

Journal Pre-proof

A Scheme for the Assessment and Definition of Tolerable Uncertainty in Read-Across for Toxicological Data Gap Filling

M.T.D. Cronin, T.W. Schultz

PII: S0273-2300(26)00030-9

DOI: <https://doi.org/10.1016/j.yrtph.2026.106057>

Reference: YRTPH 106057

To appear in: *Regulatory Toxicology and Pharmacology*

Received Date: 7 November 2025

Revised Date: 9 January 2026

Accepted Date: 8 February 2026

Please cite this article as: Cronin, M.T.D., Schultz, T.W., A Scheme for the Assessment and Definition of Tolerable Uncertainty in Read-Across for Toxicological Data Gap Filling, *Regulatory Toxicology and Pharmacology*, <https://doi.org/10.1016/j.yrtph.2026.106057>.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2026 Published by Elsevier Inc.

1

2 **A Scheme for the Assessment and Definition of Tolerable Uncertainty in Read-Across for**
3 **Toxicological Data Gap Filling**

4

5 M.T.D. Cronin^{1,*} and T.W. Schultz²

6 ¹School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, L3
7 3AF, Liverpool, UK

8 ²The University of Tennessee, College of Veterinary Medicine, 2407 River Drive, Knoxville, TN, 37996-
9 4543, USA

10

11 ***Corresponding author:** Mark Cronin (m.t.cronin@ljmu.ac.uk)

12

13 **Abstract**

14

15 The transparency and explainability of uncertainties related to read-across predictions are critical for
16 filling toxicological data gaps. As frameworks for evaluating read-across have become standardised,
17 so has the identification and characterisation of the various types of uncertainty, particularly those
18 related to chemical similarity. However, it has proven more challenging to assess overall uncertainty,
19 particularly in defining what constitutes “tolerable” uncertainty. In this study, seven areas of
20 uncertainty related to read-across were identified and their impact on read-across for two endpoints
21 assessed; six related to aspects of chemical structure and properties, and a further one to uncertainty
22 within the biological data used for read-across. The impact of uncertainty associated with these seven
23 factors was related to ordinal categories. Examples of uncertainty assessment in read-across data gap
24 filling, where different source analogues and the same target substances were evaluated, are provided
25 for skin sensitisation and sub-chronic systemic toxicity. The resulting scheme, a generic tabular matrix,
26 offers a flexible and adaptable approach for assessing uncertainties related to read-across predictions,
27 particularly those from a single-source analogue and includes an overall uncertainty level for the read-
28 across. Analysis of existing read-across predictions provides a means to define the level of tolerable
29 uncertainty.

30

31

32 **Keywords:** read-across; characterisation of uncertainty; tolerable uncertainty; assessment scheme

33

34 **Highlights**

35 • Uncertainty in read-across assessments is categorised into seven criteria

36 • Read-across uncertainty has been characterised and the relative impact identified

37 • Assessment of (overall) uncertainty based on chemical structure and properties

38 • Simple and transparent template for uncertainty in read-across

39 • Tolerable uncertainty of the accepted read-across identified

40

41 **1. Introduction**

42 Computational approaches in toxicology cover a wide range of techniques to predict the adverse
43 effects of chemicals. At the simplest level, structure-activity relationships (SARs) are applied through
44 structural alerts; these methods become more complex with the integration and application of
45 artificial intelligence, which relies on machine learning of large, chemically diverse datasets (Madden
46 et al., 2020). This spectrum of methods is referred to as *in silico* new approach methodologies (NAMs)
47 and, as such, are crucial for animal-free safety assessments (Westmoreland et al., 2022; Schmeisser
48 et al., 2023). One of the most commonly used *in silico* NAMs, especially for regulatory submissions, is
49 read-across (Rovida et al., 2020; ECHA, 2023).

50 As previously noted (Wohlleben et al., 2023), read-across to fill toxicological data gaps involves
51 inferring similar biological effects—such as the presence or absence of harmful effects and possibly
52 potency—from similar chemical substances. This fundamental principle makes it one of the most
53 essential tools in computational, or *in silico*, toxicology (Kovarich et al., 2019). According to the
54 European Chemical Agency (ECHA), read-across has been widely used in regulatory submissions
55 related to chemical safety (ECHA, 2023). However, challenges remain in understanding its limitations
56 and determining its acceptability as a replacement for animal tests (Ball et al., 2014). A key challenge
57 is that the effectiveness of read-across depends on the proper definition and measurement of
58 similarity, which vary depending on the toxicological context (Mansouri et al., 2024). Therefore, the
59 main difficulty often lies in proving and justifying the similarity between substances to infer that the
60 target molecule (the data-poor one) will exhibit similar, or predictably different, activity compared to
61 the source molecule (the data-rich one). Compounding this issue is a known shortage of reliable and
62 acceptable data-rich “source” molecules (Patlewicz et al., 2025). As a result, challenges have arisen in
63 relaxing the boundaries of the similarity criteria needed to define chemical groupings, including both
64 target and source analogues with appropriate experimental data. Specifically, Schultz and Cronin
65 (2017) identified difficulties in identifying and evaluating the uncertainties associated with a
66 particular read-across extrapolation as one of the key hindrances in the acceptance of predictions.

67 In most cases, chemical structure similarity is key to identifying one or more analogues (source
68 molecules) for a target molecule that lacks data (Hagan et al., 2025). Exceptions to primarily relying
69 on structural similarity can occur with complex mixtures (such as those with Unknown or Variable
70 composition, Complex reaction products, or Biological materials (UVCBs)) (Zhou et al., 2025) or when
71 biological similarity is considered (Vrijenhoek et al., 2022). Chemical structure similarity can be broken
72 down into several measurable aspects, including metrics for similarity, shared functional groups,
73 molecular scaffolds when applicable, and various physico-chemical properties (Schultz et al., 2015).
74 While all aspects of structural similarity are valuable, those related to relevant toxicokinetic and

75 toxicodynamic considerations of the specific toxicological endpoint being assessed are most crucial.
76 For example, in the case of read-across for skin sensitisation, similarity in protein reactivity is expected,
77 whereas for repeated-dose toxicity, similarity in metabolic clearance might be the critical factor
78 (Wohlleben et al., 2023).

79 There is copious guidance on how to perform read-across for toxicological data gap filling (see, for
80 example: ECHA, 2008; OECD, 2025; EFSA Scientific Committee, 2025). However, despite several
81 decades of assessing read-across predictions, there are few clear guidelines on how to determine if
82 two molecules, or substances, are “sufficiently” similar, in a quantitative manner, to be acceptable for
83 a particular purpose. ECHA’s Read-Across Assessment Framework (RAAF) provides some insight
84 through its Assessment Elements (AEs) (ECHA, 2017). Still, it offers no specific definition of how
85 structural similarity may be assessed. Whilst definitive descriptions of acceptable similarity are
86 challenging to provide, there is an opportunity to characterise uncertainties in the read-across as a
87 means to help identify acceptable similarity (Schultz and Cronin, 2017).

88 Most guidance on conducting toxicological read-across recommends or requires considering
89 uncertainties (ECHA, 2008; OECD, 2025; EFSA Scientific Committee, 2025). In this context, and for this
90 paper’s purposes, the European Food Safety Authority (EFSA) definition of uncertainty as “*a general
91 term referring to all types of limitations in available knowledge that affect the range and probability
92 of possible answers to an assessment question*” is relevant (EFSA Scientific Committee, 2018a). It is
93 accepted that uncertainties in risk assessment can be identified, characterised, and, where possible,
94 quantified (EFSA Scientific Committee, 2025). This process can also be applied to read-across, where
95 various frameworks identifying uncertainties have been published (see, for example: Wu et al., 2010;
96 Blackburn and Stuard, 2014; Schultz et al., 2015) and later unified by Schultz et al. (2019). Specifically,
97 regarding structural similarity in read-across, the elements of uncertainty that support it may be
98 identified, characterised, and potentially quantified.

99 To apply the concept of uncertainty in supporting and evaluating read-across, most current guidance
100 refers to achieving “tolerable” (or “acceptable”) levels of uncertainty (EFSA Scientific Committee,
101 2025). However, there is often confusion because there are limited or no clear ways to define such a
102 level. The situation becomes more complex when considering that tolerable uncertainty should be
103 defined within the problem formulation of a read-across, and levels of tolerable uncertainty will vary
104 depending on the context. It is also accepted that if uncertainty is too high for a specific purpose,
105 additional information and evidence must be provided (Schultz and Cronin, 2017; Pestana et al., 2021,
106 2025; Patlewicz et al., 2025) or the read-across may ultimately be deemed unfit for purpose and not
107 accepted. Although tolerable uncertainty may not be explicitly defined for a read-across to be
108 accepted, the uncertainty must be tolerable to the decision maker. It is the responsibility of the

109 decision maker to act upon that information. In this context, EFSA (2018a) describe this as “practical
110 certainty”. EFSA (2018a) state that practical uncertainty should “sufficient for the practical purpose at
111 hand” – with regard to this investigation this would be the acceptability of a read-across for a
112 particular purpose. Recent evaluations of ECHA’s accepted read-across assessments (Patlewicz et al.,
113 2024; Roe et al., 2025a, b; Schmitt et al., 2025) have clearly illustrated the types of read-across that
114 have been accepted — those with tolerable uncertainty.

115 The goals of this investigation were fourfold. Firstly, to identify, characterise, and qualitatively
116 determine the uncertainties related to the structural basis of read-across, including relevant aspects
117 of chemical similarity metrics, essential functional groups, and molecular scaffolds, as well as related
118 physico-chemical and other data, including the toxicological data read across. Secondly, to propose a
119 scheme that includes a generic tabular matrix offering a flexible and adaptable approach for assessing
120 uncertainties associated with read-across predictions, especially those from a single-source analogue.
121 Thirdly, to demonstrate the usefulness of the method by applying the matrix and analysing two series
122 of read-across examples to measure the various uncertainties related to a particular read-across
123 prediction. Fourthly, to use the scheme to assess uncertainties to identify tolerable uncertainties in
124 published read-across examples.

125

126 **2. Methods**

127

128 2.1 Identification of uncertainties in the definition of molecular similarity

129 Molecular similarity assessments can use either endpoint-independent or endpoint-specific chemical
130 and/or biological information; these approaches align with unsupervised and supervised methods,
131 respectively (Mansouri et al., 2024). Unsupervised chemical grouping relies on general similarity
132 measures to find patterns and relationships without prior knowledge of the toxic endpoint of interest,
133 and such techniques help generate hypotheses about toxicity. However, they may not be ideal for
134 grouping compounds to allow read-across of an OECD test guideline study, i.e., based on
135 toxicodynamic considerations. In contrast, supervised methods require endpoint-specific similarity
136 measures, such as those relating chemical features to a particular biological activity. These methods
137 are suitable for developing endpoint-specific hypotheses and building predictive models to assess new
138 chemicals, such as the profilers in the OECD QSAR Toolbox (Schultz et al., 2022), and form the basis of
139 the investigation in this study.

140 It is acknowledged that many uncertainties may be identified regarding toxicological read-across. Such
141 uncertainties include those due to similarity measurements, experimental studies, and within- and

142 between-species effects, and non-standard uncertainties, as well as those related to the applicability
143 of the experimental data to be read across (Schultz et al., 2019; EFSA Scientific Committee, 2025;
144 OECD, 2025). This study focuses primarily on uncertainty related to chemical structure and molecular
145 properties, as these are fundamental to the initial identification of read-across analogues.
146 Additionally, well-defined and justified chemical similarity should encompass the molecular aspects of
147 toxicodynamics (e.g., interaction at the molecular site of action) and toxicokinetics (e.g., systemic
148 bioavailability and metabolite production). Besides chemical similarities, the availability and quality of
149 toxicological data are also crucial for the acceptance of read-across. Understanding the uncertainties
150 related to toxicological data is essential.

