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Abstract

The molecular initiating event for many mechanisms of toxicological action comprise the
reactive, covalent binding between an exogenous electrophile and an endogenous nucleophile.
The target sites for electrophiles are typically peptides, proteins, enzymes or DNA. Of these, the
formation of covalent adducts with proteins and DNA are perhaps the most established as they
are most closely associated with skin sensitisation and genotoxicity endpoints. As such, being
able to identify electrophilic features within a chemical structure provides a starting point to
characterise its reactivity profile. There are a number of software tools that have been developed
to help identify structural features indicative of electrophilic reactive potential to address various
purposes, including: 1) to facilitate category formation for read-across of toxicity effects such as
skin sensitisation potential, as well as 2) to profile substances to identify potential confounding
factors to rationalise their activity in high-throughput screening (HTS) assays. Here, three such
schemes that have been published in the literature as collections of SMARTS patterns and their
associated chemical-biological reaction domains have been compared. The goals are 1) to better
understand their scope and coverage, and 2) to assess their performance relative to a published
skin sensitisation dataset where manual annotations to assign likely mechanistic domains based on
expert judgement were already available. The 3 schemes were then applied to the Tox21 library
and the consensus outcome was reported to highlight the proportion of chemicals likely to exhibit
a reactivity response, specific to a mechanistic reaction domain, but non-specific with respect

to target-tissue based activity. ToxPrint fingerprints were computed and activity enrichments
computed to compare the structural features identified for the skin sensitisation dataset and Tox21
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chemicals for each ‘consensus’ reaction domain. Enriched ToxPrints were also used to identify
ToxCast assays potentially informative for reactivity.
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1. Introduction

As stated by Schultz et al. [1], ‘the identification of plausible molecular initiating events
based on covalent reactions with nucleophiles such as peptides, proteins, and DNA provides
the unifying concept for a framework for reactivity toxicity’. The formation of covalent
adducts with proteins and DNA are perhaps the best-established examples as they are

most closely associated with skin sensitisation and genotoxicity endpoints [2]. There are

a number of software tools that have been developed to help identify structural features
indicative of electrophilic reactive potential to assist in the assessment of skin sensitisation
and mutagenicity endpoints. Examples include Derek Nexus (LHASA Ltd), which consists
of a knowledgebase containing structural alerts for a range of different endpoints indicating
potential toxicity. Other tools, such as the OECD (Q)SAR Toolbox, contain rulebases of
alerts (known as profilers) that are intended to be used to group and profile chemicals

based on their common structural/mechanistic/reactive potential to assist in the formation
of categories for associated read-across [3, 4]. In this study, we considered three such
rulebases/schemes that had been largely derived on the basis of skin sensitisation data, for
which structural queries in the form of SMARTS (simplified molecular input line entry
system (SMILES) arbitrary target specification) were published in the literature and/or
implemented in publicly available open source tools. Given that the various schemes were
derived from overlapping data sets and for common objectives, we were interested to

assess the degree to which they overlap and to compare the breadth and coverage of the
alerts relative to each other and in relation to manual expert assignments applied to a skin
sensitisation dataset that had been compiled by Asturiol et al [5]. Two authors in this study
had previously assigned the reaction mechanistic domains for the dataset in Asturiol et al [5]
in a separate publication [6]. The expert assignments dataset from Asturiol et al [5] was used
to pragmatically ‘ground truth’ the respective schemes in the absence of other experimental
reactivity data.

The first scheme comprised a set of SMARTS published by Enoch et al [7] for each

of the reaction domains that were first described by Aptula and Roberts [8] for skin
sensitisation. These reaction mechanistic domains, namely Schiff Base formers, Michael
addition, Acylating agents, Sy2 (substitution nucleophilic bimolecular) and SyAr (aromatic
nucleophilic substitution), are based on standard organic chemistry principles. The set of
SMARTS described in [7] has also been implemented as a module in the open source tool,
Toxtree (Ideaconsult Ltd).

The second scheme was a set of alerting groups reviewed by Enoch et al [9] and captured
within the OECD Toolbox as a profiling scheme named ‘Protein binding alerts by OECD’.
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This set of alerts were an expanded set based on a more extensive literature review rather
than an attempt to encode the domains described by Aptula and Roberts [8].

The third scheme was a set of SMARTS published by researchers at The Dow chemical
company [10] as part of a KNIME workflow for identifying reactive groups helpful in the
assessment of acute inhalation toxicity.

The utility of these reactivity alert schemes is several-fold: 1) to identify potential
electrophilic features implicated in skin sensitisation by virtue of proposed molecular
initiating events (MIE),— e.g., the alerts by Enoch et al [7] and Enoch et al [9] were
specifically intended to codify protein binding; 2) to profile and categorise substances for
the purposes of deriving read-across predictions within analogue and category approaches -,
e.g., Roberts et al [11] have long posited the utility of these reaction domains to facilitate
mechanistic read-across for skin sensitisation or for the development of Quantitative
Mechanistic Models (QMMs) for the prediction of skin sensitisation; and 3) to profile
substances to identify potential confounding factors that might rationalise the activity (or
lack of activity) outcomes of substances tested in high-throughput screening (HTS) assays
such as ToxCast [12, 13]. Our motivation was to compare these protein binding reactivity
schemes for 3 main purposes: 1) to understand the scope and coverage of the different
schemes and the extent to which they are comparable to each other; 2) to assess the
performance of the alerts relative to manual expert assignments of reaction mechanistic
domains made for chemicals in the dataset published by Asturiol et al. [5]; and 3) to profile
the Tox21 library [14] using reactivity alerts to identify which substances are more likely to
be non-target-specific, reactive chemicals within a ‘consensus’ set of mechanistic reaction
domains. Both datasets (Tox21 and the Asturiol et al. [5]) were also characterised in terms of
their structural fingerprints using ToxPrint chemotypes (Chemotyper.org; [15]) to enable an
enrichment analysis for each of the consensus reaction domains relative to the whole dataset.
The enriched ToxPrints were then compared with ToxCast assay enrichments to identify
assays potentially informative for, or impacted by, reactivity.

