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ABSTRACT 

 

In silico models are essential for the development of integrated alternative methods to 

identify organ level toxicity and lead towards the replacement of animal testing. These 

models include (quantitative) structure-activity relationships ((Q)SARs) and, importantly, the 

identification of structural alerts associated with defined toxicological endpoints. Structural 

alerts are able both to predict toxicity directly and assist in the formation of categories to 

facilitate read-across. They are particularly important to decipher the myriad mechanisms of 

action that result in organ level toxicity. The aim of this study was to develop novel structural 

alerts for nuclear receptor (NR) ligands that are associated with inducing hepatic steatosis. 

Current knowledge on NR agonists was extended with data from the ChEMBL database of 

bioactive molecules and from studying NR ligand-binding interactions within the protein data 

base (PBD). A computational structural alerts based workflow was developed using KNIME 

from these data using molecular fragments and other relevant chemical features. In total 214 

structural features were recorded computationally as SMARTS strings and, therefore, they 

can be used for grouping and screening during drug development and risk assessment and 

provide knowledge to anchor adverse outcome pathways (AOPs). 
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INTRODUCTION 

Nuclear receptors (NR) belong to a large superfamily of ligand-inducible transcription factors 

that, upon activation, mediate the expression of their target genes.1 The ligands associated 

with NR activation are usually lipophilic, small in size and include the following chemical 

classes: endogenous steroids, oxysterols, thyroid hormones as well as various lipids and 

retinoids.2,3 NRs are essential for the regulation of specific target genes that are involved in 

development, metabolism, reproduction and other vital physiological processes. Upon ligand-

induced activation, NRs elicit a rapid cellular adaptation to environmental changes via the 

induction of the required genes and pathways.4  

Due to their involvement in many essential processes within the body, the search for novel 

ligands for nuclear receptors (NRs) has intensified in order to identify possible preventative / 

therapeutic treatments for a wide range of diseases including diabetes, cancer, cardiovascular 

diseases, atherosclerosis, neurodegenerative diseases and obesity.3,4 For example, the 

oestrogen receptor (ER) antagonist tamoxifen is used for the treatment of ER positive breast 

cancer.5-7 As NR ligands are widely used it is imperative their safety is considered, as there 

are reports of NR ligands leading to drug induced liver injury (DILI), such as liver steatosis, 

due to the bio-activation of drugs (or metabolites) and / or the induction of hepatotoxic 

pathways. 8-11  

Traditional approaches to determine safety have required the use of animal tests. However, 

the promotion of what is termed “21st Century Toxicology” has led to the move from 

traditional animal testing safety assessment methods to the use of integrated alternative 

strategies which utilise toxicokinetics, computational models and in vitro testing.12-14 The 

shift in the mind set occurring within toxicology has given rise to the concept of the Adverse 

Outcome Pathway (AOP) framework.13-17 An AOP describes the causal linkage between a 
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molecular initiating event (MIE) and an adverse outcome at individual or population 

levels.12,17 The AOP developed within the current AOP Wiki knowledge base (AOP-KB) for 

hepatic steatosis defines liver toxicity as the adverse effect and nuclear receptor binding 

being the MIE, thus this knowledge provides the starting point for computational 

methods.14,17,18  

Computational methods include the use of (quantitative) structure-activity relationships 

((Q)SARs) as well as other approaches including biokinetic models. QSARs require the use 

of mathematical models in order to predict biological activity of chemicals from their 

structure or physico-chemical properties. An SAR is a qualitative link between a certain 

molecular substructure to a specific biological activity.19 Structural alerts (SA) derived from 

SARs can aid in the formation of categories with similar chemicals that are associated to 

share the same SAR. The assessment of these category members can, in turn, allow for the 

better definition of the domain of the SA.19,20 SA are common structural fragments that are 

associated with a specific toxicity which very often have mechanistic rational to support these 

links – with reference to an AOP this is in terms of the MIE. 19-21 SAs are already used to 

screen potential lead chemicals for idiosyncratic toxicity within industry settings.23 Thus, 

through knowledge of the AOP, they can form the first step in understanding the links from a 

specific chemical to its possible mechanistic pathways and those organs that may be 

affected.19 For the AOP concept to be applied, particularly to support category formation and 

read-across, SA associated with a MIE for a particular adverse pathway must be elucidated 

and described. 