151 The application of read-across is often facilitated by a workflow. Patlewicz et al. (2018) proposed a
152 unified generic workflow incorporating several familiar steps, namely decision context and data gap
153 analysis, definition of an overarching similarity rationale, analogue identification and evaluation, data
154 gap filling, ending with uncertainty assessment. The generic read-across workflow has served as the
155 basis for regulatory guidance (EFSA Scientific Committee, 2025; OECD, 2025). The experience of the
156 authors of the current investigation is that the most crucial uncertainties in the workflow are those
157 from the identification and evaluation of analogues and data gap filling. The identification and
158 evaluation of analogues is a process that involves comparison of the target and source molecule in
159 terms of 2D structural parameters, which may dictate toxicodynamic effects, relevant physico-
160 chemical properties, factors related to toxicokinetics and pertinent *in vivo* or NAM data. Filling the
161 data gap relates to utilising appropriate data for a suitable analogue and its justification. Thus, for the
162 purposes of identifying the most critical uncertainties related to read-across, those related to specific
163 aspects of chemical similarity and data quality were evaluated. Based on the authors' knowledge of
164 the read-across process and the identification of acceptable analogues, as noted, a total of seven
165 relevant uncertainty factors related to the following were determined:

166 2.1.1 Metrics of chemical similarity

167 The metrics of similarity can be calculated using various approaches and methodologies. Usually, they
168 consist of two components: first, a description of the molecules, which could be based on physico-
169 chemical properties or structural descriptors, but more commonly on one of the sets of "fingerprints"
170 that indicate the presence or absence of structural features in the molecule (Cereto-Massagué et al.,
171 2015; Mellor et al., 2019). The second component is the algorithm used to calculate the similarity. The
172 most commonly used method is the Tanimoto index, along with the Dice, Cosine, and Manhattan
173 indices. Alternative approaches (for continuous descriptors) include using k-nearest neighbours,
174 Euclidean distances, and others (Bajusz et al., 2015; Maggiora et al., 2014; Willet et al., 1998). Another

175 commonly reported metric is the molecular formula, which is expressed as a count of the elements in
176 a compound.

177 It is acknowledged that similarity metrics are not comparable across different descriptor
178 sets/fingerprints or calculation methods. Additionally, they are influenced by the methodology used
179 and may not accurately reflect similarity, mainly when activity cliffs are not accounted for (Lester et
180 al., 2023; Mellor et al., 2019). They are often used as a preliminary step when searching databases and
181 require additional information to make a well-informed decision and provide a justification for a read-
182 across analogue.

183 2.1.2 Definition of chemical class

184 Chemical classes may be defined, this is typically a manual process that can include classes based on
185 functional groups, molecular scaffolds, whether molecules are linear or branched, the number and
186 type of rings, and other factors (Muldoon et al., 2025). Chemical classes can also be categorised into
187 established groups, such as those defined by the United States Environmental Protection Agency (US
188 EPA) (US EPA, 2024) or through the OECD QSAR Toolbox (Dimitrov et al., 2016).

189 2.1.3 Molecular similarity relating to toxicodynamics

190 The role of toxicodynamics can be evaluated by comparing molecules based on their functional groups
191 or, should the information be available, molecular (sub-)structure(s) that define the molecular
192 initiating event (MIE). Similarities in toxicodynamics are often grounded in the appropriateness of the
193 premise or hypothesis, which may include mechanistic probability or plausibility, understanding the
194 chemical mechanism of action, biological mode of action, or adverse outcome pathway. For local
195 adverse effects, these include functional groups or extended molecular fragments that align with the
196 molecular initiating event of appropriate Adverse Outcome Pathways (AOPs) (Cronin et al., 2017).
197 These are often reactive functionalities, such as those involved in protein binding (Enoch et al., 2011),
198 which are related to skin sensitisation and clastogenesis, or in DNA binding (Enoch and Cronin, 2010),
199 which are associated with mutagenicity. When the MIE is known, typically, to ensure a conservative
200 read-across, the source molecule should have similar or greater activity. Thus, for an endpoint
201 associated with binding to DNA or proteins, the read-across analogue should be as reactive as, or more
202 reactive than, the target.

203 For longer-term, multiple-dose effects (i.e., 90-day oral repeated-dose toxicity or developmental
204 toxicity), coverage of AOPs is less comprehensive. Toxicodynamic uncertainties often require
205 maximising the number of identical structural components between the target compound and the
206 source chemical, supported by appropriate test data. Similarity in toxicodynamics may also be
207 supported by receptor-binding similarity (Wu et al., 2023a), as well as *in vitro* and other NAM data,

208 including those from the -omics technologies (Barnett et al., 2025; de Abrew et al., 2022; Escher et al.,
209 2019; 2022; Pestana et al., 2021; Ross et al., 2025).

210 2.1.4 Molecular similarity relating to toxicokinetics: bioavailability

211 For subchronic toxicity or repeat dose effects, which may be non-lethal, similarity in systemic
212 bioavailability of the molecule is often required for consideration. As bioavailability is linked to
213 clearance, functional groups that control this process should be assessed (e.g., Boyer et al., 2007; Wu
214 et al., 2023b). Generally speaking, to ensure a conservative read-across, the source molecule should
215 be at least as bioavailable as, or more bioavailable than, the target. Similarity in toxicokinetics may
216 also be supported by *in vitro* and other data (Laroche et al., 2018).

217 2.1.5 Molecular similarity relating to toxicokinetics: the formation of common metabolites
218 or degradants

219 The formation of a common metabolite, or degradation product, is a common justification for read-
220 across arguments (Ball et al., 2014; ECHA, 2017; Patlewicz et al., 2025; Schultz et al., 2015). In addition,
221 common reactive metabolites may also be necessary (see Kalgutkar et al., 2005). It should be noted
222 that the rate of formation of the metabolite/degradant in the source molecule should be equivalent
223 to, or faster than, the target molecule. In addition, such a read-across hypothesis can be applied to
224 dissimilar molecules, so the other elements of similarity may be expected to be more uncertain.
225 Similarity in metabolite or degradant formation and the rate of formation may also be supported by
226 *in vitro* and other data (Yordanova et al., 2021).

227 2.1.6 Physico-chemical properties relating to toxicokinetics

228 Similarity can be assessed based on relevant physico-chemical and molecular properties, such as
229 molecular weight, the logarithm of the octanol-water partition coefficient ($\log P$), aqueous solubility,
230 vapour pressure, Henry's law constant, and melting and boiling points. Other ADME properties, such
231 as uptake from the gut and skin absorption, may also be considered. While experimental data and
232 values should be preferred over calculated ones, the difference between the target and source values
233 is meaningful (Pestana et al., 2025). Data should be taken from the same methodology or estimation
234 method to avoid further propagation of errors. Thus, in this scheme, uncertainty is minimally affected
235 by whether physicochemical properties are measured or calculated. The properties selected should
236 be relevant to the toxicological endpoint, such as dermal absorption for skin sensitisation, oral
237 absorption for repeated dose toxicity via gavage, and volatility for respiratory effects, etc.

238 2.1.7 Toxicological data quality

239 The quality and reliability of read-across toxicology data are crucial in determining their acceptance
240 (Schultz and Cronin, 2017). At a minimum, data for the source chemical should meet the quality and
241 reliability requirements necessary to fill the data gap. For example, to fill a data gap for regulatory
242 assessment, such as hazard identification, the data should typically be generated in accordance with
243 OECD Test Guidelines and under Good Laboratory Practice (GLP) conditions.

244 It should be recognised that data quality assessment is itself subjective and prone to uncertainty and
245 bias (Przybylak et al., 2012). Several schemes exist to evaluate the quality of toxicity data, with the
246 most widely used described by Klimisch et al. (1997) and formalised, in part, within the ToxRTool
247 (Schneider et al., 2009). Other viable evaluation schemes include Criteria for Reporting and Evaluating
248 Ecotoxicity Data (CRED) (Moermond et al., 2016) and the Science in Risk Assessment and Policy
249 (SciRAP) approach (Molander et al., 2015). To reduce variability in the assessment of data quality,
250 consistent criteria should be applied which are relevant to the context of the read-across and
251 endpoint, as defined by Przybylak et al. (2012)

252

253 2.2 Defining uncertainty in read-across on an ordinal scale

254 The aspects of uncertainty outlined in Section 2.1 were defined and described in terms of their
255 importance. Uncertainty was measured with respect to:

- 256 i) For each aspect of uncertainty, relevant quantifiable criteria were defined.
- 257 ii) The levels of uncertainty were established using the criteria described by EFSA relating to
258 the definition, description and quantification of uncertainty (EFSA Scientific Committee,
259 2018b). These were placed on an ordinal scale (very low, low, moderate and high).
- 260 iii) Relevant classifications of uncertainty were identified for the read-across process.
- 261 iv) For each aspect of uncertainty related to read-across, criteria are proposed concerning
262 the information, data, or chemical property considered, i.e. those that are associated with
263 a particular level of uncertainty.
- 264 v) The impact of uncertainties on the assessment conclusion (as termed by EFSA Scientific
265 Committee, 2018b), i.e., the read-across assessment to fill a data gap, was evaluated. The
266 goal here is to identify key uncertainties. The impact varied for the toxicological endpoints
267 considered.

268

269 With regard to evaluating the impact of uncertainties, areas of uncertainty with high impact are those
270 that were considered to be critical in determining the similarity between target and source molecules

271 for endpoint-specific read-across. Low impact uncertainties are those that, although they need to be
 272 considered in the overall assessment, are not regarded as primary drivers of toxicity. High impact
 273 uncertainties are essential in determining the overall level of uncertainty. A final impact level of "no
 274 impact" indicates that the uncertainty is not relevant for the read-across. The impacts were assessed
 275 according to the authors' knowledge and state-of-the-art of read-across. Impacts are implicitly context
 276 and endpoint dependent.

277

278 2.3 Analysis of accepted read-across and definition of overall uncertainty

279 Read-across for data gap filling was assessed for the following two toxicological endpoints:

280 i) Skin sensitisation, for example, as indicated by the results of the local lymph node assay.
 281 Here, an essential aspect of chemical similarity relates to the molecule's ability to bind to
 282 immunoprotein covalently (or not) and to have a similar dermal absorption profile
 283 (Wareing et al., 2017).

284 ii) Sub-chronic systemic toxicity, as represented by an outcome, such as a no observed
 285 adverse effect level (NOAEL), of a repeated dose rodent assay (Schultz and Cronin, 2017).

286 The similarities between the target and source molecules were assessed, and uncertainty was
 287 determined based on the results from the factors identified in Sections 2.1 and 2.2. This was done for
 288 read-across scenarios deemed "acceptable." Additionally, other read-across cases where molecular
 289 similarity was not sufficient to support read-across were noted.

290 The overall level of uncertainty for the read-across was assessed qualitatively (i.e., ordinal
 291 classification), relating in part to the recommendations in EFSA's guidance (EFSA Scientific Committee,
 292 2025) and others (Pestana et al., 2021, 2025). This was done by interpreting the uncertainty levels in
 293 relation to their impact on the endpoint. Except in rare cases, overall uncertainty was not considered
 294 greater than the highest individual uncertainty. Overall uncertainty could be lower than the highest
 295 individual uncertainty if that uncertainty's impact was low or minimal.

296

297 2.4 Determining uncertainty in published read-across predictions to identify tolerable uncertainty

298 One of the largest published collections of read-across predictions is that used in the safety
 299 assessments of fragrance materials compiled by the Research Institute of Fragrance Materials (RIFM)
 300 (Api et al., 2015). Although RIFM's read-across assessments are not intended for regulatory use, they
 301 are carefully curated by staff, including toxic endpoint specialists, who complete a standard read-

302 across justification template. During the internal review process, each proposed read-across
303 undergoes a tiered review by multiple groups of chemistry and toxicology experts.

304 To evaluate the usefulness of the proposed scheme to determine uncertainty, the "read-across
305 justification" section of molecular pairings (a target and a source substance) and relevant endpoint
306 sections where key data are reported in the Fragrance Materials Safety Assessments were analysed.
307 All assessments were published within the last five years and are accessible through the Fragrance
308 Material Safety Assessment Center (<https://fragrancematerialsafetyresource.elsevier.com/>).