2. Materials and Methods

2.1 Construction of the reaction domain profiling schemes

Each of the three profiling reactivity schemes comprised SMARTS patterns associated with
one of the five main reaction mechanistic domains that had been previously described

by Aptula and Roberts [8], namely, bimolecular nucleophilic substitution (Sy2)-acting,
Michael acceptors (MA), Acyl transfer agents, Schiff Base formers (SB) and nucleophilic
aromatic substitution (SyAr)-acting. These reaction domains are based on organic chemistry
principles describing the reactions that occur between electrophiles and nucleophiles.

In each case, the file of SMARTS and their associated reaction mechanistic domain was
converted to a Python dictionary where the mechanistic domain formed the key and the
set of SMARTS patterns, the values. RDK:it’s python library (RDKit.org) was then used to
transform the SMARTS strings into chemical substructures.
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2.2 Comparing and contrasting the performance of the reaction schemes using a dataset
with known manually annotated reaction domains

The skin sensitisation dataset from Asturiol et al [5] that had been annotated with reaction
domains by Patlewicz et al [6] was chosen as a ‘benchmark’ set to facilitate a comparison

of how the 3 different schemes performed. This was a pragmatic approach in the absence

of other experimental data that would objectively measure the reactivity and confirm the
appropriate reaction domain, as well as in the absence of the complete training sets that were
used to derive the original SMARTS in the respective schemes. The Asturiol et al [5] dataset
will be referred to as the “JRC dataset” throughout this manuscript, where JRC refers to
Asturiol’s affiliation at the European Commission’s Joint Research Centre. The JRC dataset
included reported outcomes in in chemico, in vitro and in vivo tests for skin sensitisation.
The local lymph node assay (LLNA) was the /n vivo test result reported whereas the /n
chemico and in vitro tests make reference to 3 assays that have been mapped to key events
(KEs) in the Adverse Outcome Pathway (AOP) for skin sensitisation [16]. The assays are
namely the DRPA (direct reactivity peptide assay), an /n chemico test for the molecular
initiating event (MIE) [17], whereas the KeratinoSens test [18] and the h-CLAT (human cell
line activation test) [19] are /n vitrotests that characterise KEs 1 and 2, respectively. The
benchmark dataset and the three reaction domain alert schemes are briefly summarised in
Table 1.

DSSTox Substance Identifier (DTXSID) chemical 1Ds were identified and mapped to
names and/or CAS registry numbers (CASRN) in the JRC dataset to facilitate the
extraction of QSAR-ready SMILES from the EPA CompTox Chemicals Dashboard ([20];
https://comptox.epa.gov/dashboard, Accessed 29 January 2019). The DSSTox (Distributed
Structure-Searchable Toxicity) database is underpinned by a chemical registration process
to ensure the quality of structure mapping with chemical names, CASRN and INChlkeys.
QSAR-ready SMILES are the result of a structure standardisation process where structures
are normalised and desalted as described by Mansouri et al [21]. Mapping the JRC dataset
identifiers to DTXSIDs would also aid subsequent comparisons with lists such as the Tox21
screening library, used in this study. A total of 222 chemicals with unique SMILES were
identified. RDKit was then used to perform a substructure match for each SMILES string
against any of the SMARTS in each alert scheme to identify any and all mechanistic
domains associated for a given chemical.

The JRC dataset was profiled using each of the 3 reaction domain rulebases and the
outcomes were compared to the expert-derived assignments. Performance metrics including
precision, recall, F1 score, Matthews correlation coefficient (MCC), and Cohen’s Kappa
were calculated for each profiling scheme relative to the expert judgement calls. The
discordant assignments relative to the expert judgement calls were also reviewed and
rationalised to identify whether any potential refinements were merited, or gaps existed

for the alerts themselves. The formulas for the different metrics are provided below:

Precision or positive predictive value (PPV) is defined as:

TP
TP+ FP
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Recall or True positive rate is also referred to for 2 class problems as the sensitivity. It is
defined as the:

TP
TP+ FN
F1 score is the harmonic mean of precision and recall and is defined as:
2TP
(TP + FP+ FN)
Mathews correlation coefficient (MCC) is defined as:

(TPXTN) - (FPx FN)
J@TP+FN)FN +TP)TN + FP)IN + FN)

Cohen’s kappa coefficient (x) measures inter-rater agreement for categorical items that takes
into account the possibility of agreement occurring by chance [22].

Performance metrics were calculated using available functions within the

Scikit-learn (v0.19.1) (https://scikit-learn.org/stable/#), StatsModels (v0.9.0) (http://
www.statsmodels.org/dev/index.html) and NumPy (v1.14.5) (www.numpy.org) python
packages where version numbers are provided in parentheses.

2.3 Profiling of the ToxCast/Tox21 substances

The Tox21 Screening Library (Tox21SL) list of 8947 chemicals was downloaded from

the EPA CompTox Chemicals Dashboard (available at: https://comptox.epa.gov/dashboard/
chemical_lists/TOX21SL). This list was filtered to retain substances that were discrete
organics with normalised structures, i.e. only substances that had an associated QSAR-ready
SMILES record. There were 8360 chemicals with unique DTXSID identifiers and QSAR-
ready SMILES after deduplication. Each of the 3 profiling schemes was applied to this set
of chemicals and an overall ‘consensus’ reaction domain was predicted for each chemical
based on the following logic. If the outcome from all 3 schemes was identical, this formed
the final ‘consensus’ prediction. If 2 schemes were identical this consensus was reported as
the final “‘consensus’ prediction. If only one scheme flagged one or more domains, this result
was given a higher weight than a negative and served as the final prediction. In cases where
the predicted reaction domains (or no domain) for all 3 schemes conflicted with each other,
the final prediction was labeled as inconclusive.

