, Casati S, Basketter DA, Asturiol D, Roberts DW, Lepoittevin JP, Worth AP, 
Aschberger K. Can currently available non-animal methods detect pre and pro-haptens relevant 
for skin sensitization? Regul. Toxicol. Pharmacol. (2016). pii: S0273–2300(16)30228–8. doi: 
10.1016/j.yrtph.2016.08.007.

[7]. Enoch SJ, Madden JC, Cronin MT. Identification of mechanisms of toxic action for skin 
sensitisation using a SMARTS pattern based approach. SAR QSAR Environ Res. 19 (2008) 
555–578. doi: 10.1080/10629360802348985. [PubMed: 18853302] 

[8]. Aptula AO, Roberts DW. Mechanistic applicability domains for nonanimal-based prediction 
of toxicological end points: general principles and application to reactive toxicity. Chem Res 
Toxicol. 19 (2006) 1097–1105. [PubMed: 16918251] 

[9]. Enoch SJ, Ellison CM, Schultz TW, Cronin MT. A review of the electrophilic reaction chemistry 
involved in covalent protein binding relevant to toxicity. Crit Rev Toxicol. 41 (2011): 783–802. 
doi: 10.3109/10408444.2011.598141. [PubMed: 21809939] 

Nelms et al. Page 13

Comput Toxicol. Author manuscript; available in PMC 2023 September 11.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



[10]. Wijeyesakere SJ, Wilson DM, Settivari R, Auernhammer TR, Parks AK, Marty S. Development 
of a profiler for facile chemical reactivity using the open-source Konstanz information miner. 
Appl In Vitro Toxicol. 4 (2018) 202–213.

[11]. Roberts DW, Aptula AO, Patlewicz G, Pease C. Chemical Reactivity Indices and Mechanism-
based read across for non-animal based assessment of skin sensitization potential. J. Appl. 
Toxicol. 28 (2008) 443–454. [PubMed: 17703503] 

[12]. Kavlock R, Chandler K, Houck K, Hunter S, Judson R, Kleinstrueur N, Knudsen T, Martin M, 
Padilla S, Reif D, Richard A, Rotroff D, Sipes N, Dix D. Updated on EPA’s ToxCast program: 
providing high throughput decision support tools for chemical risk management. Chem Res 
Toxicol. 2012. 25(7): 1287–1302. Doi: 10.1021/tx3000939. [PubMed: 22519603] 

[13]. Richard A, Judson R, Houck K, Grulke C, Volarath P, Thillainadarajah I, Yang C, Rathman J, 
Martin M, Wambaugh J, Knudsen T, Kancherla J, Mansouri K, Patlewicz G, Williams A, Little 
S, Crofton K, Thomas R. The ToxCast Chemical Landscape: Paving the Road to 21st Century 
Toxicology. Chem. Res. Toxicol. 2016. 29(8): 1225–1251. doi: 10.1021/acs.chemrestox.6b00135. 
[PubMed: 27367298] 

[14]. Tice RR, Austin CP, Kavlock RJ, Bucher JR. Improving the human hazard characterization of 
chemicals: a Tox21 update. Environ Health Perspect. 121 (2013) 756–765. [PubMed: 23603828] 

[15]. Yang C, Tarkhov A, Marusczyk J, Bienfait B, Gasteiger J, Kleinoeder T, Magdziarz T, Sacher 
O, Schwab CH, Schwoebel J, Terfloth L, Arvidson K, Richard A, Worth A, Rathman J. New 
publicly available chemical query language, CSRML, to support chemotype representations for 
application to data mining and modeling. J Chem Inf Model. 55 (2015) 510–528. doi: 10.1021/
ci500667v. [PubMed: 25647539] 

[16]. OECD. 2012. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent 
Binding to Proteins Part 1: Scientific Evidence. Series on Testing and Assessment No. 168 
ENV/JM/MONO(2012)10/PART1

[17]. OECD. 2015. Organisation for Economic Cooperation and Development. Test Guideline 442C: 
In Chemico, Skin Sensitisation, Direct Peptide Reactivity Assay (DPRA). http://www.oecd-
ilibrary.org/environment/test-no-442c-in-chemicoskin-sensitisation_9789264229709-en

[18]. OECD. 2016. Organisation for Economic Cooperation and Development. Test Guideline 442D: 
In vitro Skin Sensitisation, ARE-Nrf2 Luciferase Test Method. DOI: 10.1787/9789264264359-en