309 After evaluating both individual and overall uncertainties for the published fragrance material read-
310 across assessments, the uncertainties were deemed "tolerable." This established the benchmark for
311 defining tolerable uncertainty, meaning the maximum level of uncertainty was the highest acceptable
312 level for approving the read-across assessments.

313

314 3 Results

315 In this investigation, the authors identified the main areas of uncertainty in read-across, focusing on
316 the structural basis of these factors and the toxicological data used to fill data gaps. The work is based
317 on the premise that as the proportion of identical structural features between target and source
318 molecules decreases, the need to evaluate various forms of chemical similarity increases to
319 understand these differences. We propose a scheme to categorise these uncertainties qualitatively,
320 which references the terminology used by EFSA (EFSA Scientific Committee, 2018b) and the ECHA
321 RAAF assessment outcomes (AOs) (ECHA, 2017). Subsequently, read-across scenarios are evaluated
322 for uncertainty, and a method for providing a qualitative overall uncertainty value is proposed. The
323 intent is that all information and uncertainties outlined in Section 3 be addressed flexibly and adapted
324 to the specific endpoint being read across and the context in which it is applied. Our goal is to develop
325 such a scheme, provided that the adaptations are documented, to be appropriate for the toxicological
326 context being scrutinised.

327

328 3.1 Chemical identification

329 As is consistent with numerous read-across frameworks, evaluating uncertainties in a proposed read-
330 across requires accurate identification of both the target and source substances (Patlewicz et al.,
331 2018). We have observed that structures that, where necessary, include details of isomerism are the
332 most reliable form of chemical identification for analysing the structural factors that influence
333 uncertainty. It is crucial to ensure that the names, which often have multiple options, and the CAS

334 registry number, which is usually one or none, match the structure. In our scheme, SMILES notation,
 335 which is frequently critical for *in silico* modelling, is the least essential chemical identifier, as multiple
 336 SMILES can represent the same substance..

337

338 3.2 Identification of uncertainties in the definition of structural similarity

339 A total of seven areas of uncertainty related to read-across were identified and are described in full in
 340 Section 2.1. Six of these concerned aspects of chemical structure and properties. The seventh involved
 341 uncertainty within the biological data that are to be read across. The authors contend that these seven
 342 criteria are sufficient to cover the main aspects of uncertainty in the read-across approaches as
 343 currently described by regulatory agencies such as EFSA (EFSA Scientific Committee) as well as the
 344 OECD (OECD, 2025).

345

346 3.3 Defining uncertainty in read-across

347 3.3.1 Determination of uncertainty

348 The uncertainty associated with the seven criteria described in Section 2.1 was assessed. In this case,
 349 an ordinal classification with four levels of uncertainty is used. These classifications (very low, low,
 350 moderate, and high) are explained and mapped onto EFSA's "Approximate probability scale" (Table 2;
 351 EFSA Scientific Committee (2018b) and the AOs from the ECHA RAAF (Table 2, ECHA (2017)), as shown
 352 in Table 1.

353

354 Table 1. The four ordinal terms proposed in this study to evaluate uncertainty in read-across are
 355 mapped onto the terms suggested by EFSA and utilised within the ECHA RAAF.

Uncertainty term proposed in this study	Relevant subjective probability range taken from Table 2, EFSA Scientific Committee (2018b)	Equivalent ECHA RAAF AO (Table 2, ECHA (2017))
Very low	• Greater than 95%	Score = 5
Low	• 90 - 95%	Score = 4-5
Moderate	• 66 - 90%	Score = 2-3
High	• Less than 66%	Score = 1-2

356

357

358 3.3.2 Defining the levels of uncertainty

359 The seven uncertainty criteria described in Section 2.1 were defined in terms of varying uncertainty
 360 levels, ranging from very low to high, using the definitions of uncertainty outlined in Table 1. These

361 criteria for measuring uncertainty are listed in Supplementary Information Table S1. The criteria are
362 proposed based on the authors' knowledge, with an attempt to align with the state of the art and
363 understanding in similarity and data quality assessment to support read-across, for instance as
364 proposed by the EFSA Scientific Committee (2025). It is intended that the criteria should be flexible
365 and adapted to allow incorporation of new knowledge as it becomes available. Each criterion is
366 designed to enable meaningful assessment of uncertainty using simple aspects of chemical structure,
367 such as similarity measures, chemical class, the presence of functional groups that affect toxicity or
368 metabolic clearance, property similarities, and the quality of the data. Of the four uncertainty levels,
369 very low and low are the most significant – very low indicates very high similarity, such as a salt or a
370 one-carbon difference between the target and sources. Low uncertainty indicates reasonable
371 similarity, while moderate uncertainty reflects a more relaxed consideration of uncertainty. Defining
372 high uncertainty (which combines various EFSA probability terms, as listed in Table 1) is unlikely to be
373 acceptable in any situation.

374 For metrics of chemical similarity, definitive values to categorise uncertainty for similarity levels are
375 not provided. This is because different calculation methods and descriptors or fingerprints can yield
376 different results (Mellor et al., 2019), so it is up to the assessor's interpretation.

377

378 3.3.3 Impact of uncertainty on the overall decision

379 Understanding the impact of uncertainty on decisions is a crucial step in assessing its influence. This
380 impact must also be communicated clearly and unambiguously (EFSA Scientific Committee, 2018a, b).
381 In the context of read-across, the "decision" refers to the confidence in the ability of the read-across
382 to address a data gap. While this differs from EFSA's process of making an overall risk assessment
383 decision, the same principle(s) can be applied. Additionally, considering the effect of individual
384 uncertainties can help organise the overall uncertainty assessment in a read-across, indicating that
385 uncertainties with a high impact should be prioritised. In contrast, those with a lower impact may be
386 less significant to the overall evaluation.

387 The impact of each uncertain area on the overall assessment conclusion, such as the read-across
388 assessment used to fill data gaps, was evaluated. Each of the seven uncertainty factors has a different
389 level of impact, categorised as none, low, moderate, or high, as shown in Tables 2a and 2b for the two
390 toxicological endpoints considered (skin sensitisation and repeated dose toxicity respectively).

391 The "sensitivity" of each of the uncertainty factors was considered for read-across as a whole and
392 noted in Tables 2a and 2b. All factors were considered to have potentially high impact with the
393 exception of metrics for chemical similarity. The definition of impact in areas of uncertainty for skin

394 sensitisation and repeated dose toxicity involves different aspects of impact. It is expected that each
395 toxicological endpoint will have a unique set of impacts. Thus, the sensitivity towards read-across is
396 associated with the relative “magnitude” of the factor, which is specific to a particular endpoint and
397 could be adapted to the context, e.g., to account for metabolically activated skin sensitisers, or chronic
398 toxicity with a specific mode of action. To achieve the overall impact on the uncertainty conclusion,
399 the endpoint-specific magnitude may be used to counter the sensitivity, i.e., whilst an uncertainty
400 factor may have the potential for high impact in the overall read-across process, impact may be
401 reduced for a particular endpoint, as demonstrated in Tables 2a and 2b.

402 For skin sensitisation (Table 2a), the most significant impact on the magnitude of uncertainty related
403 to read-across concerns molecular similarity in toxicodynamics, specifically whether the source
404 molecule exhibits the same mechanism of reactivity and the same or greater rate of reactivity than
405 the target molecule. Reactivity is currently well understood through the presence of functional groups
406 (Enoch et al., 2011) and is considered to be the fundamental driving force for skin sensitisation
407 (Wareing et al., 2017). It can also be represented by *in chemico* data (Alépée et al., 2023) or reactivity
408 estimates from quantum chemical calculations (Enoch and Roberts, 2013). Uncertainty arises when a
409 biotic or abiotic step is required to form the reactive species (Yordanova et al., 2021; 2024); this has a
410 significant impact, especially when transformation products involve directly reactive molecules, but is
411 not relevant and can be disregarded for others. Uncertainty regarding chemical properties related to,
412 or directly assessing, skin penetration is less critical than overall reactivity as skin penetration, *per se*,
413 is required but not a crucial driver of skin sensitisation. Therefore such properties are considered to
414 have a moderate impact. Variations in skin penetration are acceptable, provided that the source
415 molecule exhibits equal or greater skin penetration than the target (Gilmour et al., 2020). The impact
416 of uncertainty in the chemical class is low, as in skin sensitisation, read-across depends more on
417 reactivity, which can be independent of chemical class. As noted above, the impact of chemical
418 similarity metrics is low due to inconsistent overall scores.

419 The magnitude of impact of individual uncertainties in repeat dose toxicity is significant for aspects of
420 toxicokinetics, especially those related to molecular clearance (Table 2b). This also indicates that
421 uncertainty related to toxicokinetic properties and chemical class is similarly high (Date et al., 2020).
422 Uncertainty in toxicodynamics will be minimal unless a specific mechanism of action, such as a
423 pesticidal mechanism, is identified and characterised.

424 The purpose of considering the impact of individual uncertainties on the read-across assessment
425 conclusion is to ensure flexibility in assessing each of the uncertainty sources and to support
426 adaptability across the various endpoints typically considered in a robust safety assessment (see
427 Tables 2a and 2b). While the effects can be generalised, it is acceptable to modify the influence with

428 appropriate, context-specific justification. Thus the user or evaluator of a read-across assessment is
429 encouraged to update and adapt the impact in accordance with existing knowledge and the state-of-
430 the-art.

431

432

433

434 Table 2a. Overall impact of the seven types of uncertainty identified in Section 3.2 on data gap filling through read-across for skin sensitisation.

Source of Uncertainties in Read-Across to Impacting on the Overall Uncertainty (Outcome Statement)	Sensitivity of Uncertainty to Read-Across	Magnitude of Uncertainty Relating to Skin Sensitisation	Overall Impact on the Uncertainty of the Final Outcome (Read-Across for Data Gap Filling for Skin Sensitisation)
Qualitative impact of metrics of chemical similarity on uncertainty in read-across for data gap filling (for skin sensitisation)	Low	Low	Low impact
Qualitative impact of chemical class on uncertainty in read-across for data gap filling (for skin sensitisation)	High	Low	Low impact
Qualitative impact of molecular similarity relating to toxicodynamics on uncertainty in read-across for data gap filling (for skin sensitisation)	High	High	High impact
Qualitative impact of molecular similarity relating to toxicokinetics on uncertainty in read-across for data gap filling (for skin sensitisation)	High	Where relevant, low impact	Low impact
Qualitative impact of molecular similarity relating to the formation of common metabolites or degradants on uncertainty in read-across for data gap filling (for skin sensitisation)	High	Where relevant, high impact; where not applicable, no impact (and need not be assessed)	When metabolism is relevant to skin sensitisation – high impact, otherwise – low impact
Qualitative impact of chemical properties relating to toxicokinetics on uncertainty in read-across for data gap filling (for skin sensitisation)	High	Moderate	Moderate impact
Qualitative impact of toxicological data quality chemical properties on uncertainty in read-across for data gap filling (for skin sensitisation)	High	High	High impact

435

436

437 Table 2b. Overall impact of the seven types of uncertainty identified in Section 3.2 on data gap filling through read-across for repeat dose toxicity.