Chemical structural fingerprints were generated for both the JRC dataset and the Tox21
database using the 729 Toxprint set of chemotypes [15], downloaded from the EPA
CompTox Chemicals Dashboard as a tsv file (Chemotyper format) using the batch search
capability. ToxPrint chemotypes were selected since these are a publicly available approach
for representing molecules and are specifically tailored to provide good coverage of
environmental, regulatory and commercial use chemical space. ToxPrints were used to
explore whether particular structural features were enriched for each of the expert-assigned
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or consensus predicted reaction domains relative to the whole dataset, for both the JRC
dataset and the Tox21 dataset. A ToxPrint with an odds ratio equal or greater than 3, a p
value less than or equal to 0.05 and the number of True Positives (TPs) greater than or equal
to 3 (i.e., at least 3 chemicals within the reaction domain contain the ToxPrint) was defined
as being significantly enriched in the reaction domain subset relative to the whole. The
enriched ToxPrints within each ‘consensus’ reaction domain of the Tox21 screening library
dataset were compared with the enriched ToxPrints within each expert-assigned reaction
domains of the JRC dataset.

All of the above analyses were performed in Python 3.6 using NumPy

(v1.14.5), Pandas (v0.23.3), RDKit (v2018.03.3.0), and Scikit-learn (v0.19.1).

Plots were created in Seaborn (v0.9.0) and Matplotlib (v2.2.2). All code

and datasets are available in associated Jupyter (v1.0.0) notebooks as

part of the supplementary information available at https://gaftp.epa.gov/Comptox/
NCCT_Publication_Data/PatlewiczGrace/CompTox-Protein_binding_alerts-comptoxicol/.

The enriched ToxPrints for each consensus reaction domain for both datasets were

also compared with ToxCast assay enrichments to identify which HTS assays might be
informative for reactivity. ToxPrint enrichment calculations in the ToxCast assay space
were computed previously using the Chemotyper Enrichment Workflow (CTEW) code base
developed by EPA researchers for application to ToxCast HTS datasets (see e.g. [23]). The
CTEW employs the same odds ratio, p-value and TP statistical thresholds as applied in the
current analysis to the JRC and Tox21 datasets. Enrichments were previously calculated and
stored for all 1192 unique ToxCast assay endpoints, with the latter represented as baseline
(binary) hit calls from level 5 (Mc%) within the ToxCast public data release (invitrodb_v2)
(https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data).

3. Results and Discussion

3.1 Comparing and contrasting the reaction schemes

The 3 schemes were first compared by the number of alerts present in each of the reaction
domains. The OECD alerts comprised 102 SMARTS patterns in contrast to the Enoch alerts
which consisted of 66 SMARTS patterns and the Dow alerts that contained 71 SMARTS
patterns. Based on visual inspection (Figure 1), each scheme appeared particularly enriched
with alerts characterising the Michael acceptor (MA) domain whereas far fewer alerts
captured the SyAr domain. The Enoch scheme was unusual in that it comprised almost the
same number of alerts for the SyAr domain as the Sy2, but far fewer alerts in the Sy2
domain than the other schemes. The Dow scheme comprised only 4 alerts for Schiff base
formers (SB) and the OECD alerts comprised only 1 alert for SNAT.

The profile of the number of SMARTS patterns relative to each domain mirrors the expected
profile for how chemicals tested for their skin sensitisation are categorised by domain. This
is unsurprising given how many of these alerts were originally devised through evaluating
the chemistry of skin sensitisation datasets. One related example, published by Roberts

et al [24], for a dataset consisting of 210 chemicals, showed that Michael acceptors and

Sn2 chemicals were the most abundant reaction domains based on expert derived manual

Comput Toxicol. Author manuscript; available in PMC 2023 September 11.


https://gaftp.epa.gov/Comptox/NCCT_Publication_Data/PatlewiczGrace/CompTox-Protein_binding_alerts-comptoxicol/
https://gaftp.epa.gov/Comptox/NCCT_Publication_Data/PatlewiczGrace/CompTox-Protein_binding_alerts-comptoxicol/
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data

1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Nelms et al.

Page 7

assignments (see Figure 2 that summarises the number of chemicals assigned to each
domain).

However, it should be noted that the number of alerts per domain within the schemes does
not necessarily reflect the breadth of chemical space covered; some alerts are more general
than others, thus spanning more diverse chemicals, and some alerts are nested within others
or may frequently co-occur with others, thus spanning fewer chemicals. Hence, a relevant
reference dataset is needed to assess relative coverage of the three schemes. In this respect,
comparing a dataset of pre-assigned mechanistic domains with the domains identified by
each scheme would provide a better understanding of the coverage and applicability of

the alerts. The reaction domain assignments applied to the JRC dataset were informed by
mechanistically relevant chemical and biological knowledge and data, in addition to purely
structural considerations, and thus serve as the baseline “ground truth” for the present
analyses. The JRC dataset comprised 222 chemicals for which QSAR-ready SMILES were
extracted from the EPA CompTox Chemicals Dashboard. The set of chemicals were profiled
through each of the schemes using the 3 sets of SMARTS patterns to assign all and any
reaction domain(s). The profiled domains together with the expert-assigned domains were
formatted for consistency to enable comparisons to be made and performance metrics to be
computed.