[19]. OECD. 2015. Organisation for Economic Cooperation and Development. Test Guideline 
442E: In vitro Skin Sensitisation, Human Cell Line Activation Test (h-CLAT). http://www.oecd-
ilibrary.org/content/book/9789264229822-en

[20]. Williams A, Grulke C, Edwards J, McEachran A, Mansouri K, Baker N, Patlewicz G, Shah I, 
Wambaugh J, Judson R. The CompTox Chemistry Dashboard – A Community Data Resource for 
Environmental Chemistry. J. Cheminformatics. 9 (2017) 61 doi: 10.1186/s13321-017-0247-6

[21]. Mansouri K, Grulke CM, Richard AM, Judson RS, Williams AJ. An automated curation 
procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR 
modelling. SAR QSAR Environ Res. 27 (2016) 939–965. [PubMed: 27885862] 

[22]. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 22 (2012) 276–282.

[23]. Wang J, Hallinger D, Murr A, Buckalew A, Lougee R, Richard AM, Laws S, Stoker T. High-
Throughput Screening and Chemotype-Enrichment Analysis of ToxCast Phase II Chemicals 
Evaluated for Human Sodium-Iodide Symporter (NIS) Inhibition. Environ. Int. 126 (2019) 377–
386. 10.1016/j.envint.2019.02.024 [PubMed: 30826616] 

[24]. Roberts DW, Patlewicz GY, Kern PS, Gerberick GF, Kimber I, Dearman RJ, Ryan CA, Basketter 
DA, Aptula AO. Mechanistic Applicability Domain Classification of a Local Lymph Node Assay 
Dataset for Skin Sensitization. Chem. Res. Toxicol. 20(2007) 1019–1030. [PubMed: 17555332] 

Nelms et al. Page 14

Comput Toxicol. Author manuscript; available in PMC 2023 September 11.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://www.oecd-ilibrary.org/environment/test-no-442c-in-chemicoskin-sensitisation_9789264229709-en
http://www.oecd-ilibrary.org/environment/test-no-442c-in-chemicoskin-sensitisation_9789264229709-en
http://www.oecd-ilibrary.org/content/book/9789264229822-en
http://www.oecd-ilibrary.org/content/book/9789264229822-en


Highlights

• Three alert schemes for protein binding were evaluated

• Predicted reaction domains were compared with expert manual assignments 

for a published skin sensitisation dataset.

• Tox21 screening library was profiled by the 3 alert schemes to determine a 

‘consensus’ reaction domain.

• Highly enriched ToxPrints were extracted for both datasets and example 

chemicals are highlighted.

• Enriched ToxPrints were compared with the ToxCast assay space to identify 

relevant assays informative for reactivity.
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Figure 1. 
Countplots of the different reaction schemes to summarise the number of alerts per reaction 

domain

Key: SNAr = Substitution Nucleophilic Aromatic, SN2 = Biomolecular nucleophilic 

substitution, SB = Schiff base formers, MA = Michael acceptors, Acyl = Acyl transfer 

agents
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Figure 2. 
Summary of mechanistic domain assignments from Roberts et al [24]

Key: SNAr = Substitution Nucleophilic Aromatic, SN2 = Biomolecular nucleophilic 

substitution, SB = Schiff base formers, MA = Michael acceptors, Acyl = Acyl transfer 

agents, Spec = Special cases, Non = Non-reactive
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Figure 3: 
Heatmap to illustrate which SMARTS patterns from each of the schemes were flagged for 

each substance and reflect this by the associated reaction domain, where purple = Acyl, dark 

blue = MA, dark green/blue = SB, green = SN2 and yellow = SNAr. Substances that did not 

trigger any SMARTS or were associated with more than 1 domain are not shown.
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Figure 4. 
Barplot of the frequencies across the reaction domains for the Tox21 library
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Figure 5. 
Chemical fingerprint profile on a consensus reaction domain perspective

Notes: Aggregate_ToxPrint represents the Level 2 ToxPrints. The figure shows the 

counts of each of these Level 2 ToxPrints against each consensus reaction domain. No 

domains_counts highlights the Level 2 ToxPrints for chemicals that did not trigger any 

domain.
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Table 1.

Data and Schemes considered in this analysis

Publication Rulebase/Alerts No of 
SMART 
patterns

Tag used in 
this 
publication

Source Comments

Asturiol et al 
(2016) [5] 
Patlewicz et al 
(2016) [6]

Expert-assigned reaction 
domains

JRC dataset Skin sensitisation dataset with 
assigned reaction domains as 
described in [6]

Enoch et al (2008) 
[7]

SMARTS patterns for each of 
the 5 reaction domains plus 
3 ‘pro’ domains to denote 
alerts requiring activation 
either metabolically or 
chemically to produce an 
electrophilic species.