The use of new (toxicological and informatics) approaches can help to aide in the formation 

of SAs; for instance, applying freely available software and utilising the growing number of 

open access databases of toxicological information.24 For this study, the new methods 

approaches used included the ChEMBL database of bioactive molecules (with >1.5 million 
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compounds and 9,000 biological targets), KoNstanz Inforamtion MinEr (KNIME) software 

that allows the analysis/ mining of data and can be used to build predictive models and the 

protein data bank (PBD), a database of > 100,000 crystallographic structures of proteins e.g. 

receptors which can be analysed alongside software such as PyMOL and Marvin Beans, a 

ChemAxon suite of programmes that allow the visualisation and drawing of chemicals, all of 

which are freely available.25-29 

Mellor et al. (2015) reviewed the NRs linked to liver injury, identifying ten NRs that can 

cause the onset of hepatic steatosis, these are summarised in Table 1.17 Each of these NRs is 

associated with a definable mechanism of action and / or toxicity pathway that could form the 

basis of an AOP. A MIE is definable for each NR, therefore with analysis of suitable data for 

NR binding, this raises the possibility of defining a suite of SA which could form the basis of 

toxicity prediction or grouping. Thus, the aim of this study was to develop a set of SAs for 

the NRs associated with hepatic steatosis listed in Table 1. This was achieved with reference 

to the MIEs for the mechanisms of action and utilised the ChEMBL database as a source of 

information. A workflow was created to collate knowledge that can predict binding to the NR 

listed in Table 1.25 The workflow was developed in a two-step process. The first step involved 

identifying the physico-chemical properties that define the chemical space/ domain of 

agonists of the NR through the calculation of descriptors from the chemical structure. The 

second step involved the identification of structural features associated with NR binding 

which were then coded into SMARTS strings so they could be implemented in the workflow. 

The identification of structural features was performed by studying the ligand-binding 

interactions of the agonists to their respective NR using the PDB files viewed in PyMol and 

by studying the literature associated with these files (referenced within PDB).27,28,30 The 

workflow can be used for hazard assessment, screening of potential ligands for chemical 
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leads or grouping. The workflow is freely available to use and download from COSMOS 

Space (http://cosmosspace.cosmostox.eu/app/login). 

 

TABLE 1 HERE 

 

METHODS 

Identifying chemical structures with relevant NR binding data from ChEMBL  

The 10 NR listed in Table 1 were searched for within the online ChEMBL database (Version 

3.9) using their names and standard nomenclature identifiers in order to find agonists.25 To 

identify agonists, the names and / or nomenclature of the NRs, as reported in Table 1, were 

entered into the search bar within the online ChEMBL website with Homo sapiens selected as 

the species of interest. Data retrieved were downloaded to comma-separated values (.csv) 

files and later saved in an Excel spreadsheet. Those data with pChEMBL values were selected 

and all other chemicals without these values were removed. The pChEMBL value is an 

approach to standardise different types of activity values.31 In addition, the following 

information was obtained from ChEMBL: the chemical name, molecular formula, SMILES 

string of each agonist, the assay type (e.g. receptor activation), activity value (reported as Ki, 

Kd, AC50, IC50, and EC50) and other relevant information regarding the assay. Only 

agonistic Ki, Kd, AC50 or EC50 values were utilised to remove data relating to inhibition of 

receptors (e.g. those with IC50 values / Ki values) and to ensure receptor activation data were 

considered. Chemicals were then ordered by pChEMBL value (highest to lowest) and those 

with a pChEMBL of <5 removed. The pChEMBL of > 5 was used as the threshold for 

activity as when studying the ChEMBL data this was the point at which most of chemicals 

were considered active and has been utilised previously.34,31 Agonists with pChEMBL values 

http://cosmosspace.cosmostox.eu/app/login
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above the threshold value were studied using the Marvin Bean (version 1.6) chemical 

visualisation software in order to find common structural features associated with NR 

activation; these features were recorded as SMARTS strings.29,30  

Analysis of ligand-binding information from the Protein Data Bank (PDB) 

The PDB was investigated in conjunction with the list of agonists and associated data 

obtained from ChEMBL to further study the ligand-binding of agonists to their respective NR. 