The comparisons were complicated by 2 factors: 1) although there were only 5 specific
reaction domains identified by the respective profiling schemes, some chemicals flagged
more than 1 domain; and 2) the expert assignments included additional pathways (denoted
as ‘special case’) to account for chemicals undergoing other transformations such as
autoxidation. For the JRC dataset, there were 15 unique expert judgement assignments
(which captured both additional pathways as well as combinations of the 5 reaction
domains) whereas the Enoch profiler gave rise to 11 different reaction domain combinations
(i.e. only 1 or more of the 5 reaction domains). The OECD and Dow profilers produced 8
different assignments. Table 2 provides the macro average performance characteristics for
the 3 schemes relative to the expert judgement calls, whereby the precision and recall for
each reaction domain(s) is computed first and then averaged across the number of domain
outcomes.

The MCC, defined earlier, is a useful measure to summarise the overall performance, where
the minimum value is -1 and the best value is +1. On the basis of this metric, the Enoch
alerts were overall ‘the best’ at classifying the JRC dataset into their respective domains
relative to the expert judgement calls, whereas the OECD alerts were a close second. A
factor that contributes to the performance characteristics could also be the coverage of the
SMARTS patterns that were flagged for the chemicals in the JRC dataset relative to the total
of SMARTS patterns that exist for each scheme. The number of unique SMARTS patterns
for each of the schemes is 66 for the Enoch scheme, 71 for the Dow scheme and 102 for
the OECD as referenced in Figure 1. The number of uniqgue SMARTS patterns that were
matched for the JRC chemicals was 47 for the Enoch scheme, 32 for the Dow scheme and
38 for the OECD scheme. Thus 47/66 (71%) of the Enoch SMARTS were triggered for

the JRC scheme whereas fewer SMARTS patterns were flagged for the other two schemes,
32/71 (45%) for the Dow scheme and 38/102 (37%) for the OECD scheme. Interestingly,
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even though the Enoch scheme contained the fewest total number of alerts (66), these were
better aligned to, and represented within the corresponding JRC expert-assigned reaction
domains than the much larger set of OECD scheme alerts. This can perhaps be attributed
to the closer proximity and overlap of the JRC dataset studies to the earlier Enoch, 2008
study. The proportion of alerts that were flagged could be another factor in why the

Enoch scheme appeared to perform slightly better in comparison to the other 2 schemes.
Table 2 provides the micro per domain performance metrics for the 3 schemes relative to
the expert judgement calls for the 5 principal reaction domains only. The intent was to
evaluate whether one scheme was better at matching one specific domain relative to another
scheme. Robust performance characteristics could not be computed for the multi-domain
combinations and are not reflected in Table 3. Indeed, for inconclusive multi-domain cases,
further evaluation would be needed to determine which reaction domain dominated either
through analysis of the frontier molecular orbitals (using the shapes and energies of the
Lowest Unoccupied Molecular Orbital) or through generating relevant /n chemico data [7].

The Enoch scheme appears to be overall the best performing for 4 of the 5 domains listed
based on the F1 score. The Dow and OECD schemes appear to be better at correctly
assigning chemicals within the Sy2 domain, albeit requiring many more alerts, i.e., 23 and
39, respectively, vs. only 9 alerts for the Enoch scheme. By the same token, the 23 patterns
characterising the Sy2 domain in the Dow scheme appear to be sufficient to cover the scope
of SN2 reacting chemicals in this dataset. In other cases, such as the Enoch scheme for
predicting in the Acyl domain, fewer alerts (9) appeared to perform as well or better than

the 11 or 17 alerts for the Dow and OECD schemes, respectively. Clearly, however, relative
performance of these schemes in assigning reaction domains on a reference dataset, such as
the JRC dataset in this case, would be expected to depend on the reaction domain knowledge
base, or training set, used in their development. Hence, the better performance of the Enoch
scheme on the JRC dataset may be due to closer alignment of those studies. The JRC dataset
was also profiled to showcase which SMARTS pattern was triggered for each substance to
result in its associated reaction domain score (Figure 3). Actual SMARTS patterns were
coded to designate source origin for ease of plotting. Although this provided an overall
visual perspective of the consistency in reaction domain assignment across the schemes and
allowed some inspection of which SMARTS pattern(s) were responsible in case, it also
highlighted how difficult it was to reconcile one SMARTS pattern relative to another from a
different scheme. This difficulty in part prompted the subsequent exploration of enrichments
using ToxPrints that are objective and well-defined features.

The dataset was then filtered to consider the set of substances for which all 3 schemes were
in agreement with each other, but in conflict with the expert judgement assignments. There
were 25 substances identified that met these conditions, with 21 of these being cases where
no alerts were triggered by any of the 3 schemes. These are listed in Table 4 together with
their 2D chemical structural representation.

Of the 25 cases, 3 of the original expert assignments appeared to be erroneous as discussed
in Table 4; correcting these would result in only 22 cases where all 3 schemes were in
agreement with each other but in conflict with the expert assignments. These included
1-Benzoylacetone (changed from Acyl to SB), and Hexyl salicylate and 5-Dodecanolide,

Comput Toxicol. Author manuscript; available in PMC 2023 September 11.
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both changed to likely non-reactive. The conflicts were typically observed for substances
that were expected to act by an alternative pathway, either directly via Sy1 (unimolecular
nucleophilic substitution) or indirectly by a free radical mechanism as a result of oxidation.
This is not a specific limitation in this study as our primary interest was to have a means of
identifying inherently electrophilic reactivity.

3.2 Pairwise comparison of the 3 schemes

Cohen’s kappa coefficient was used to measure the inter-rater agreement for the results of
the 3 schemes pairwise across the reaction domain assignments. The kappa value for each of
the pairs of reaction domain schemes was >0.6 (values were 0.69 for the OECD and Enoch
pair, 0.67 for the OECD and Dow pair, and 0.61 for the Enoch and Dow pair), indicating
that whilst the schemes have good agreement with one another, no scheme was completely
replicated by another scheme. Accordingly, rather than excluding any particular scheme for
any subsequent profiling activity or application, a ‘consensus’ from all three schemes was
used.