66 Enoch alerts SMARTS patterns were taken 
from Table 2 of the original 
publication. Alerts derived from 
skin sensitisation datasets

Each of the pro 
domains was 
aggregated 
into their 
respective 
parent domain 
for practical 
reasons.

Wijeyesakere et al 
(2018) [10]

SMARTS patterns for each of 
the 5 reaction domains

71 Dow alerts SMARTS extracted from Table S2 
in the supplementary information 
of the original article. Alerts 
derived principally using in 
chemico data relevant for skin 
sensitisation

Enoch et al (2011) 
[9]

The SMARTS patterns that 
are incorporated into the 
protein binding alerts by the 
OECD profiler comprise a 
designation of mechanistic 
domain, alert class, alert 
name.

102 OECD alerts SMARTS provided by Dr 
Enoch. Alerts derived from 
literature review covering 
different endpoints including skin 
sensitisation, aquatic toxicity, skin 
irritation as well as data from the 
chromosomal aberration test.
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Table 2.

Summary Performance metrics

Relative to the Expert assignments Precision (TP/(TP+FP)) Recall (TP rate) F1 score MCC

Enoch alerts 0.71 0.73 0.71 0.66

Dow alerts 0.68 0.62 0.59 0.547

OECD alerts 0.68 0.68 0.66 0.612
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Table 5:

Top 5 enriched chemotypes per consensus-alert defined reaction domain for the Tox21 dataset

Reaction_domain ToxPrint TP Odds Ratio P-val

MA bond:C#N_nitrile_ab-unsaturated 16 20.95 1.33643E-12

ring:fused_[5_6]_indene 3 19.23 0.003416

bond:N=N_azo_aromatic 30 17.46 4.42522E-21

bond:C(=O)O_carboxylicEster_alkenyl 118 15.74 1.12978E-73

chain:aromaticAlkene_Ph-C2_acyclic_generic 98 15.34 3.70467E-61

Acyl bond:N=C=O_isocyanate_[O_S] 27 209.63 1.23981E-24

bond:N=C=O_isocyanate_generic 18 138.44 2.46705E-16

bond:C=O_acyl_halide 28 72.52 1.79837E-23

bond:C(=O)O_acidAnhydride 26 50.39 7.49293E-21

ring:hetero_[5_6]_N_isoindole_1-one 19 29.24 3.99817E-14

S N 2 bond:CX_halide_alkyl-X_ethyl 140 323.62 2.4999E-148

bond:CX_halide_alkyl-X_aromatic_alkane 27 311.05 9.98123E-29

bond:CX_halide_alkyl-X_aromatic_generic 27 311.05 9.98123E-29

bond:CX_halide_alkyl-Cl_ethyl 95 304.65 9.3452E-100

bond:CX_halide_alkyl-X_benzyl_generic 21 239.76 2.93727E-22

SB bond:C=O_aldehyde_aromatic 6 41.78 4.45712E-05

bond:C=O_aldehyde_generic 20 30.77 2.23394E-13

chain:alkeneBranch_mono-ene_2-butene_2-propyl_(tiglate) 4 25.93 0.001856254

chain:alkeneBranch_diene_2_6-octadiene 4 25.93 0.001856254

bond:CC(=O)C_ketone_aromatic_aliphatic 3 9.35 0.0244

S N Ar bond:CX_halide_aromatic-X_generic 131 856.24 1.0054E-110

bond:CX_halide_aromatic-Cl_dichloro_pyridine_(1_2-) 12 822.1 1.8706E-21

bond:CX_halide_aromatic-Cl_dichloro_pyridine_(1_4-) 12 411 1.29203E-20

bond:CX_halide_aromatic-X_trihalo_benzene_(1_2_3-) 29 385.54 3.29585E-48

bond:X[any]_halide 131 331.07 2.4174E-69
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Table 6.