The NR names /nomenclature (Table 1) were searched for on the PDB website and human 

NR files containing information about agonistic binding to human NR structures were 

selected. The selected files were viewed to study their ligand-protein interactions using 

PyMOL (version 1.3) and the linked publications provided within the PDB were read to find 

the key amino acid residues on the NR binding site that have been shown to interact with 

specific functional groups on the ligand. The functional groups on the agonists needed for 

these essential binding interactions with the NR binding site such as hydroxyl moiety group 

were then drawn as SMILES strings and added to form the rules of the workflow. 27, 28, 30  

 

Calculation of Molecular Descriptors 

Molecular properties and other descriptors for the agonists were calculated using the CDK 

node in KNIME (version 3.2).26 SMILES strings for the ligands were retrieved from 

ChEMBL and then cleaned (removal of salts, inorganics and mixtures). The SMILES were 

entered into the CDK node and all available descriptors (33 available within CDK node) were 

calculated. Descriptors were identified that described features relevant to ligand-protein 

interactions and gave a specific range of values for each NR. In total eight descriptors were 

used: molecular weight (MW, describing molecular size), the calculated logarithm of the 

octanol-water partition coefficient (xlogP, lipophilicity), vertex adjacency matrix (VAIM, 

molecular size and complexity), number of hydrogen bond acceptors / donors (HBA/ HBD, 
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binding interactions), eccentric connectivity index (ECI, structural complexity), topical polar 

surface area (TPSA, relative polarity) and the number of rotatable bonds (RB, molecular 

flexibility and entropy). 

Development of Workflows 

KNIME (version 3.2) was used to build a structural feature-based workflow to screen for 

ligands predicted to bind to NR that are associated with the onset of hepatic steatosis (Table 

1). The workflows executed rules based on physico-chemical properties and structural 

features established through studying relevant pChEMBL values and the structural 

information within PDB. The main KNIME workflow is an amalgamation of eight smaller 

workflows for each NR making screening chemicals fast and easy for users. Each of these 

individual workflows is made up of two steps. The first calculates physico-chemical 

properties of the chemicals being screened to identify if the chemicals are in the chemical 

space defined previously (descriptor ranges applied). The second step runs the chemicals 

being screened against the structural features found to be essential for receptor binding that 

have been developed for each NR. In summary the workflow firstly identifies if a compound 

is in the chemical space associated with being an agonistic binder, then whether it has the 

structural features required for binding, which is an informed method of grouping for receptor 

mediated effects. 

The workflow developed allows users to enter one chemical to be screened for NR binding 

(either via a .csv file containing the SMILES string for the chemical or by drawing the 

chemical structure using the drawing tool available) or via a batch  process (using a .csv file 

containing the SMILES for all the chemicals being screened). The output of the workflow is a 

table of all the chemicals that were identified as binders to one or more of the NR listed in 

Table 1 (note: RAR and RXR are combined and CAR is not present within the workflow, see 

the CAR section in the Results), the NR that they are predicted to bind to are listed. If a batch 



10 
 

is run and no chemicals are identified as possible binders, a message will appear to let the 

user know that their chemicals are deemed not to be a binder to the NRs listed. 

 

 

RESULTS 

Data and information obtained from ChEMBL and PDB 

Data and other information about ligand binding were extracted from ChEMBL and the PDB 

for the ten NR listed in Table 1. The number of agonists obtained from ChEMBL, those 

deemed to be active, the range of pChEMBL values found for each NR and the number of 

human PDB files (which contain crystallographic representations of the NRs binding with 

agonists) found associated with each NR is summarised in Table 2. 

 

TABLE 2 HERE 

 

Descriptor ranges applied 

Descriptors were calculated within KNIME using the CDK node. Descriptors were calculated 

for all agonists collected from ChEMBL that were identified as active (pChEMBL > 5). Eight 

descriptors were chosen in total and these were selected as they gave information relevant for 

ligand binding/ ligand shape and so define the chemical space for the properties needed to 

bind to the NR of interest. A summary of the ranges used for the molecular descriptors and 

applied for each NR within the workflow is presented Table 3 below. 

 

TABLE 3 HERE 

 

Ligand-protein binding information and building of SA 
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From studying the ligand binding interactions found within the crystallographic PDB files of 

human NR to known agonists, key structural features that were shown to be essential were 

identified. These structural features were classed as essential as they occurred in many of the 

PDB files showing agonistic binding for the NR, also the papers associated with each PDB 

file made reference to these important structural features, therefore this knowledge was built 

upon and added to using knowledge obtained from ChEMBL (chemical structure obtained 

and activity values for known agonists of each NR). The structural features that were 

developed for the workflow are summarised below for each NR studied. N.B the tables 

showing structural features found for each NR are only shown for the AHR receptor – all 

others are found within the supporting information. 