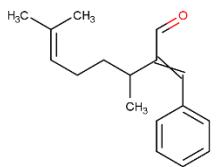
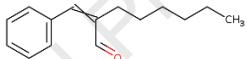
Source of Uncertainties in Read-Across to Impacting on the Overall Uncertainty	Sensitivity of Uncertainty to Read-Across	Magnitude of Uncertainty Relating to Repeat Dose Toxicity	Overall Impact on the Uncertainty of the Final Outcome (Read-Across for Data Gap Filling for Repeat Dose Toxicity)
Qualitative impact of metrics of chemical similarity on uncertainty in read-across for data gap filling (for repeat dose toxicity)	Low	Low	Low impact
Qualitative impact of chemical class on uncertainty in read-across for data gap filling (for repeat dose toxicity)	High	High	High impact
Qualitative impact of molecular similarity relating to toxicodynamics on uncertainty in read-across for data gap filling (for repeat dose toxicity)	High	For a specific mode of action, high; where no specific mode, low	Where a specific mode is present, high impact; otherwise - no impact
Qualitative impact of molecular similarity relating to toxicokinetics on uncertainty in read-across for data gap filling (for repeat dose toxicity)	High	High	High impact
Qualitative impact of molecular similarity relating to the formation of common metabolites or degradants on uncertainty in read-across for data gap filling (for repeat dose toxicity)	High	Where relevant, high; where not applicable, no impact (and need not be assessed)	When metabolism is relevant to (sub-)chronic toxicity – high impact, otherwise – no impact
Qualitative impact of chemical properties relating to toxicokinetics on uncertainty in read-across for data gap filling (for repeat dose toxicity)	High	High	High impact
Qualitative impact of toxicological data quality chemical properties on uncertainty in read-across for data gap filling (for repeat dose toxicity)	High	High	High impact

438

439

440

441 3.4 Examples of applying the proposed scheme to assessing uncertainties of chemical
442 pairings



443

444 3.4.1 Assessment of overall uncertainty for a read-across to fill a data gap for skin
445 sensitisation

446 2-Benzylidene-3,7-dimethyloct-6-enal lacks an EU REACH dossier, and no data on skin sensitisation
447 were found. Therefore, it was used as the target for this illustration of uncertainty assessments of
448 read-across predictions for skin sensitisation. It is a C₁₇H₂₂O analogue, specifically a benzylidene with
449 an aldehyde group attached to the alpha-carbon of the benzyl-alkene and an unsaturated branched
450 aliphatic substituent on the beta-carbon of the benzyl-alkene. Its mechanism of sensitisation involves
451 a benzylidene Michael addition (Enoch et al., 2008; 2011). Using 2D structure analysis to classify
452 potential substances for read-across sources initially, the focus was on the benzylidene-substituted
453 aldehydes with carbon chains ranging from C15 to C20. Literature searches identified only two
454 compounds, 2-benzylideneoctanal and 3,3-diphenylprop-2-enal, with relevant *in vivo* data (i.e., local
455 lymph node assay (LLNA) concentration required for a three-fold increase in lymph node cell
456 proliferation compared with vehicle control (EC3) values). A subsequent search for smaller
457 benzylidene-substituted aldehydes that could cause skin sensitisation revealed several compounds in
458 the C9 to C13 range with reliable data; however, they were not evaluated as they were less similar to
459 the analogues chosen.

460 The uncertainty schemes for using 2-benzylideneoctanal and 3,3-diphenylprop-2-enal as source
461 substances are presented in Tables 3 and 4, respectively. Tables 3 and 4 draw upon and interpret
462 information that would normally be captured in the data matrix to support read-across. More detailed
463 descriptions of the mechanism of action of the target substance, 2-benzylidene-3,7-dimethyloct-6-
464 enal, and a summary of the mechanisms of action and EC3 potency of various compounds that are
465 relevant to it are reported in Supplementary Information 2.

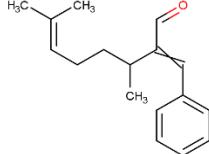
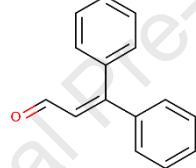
466 Table 3. Uncertainty analysis of the read-across of skin sensitisation from 2-benzylideneoctanal to 2-benzylidene-3,7-dimethyloct-6-enal.

Data gap to be filled: skin sensitisation		2D structure				Key Properties Relating to Uncertainty	
Target molecule: 2-benzylidene-3,7-dimethyloct-6-enal CAS # 84041-79-2 SMILES notation: CC(CCC=C(C)C)/C(=C\C1=CC=CC=C1)/C=O https://pubchem.ncbi.nlm.nih.gov/compound/6365928		 Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID401267459				Molecular Weight (MW): 242.4 Da* Log P (estimated): 5.18* Skin Permeability: logarithm of the permeability coefficient (log Kp) [log(cm/h)] = -0.677** 	
Source molecule: 2-benzylideneoctanal CAS # 101-86-0 SMILES notation: CCCCCC/C(=C\C1=CC=CC=C1)/C=O https://pubchem.ncbi.nlm.nih.gov/compound/1550884		 Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID4026684				Molecular Weight (MW): 216.3 Da* Log P (estimated): 4.68* Skin Permeability: log Kp [log(cm/h)]: -0.699** 	
Type and overall impact of uncertainty (refer to Table 2a)		Associated uncertainty to the read-across					
Type of uncertainty	Impact on overall uncertainty of the type of uncertainty	Very low	Low	Moderate	High	Notes	
Metrics of chemical similarity	Low impact		X			Maximum Common Substructure (MCS Tanimoto): 0.63 (http://chemmine.ucr.edu/similarity/)	
Chemical class	Low impact	X				Similar molecular formula and the same functional groups. Both aldehyde-substituted benzylidene with a β -alkyl group	
Molecular similarity relating to toxicodynamics	High impact	X				Both have the same functional group α,β -unsaturated carbonyl, and no other functional group relevant to reactivity. As such, both are capable of acting by the same mechanisms of action (Michael addition and Schiff base formation)*** Rate of reactivity is similar, being moderately reactive with GSH****	

Molecular similarity relating to toxicokinetics	Where relevant, low impact	X				Functional groups associated with highly similar absorption and distribution within the skin, in addition to the same metabolic pathways and elimination routes
Molecular similarity relating to the formation of common metabolites or degradants	Where relevant, high impact	X				Both direct-acting electrophiles have the same metabolic pathways
Chemical properties relating to toxicokinetics	Moderate impact	X				Highly similar ADME parameters, particularly with regard to skin absorption. Highly similar log P, MW, etc.
Source data quality	Moderate impact	X				Multi-replicates of LLNA following OECD TG 429
Overall uncertainty	<p>The overall uncertainty is very low given the structural similarity between the two molecules. The highest-impact uncertainty for these analogues regarding skin sensitisation is the reactive mechanism of action. Both molecules have identical functional groups relevant to reactivity and similar reactivity rates, as identified by the <i>in silico</i> profilers; therefore, very low uncertainty is justified. If required, further experimental data (e.g., <i>in chemico</i> NAMs) could support this. The impact of metabolism/degradation for these compounds is low, as they are direct-acting.</p> <p>The two molecules are very similar in terms of physicochemical properties, particularly those affecting skin sensitisation, and meet the criteria stated in Table S1 for very low uncertainty. There is a negligible difference in predicted skin permeability.</p> <p>Low uncertainty in the chemical similarity metric does not significantly affect the overall uncertainty, as it has minimal impact.</p>					

467 *Data from US EPA CompTox Dashboard (link under structure)

468 **Values from VEGA model: Skin Permeation (LogKp) model (Potts and Guy) 1.0.1



469 ***OECD QSAR Toolbox (ver 4.8) Protein binding by OASIS

470 ****OECD QSAR Toolbox (ver 4.8) Protein binding potency GSH

471

472

473 Table 4. Uncertainty analysis of the read-across of skin sensitisation from 3,3-diphenylprop-2-enal to 2-benzylidene-3,7-dimethyloct-6-enal.

Data gap to be filled: skin sensitisation		2D structure				Key Properties Relating to Uncertainty	
Target molecule: 2-benzylidene-3,7-dimethyloct-6-enal CAS # 84041-79-2 SMILES notation: CC(CCC=C(C)C)/C(=C\C1=CC=CC=C1)/C=O https://pubchem.ncbi.nlm.nih.gov/compound/6365928		 Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID401267459				Molecular Weight (MW): 242.4 Da* Log P (estimated): 5.18* Skin Permeability: logarithm of the permeability coefficient (log Kp) [log(cm/h)] = -0.677** 	
Source molecule: 3,3-diphenylprop-2-enal CAS # 1210-39-5 SMILES notation: C1=CC=C(C=C1)C(=CC=O)C2=CC=CC=C2 https://pubchem.ncbi.nlm.nih.gov/compound/71027		 Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID2049210				Molecular Weight (MW): 208.26* Log P (estimated): 3.15* Skin Permeability: log Kp [log(cm/h)]: -1.536** 	
Type and overall impact of uncertainty (refer to Table 2a)		Associated uncertainty to the read-across					
Type of uncertainty	Impact on overall uncertainty	Very low	Low	Moderate	High	Notes	
Metrics of chemical similarity	Low impact			X		Maximum Common Substructure (MCS Tanimoto): 0.46 (http://chemmine.ucr.edu/similarity/)	
Chemical class	Low impact		X			Similar molecular formula and the same functional groups; however, the source molecule has two phenyl rings. Both aldehyde-substituted benzylidene with a β -alkyl group	
Molecular similarity relating to toxicodynamics	High impact			X		Both have the same functional group α,β -unsaturated carbonyl and no other functional group relevant to reactivity. As such, both are capable of acting by the same mechanisms of action (Schiff base formation) although the target molecule may also act as a Michael acceptor*** Rate of reactivity is similar being moderately reactive with GSH**** 	

Molecular similarity relating to toxicokinetics	Where relevant, low impact			X		Differences in functional groups and molecular scaffolds may be associated with different absorption and distribution within the skin. In addition, there may be differences in metabolic pathways and elimination routes
Molecular similarity relating to the formation of common metabolites or degradants	Where relevant, high impact	X				Both direct-acting electrophiles have the same metabolic pathways
Chemical properties relating to toxicokinetics	Moderate impact			X		Similar ADME parameters, with regard to skin absorption, the permeability of the source molecule is 1 log unit lower than the target. Highly similar MW, but a significant difference in log P (2 log units).
Source data quality	Moderate impact		X			Multi-replicates of LLNA following OECD TG 429
Overall uncertainty	<p>The overall uncertainty is moderate, based on the structural similarity between the two molecules. The highest-impact uncertainty for these analogues regarding skin sensitisation is the reactive mechanism of action, as the source molecule was not identified as a Michael acceptor. Both molecules are predicted to have similar reactivity rates, as determined by the <i>in silico</i> profiler. If required, further experimental data (e.g., <i>in chemico</i> NAMs) could support this. The impact of metabolism/degradation for these compounds is very low, as they are direct-acting.</p> <p>The two molecules are similar in terms of physicochemical properties, particularly those affecting skin sensitisation, with moderate uncertainty. This is attributed to a significant difference in log P (the source has a lower log P) and lower skin permeability.</p>					

474 *Data from US EPA CompTox Dashboard (link under structure)

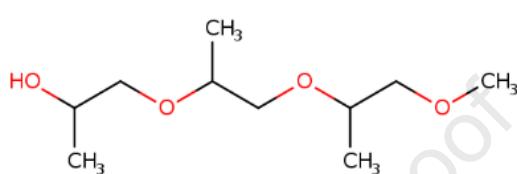
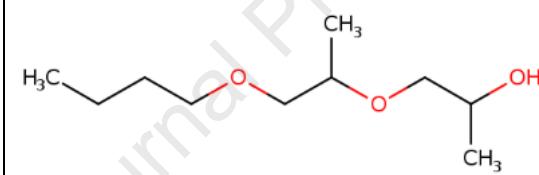
475 **Values from VEGA model: Skin Permeation (LogKp) model (Potts and Guy) 1.0.1

476 ***OECD QSAR Toolbox (ver 4.8) Protein binding by OASIS

477 ****OECD QSAR Toolbox (ver 4.8) Protein binding potency GSH

478 Based on the results shown in Tables 3 and 4, 2-benzylideneoctanal is the more suitable source
479 compound for filling the data gap in skin sensitisation for 2-benzylidene-3,7-dimethyloct-6-enal, as it
480 has the lower overall uncertainty. LLNA data from lower molecular weight benzylidene-substituted
481 aldehydes (see Supplementary Information 2) add weight-of-evidence to the read-across evaluated in
482 Table 3.

483 As detailed in Supplementary Information 2, aldehydes with similar hydrocarbon scaffolds, but
484 without a carbon-to-carbon double bond or a non-conjugated carbon-to-carbon double bond (i.e.,
485 non-benzylidenealkanals), are either non-sensitisers or sensitizers through a reactive mechanism
486 other than Michael addition.