3.3 Profiling of the Tox21 substances

The Tox21 list was identified from the EPA CompTox Chemicals Dashboard and all
substances in the list were ‘sent’ to the batch search to download additional chemical
information, including QSAR-ready SMILES where available and the ToxPrint fingerprints.
The list was filtered to remove all inorganics and mixtures, resulting in a set of 8360 unique
substances with QSAR-ready SMILES. Six SMILES could not be resolved by RDKit, such
that the final Tox21 dataset used in the remainder of the analysis comprised 8354 substances
with QSAR-ready SMILES. Each of the Tox21 SMILES was processed through the 3
protein binding alert schemes to predict their reaction mechanism domain(s). These were
then aggregated into a “‘consensus’ outcome as described in Materials & Methods. Figure

4 shows the profile of the Tox21 chemicals across the consensus reaction domains, which
include the 5 main domains, the inconclusive category, as well as 13 combination domains
(in absolute terms and on a log-scale).

Over 55% of the Tox21 substances lacked an alerting feature suggesting either that they
were either not inherently reactive or the knowledgebase was insufficient to categorise them
as reactive. However, the 45% that remained are indicated to have the potential to act as
electrophiles on the basis of the alerts: 12% of the library was categorised as acyl transfer
agents (Acyl), 8% as Sn2 acting and 7% as Michael acceptors and Schiff base formers.

For the 7% that were categorised as inconclusive, some degree of reactivity is indicated,

but there is insufficient consensus to assign the chemical to a particular reaction mechanism
domain. In these cases, alerts from 2 or more schemes triggered an alert in a substance,

but they were associated with different reaction domains. For example, a chemical could

be assigned as MA based on the Enoch scheme, SB based on the OECD scheme, and both
[MA, SB] based on the Dow scheme. Given the large proportion of substances highlighting
an alert, ongoing work should be focused on exploring approaches to evaluate the robustness
of these alerts (given many of them are strongly influenced by human experts and bounded
by the chemicals assessed for skin sensitisation potential), and investigate the feasibility

of deriving new alerts by comparison to actual reactivity data. A new cross-partner Tox21
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project has just commenced to generate experimental reactivity data to serve such a purpose
(https://tox21.gov/projects/).

3.4 ToxPrint chemotype characterisation and enrichment of the Tox21 library

ToxPrint chemotype fingerprints (ChemoTyper format) were extracted from the EPA
CompTox Chemicals dashboard for the Tox21SL chemical list and merged with the
consensus reaction domain prediction based on presence or absence of alerting features.
There are 729 ToxPrints in total, though many of these are structured in a hierarchy of
different levels representing more-to-less generalised chemical features. For profiling of the
library, a reduced number of higher level (more general) ToxPrints were used, so-called level
2 ToxPrints of which there are 70 in total. These were defined on the basis of taking the first
and second name elements from the original ToxPrint name; e.g., if the full original ToxPrint
name was ‘bond:C#N_cyano_acylcyanide’ the corresponding Level 2 name would take the
first and second name components, hence ‘bond:C#N’. The ToxPrints computed for the
Tox21 library were mapped to the level 2 ToxPrints for profiling purposes. Figure 5 shows
the profile of the Tox21 library using ToxPrints projected onto the 5 main consensus-alert
reaction domain assignments.

Upon inspection of the barplots in Figure 5, the types of ToxPrints represented in each
domain appear similar, though their relative frequencies differ. To better parse out ToxPrints
that might be more specific to each domain, an enrichment analysis was performed

to identify which ToxPrints were significantly enriched in each consensus-alert defined
reaction domain relative to the full set of Tox21 chemicals. Table 5 shows the top 5 enriched
chemotypes (by odds ratios) for each of the 5 main consensus reaction domains for the
Tox21 chemical set.

Noteworthy is that there are no overlaps of ToxPrints across the 5 reaction mechanism
domains, i.e., no ToxPrint in the top 5 enriched set is in more than one reaction mechanism
domain. Hence, these particular ToxPrints are highly specific to each distinct reaction
mechanism domain.

The enrichment was also compared with that for the JRC dataset used earlier in the study to
compare and contrast which ToxPrints were enriched in each domain and how this differed
for the 2 datasets. For comparative reasons, the consensus domain was predicted for the JRC
set and used for the enrichment analysis. The top 5 odds ratios and chemotype comparisons
for the JRC dataset is reflected in Table 6.

Once again, there is no overlap in the sets of top 5 (or less) chemotypes within the JRC

set, indicating distinct chemical feature signatures for each of these reaction mechanism
domains. In addition, and perhaps more surprisingly, there was minimal overlap in the top
5 chemotypes for 4 of the 5 reaction mechanism domains when comparing the consensus
reaction domain results for Tox21 (Table 5) to those for the JRC dataset (Table 6). The MA
and SyAr/Sy2 domains all shared only 1 ToxPrint in common. The Sy2 domain shared no
ToxPrints whereas 4/5 ToxPrints were common in both datasets for the SB domain.
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The JRC dataset is largely made up of chemicals used in the cosmetics sector which

have prompted the study of skin sensitisation. In addition, 181 of the chemicals in the

JRC dataset overlapped with the Tox21 dataset. Many of these chemicals are fragrances,
whereas the Tox21 library covers a much broader spectrum of environmental chemicals

and use-categories in the Industrial sector, including drugs and pesticides [13]. Given the
much larger size of Tox21 in relation to the JRC dataset (40:1), and the intentional structure
diversity of the former versus a narrowed bias of the latter based on testing and concern for
skin sensitisation, it is also possible, and perhaps likely, that Tox21 covers a larger domain
of reactive chemistry than is captured by the JRC dataset. If this were the case, the 55%

of Tox21 chemicals lacking an alerting feature might contain “false negatives” in reaction
chemistry space. Likewise, the much larger structural diversity of Tox21 in relation to the
small JRC dataset in the “active” region, i.e., in the nearly 4000 Tox21 chemicals containing
a reactive alerting feature, opens up possibilities for refining or expanding the expert-based
or consensus alerts if additional confirmational HTS data could be generated.