AHR 

The PDB files associated with agonistic binding to the human AHR receptor were studied 

along with the shape of the agonists obtained from ChEMBL. From these the ligand-binding 

patterns and those chemical features present in all known AHR agonists were identified. It 

was found that ligands must form interactions (usually via hydrogen bonds) with the key 

residues Met328, Tyr353 and Phe367 found within the AHR binding pocket in order to 

activate the AHR NR.33 These structural features were then coded into SMARTS strings.30 

The AHR workflow was split into two parts, firstly the chemical must contain at least one of 

the backbone ring structures as reported in Table 4 (showing the SMARTS strings and visual 

representations) as these were observed as being essential to fitting into the binding pocket. 

Secondly the chemical must contain either one of the oxygen functional groups seen in Table 

5 or substitutes for oxygen (nitrogen/chlorine groups) reported in Table 6. The 

oxygen/nitrogen functional groups were observed to be essential to form hydrogen bonds 

between the ligand and the ligand binding pocket of the AHR. 

 



12 
 

TABLE 4 HERE 

TABLE 5 HERE  

TABLE 6 HERE  

 

CAR 

When searching for data associated with the CAR NR within the ChEMBL database, only 40 

chemical structures could be found. Furthermore, no pChEBML values were assigned to 

these chemicals. As the quantity and quality of the data available for CAR were limited, this 

NR was excluded from model development. This should be noted as a subject for further 

investigation in future to develop structural alerts for this NR and also for the development of 

AOPs.  

ER 

The binding of ER agonists was observed (within the PDB files containing crystallographic 

representation of agonists binding to the human ER). It was found that a ligand must interact 

with the key residues Arg346, Glu 305 and H13475 within the ER binding domain in order 

for ER activation.34 The bonds formed in order for this interaction to occur involved 

hydrophobic van der Waals interactions within the lipophilic pocket. The structural features 

of ligands that occurred in the PDB files were coded into SMARTS patterns. The binding of 

ER agonists was shown to be similar to other steroid hormone NRs with the exception that 

binding was found to be different for ER agonists with a higher molecular weight. Therefore 

the ER workflow first splits the chemicals being screened based on MW within the range 

(700< MW < 2250), the MW range was selected based on the MW of the known binders 

within ChEMBL. Those chemicals with a MW within this range were checked against the 

steroid structure check (Supplementary data - Table S1). Those chemicals with a MW less 

than 700 pass through the usual descriptor checks and then proceed to the structural feature 
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screening. Similar to the AHR rules, the chemical must contain at least one of the essential 

scaffold ring SA (Supplementary data - Table S2) and one of the oxygen functional groups 

(Supplementary data - Table S3) or nitrogen functional group (Supplementary data - Table 

S4). The oxygen and nitrogen functional groups were found to form essential hydrogen bonds 

between the ligands and the ligand binding pocket. 

FXR 

Structural features implemented for FXR screening are expressed in Supplementary data 

Table S5 and S6. The residuals of arginine and histidine, sometimes incorporating water 

molecules, form hydrogen bonds with carboxylic groups (3BEJ). The threonine, asparagine 

and glutamic acid residues may form further hydrogen bonds, in particular to oxygens (4II6, 

3BEJ). Sub-structural patterns in FXR ligand are mainly defined by oxygens, and to a lesser 

extent, nitrogens, sulphurs and halogens, and the manner in which they are attached to 

aromatic and aliphatic ring structures. Many ligands do not have significant structural 

resemblance to the endogenous ligands, such as chenodeoxycholic acid.35 

GR 

The conclusions from the PDB files and literature searches revealed that ligands that bind 

with high affinity to GR contain a ketone group (or other similar substitute group) which 

forms hydrogen bonds between the ARG-611 and Gln-570 amino acid residues on the ligand 

binding pocket of the GR.32 The hydrogen atom from the 17b-hydroxyl group has a partial 

positive charge which allows it to interact and form bonds with highly electronegative atoms 

that are bound to an amino acid residue.  These essential features were coded into SMARTS 

strings. The first step within the GR workflow splits the chemicals depending on MW. 