487

488 3.4.2 Assessment of overall uncertainty for a read-across to fill a data gap for repeated
489 dose toxicity

490 1-[1-(1-Methoxypropan-2-yloxy)propan-2-yloxy]propan-2-ol or tripropyleneglycol monomethyl ether
491 has no REACH dossier, and no repeated dose toxicity data were found. Therefore, it was taken as the
492 target for this illustration of assessing uncertainties read-across. It is a C₁₀H₂₂O₄ analogue, which is a
493 secondary alcohol with a branched saturated aliphatic scaffold containing three ether linkages,
494 including a terminal methoxy group. Searches of the scientific literature revealed several potential
495 read-across source substances.

496 Explanations of the metabolic rationale for eliminating primary and tertiary alcohols but including
497 secondary alcohols and corresponding ketones in searching for source substances for the target 1-[1-
498 (1-methoxypropan-2-yloxy)propan-2-yloxy]propan-2-ol and relevant rodent sub-chronic repeat dose
499 toxicity data are reported in Supplementary Information 3. Using the uncertainty assessment scheme
500 described above, four of these substances were evaluated in Tables 5 to 8. Tables 5 to 8 draw upon
501 and interpret information that would normally be captured in the data matrix to support read-across.

502 Table 5. Uncertainty analysis of the read-across of sub-chronic repeated dose toxicity from 1-(1-butoxypropan-2-yloxy)propan-2-ol to 1-[2-(2-methoxy-1-
 503 methylethoxy)-1-methylethoxy]propan-2-ol.

Data gap to be filled: sub-chronic repeated dose toxicity		2D structure	Key Properties Relating to Uncertainty			
Target molecule: 1-[2-(2-methoxy-1-methylethoxy)-1-methylethoxy]propan-2-ol CAS # 20324-33-8 SMILES notation: CC(COC(C)COCC(C)OC)O https://pubchem.ncbi.nlm.nih.gov/compound/30111		<p>Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID6021616</p>	<p>Molecular Weight (MW): 206.3 Da*</p> <p>Log P (estimated): 0.38*</p> <p>Elimination half-life: 3.4 hours**</p>			
Source molecule: 1-(1-butoxypropan-2-yloxy)propan-2-ol CAS # 29911-28-2 SMILES notation: CCCCOCC(C)OCC(C)O https://pubchem.ncbi.nlm.nih.gov/compound/247	52	<p>Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID8027959</p>	<p>Molecular Weight (MW): 190.3 Da*</p> <p>Log P (estimated): 1.42*</p> <p>Elimination half-life: 3.2 hours**</p>			
Type and overall impact of uncertainty (refer to Table 2b)		Associated uncertainty to the read-across				
Type of uncertainty	Impact on overall uncertainty	Very low	Low	Moderate	High	Notes
Metrics of chemical similarity	Low impact		X			Maximum Common Substructure (MCS Tanimoto): 0.69 (http://chemmine.ucr.edu/similarity/)
Chemical class	High impact	X				Same, polyether-substituted aliphatic secondary alcohol
Molecular similarity relating to toxicodynamics	Low impact	X				Similar potential reactive centres: secondary alcohol and alkoxy groups Both target and source contain the alert for "Propylene Glycol Ethers Category (Less susceptible) No Rank" which includes four structurally related propylene glycol ethers or the acetates.***

Molecular similarity relating to toxicokinetics	High impact	X				Similar absorption and distribution, and the same metabolic pathways and elimination routes
Molecular similarity relating to the formation of common metabolites or degradants	High impact	X				Same, oxidation to the corresponding ketone, hydroxylation, and phase II glucuronidation
Chemical properties relating to toxicokinetics	High impact	X				Target has a similar MW, but a higher log P by approximately 1 log unit. Rate of clearance is predicted to be comparable. Very low uncertainty is assigned based on the rate of clearance.
Source data quality	High impact	X				GLP-compliant, appropriate OECD test guidelines, multiple exposure schemes
Overall uncertainty	<p>The overall uncertainty is very low due to structural similarity and identical or highly similar ADME properties. The data quality from read-across is exceptional, with both NOAEL and LOAEL values for the three routes of exposure. On this occasion, the approximately 1 log-unit difference in log P was deemed not to influence toxicity, as clearance rates are expected to be similar.</p> <p>Low uncertainty in the chemical similarity metric does not affect the overall uncertainty, as it has low impact.</p>					

504 *Data from US EPA CompTox Dashboard (link under structure)

505 **Values from VEGA model: Total body elimination half-life (QSARINS) 1.0.1

506 ***OECD QSAR Toolbox (ver 4.8) Repeated dose (HESS) profiler

507

508 Table 6. Uncertainty analysis of the read-across of sub-chronic repeated dose toxicity from 1-(1-propoxypalan-2-yloxy)propan-2-ol to 1-[2-(2-methoxy-1-
 509 methylethoxy)-1-methylethoxy]propan-2-ol.

510

Data gap to be filled: sub-chronic repeated dose toxicity	2D structure	Key Properties Relating to Uncertainty																				
Target molecule: 1-[2-(2-methoxy-1-methylethoxy)-1-methylethoxy]propan-2-ol CAS # 20324-33-8 SMILES notation: CC(COC(C)CO(C)COC)O https://pubchem.ncbi.nlm.nih.gov/compound/30111	<p>Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID6021616</p>	Molecular Weight (MW): 206.3 Da* Log P (estimated): 0.38* Elimination half-life: 3.4 hours**																				
Source molecule: 1-(1-propoxypalan-2-yloxy)propan-2-ol CAS # 29911-27-1 SMILES notation: CCCOCC(C)OCC(C)O https://pubchem.ncbi.nlm.nih.gov/compound/121752	<p>Structure from: https://comptox.epa.gov/dashboard/chemical/properties/DTXSID3033276</p>	Molecular Weight (MW): 176.3 Da* Log P (estimated): 0.97* Elimination half-life: 3.1 hours**																				
Type and overall impact of uncertainty (refer to Table 2b)	Associated uncertainty to the read-across																					
Type of uncertainty	Impact on overall uncertainty	<table> <thead> <tr> <th>Very low</th><th>Low</th><th>Moderate</th><th>High</th><th>Notes</th></tr> </thead> <tbody> <tr> <td>X</td><td></td><td></td><td></td><td>Maximum Common Substructure (MCS Tanimoto): 0.73 (http://chemmine.ucr.edu/similarity/)</td></tr> <tr> <td>X</td><td></td><td></td><td></td><td>Same, polyether-substituted aliphatic secondary alcohol</td></tr> <tr> <td>X</td><td></td><td></td><td></td><td>Similar potential reactive centres: secondary alcohol and alkoxy groups</td></tr> </tbody> </table>	Very low	Low	Moderate	High	Notes	X				Maximum Common Substructure (MCS Tanimoto): 0.73 (http://chemmine.ucr.edu/similarity/)	X				Same, polyether-substituted aliphatic secondary alcohol	X				Similar potential reactive centres: secondary alcohol and alkoxy groups
Very low	Low	Moderate	High	Notes																		
X				Maximum Common Substructure (MCS Tanimoto): 0.73 (http://chemmine.ucr.edu/similarity/)																		
X				Same, polyether-substituted aliphatic secondary alcohol																		
X				Similar potential reactive centres: secondary alcohol and alkoxy groups																		
Metrics of chemical similarity	Low impact																					
Chemical class	High impact																					
Molecular similarity relating to toxicodynamics	Low impact																					

						Both target and source contain the alert for "Propylene Glycol Ethers Category (Less susceptible) No Rank" which includes four structurally related propylene glycol ethers or the acetates.***
Molecular similarity relating to toxicokinetics	High impact	X				Similar absorption and distribution, and the same metabolic pathways and elimination routes
Molecular similarity relating to the formation of common metabolites or degradants	High impact	X				Same, oxidation to the corresponding ketone, hydroxylation, and phase II glucuronidation
Chemical properties relating to toxicokinetics	High impact	X				Similar log P, MW, etc., reflecting the minor differences in the number of C- and O-atoms. Rate of clearance is very similar.
Source data quality	High impact		X			GLP-compliant, most appropriate OECD test guidelines, no LOAEL
Overall uncertainty	The overall uncertainty is low based on the uncertainty in the toxicological data, i.e., no reported LOAEL. The ADME and chemical properties are very similar, as are the toxicodynamics.					

511 *Data from US EPA CompTox Dashboard (link under structure)

512 **Values from VEGA model: Total body elimination half-life (QSARINS) 1.0.1

513 ***OECD QSAR Toolbox (ver 4.8) Repeated dose (HESS) profiler

514

515 Table 7. Uncertainty analysis of the read-across of sub-chronic repeated dose toxicity from 2,6-dimethylheptan-4-ol to 1-[2-(2-methoxy-1-methylethoxy)-1-
 516 methylethoxy]propan-2-ol.

517

Data gap to be filled: sub-chronic repeated dose toxicity	2D structure	Key Properties Relating to Uncertainty	
Target molecule: 1-[2-(2-methoxy-1-methylethoxy)-1-methylethoxy]propan-2-ol CAS # 20324-33-8 SMILES notation: CC(COC(C)CO(C)COC)O https://pubchem.ncbi.nlm.nih.gov/compound/30111	<p>Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID6021616</p>	Molecular Weight (MW): 206.3 Da* Log P (estimated): 0.38* Elimination half-life: 3.4 hours**	
Source molecule: 2,6-dimethylheptan-4-ol CAS # 108-82-7 SMILES notation: CC(C)CC(CC(C)C)O https://pubchem.ncbi.nlm.nih.gov/compound/7957	<p>Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID8026802</p>	Molecular Weight (MW): 144.3 Da* Log P (estimated): 3.15* Elimination half-life: 5.6 hours**	
Type and overall impact of uncertainty (refer to Table 2b)	Associated uncertainty to the read-across		
Type of uncertainty	Impact on overall uncertainty	Very low Low Moderate High	Notes
Metrics of chemical similarity	Low impact	X	Maximum Common Substructure (MCS Tanimoto): 0.20 (http://chemmine.ucr.edu/similarity/)
Chemical class	High impact	X	Similar aliphatic secondary alcohols but lacking ether linkages
Molecular similarity relating to toxicodynamics	Low impact	X	Similar potential reactive centre: secondary alcohol, but missing the alkoxy groups The target contains the alert for "Propylene Glycol Ethers Category (Less susceptible) No Rank" which includes four structurally related

					propylene glycol ethers or the acetates. However, this is lacking from the source molecule***
Molecular similarity relating to toxicokinetics	High impact		X		Similar absorption and distribution, and the same metabolic pathways and elimination routes
Molecular similarity relating to the formation of common metabolites or degradants	High impact	X			Same, oxidation to the corresponding ketone, hydroxylation, and phase II glucuronidation
Chemical properties relating to toxicokinetics	High impact		X		The source molecule has a greater log P, but is slower to be eliminated, i.e., will be more bioavailable. The slower elimination mitigates, to some extent, the large difference in log P.
Source data quality	High impact		X		GLP-compliant, less appropriate OECD test guidelines; test of a 70/30 binary mixture; NOAEL reported with a safety factor of 3
Overall uncertainty	The overall uncertainty is moderate as the structural differences between the target and source analogue are significant. The ADME and chemical properties reflect the differences in the number of carbon atoms and the number of alkoxy groups. The quality of the data being read across is severely diminished by the test being conducted in TG 422, where the test material is a binary mixture with 70% target chemical and does not attain a LOAEL value.				

518 *Data from US EPA CompTox Dashboard (link under structure)

519 **Values from VEGA model: Total body elimination half-life (QSARINS) 1.0.1

520 ***OECD QSAR Toolbox (ver 4.8) Repeated dose (HESS) profiler

521

522 Table 8. Uncertainty analysis of the read-across of sub-chronic repeated dose toxicity from 1-propoxypropan-2-ol to 1-[2-(2-methoxy-1-methylethoxy)-1-
 523 methylethoxy]propan-2-ol.