A comparison of the ToxPrints significantly enriched within each consensus reaction domain
for the 2 datasets was performed and is available in the supplementary information. In total
for the MA domain, there were 33 enriched ToxPrints in Tox21 and 14 in the JRC dataset.
Of these, 13 enriched ToxPrints were in common to both datasets, 1 ToxPrint was unique to
the JRC dataset, and 20 chemotypes were unique to the Tox21 library, the latter indicating

a richer capture of structural diversity in relation to the alert-based reaction groups. Table 7
lists the number of unique and commonly enriched ToxPrints for each of the 5 consensus
reaction domains.

As an illustration, the enriched chemotypes for the MA domain were mapped back to the
original chemical structures in the respective datasets to showcase the types of chemicals
that alerted for this domain. Tables 8 and 9 show illustrative chemicals for the common
enriched chemotypes and those unique to the Tox21 set, respectively.

3.5 Enriched ToxPrints projected in the ToxCast assay space

The enriched ToxPrints derived from the JRC and Tox21 datasets were projected in the
ToxCast assay space to identify assays sharing these particular enrichments that would

be potentially informative for, or impacted by, reactivity. Full results are provided in the
supplementary information. Here, we only consider the assays that are enriched with the
same ToxPrints as are also enriched for the consensus MA domain within the JRC dataset.

In this case, there were 14 enriched ToxPrints, which if projected on the ToxCast assay
space identified 359 different assays that were, likewise, significantly enriched for those
ToxPrints within the assay active “hit” space. The assays covered a spectrum of different
vendors (9) with a wide range of assays per vendor; from 6 Tanquay assays to 238
Bioseek assays (Table 10). For more specific ToxPrints such as ‘bond: C=0_carbonyl_ab-
unsaturated_aliphatic_(michael_acceptors)’, a more targeted set of assays (22) were found
which covered 6 different vendors (ATG, BSK, CEETOX, TOX21, OT and NVS).
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4. Summary & Conclusions

In this study, three schemes which encode protein binding structural alerts for 5 major
reaction mechanism domains as captured in SMARTS queries, were compared. Their
relative information content and coverage was assessed by comparing the number of
SMARTS queries in each of the 5 reaction domains and how their domain assignments

for each chemical, i.e. based on presence/absence of alerting features, contrasted relative to
manual expert assignments that had been annotated in a published skin sensitisation dataset.
The overall performance of the 3 alert schemes relative to the manual assignments were
reasonable; differences were observed on a per reaction domain basis, with the scheme by
Enoch [8] generally performing better perhaps due to a closer alignment with the benchmark
study that provided expert reaction domain assignments. Inspecting the cases where all 3

of the schemes were the same, but conflicted with the manual expert assignments, revealed
that these largely included cases where an alternative reaction pathway could be postulated
that fell outside of the 5 reaction domains and, typically, where some transformation was
required.

The Tox21 screening library was then profiled with the 3 schemes to derive a consensus
alert outcome. In the case of Tox21, we hypothesised that the presence of an alerting feature
for reactivity might provide a marker for a non-specific reactivity response, i.e. one in
which a specific enzyme target interaction is likely not taking place. A large fraction of

the Tox21 library (45% of the total) alerted for 1 or more reaction domains. The profile

of these predicted reaction domains was explored using the publicly available ToxPrint
chemotypes, which offer a more transparent, interpretable, and standardized means for
representing chemical features than SMARTS. ToxPrints provided a means to characterise
the reactivity subsets relative to the whole Tox21 set, as well as to compare different sets of
chemicals within each reaction domain through a common chemical interface. The types of
chemotypes appeared to be broadly similar for chemicals in each of the predicted consensus
reaction domains but their frequencies within the domains differed.

A chemotype enrichment analysis was performed for both the JRC dataset and the Tox21
library to identify which chemotypes were particularly enriched for a specific reaction
domain, to what extent they differed, and to what extent the JRC and Tox21 results
overlapped. In both cases, the top 5 enriched chemotypes in each consensus reaction
domain were highly specific to that domain, with very few enriched chemotypes spanning in
multiple domains. In addition, and somewhat surprisingly, there were very few overlapping
chemotypes in this top 5 enriched set when comparing the results for the Tox21 library with
those of the JRC dataset. This is likely due to the very different chemical constituents of the
two datasets. Expanding the comparison to the more complete set of ToxPrint enrichments
in each case reveals a much larger degree of overlapping enrichments. This and the greater
size and diversity of the Tox21 library in relation to the JRC dataset was illustrated for the
MA domain, where there was 1 ToxPrint specific to the JRC dataset, 20 unique to the Tox21
library, and 13 common to both datasets. Example chemicals that presented these enriched
ToxPrints are highlighted for the MA domain. The enriched ToxPrints were projected on to
the ToxCast assay space to identify assays sharing these particular enrichments that would
be potentially informative for, or impacted by, reactivity. For the consensus MA domain,
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within the JRC dataset, there were 359 potentially informative assays for the 14 enriched
ToxPrints, covering a number of different vendors. A broader look at assays across all the
consensus domains might be more informative to readily identify a subset of assays that

are more indicative of general reactivity. The profiled consensus alert-predicted reaction
domains and the ToxPrints that were identified as enriched within these domains will be
investigated in greater detail as part of a cross partner Tox21 project where /in chemico
reactivity data will be generated to evaluate the utility and relevance of the alerting schemes
and ToxPrints.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights
. Three alert schemes for protein binding were evaluated
. Predicted reaction domains were compared with expert manual assignments

for a published skin sensitisation dataset.