Chemicals that had MW within this range (610 < MW < 1200) went through one check to 

look for the ring structure as described in supplementary data, Table S7. Those chemicals 

with a MW less than 610 are screened against the descriptor ranges (Table 3) and to identify 
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essential structural features. The chemical must contain a backbone ring structure 

(Supplementary data - Table S8) and must also contain either an oxygen group 

(Supplementary data - Table S9) or a nitrogen group (Supplementary data – Table S10). The 

binding observed for GR actives was similar to that observed for other steroid based NR. 

They have specific ring structures with many oxygen / nitrogen functional groups that help to 

form strong hydrogen bonds between the ligand and ligand binding pocket.  

LXR 

LXR actives were studied and the sub-structural features were coded into SMARTS strings 

(Supplementary data - Tables S11 and S12). A potential ligand contains a ring backbone, 

which may have interactions with phenylalanine, tryptophan and histidine residues, in 

particular π-π stacking. Furthermore, the compound must also contain functional groups, in 

particular terminal oxygens, interacting with arginine or threonine residues and the secondary 

amine of a leucine (PDB: 3LOE, 4NQA, 4DK7), as can be seen in Figure 1 showing 

hydrogen bonding between the ARG319 and LEU330 residues of the LXR binding pocket to 

the oxygen groups of the ligand. 

 

FIGURE 1 HERE 

 

PPAR 

PPAR actives were studied and the sub-structural features were coded into SMARTS strings. 

The chemical must not contain a steroid backbone (Supplementary data - Table S13) but must 

contain one of the specific “diaromatic” scaffold and one of the specific functional groups in 
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order to be an active. Additional alerts describe fatty acid- and retinoid-like compounds, 

which may have moderate PPAR affinity (Supplementary data - Tables S14, S15 and S16).  

PXR 

It was found that ligands of the PXR must form interactions (usually hydrogen bonds) with 

the key residues Ser 208, Ser247, GLn285, His407 and Arg410 within the PXR binding 

pocket in order for PXR activation to occur.36 The sub-structural features of PXR actives 

studied were coded into SMARTS strings. Similar to the other steroidal NR, the chemical 

must contain at least one of the essential scaffold ring SA (Supplementary data - Table S17) 

and one of the oxygen functional groups (Supplementary data - Table S18) or nitrogen 

functional group (Supplementary data - Table S19). The oxygen and nitrogen functional 

groups were found to form hydrogen bonds between the ligands and the ligand binding 

pocket. 

RAR/RXR 

After observing the RAR and RXR receptors separately it was noted that their actives had 

very similar binding patterns and it was decided to combine them into one workflow. 

Generally RAR/RXR ligands are lipophilic, but there are a few compounds which are active 

without being lipophilic (XLogP < 2.2), e.g. n-phosphono-L-phenylalanyl-L 

alanylglycinamide with an XLogP of -2.4. As these compounds have peptide-like bonds, 

XLogP exception rules were created (Supplementary data - Table S21). To narrow down the 

compounds passing through this alert, such as inactive amino sugars, a further filter 

(Supplementary data - Table S22) was used. As shown in Figure 2, there are certain groups 

(in particular double bond oxygens), binding to arginine and serine residues, e.g. the 

hydrogen bond between ARG278 or SER289 and an oxygen of a ligand’s carboxylic group 

within the RAR domain. The responsible structural features are described in the alerts 

(Supplementary data - Table S23). Furthermore RAR/RXR ligands contain at least one ring 
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structure, which could be aromatic or aliphatic, e.g. cyclohexene of retinoic acid, as 

expressed in the SA (Supplementary data - Table S24). 24, 37 

FIGURE 2 HERE 

Testing the screening workflow 

The ChEMBL chemicals deemed to be active via their pChEMBL value were used to test if 

all of the chemicals that are known agonists for the NR of interest (Table 1) are identified by 

the screening workflow. The results demonstrated that 100% of the chemicals that are known 

binders were successfully predicted as binders to their associated NR showing that the 

workflow was accurate at identifying known binders. 