524

Data gap to be filled: sub-chronic repeated dose toxicity	2D structure	Key Properties Relating to Uncertainty			
Target molecule: 1-[2-(2-methoxy-1-methylethoxy)-1-methylethoxy]propan-2-ol CAS # 20324-33-8 SMILES notation: CC(COC(C)CO(C)OC)O https://pubchem.ncbi.nlm.nih.gov/compound/30111	<p>Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID6021616</p>	Molecular Weight (MW): 206.3 Da (1) Log P (estimated): 0.38 (1) Elimination half-life: 3.4 hours (2) (1) Data from US EPA CompTox Dashboard (link under structure) (2) Values from VEGA model: Total body elimination half-life (QSARINS) 1.0.1			
Source molecule: 1-propoxypropan-2-ol CAS # 1569-01-3 SMILES notation: CCCOCC(C)O https://pubchem.ncbi.nlm.nih.gov/compound/15286	<p>Structure from: https://comptox.epa.gov/dashboard/chemical/details/DTXSID5029217</p>	Molecular Weight (MW): 118.2 Da (1) Log P (estimated): 0.60 (1) Elimination half-life: 2.6 hours (2) (1) Data from US EPA CompTox Dashboard (link under structure) (2) Values from VEGA model: Total body elimination half-life (QSARINS) 1.0.1			
Type and overall impact of uncertainty (refer to Table 2b)	Associated uncertainty to the read-across				
Type of uncertainty	Impact on overall uncertainty	Very low Low Moderate High			
Metrics of chemical similarity	Low impact	X			Maximum Common Substructure (MCS Tanimoto): 0.47 (http://chemmine.ucr.edu/similarity/)
Chemical class	High impact	X			Similar aliphatic secondary alcohol and ether linkage
Molecular similarity relating to toxicodynamics	Low impact		X		Similar potential reactive centre: secondary alcohol and a single alkoxy group The target contains the alert for "Propylene Glycol Ethers Category (Less susceptible) No Rank" which includes four structurally related propylene glycol ethers or the acetates. However, this is lacking from the source molecule (3)

						(3) OECD QSAR Toolbox (ver 4.8) Repeated dose (HESS) profiler
Molecular similarity relating to toxicokinetics	High impact			X		Dissimilar absorption and distribution, but the same metabolic pathways and elimination routes
Molecular similarity relating to the formation of common metabolites or degradants	High impact	X				Same, oxidation to the corresponding ketone, hydroxylation, and phase II glucuronidation
Chemical properties relating to toxicokinetics	High impact			X		Similar log P, but the source has significantly lower MW and faster predicted clearance.
Source data quality	High impact			X		GLP-compliant, less appropriate route of exposure, NOAEC highest concentration tested, no LOAEC
Overall uncertainty	The overall uncertainty is moderate due to the structural differences between the target and source analogue, which lead to significant differences in clearance. The ADME and chemical properties reflect differences in the number of carbon atoms and alkoxy groups. The quality of the data being read across is significantly reduced because the NOAEC is the highest concentration tested, and there is no LOAEC value.					

525

526

527 Based on the results shown in Tables 5-8, 1-(1-butoxypropan-2-yloxy)propan-2-ol is the most suitable
528 source compound for filling the data gap in subchronic repeated dose toxicity for 1-[1-(1-
529 methoxypropan-2-yloxy)propan-2-yloxy]propan-2-ol, as it has the lowest overall uncertainty. The
530 second-best source chemical, 1-(1-propoxypropan-2-yloxy)propan-2-ol, provides additional *in vivo*
531 evidence supporting the read-across based on the best chemical pairings. 2,6-Dimethylheptan-4-ol
532 and 1-propoxypropan-2-ol are both less ideal source materials, having moderate overall uncertainty
533 due to significant and quantifiable structural differences.

534

535 3.5 Analysis of uncertainty in published read-across predictions to identify tolerable
536 uncertainty

537 RIFM's published safety assessments of fragrance materials were examined. Most contained at least
538 one example of read-across to fill a data gap for human health and, occasionally, environmental
539 endpoints. Of the published safety assessments, 25 were chosen for assessment of the uncertainties
540 in the read-across predictions according to the criteria stated in Section 3.2 for skin sensitisation and
541 repeated dose toxicity. The description of the read-across process, along with a summary of the read-
542 across approaches, is summarised in Supplementary Information 4 with the outcomes of the
543 uncertainty assessment in Tables S4.1 and S4.2.

544 These fragrance material safety assessments represented different chemical classes within the
545 fragrance inventory (Date et al., 2020). The endpoint distributions of read-across reflect the
546 distribution of endpoints across over 1,500 published assessments containing one or more read-across
547 justifications (Moustakas et al., 2022) – although only two endpoints for a small number of examples
548 were assessed here. Aside from one judgment, which was found to be “moderate” for repeated dose
549 toxicity, the authors considered the overall uncertainty of the read-across pairings to be “very low” or
550 “low”. It is acknowledged that fragrance ingredients are an exceptionally data-rich segment of the
551 chemical universe, with limited structural diversity, and that these factors contribute to the overall
552 uncertainties being so low. The findings support the idea that tolerable uncertainty is likely ensured if
553 the overall judgment indicates low or very low uncertainty.

554

555 4 Discussion

556 Read-across is one of the most important, if not the most widely used, *in silico* NAMs. Although their
557 acceptance rates vary, they are progressively improving (Hartung and Rovida 2025). Several read-

558 across scenarios have been identified (Patlewicz et al., 2025). The most common use is filling data
559 gaps, especially for replacing animal tests in risk assessments for industrial and regulatory purposes.
560 Generally, using read-across to support risk assessment involves some of the strictest acceptance
561 criteria, with acceptability and confidence levels, along with supporting information, being
562 determined by industrial standards or regulatory requirements. One way to evaluate read-across is to
563 develop methods for identifying and characterising uncertainty. The recent EFSA guidance reinforces
564 the idea of "tolerable uncertainty," but it does not specify the acceptable levels. This study aimed to
565 develop and utilise a novel approach to assess qualitatively the main aspects of uncertainty in read-
566 across based, in part, on EFSA's guidance relating to uncertainty and read-across (EFSA Scientific
567 Committee, 2018b; 2025).

568

569 4.1 Qualitative assessment of the uncertainty in read-across

570 This study identified seven core elements that contribute to uncertainty in read-across. The goal was
571 to simplify the process of identifying uncertainty in read-across into a clear, manageable set of criteria.
572 A variety of approaches to characterise and quantify uncertainty in *in silico* toxicology have been
573 previously explored and influenced this work. These include methods such as Bayesian learning (Allen
574 et al., 2022) and conformal predictions (Sapounidou et al., 2023), among others (Sahlin et al., 2011).
575 The approach taken in this study was not based on statistical methods but aimed to develop a
576 transparent, flexible, and easily applicable scheme that could be used to evaluate read-across and
577 demonstrate tolerable uncertainty. This study employed four levels of uncertainty, based on principles
578 outlined by the EFSA Scientific Committee (2018a, b). The four ordinal classifications of uncertainty
579 rely on expert analysis and enough information to assess the acceptability of the read-across. The
580 primary uncertainty levels are "very low" and "low," and it is expected that these would be acceptable
581 for most purposes. However, only very low levels of uncertainty may be inevitably acceptable for
582 certain uses, such as filling data gaps for regulatory-related risk assessments. Moderate levels of
583 uncertainty may be tolerable in certain circumstances, and when the impact on the overall outcome
584 is low. High levels of uncertainty are, in most cases, unlikely to be tolerable; the high uncertainty
585 grading is broad (note that no very high classification is proposed) and intended to capture any level
586 of non-tolerable uncertainty. It is unlikely for a read-across prediction with significantly high levels of
587 uncertainty to ever advance beyond the formative phase unless it is mitigated by low, or no, impact
588 or until further data and / or information is included to create a weight-of-evidence (Escher et al.,
589 2019; 2022).

590 To meet current regulatory standards and criteria, classifying uncertainty in binary terms (e.g.,
591 acceptable/unacceptable) is of little, or no, value. Ordinal classifications (e.g., classification with three
592 or more categories) have been proposed. Schultz et al. (2015) proposed three levels: high, moderate,
593 and low. ECHA RAAF has five AOs (ECHA, 2017). These can be broadly mapped onto the scheme
594 proposed in this study, as demonstrated in Table 1. It is intended that every aspect of the read-across
595 uncertainty scheme be flexible and adaptable. If there is a need to adjust the definitions or impact of
596 the relative levels of uncertainty, this would be possible. However, schemes with a high number of
597 classifications (i.e., more than five) often struggle to achieve a majority, let alone a consensus, of
598 expert opinions.

599 As illustrated in the examples (Tables 3-8), an overall uncertainty statement for the read-across can
600 also be derived from the ordinal values in the proposed scheme. Three factors contribute to this
601 statement: 1) the overall impact on the uncertainty of the final prediction, 2) the magnitude of
602 uncertainty associated with the endpoint being filled, and 3) the sensitivity of uncertainty to the read-
603 across concept. However, the contributions of these factors vary. Only one uncertainty criterion
604 (chemical-similarity metrics) has an overall impact below the high level.

605 When the specified similarity is relevant to the read-across chemical pairing, the overall impact on the
606 final prediction's uncertainty and the magnitude of uncertainty associated with the endpoint being
607 filled are typically highly correlated. Therefore, overall uncertainty is usually driven by the high-impact
608 uncertainties. The general consideration is that overall uncertainty cannot be lower than the highest
609 level of uncertainty among the "high impact" uncertainties. Overall uncertainty can be lower than the
610 level of uncertainty associated with "moderate/low impact" uncertainties. However, concrete
611 examples of such occurrences are not available as failed read-across predictions are not published.

612 Tolerable uncertainty would usually be established during the problem formulation stage of read-
613 across (EFSA Scientific Committee, 2025) and will be specific to the context and use. A key aim of this
614 study and a notable feature of the proposed approach is to identify and define tolerable uncertainty.
615 This method would enable the expression of levels of tolerable uncertainty, and, by applying the seven
616 criteria in a standard format, can vastly improve their application. Applying the reported uncertainty
617 assessment scheme to the 25 published read-across assessments for skin sensitisation (see Table S4.1)
618 and repeated dose toxicity (see Table S4.2), we obtained only one prediction that has an overall
619 uncertainty greater than "low". The overall uncertainty of moderate is explainable, and could be
620 improved by the addition of further data to reduce uncertainty.

621 A key feature of the proposed uncertainty assessment scheme is its flexibility. Although only skin
622 sensitisation and subchronic repeat dose systemic toxicity are demonstrated, it can be adapted to

623 other endpoints. Typically, the scheme details for skin sensitisation can be easily modified for
 624 mutagenesis, clastogenesis, and likely photo irritation. Similarly, the scheme details for repeat dose
 625 toxicity should be adjustable to include fertility and developmental toxicity.

626

627 4.2 Regulatory relevance of the proposed scheme and template for the assessment of
 628 uncertainty in read-across.

629 The scheme presented provides for the pragmatic assessment of overall uncertainty in a flexible
 630 manner and the opportunity for tolerable uncertainty to be stated as part of the regulatory
 631 framework. Specifically with regard to ECHA RAAF (ECHA, 2017), the above examples are directly
 632 relatable to ECHA RAAF Scenario 2 (analogue approach for which the read-across hypothesis is based
 633 on different compounds with qualitatively similar properties). With regard to the AEs in RAAF Scenario
 634 2, the approach to assess uncertainty will directly support:

635 • AE A.2 Link of structural similarities and differences with the proposed prediction

636 In addition, it will provide indirect support to assess:

637 • AE 2.2 Common underlying mechanism, qualitative aspects
 638 • AE 2.3 Common underlying mechanism, quantitative aspects

639 The scheme will need to be adapted for each endpoint assessed, particularly with a better
 640 understanding of the impact of each of the uncertainty criteria. It is envisioned that the requirements
 641 to provide evidence to meet the information requirements within current, and future, chemicals'
 642 legislation will dictate that overall uncertainty must be preferentially "very low" as described in this
 643 approach, or occasionally "low" with reasonable justification. These uncertainties have not previously
 644 been placed in a defined, and quantifiable context as is provided in this approach. The scheme and
 645 template also allow for the inclusion of further evidence to support the structural characterisation,
 646 such as the inclusion of NAM data.