. Tox21 screening library was profiled by the 3 alert schemes to determine a
‘consensus’ reaction domain.

. Highly enriched ToxPrints were extracted for both datasets and example
chemicals are highlighted.

. Enriched ToxPrints were compared with the ToxCast assay space to identify
relevant assays informative for reactivity.
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Figure 1.
Countplots of the different reaction schemes to summarise the number of alerts per reaction

domain

Key: SyAr = Substitution Nucleophilic Aromatic, Sy2 = Biomolecular nucleophilic
substitution, SB = Schiff base formers, MA = Michael acceptors, Acyl = Acyl transfer
agents
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Figure 2.
Summary of mechanistic domain assignments from Roberts et al [24]

Key: SNyAr = Substitution Nucleophilic Aromatic, Sy2 = Biomolecular nucleophilic
substitution, SB = Schiff base formers, MA = Michael acceptors, Acyl = Acyl transfer
agents, Spec = Special cases, Non = Non-reactive
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Figure 3:
Heatmap to illustrate which SMARTS patterns from each of the schemes were flagged for

each substance and reflect this by the associated reaction domain, where purple = Acyl, dark
blue = MA, dark green/blue = SB, green = SN2 and yellow = SyAr. Substances that did not
trigger any SMARTS or were associated with more than 1 domain are not shown.
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Figure 5.
Chemical fingerprint profile on a consensus reaction domain perspective

Notes: Aggregate_ToxPrint represents the Level 2 ToxPrints. The figure shows the
counts of each of these Level 2 ToxPrints against each consensus reaction domain. No
domains_counts highlights the Level 2 ToxPrints for chemicals that did not trigger any
domain.
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Table 1.
Data and Schemes considered in this analysis
Publication Rulebase/Alerts No of Tag used in Source Comments
SMART this
patterns publication
Asturiol et al Expert-assigned reaction JRC dataset Skin sensitisation dataset with
(2016) [5] domains assigned reaction domains as
Patlewicz et al described in [6]
(2016) [6]
Enoch et al (2008) SMARTS patterns for each of | 66 Enoch alerts SMARTS patterns were taken Each of the pro
the 5 reaction domains plus from Table 2 of the original domains was
3 *pro’ domains to denote publication. Alerts derived from aggregated
alerts requiring activation skin sensitisation datasets into their
either metabolically or respective
chemically to produce an parent domain
electrophilic species. for practical
reasons.
Wijeyesakere et al SMARTS patterns for each of | 71 Dow alerts SMARTS extracted from Table S2
(2018) [10] the 5 reaction domains in the supplementary information
of the original article. Alerts
derived principally using /n
chemico data relevant for skin
sensitisation
Enoch et al (2011) The SMARTS patterns that 102 OECD alerts SMARTS provided by Dr

are incorporated into the
protein binding alerts by the
OECD profiler comprise a
designation of mechanistic
domain, alert class, alert
name.

Enoch. Alerts derived from
literature review covering
different endpoints including skin
sensitisation, aquatic toxicity, skin
irritation as well as data from the
chromosomal aberration test.
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Summary Performance metrics

Table 2.

Relative to the Expert assignments | Precision (TP/(TP+FP)) | Recall (TP rate) | F1score | MCC
Enoch alerts 0.71 0.73 0.71 0.66
Dow alerts 0.68 0.62 0.59 | 0.547
OECD alerts 0.68 0.68 0.66 | 0.612
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Top 5 enriched chemotypes per consensus-alert defined reaction domain for the Tox21 dataset

Table 5:

Reaction_domain ToxPrint TP | Odds Ratio P-val
MA bond:C#N_nitrile_ab-unsaturated 16 20.95 | 1.33643E-12
ring:fused_[5_6]_indene 3 19.23 0.003416
bond:N=N_azo_aromatic 30 17.46 | 4.42522E-21
bond:C(=0)O_carboxylicEster_alkenyl 118 15.74 | 1.12978E-73
chain:aromaticAlkene_Ph-C2_acyclic_generic 98 15.34 | 3.70467E-61
Acyl bond:N=C=0_isocyanate_[O_S] 27 209.63 | 1.23981E-24
bond:N=C=0_isocyanate_generic 18 138.44 | 2.46705E-16
bond:C=0_acyl_halide 28 72.52 | 1.79837E-23
bond:C(=0)0O_acidAnhydride 26 50.39 | 7.49293E-21
ring:hetero_[5_6]_N_isoindole_1-one 19 29.24 | 3.99817E-14
Sn2 bond:CX_halide_alkyl-X_ethyl 140 323.62 | 2.4999E-148
bond:CX_halide_alkyl-X_aromatic_alkane 27 311.05 | 9.98123E-29
bond:CX_halide_alkyl-X_aromatic_generic 27 311.05 | 9.98123E-29
bond:CX_halide_alkyl-CI_ethyl 95 304.65 | 9.3452E-100
bond:CX_halide_alkyl-X_benzyl_generic 21 239.76 | 2.93727E-22
SB bond:C=0_aldehyde_aromatic 6 41.78 | 4.45712E-05
bond:C=0_aldehyde_generic 20 30.77 | 2.23394E-13
chain:alkeneBranch_mono-ene_2-butene_2-propyl_(tiglate) 4 25.93 | 0.001856254
chain:alkeneBranch_diene_2_6-octadiene 4 25.93 | 0.001856254
bond:CC(=0)C_ketone_aromatic_aliphatic 3 9.35 0.0244
SNAr bond:CX_halide_aromatic-X_generic 131 856.24 | 1.0054E-110
bond:CX_halide_aromatic-Cl_dichloro_pyridine_(1_2-) 12 822.1 1.8706E-21
bond:CX_halide_aromatic-Cl_dichloro_pyridine_(1_4-) 12 411 | 1.29203E-20
bond:CX_halide_aromatic-X_trihalo_benzene (1_2_3-) 29 385.54 | 3.29585E-48
bond:X[any]_halide 131 331.07 2.4174E-69
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Table 6.