 

DISCUSSION 

21st Century Toxicology relies heavily on the development of alternative testing methods 

(computational, biokinetics, in vitro) as opposed to the traditional extensive animal methods 

used previously. Alternative approaches now favour the inclusion of computational models, 

however, traditional in silico models (QSARS/SARs) have struggled in the past to deal with 

organ level toxicity. Despite this, recently there has been some improvement through the use 

of SA, especially focussed on MIEs.20-22 In general, SA are well developed for MIEs 

involving a covalent event as demonstrated by the many profilers (e.g. for protein or DNA 

binding) implemented in the OECD QSAR Toolbox. It remains much more difficult to 

develop profilers for receptor mediated toxicity, with the current state of the art being MIE-

derived 2D descriptors.20-22,3839 Whilst these issues are recognised, encouraging recent studies 

have shown that it is possible that useful information and models, including profilers, can be 

developed for receptor mediated toxicity.40,41  
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Whilst it is becoming common place to code 2D interactions e.g. protein / DNA binding as 

molecular fragments, the next challenge lies with the grouping of receptor mediated effects. 

Ultimately the modelling of must receptor-ligand interactions must address the use of 

molecular modelling and other types of molecular design software, and a framework for 

undertaking this task has been presented recently.40 Despite the simplicity of a 2D approach, 

progress can be made rapidly,22 and such profilers are amenable to use in e.g. the OECD 

QSAR Toolbox.42 In this study the issue of the capture of information relating to MIE has 

been addressed, in part, by the use of structural alerts based workflows. SA can be used both 

as a direct predictor of toxicity and also for grouping chemicals for read across. Through the 

development of AOPs, SA can be used collectively if they have the same MIE, our 

understanding of this MIE can then provide a linkage to mechanistic pathways and the 

adverse effects induced via these pathways. AOPs are now integral to risk assessment, 

therefore, AOP development is important and the role SA play in their implementation is 

essential. 

There are many (Q)SAR models available for the prediction of NR mediated effects.43 

Therefore, the purpose of this study was not to repeat previously undertaken work but rather 

to build on existing knowledge to create a new set of SA/ structural features that can be 

implemented in an in silico workflow. This investigation has focused on NR previously 

linked to the onset of hepatic steatosis.17 Within this study the use of new generation 

resources (PBD, pChEMBL, KNIME, PyMOL, Marvin Beans) has been a key element. This 

demonstrated how existing data may be used in future studies to create knowledge regarding 

toxicological interactions. A total of 12,713 chemicals were identified in ChEMBL that were 

linked to NR and could be used in this study (with a pChEMBL >5). In addition 624 human 

PDB files showed binding information of ligands to the NR of interest for this study. These 
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figures show the vast amount of current data that are available and, when linked to AOPs, 

have the potential to provide a goldmine of information. 

Generally all workflows in this study can be divided into two essential steps. The first step 

involves the screening for ligand-specific physico-chemical descriptors and the second step 

involves the use of sub-structural features. The sub-structural features produced for most of 

the NR workflows follow a similar pattern of scrutinising for key scaffolding structures (e.g. 

ring structures) and then further screening for essential functional groups. However, there are 

a few exceptions such as for RXR and PPAR (which have some exclusion rules) and for GR, 

AR, ER and PXR (which have high MW filter to account for those ligands that were larger 

and had different receptor binding patterns compared the low MW ligands).  

Within the literature it remains unclear what role the different nuclear receptor subtypes play 

in terms of activation of the pathways associated with each NR.44 As the binding of ligands to 

the different receptor subtypes was observed to overlap, it was decided to combine the 

subtypes into one screening workflow. It would have been challenging to develop structural 

features for one specific receptor subtype as many ligands are able to bind to different 

subtypes albeit sometimes with different affinities. For example, the ER agonist raloxifene 

has PChEMBL value of 10.52 for the ERα and a PChEMBL value of 8.8 for the ERβ. Also it 

cannot be determined if one ligand only binds to one receptor subtype due to the constraints 

of the data available in the ChEMBL database. Therefore a NR workflow, such as for ER, is a 

combined workflow incorporating all receptor subtypes, such as ERα and ERβ. It was noted 

that the ligands of some of the NR were similar, particularly those that are specific for 

retinoids (e.g. RAR and RXR ligands) and steroids (e.g. AR, ER and GR ligands). This 

means that ligands may have the ability to activate many NRs (to a certain extent). As 

predictions for promiscuous receptors can be difficult, the full set of predictions is given 

within the output file of the screening workflow.  
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It should be noted that the workflow can be used for hazard identification to inform which 

chemicals require further testing rather than for risk assessment purposes. This is due to the 

buffers applied when applying the chemical descriptor ranges and when making the structural 

alerts. This generalistic approach has the advantage of capturing new chemicals that have a 

similar structure to previously known binders but with the addition/ removal of structural 

features e.g. a methyl group that may still have the potential of causing receptor activation. 