647 The scheme can also be adapted to meet the needs of other RAAF scenarios (not detailed herein). In
 648 addition, it can be used for other regulatory purposes, where similarity criteria may be more relaxed.
 649 An example is the recent revision of the EU Classification, Labelling and Packaging (CLP) (EC, 2024),
 650 where greater emphasis has been placed on the use of groups for harmonised classifications (CLH).
 651 CLH may allow for more relaxed consideration of similarity, for instance, putting emphasis on similarity
 652 in mode of action, rather than 2D structure. Such relaxation of criteria can be accommodated in the
 653 scheme in two ways. One possibility is that the relative impact of the uncertainty criteria could be
 654 reduced, emphasising the structural basis of the mode of action. Alternatively, in the flexible

655 application of the scheme, higher uncertainty in the less relevant criteria (e.g., for structural similarity)
656 could be tolerable on an *ad hoc* and well-justified, basis. These latter points could be made clear in
657 the overall problem formulation.

658

659 5. Summary

660 It has been over a decade since Ball and others broached the question, "How much uncertainty in
661 read-across predictions is too much?" (Ball et al., 2014). Some of the earlier findings remain valid
662 today. The differences in establishing tolerable uncertainty depend on the data gap being filled,
663 specifically the context (regulatory or otherwise) and endpoint. Data gap ranging from observations
664 at the molecular or cellular level to those at the organismal level. Some data gaps exist for well-studied
665 and well-understood endpoints, while others pertain to less well-understood endpoints. Additionally,
666 some data gaps are expressed in binary ordinal terms (toxicity or non-toxicity), while others are
667 quantified as continuous potency. These factors impact the uncertainties associated with accepting a
668 read-across prediction. Specific policies and/or regulations will also influence tolerable uncertainty,
669 such as assessing every substance in an inventory or avoiding animal testing. While determining
670 tolerable uncertainty in read-across remains expert-derived and determined on a case-by-case basis,
671 the criteria for evaluating and standards for quantifying uncertainty have become more established.

672 The scheme for assessing uncertainty in read-across proposed in this study is intended to be flexible
673 and adaptable. It defines fully the levels of uncertainty and their relative impact. While different
674 degrees of structural similarity and various data arrays are observed in published read-across
675 predictions, the uncertainties associated with these predictions can be classified into two situations.
676 The read-across is directly actionable based on data from a source chemical that strictly or near-strictly
677 meets the structural definition of the target substance. However, as the structural definition of the
678 chemical grouping becomes more lenient, uncertainty tends to increase, making the read-across not
679 actionable without considering additional forms of chemical similarity. The approach presented herein
680 is intended to assist in translating the concept of uncertainties in read-across into a scheme that
681 recognises, evaluates, and details relevant and overall uncertainties.

682

683 Acknowledgements

684 This work was supported by the project RISK-HUNT3R: RISK assessment of chemicals integrating
685 HUman centric Next generation Testing strategies promoting the 3Rs. RISK-HUNT3R has received
686 funding from the European Union's Horizon 2020 research and innovation programme under grant
687 agreement No 964537 and is part of the ASPIS cluster and the QUANTUM-TOX - Revolutionizing

688 Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence (QUANTUM-
 689 TOX) HORIZON-EIC-2023-PATHFINDEROPEN-01 Project number: 101130724. The authors express
 690 gratitude to the staff members of the Research Institute for Fragrance Materials for their assistance
 691 in identifying the safety assessments and read-across justification considered during the development
 692 of this paper.

693 The authors gratefully acknowledge the expertise and critical feedback from Dr Ullrika Sahlin, Lund
 694 University, Sweden.

695

696 **Disclaimer**

697 This work reflects only the authors' views, and the European Commission is not responsible for any
 698 use that may be made of the information it contains.

699

700 **Conflict of Interest**

701 MTDC is a current member, and TWS is a former member, of the Expert Panel for Fragrance Safety
 702 (<https://fragrancesafetypanel.org>).

703

704 **CRediT authorship contribution statement**

705 **Mark T.D. Cronin:** Conceptualization; Writing – review and editing; **Terry W. Schultz:**
 706 Conceptualization; Writing – original draft.

707

708 **Statement of the Use of AI**

709 The AI Tool “ChatGPT (GPT-5)” (OpenAI, 2025. *ChatGPT*, <https://chat.openai.com/>) was used for the
 710 initial formatting of references to a standardised format in the main manuscript (not the
 711 Supplementary Information). The authors manually checked and finalised the presentation of each
 712 reference and verified the veracity of every citation.

713

714 **References**

715 Alépée N, Tourneix F, Singh A, Ade N, Grégoire S. (2023) Off to a good start? Review of the predictivity
 716 of reactivity methods modelling the molecular initiating event of skin sensitization. *ALTEX* 40: 606-
 717 618. doi: 10.14573/altex.2212201

718 Allen THE, Middleton AM, Goodman JM, Russell PJ, Kukic, P (2022) Towards quantifying the
 719 uncertainty in in silico predictions using Bayesian learning. *Comp. Toxicol.* 23: 100228. doi:
 720 10.1016/j.comtox.2022.100228

721 Api AM, Belsito D, Bruze M, Cadby P, Calow P, Dagli ML, Dekant W, Ellis G, Fryer AD, Fukayama M,
 722 Griem P, Hickey C, Kromidas L, Lalko JF, Liebler DC, Miyachi Y, Politano VT, Renskers K, Ritacco G,
 723 Salvito D, Schultz TW, Sipes IG, Smith B, Vitale D, Wilcox DK (2015) Criteria for the Research Institute

724 for Fragrance Materials, Inc. (RIFM) safety evaluation process for fragrance ingredients. *Food Chem. Toxicol.* 82 Suppl: S1-S19. doi: 10.1016/j.fct.2014.11.014

725

726 Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based
727 similarity calculations? *J. Cheminform.* 7: 20. doi: 10.1186/s13321-015-0069-3

728 Ball N, Bartels M, Budinsky R, Klapacz J, Hays S, Kirman C, Patlewicz G. (2014) The challenge of using
729 read-across within the EU REACH regulatory framework; how much uncertainty is too much?
730 Dipropylene glycol methyl ether acetate, an exemplary case study. *Regul. Toxicol. Pharmacol.* 68: 212-
731 221. doi: 10.1016/j.yrtph.2013.12.007

732 Barnett RE, Lawson TN, Rivetti C, Barata C, Cronin MTD, Lacorte S, Lloyd GR, Weber RJM, Smith MJ,
733 Southam AD, Biales A, Koehrn K, Campos B, Colbourne JK, Hodges G, Viant MR (2025) Substantiating
734 chemical groups for read-across using molecular response profiles. *Regul. Toxicol. Pharmacol.* 162:
735 105894. doi: 10.1016/j.yrtph.2025.105894.

736 Blackburn K, Stuard SB (2014) A framework to facilitate consistent characterization of read across
737 uncertainty. *Regul. Toxicol. Pharmacol.* 68: 353-62. doi: 10.1016/j.yrtph.2014.01.004

738 Boyer S, Arnby CH, Carlsson L, Smith J, Stein V, Glen RC (2007) Reaction site mapping of xenobiotic
739 biotransformations. *J. Chem. Inf. Model.* 47: 583-590. doi: 10.1021/ci600376q

740 Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G (2015) Molecular
741 fingerprint similarity search in virtual screening. *Methods* 71: 58-63. doi:
742 10.1016/j.ymeth.2014.08.005

743 Cronin MTD, Enoch SJ, Mellor CL, Przybylak KR, Richarz AN, Madden JC (2017) *In silico* prediction of
744 organ level toxicity: Linking chemistry to adverse effects. *Toxicol. Res.* 33: 173-182. doi:
745 10.5487/TR.2017.33.3.173

746 Date MS, O'Brien D, Botelho DJ, Schultz TW, Liebler DC, Penning TM, Salvito DT (2020) Clustering a
747 chemical inventory for safety assessment of fragrance ingredients: Identifying read-across analogs to
748 address data gaps. *Chem. Res. Toxicol.* 33: 1709-1718. doi: 10.1021/acs.chemrestox.9b00518

749 De Abrew KN, Natoli T, Lester CC, Wang X, Shobair M, Subramanian A, Daston GP (2022) A New
750 Approach Methodology (NAM) based assessment of butylated hydroxytoluene (BHT) for endocrine
751 disruption potential. *Toxicol. Sci.* 190: 227-241. doi: 10.1093/toxsci/kfac099

752 Dimitrov SD, Diderich R, Sobanski T, Pavlov TS, Chankov GV, Chapkanov AS, Karakolev YH, Temelkov
753 SG, Vasilev RA, Gerova KD, Kuseva CD, Todorova ND, Mehmed AM, Rasenberg M, Mekenyany OG
754 (2016) QSAR Toolbox - workflow and major functionalities. *SAR QSAR Environ. Res.* 27: 203-219. doi:
755 10.1080/1062936X.2015.1136680

756 EC (2024) Regulation (EU) 2024/2865 of the European Parliament and of the Council of 23 October
757 2024 amending Regulation (EC) No 1272/2008 on classification, labelling and packaging of substances
758 and mixtures (Text with EEA relevance). *Off. J. Eur. Union L*, 2024/2865, 20 November 2024. Available
759 from <https://eur-lex.europa.eu/eli/reg/2024/2865/oj> (accessed 17 September 2025).

760 ECHA (2008) *Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.6: QSARs and Grouping of Chemicals*. European Chemical Agency, Helsinki, Finland. Available from:
761 https://echa.europa.eu/documents/10162/17224/information_requirements_r6_en.pdf/77f49f81-b76d-40ab-8513-4f3a533b6ac9?t=1322594777272 (accessed 27 August 2025).

762

763

764 ECHA (2017) *Read-Across Assessment Framework (RAAF)*. European Chemicals Agency, Helsinki,
765 Finland. ECHA-17-R-01-EN. doi: 10.2823/619212. Available
766 from <https://data.europa.eu/doi/10.2823/619212>

767 ECHA (2023) *The Use of Alternatives to Testing on Animals for the REACH Regulation. Fifth Report
768 under Article 117(3) of the REACH Regulation*. European Chemical Agency, Helsinki, Finland. ECHA-23-

769 R-07-EN. doi: 10.2823/805454. Available from:
 770 https://echa.europa.eu/documents/10162/23919267/230530_117_3_alternatives_test_animals_20_23_en.pdf/9fcf291e-9baf-ffa2-466c-2bc2c6f06b8e?t=1685428213290

772 EFSA Scientific Committee; Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H,
 773 Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Younes M, Craig
 774 P, Hart A, Von Goetz N, Koutsoumanis K, Mortensen A, Ossendorp B, Germini A, Martino L, Merten C,
 775 Mosbach-Schulz O, Smith A, Hardy A (2018a) The principles and methods behind EFSA's guidance on
 776 uncertainty analysis in scientific assessment. *EFSA J.* 16(1): e05122. doi: 10.2903/j.efsa.2018.5122

777 EFSA Scientific Committee; Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H,
 778 Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Younes M, Craig
 779 P, Hart A, Von Goetz N, Koutsoumanis K, Mortensen A, Ossendorp B, Martino L, Merten C, Mosbach-
 780 Schulz O, Hardy A (2018b) Guidance on uncertainty analysis in scientific assessments. *EFSA J.* 16:
 781 e05123. doi: 10.2903/j.efsa.2018.5123

782 EFSA Scientific Committee; Bennekou SH, Allende A, Bearth A, Casacuberta J, Castle L, Coja T, Crépet
 783 A, Halldorsson T, Hoogenboom LR, Jokelainen P, Knutsen H, Koutsoumanis K, Lambré C, Nielsen S,
 784 Turck D, Civera AV, Villa RE, Zorn H, Benfenati E, Benigni R, Chaudhry Q, Farcal L, Kass G, Nathanail A,
 785 Paini A, Serafimova R (2025) Guidance on the use of read-across for chemical safety assessment in
 786 food and feed. *EFSA J.* 23: e9586. doi: 10.2903/j.efsa.2025.9586