Top 5 chemotypes (or less if total is less than 5) per reaction domain from the JRC dataset

Reaction_domain | ToxPrint TP | Odds Ratio P-val
MA bond:C(=0)0O_carboxylicEster_alkenyl 11 24.58 | 2.39298E-07
bond:C=0_carbonyl_ab-unsaturated_aliphatic_(michael_acceptors) 9 18.72 | 7.90222E-06
chain:alkeneLinear_mono-ene_ethylene_generic 23 12.57 | 2.80398E-10
chain:alkeneLinear_mono-ene_ethylene_terminal 7 10.16 | 0.000505946
bond:C(=0)O_carboxylicEster_acyclic 13 9.05 | 5.23066E-06
chain:alkeneLinear_diene_1_2-butene 9 7.85 | 0.000241917
Acyl ring:hetero_[5]_Z_1-Z 5 49.29 | 9.51501E-06
ring:hetero_[5]_O_oxolane 5 49.29 | 9.51501E-06
ring:hetero_[5_6]_Z_generic 5 36.79 | 2.08278E-05
chain:aromaticAlkane_Ph-C1_cyclic 5 24.29 | 7.22608E-05
Sn2 chain:alkaneLinear_hexadecyl_C16 3 26.73 | 4.72881E-03
bond:CS_sulfide 6 20.42 | 7.56699E-05
chain:alkaneLinear_dodedyl_C12 6 15.24 | 0.000174814
bond:X[any]_halide 13 9.59 | 2.66263E-06
chain:alkaneLinear_decyl_C10 6 8.57 0.00112602
SB bond:C=0_aldehyde_aromatic 6 41.78 | 4.45712E-05
bond:C=0_aldehyde_generic 20 30.77 | 2.23394E-13
chain:alkeneBranch_mono-ene_2-butene_2-propyl_(tiglate) 4 25.93 | 0.001856254
chain:alkeneBranch_diene_2_6-octadiene 4 25.93 | 0.001856254
bond:C=0_carbonyl_1_2-di 5 8.26 | 0.004416916

Notes: The SNAr domain did not have any ToxPrints that were enriched based on the criteria of Odds Ratio (OR)=> 3, TP>=3 and p =< 0.05
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Table 7.

Number of enriched ToxPrints per reaction domain

Page 31

Reaction domain

# Enriched ToxPrints unique to the
JRC dataset

# Enriched ToxPrints unique to the
Tox21 dataset

#Enriched ToxPrints common to
both datasets

MA 1 20 13
Acyl 5 57 1
Sn2 8 58 2
SNAT 0 30 0
SB 0 0 13
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Table 8.

Ilustrative chemicals with common MA enriched chemotypes

DTXSID

Structure

Enriched_ToxPrints

DTXSID00231670

CH,

bond:C=0_carbonyl_ab-unsaturated_aliphatic_(michael_acceptors)
bond:C=0_carbonyl_ab-unsaturated_generic
bond:CC(=0)C_ketone_alkene_generic
chain:alkeneLinear_diene_1_2-butene
chain:alkeneLinear_mono-ene_allyl
chain:alkeneLinear_mono-ene_ethylene
chain:alkeneLinear_mono-ene_ethylene_generic
chain:aromaticAlkene_Ph-C2_acyclic_generic
chain:aromaticAlkene_Ph-C2

DTXSID2052100

chain:alkeneLinear_diene_1_2-butene
chain:alkeneLinear_mono-ene_allyl
chain:alkeneLinear_mono-ene_ethylene
chain:alkeneLinear_mono-ene_ethylene_generic
chain:aromaticAlkene_Ph-C2_acyclic_generic
chain:aromaticAlkene_Ph-C2

DTXSID9046152

bond:C=0_carbonyl_ab-unsaturated_aliphatic_(michael_acceptors)
bond:C=0_carbonyl_ab-unsaturated_generic
bond:CC(=0)C_ketone_alkene_generic
chain:alkeneLinear_diene_1_2-butene
chain:alkeneLinear_mono-ene_allyl
chain:alkeneLinear_mono-ene_ethylene
chain:alkeneLinear_mono-ene_ethylene_generic
chain:aromaticAlkene_Ph-C2_acyclic_generic
chain:aromaticAlkene_Ph-C2
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Table 9.

Prototypic chemicals with enriched MA chemotypes specific to the Tox21 library

DTXSID

Structure Enriched_ToxPrints

DTXSID4057631

bond:CC(=0)C_ketone_alkene_cyclic_2-en-1-one
chain:alkeneCyclic_ethene_C_(connect_noZ)

DTXSID6057619

bond:CC(=0)C_ketone_alkene_cyclic_2-en-1-one

F bond:CC(=0)C_quinone_1_4-benzo
- = bond:CC(=0)C_quinone_1_4-naphtho
| bond:COH_alcohol_aromatic
A ! _
LI % T
=

DTXSID3045647

bond:CC(=0)C_ketone_alkene_cyclic_2-en-1-one
chain:alkeneCyclic_ethene_C_(connect_noZ)
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Table 10.

Enriched ToxPrints projected on the ToxCast assay space

Vendor # Assays | #ToxPrints represented out of 14
APR 37 6

ATG 155 13

TOX21 98 11

BSK 238 14

NVS 82 11

oT 41 9

CEETOX | 12 6

Tanquay 6 3

CLD 12 6
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