The disadvantage of this approach is that the model should not be used for risk assessment 

purposes alone; however, it can be used as an informed approach for hazard identification 

which with the combination of other testing approaches (in vitro testing) can act as risk 

assessment.  

 

CONCLUSIONS 

214 structural features were developed from MIEs associated with AOPs and combined with 

eight different descriptors to create a decision based workflows for each NR. The individual 

NR workflows have been amalgamated into one large screening workflow for all NRs 

investigated and with the focus being the NRs associated with the onset of hepatic steatosis. 

This study highlights that modern technologies (PDB, CheMBL, KNIME) provide new 

opportunities to build alerts and use the information potentially contained with AOPs. This 

study is the first to produce a SA based workflow of this size for a receptor mediated toxicity, 

in this case linked to hepatic steatosis as the target organ adverse effect through the AOP. The 

workflow produced has addressed the problem of grouping chemicals that have hepatic 

steatosis as their endpoint, a previously difficult task.  
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Table 1: Nuclear receptors associated with hepatic steatosis and abbreviations as defined by Mellor et 
al 2015.17 

Nuclear receptor name Abbreviation Nomenclature 
Identification 

Aryl Hydrocarbon Receptor  AHR bHLHe76 
Constitutive Androstane Receptor  CAR NR1I3 
oEstrogen Receptor  ER NR3A1/2 
Farnesoid X Receptor  FXR NR1H4/5 
Glucocorticoid Receptor  GR NR3C1 
Liver X Receptor  LXR NR1H2/3 
Peroxisome Proliferator-Activated Receptor  PPAR NR1C1-3 
Pregnane X Receptor  PXR NR1I2 
Retinoic Acid Receptor  RAR NR1B1-3 
Retinoid X receptor RXR - 
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Table 2: Summary of the data and information obtained from ChEMBL and the PDB for the different 
NR agonists 

 

Nuclear 
receptor 

Number of agonists obtained from 
ChEMBL 

Range of 
pChembl values 

for chemicals 

Number of PDB files 
found that contain 

human NR 
structures Total with pChEMBL > 5 

AHR 219 170 4.0 - 9.35 20 

CAR - - - - 

ER 7528                      
(4586α) (2942β) 

1489                                    
(791α) (698β) 4.14 - 11.00 249 

FXR 799 602 4.21 - 8.7 23 
GR 2021 2029 4 - 10 62 

LXR 1536                      
(749α) (787β) 

812                                    
(368α) (444β) 4.09 – 9.00 16 

PPAR 
13358                      

(4034α) 
(3040β)(6284γ) 

5700                      
(1999α) 

(1196β)(2505γ) 
4.00 – 10.74 166 

PXR 463 135 4.00 – 9.15 68 

RAR 
25111                      
(848α) 

(878β)(785γ) 

855                                      
(258α)             

(325β)(272γ) 
4.55 – 10.4 20 

RXR 
2380                      

(1845α) 
(263β)(272γ) 

950                                      
(563α)             

(189β)(198γ) 
4.68 – 10.1 109 

Note: α, β and γ values given in parentheses are the number of chemicals found that are associated 
with binding to either the α, β or γ subunit of the NR 
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  Table 3: The descriptor ranges used for all NR and implemented within the workflow 

Physico-
chemical 
property 

Value 
AHR CAR ER FXR GR LXR PPAR PXR RAR 

VAIM 4.5-6.5 - 4 - 7.5 - 4 - 8.5 4.7 - 7 5 - 7 5 - 7 5 - 7 
HBD < 6 - < 10 - < 15 - - < 5 - 
MW 180 - 900 - 140 - 700 > 900 180 - 610 < 750 < 800 300 - 610 < 550 
HBA < 10 - < 15 - < 15 - - < 10 - 

XLogP < 8 - < -2 - < -1 < 2 - < 0 - 
ECI - - - 150  - 2400 - - - - - 
RB - - - 3- 11 - - - - 3 - 30 

TPSA - - - 15 - 200 - 5 - 150 1.2 - 20 - - 
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Table 4: SMARTS strings and chemical structure of backbone ring for AHR actives. 