Top 5 chemotypes (or less if total is less than 5) per reaction domain from the JRC dataset

Reaction_domain ToxPrint TP Odds Ratio P-val

MA bond:C(=O)O_carboxylicEster_alkenyl 11 24.58 2.39298E-07

bond:C=O_carbonyl_ab-unsaturated_aliphatic_(michael_acceptors) 9 18.72 7.90222E-06

chain:alkeneLinear_mono-ene_ethylene_generic 23 12.57 2.80398E-10

chain:alkeneLinear_mono-ene_ethylene_terminal 7 10.16 0.000505946

bond:C(=O)O_carboxylicEster_acyclic 13 9.05 5.23066E-06

chain:alkeneLinear_diene_1_2-butene 9 7.85 0.000241917

Acyl ring:hetero_[5]_Z_1-Z 5 49.29 9.51501E-06

ring:hetero_[5]_O_oxolane 5 49.29 9.51501E-06

ring:hetero_[5_6]_Z_generic 5 36.79 2.08278E-05

chain:aromaticAlkane_Ph-C1_cyclic 5 24.29 7.22608E-05

S N 2 chain:alkaneLinear_hexadecyl_C16 3 26.73 4.72881E-03

bond:CS_sulfide 6 20.42 7.56699E-05

chain:alkaneLinear_dodedyl_C12 6 15.24 0.000174814

bond:X[any]_halide 13 9.59 2.66263E-06

chain:alkaneLinear_decyl_C10 6 8.57 0.00112602

SB bond:C=O_aldehyde_aromatic 6 41.78 4.45712E-05

bond:C=O_aldehyde_generic 20 30.77 2.23394E-13

chain:alkeneBranch_mono-ene_2-butene_2-propyl_(tiglate) 4 25.93 0.001856254

chain:alkeneBranch_diene_2_6-octadiene 4 25.93 0.001856254

bond:C=O_carbonyl_1_2-di 5 8.26 0.004416916

Notes: The SNAr domain did not have any ToxPrints that were enriched based on the criteria of Odds Ratio (OR)=> 3, TP>=3 and p =< 0.05
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Table 7.

Number of enriched ToxPrints per reaction domain

Reaction domain # Enriched ToxPrints unique to the 
JRC dataset

# Enriched ToxPrints unique to the 
Tox21 dataset

#Enriched ToxPrints common to 
both datasets

MA 1 20 13

Acyl 5 57 1

SN2 8 58 2

SNAr 0 30 0

SB 0 0 13
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Table 8.

Illustrative chemicals with common MA enriched chemotypes

DTXSID Structure Enriched_ToxPrints

DTXSID00231670 bond:C=O_carbonyl_ab-unsaturated_aliphatic_(michael_acceptors)
bond:C=O_carbonyl_ab-unsaturated_generic
bond:CC(=O)C_ketone_alkene_generic
chain:alkeneLinear_diene_1_2-butene
chain:alkeneLinear_mono-ene_allyl
chain:alkeneLinear_mono-ene_ethylene
chain:alkeneLinear_mono-ene_ethylene_generic
chain:aromaticAlkene_Ph-C2_acyclic_generic
chain:aromaticAlkene_Ph-C2

DTXSID2052100 chain:alkeneLinear_diene_1_2-butene
chain:alkeneLinear_mono-ene_allyl
chain:alkeneLinear_mono-ene_ethylene
chain:alkeneLinear_mono-ene_ethylene_generic
chain:aromaticAlkene_Ph-C2_acyclic_generic
chain:aromaticAlkene_Ph-C2

DTXSID9046152 bond:C=O_carbonyl_ab-unsaturated_aliphatic_(michael_acceptors)
bond:C=O_carbonyl_ab-unsaturated_generic
bond:CC(=O)C_ketone_alkene_generic
chain:alkeneLinear_diene_1_2-butene
chain:alkeneLinear_mono-ene_allyl
chain:alkeneLinear_mono-ene_ethylene
chain:alkeneLinear_mono-ene_ethylene_generic
chain:aromaticAlkene_Ph-C2_acyclic_generic
chain:aromaticAlkene_Ph-C2
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Table 9.

Prototypic chemicals with enriched MA chemotypes specific to the Tox21 library

DTXSID Structure Enriched_ToxPrints

DTXSID4057631 bond:CC(=O)C_ketone_alkene_cyclic_2-en-1-one
chain:alkeneCyclic_ethene_C_(connect_noZ)

DTXSID6057619 bond:CC(=O)C_ketone_alkene_cyclic_2-en-1-one
bond:CC(=O)C_quinone_1_4-benzo
bond:CC(=O)C_quinone_1_4-naphtho
bond:COH_alcohol_aromatic

DTXSID3045647 bond:CC(=O)C_ketone_alkene_cyclic_2-en-1-one
chain:alkeneCyclic_ethene_C_(connect_noZ)
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Table 10.

Enriched ToxPrints projected on the ToxCast assay space

Vendor # Assays #ToxPrints represented out of 14

APR 37 6

ATG 155 13

TOX21 98 11

BSK 238 14

NVS 82 11

OT 41 9

CEETOX 12 6

Tanquay 6 3

CLD 12 6
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