 

 

 

 

 

 

SMARTS string Structual Feature

[#7,#6,#8,#16]1[#7,#6,#8,#16][#7,#6,#8,#16][#7,#6,#8,#16]([#7,#6,#8,#16]1)-c1ccccc1

[#6]~1~[#7,#6,#8]~[#7,#6,#8]~[#7,#6,#8]~[#6]~[#6]~1-c1ccccc1

[#8,#6,#7,#16]~1~[#8,#6,#7,#16]~[#8,#6,#7,#16]~[#6](~[#8,#6,#7,#16]~[#8,#6,#7,#16]~1)-[#7,#8,#6,#16]-c1ccccc1

[#8,#7,#6]~1~[#8,#7,#6]~[#8,#7,#6]~c2ccccc2~[#8,#7,#6]~1

O=[#6](-[#7]-c1ccccc1)-c1[#7,#6][#7,#6][#7,#6][#7,#6][#7,#6]1

[#7,#6,#8]~1~[#7,#6,#8]~[#7,#6,#8]~2~[#7,#6,#8]~[#7,#6,#8]~[#7,#6,#8]~[#7,#6,#8]~[#7,#6,#8]~2~[#7,#6,#8]~1

C(=C\c1ccccc1)\c1ccccc1

c1nc2ccccc2s1

[#6]-[#7]-c1ccccc1-[#9,#17]

[#6;A][#7]-c1ccc(-[#9,#17,#1])c(-[#9,#17,#1])c1

L
[O,N,C]

L
[O,N,C]

L
[O,N,C]

L
[O,N,C]

L[N,C,O]

L
[N,C,O]

L
[N,C,O]

L
[N,C,O]

L
[N,C,O]

L
[N,C,O]L

[N,C,O]

L
[N,C,O]L

[N,C,O]

N

S

H3C
NH

L[F,Cl]

C(A)

NH

L
[F,Cl,H]

L
[F,Cl,H]

L
[N,C,O,S]

L
[N,C,O,S]

L[N,C,O,S]
L
[N,C,O,S]

L [N,C,O,S]

L
[N,C,O]L

[N,C,O]

L
[N,C,O]

L
[O,C,N,S]

L
[O,C,N,S]

L
[O,C,N,S]

L
[O,C,N,S]

L
[O,C,N,S]

L [N,O,C,S]

O NH

(a)

L
[N,C]

L[N,C]
L

[N,C]

L[N,C]

L
[N,C]
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Table 5: SMARTS strings and chemical structure of oxygen group for AHR actives. 

 

  

SMARTS string Structual Feature

*~*(~*)=O

*~[#6](~*)-[#8]

c1c*o*1

A

A

A

O

A

A

HO

(a)

(a)

AO
(a)

A
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Table 6: SMARTS strings and chemical structure of oxygen substitute (nitrogen/ chlorine) for AHR 

actives. 

 

 

  

SMARTS string Structual Feature

[#6,#7]~1~[#6,#7]~[#6,#7]~2~[#6,#7]~[#6,#7]~[#6,#7]~[#6,#7]~[#6,#7]~2~[#6,#7]~1

[#7;a]~1~*~*~*~*~*~1

*n1ccnc1

Clc1ccc(cc1)-c1cc(Cl)c(Cl)c(Cl)c1

Clc1ccc(cc1Cl)-c1cc(Cl)c(Cl)c(Cl)c1

Clc1ccc(cc1Cl)-c1ccc(Cl)c(Cl)c1

Clc1cc(cc(Cl)c1Cl)-c1cc(Cl)c(Cl)c(Cl)c1

Cc1c(Cl)c(Cl)c(Cl)cc1-c1ccc(Cl)c(Cl)c1

L[C,N]

L
[C,N]

L
[C,N]

L
[C,N]

L [C,N]

L
[C,N]L

[C,N]

L
[C,N]L

[C,N]

N
(a)

A

A
A

A

A

A

N(a)

N

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

H3C Cl

Cl

Cl

Cl

Cl
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FIGURE TITLES 

Figure 1: Ligand-protein interaction of 4NQA (PDB, 2014), showing potential hydrogen 

bond formation of oxygen groups on the ligand to key residues ARG278 and SER289 within 

the LXR binding domain 

Figure 2: Ligand-protein interaction of 2LBD (PDB, 2014), showing potential hydrogen bond 

formation between the ligand and the key residues LEU330 and ARG319 within the RAR 

binding pocket. 
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Figure 2 

 

 

 