787 Enoch SJ, Cronin MTD (2010) A review of the electrophilic reaction chemistry involved in covalent DNA
 788 binding. *Crit. Rev. Toxicol.* 40: 728-748. doi: 10.3109/10408444.2010.494175

789 Enoch SJ, Ellison CM, Schultz TW, Cronin MTD (2011) A review of the electrophilic reaction chemistry
 790 involved in covalent protein binding relevant to toxicity. *Crit. Rev. Toxicol.* 41: 783-802. doi:
 791 10.3109/10408444.2011.598141

792 Enoch SJ, Roberts DW (2013) Predicting skin sensitization potency for Michael acceptors in the LLNA
 793 using quantum mechanics calculations. *Chem. Res. Toxicol.* 26: 767-774. doi: 10.1021/tx4000655

794 Enoch SJ, Madden JC, Cronin MTD (2008) Identification of mechanisms of toxic action for skin
 795 sensitisation using a SMARTS pattern based approach. *SAR QSAR Environ. Res.* 19: 555-578. doi:
 796 10.1080/10629360802348985

797 Escher SE, Aguayo-Orozco A, Benfenati E, Bitsch A, Braunbeck T, Brotzmann K, Bois F, van der Burg B,
 798 Castel J, Exner T, Gadaleta D, Gardner I, Goldmann D, Hatley O, Golbamaki N, Graepel R, Jennings P,
 799 Limonciel A, Long A, MacLennan R, Mombelli E, Norinder U, Jain S, Capinha LS, Tabouret OT, Tolosa
 800 L, Vrijenhoek NG, van Vugt-Lussenburg BMA, Walker P, van de Water B, Wehr M, White A, Zdrazil B,
 801 Fisher C (2022) Integrate mechanistic evidence from new approach methodologies (NAMs) into a
 802 read-across assessment to characterise trends in shared mode of action. *Toxicol. in Vitro.* 79: 105269.
 803 doi: 10.1016/j.tiv.2021.105269

804 Escher SE, Kamp H, Bennekou SH, Bitsch A, Fisher C, Graepel R, Hengstler JG, Herzler M, Knight D, Leist
 805 M, Norinder U, Ouédraogo G, Pastor M, Stuard S, White A, Zdrazil B, van de Water B, Kroese D (2019)
 806 Towards grouping concepts based on new approach methodologies in chemical hazard assessment:
 807 the read-across approach of the EU-ToxRisk project. *Arch. Toxicol.* 93: 3643-3667. doi:
 808 10.1007/s00204-019-02591-7

809 Gilmour N, Kern PS, Alépée N, Boislève F, Bury D, Clouet E, Hirota M, Hoffmann S, Kühnl J, Lalko JF,
 810 Mewes K, Miyazawa M, Nishida H, Osmani A, Petersohn D, Sekine S, van Vliet E, Klaric M (2020)
 811 Development of a next generation risk assessment framework for the evaluation of skin sensitisation
 812 of cosmetic ingredients. *Regul. Toxicol. Pharmacol.* 116: 104721. doi: 10.1016/j.yrtph.2020.104721

813 Hagan B, Shah I, G Patlewicz, (2025) Can graph similarity metrics be helpful for analogue identification
 814 as part of a read-across approach? *Comp. Toxicol.* 34: 100353. doi: 10.1016/j.comtox.2025.100353

815 Hartung T, Rovida C (2025) Mechanistic read-across comes of age: a comparative appraisal of EFSA
 816 2025 guidance, ECHA's RAAF, and good read-across practice. *Front. Toxicol.* 7: 1690491. doi:
 817 10.3389/ftox.2025.1690491

818 Kalgutkar AS, Gardner I, Obach RS, Shaffer CL, Callegari E, Henne KR, Mutlib AE, Dalvie DK, Lee JS, Nakai
 819 Y, O'Donnell JP, Boer J, Harriman SP (2005). A comprehensive listing of bioactivation pathways of
 820 organic functional groups. *Curr. Drug. Metab.* 6: 161–225. doi: 10.2174/1389200054021799

821 Klimisch HJ, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of
 822 experimental toxicological and ecotoxicological data. *Regul. Toxicol. Pharmacol.* 25: 1-5. doi:
 823 10.1006/rtpb.1996.1076

824 Kovarich S, Ceriani L, Fuert Gatlak M, Bassan A, Pavan M (2019) Filling data gaps by read-across: A mini
 825 review on its application, developments and challenges. *Mol. Inform.* 38: e1800121. doi:
 826 10.1002/minf.201800121

827 Laroche C, Aggarwal M, Bender H, Benndorf P, Birk B, Crozier J, Dal Negro G, De Gaetano F, Desaintes
 828 C, Gardner I, Hubesch B, Irizar A, John D, Kumar V, Lostia A, Manou I, Monshouwer M, Müller BP, Paini
 829 A, Reid K, Rowan T, Sachana M, Schutte K, Stirling C, Taalman R, van Aerts L, Weissenhorn R, Sauer UG
 830 (2018) Finding synergies for 3Rs - Toxicokinetics and read-across: Report from an EPAA Partners'
 831 Forum. *Regul. Toxicol. Pharmacol.* 99: 5-21. doi: 10.1016/j.yrtph.2018.08.006

832 Lester C, Byrd E, Shobair M, Yan G (2023) Quantifying analogue suitability for SAR-based read-across
 833 toxicological assessment. *Chem. Res. Toxicol.* 36: 230-242. doi: 10.1021/acs.chemrestox.2c00311

834 Madden JC, Enoch SJ, Paini A, Cronin MTD (2020) A review of *in silico* tools as alternatives to animal
 835 testing: Principles, resources and applications. *Altern. Lab. Anim. (ATLA)* 48: 146-172. doi:
 836 10.1177/0261192920965977

837 Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. *J. Med.*
 838 *Chem.* 57: 3186-3204. doi: 10.1021/jm401411z

839 Mansouri K, Taylor K, Auerbach S, Ferguson S, Frawley R, Hsieh JH, Jahnke G, Kleinstreuer N, Mehta S,
 840 Moreira-Filho JT, Parham F, Rider C, Rooney AA, Wang A, Sutherland V (2024) Unlocking the potential
 841 of clustering and classification approaches: Navigating supervised and unsupervised chemical
 842 similarity. *Environ. Health Perspect.* 132: 85002. doi: 10.1289/EHP14001

843 Mellor CL, Marchese Robinson RL, Benigni R, Ebbrell D, Enoch SJ, Firman JW, Madden JC, Pawar G,
 844 Yang C, Cronin MTD (2019) Molecular fingerprint-derived similarity measures for toxicological read-
 845 across: Recommendations for optimal use. *Regul. Toxicol. Pharmacol.* 101: 121-134. doi:
 846 10.1016/j.yrtph.2018.11.002

847 Moermond CT, Kase R, Korkaric M, Ågerstrand M (2016) CRED: Criteria for reporting and evaluating
 848 ecotoxicity data. *Environ. Toxicol. Chem.* 35: 1297-1309. doi: 10.1002/etc.3259

849 Molander L, Ågerstrand M, Beronius A, Hanberg A, Rudén C, (2015) Science in Risk Assessment and
 850 Policy (SciRAP): An online resource for evaluating and reporting *in vivo* (eco)toxicity studies. *Hum. Ecol.*
 851 *Risk Assess.* 21: 753-762. doi: 10.1080/10807039.2014.928104

852 Moustakas H, Date MS, Kumar M, Schultz TW, Liebler DC, Penning TM, Salvito DT, Api AM (2022) An
 853 end point-specific framework for read-across analog selection for human health effects. *Chem. Res.*
 854 *Toxicol.* 35: 2324-2334. doi: 10.1021/acs.chemrestox.2c00286

855 Muldoon J, Moustakas H, Schultz TW, Penning TM, Bryant-Friedrich A, Botelho DJ, Api A M (2025)
 856 Advancing chemical grouping: Development and application of signature-based structure-activity
 857 groups for non-animal safety assessments. *Comp. Toxicol.* 36: 100391. doi:
 858 10.1016/j.comtox.2025.100391

859 OECD (2025), *Guidance on Grouping of Chemicals, Third Edition*, OECD Series on Testing and
 860 Assessment, No. 418, OECD Publishing, Paris, <https://doi.org/10.1787/b254a158-en> (accessed 31
 861 December 2025). Patlewicz G, Charest N, Ross A, Bledsoe HC, Vidal J, Faramarzi S, Hagan B, Shah I
 862 (2025) Building a compendium of expert driven read-across cases to facilitate an analysis of the
 863 contribution that different similarity contexts play in read-across performance. *Comp. Toxicol.* 35:
 864 100366. doi: 10.1016/j.comtox.2025.100366

865 Patlewicz G, Cronin MTD, Helman G, Lambert JC, Lizarraga LE, Shah I (2018) Navigating through the
 866 minefield of read-across frameworks: A commentary perspective. *Comp. Toxicol.* 6: 39-54. doi:
 867 10.1016/j.comtox.2018.04.002

868 Patlewicz G, Karamertzanis P, Paul-Friedman K, Sannicola M, Shah I (2024) A systematic analysis of
 869 read-across within REACH registration dossiers. *Comp. Toxicol.* 30: 100304. doi:
 870 10.1016/j.comtox.2024.100304

871 Pestana CB, Firman JW, Cronin MTD (2021) Incorporating lines of evidence from New Approach
 872 Methodologies (NAMs) to reduce uncertainties in a category based read-across: A case study for
 873 repeated dose toxicity. *Regul. Toxicol. Pharmacol.* 120: 104855. doi: 10.1016/j.yrtph.2020.104855

874 Pestana CB, Leme DM, Silva EZM, Kiessig S, Firman JW, Kneuer C, Marx-Stoelting P, Cronin MTD (2025)
 875 Challenges and opportunities of read-across for the tumor promotion effects of microcystins. *Regul.*
 876 *Toxicol. Pharmacol.* 163: 105938. doi: 10.1016/j.yrtph.2025.105938

877 Roe HM, Tsai HD, Ball N, Oware KD, Han G, Chiu WA, Rusyn I (2025a) What does "success" look like in
 878 compliance check decisions by the European Chemicals Agency? The curious cases of accepted read-
 879 across adaptations. *ALTEX* in press. doi: 10.14573/altex.2505191

880 Roe HM, Tsai HD, Ball N, Wright FA, Chiu WA, Rusyn I (2025b). A systematic analysis of read-across
 881 adaptations in testing proposal evaluations by the European Chemicals Agency. *ALTEX* 42: 22-38. doi:
 882 10.14573/altex.2408292

883 Ross A, Gombar V, Sedykh A, Green AJ, Borrel A, Kidd B, Phillips J, Shah M, Phadke D, Mav D, Balik-
 884 Meisner M, Howard B, Shah R, Kleinstreuer NC, Casey WM (2025) OrbiTox: a visualization platform for
 885 NAMs and read-across exploration of multi-domain data. *Front. Pharmacol.* 16: 1710864. doi:
 886 10.3389/fphar.2025.1710864

887 Rovida C, Barton-Maclaren T, Benfenati E, Caloni F, Chandrasekera PC, Chesné C, Cronin MTD, De
 888 Knecht J, Dietrich DR, Escher SE, Fitzpatrick S, Flannery B, Herzler M, Hougaard Bennekou S, Hubesch
 889 B, Kamp H, Kisitu J, Kleinstreuer N, Kovalich S, Leist M, Maertens A, Nugent K, Pallocca G, Pastor M,
 890 Patlewicz G, Pavan M, Presgrave O, Smirnova L, Schwarz M, Yamada T, Hartung T (2020)
 891 Internationalization of read-across as a validated new approach method (NAM) for regulatory
 892 toxicology. *ALTEX* 37: 579-606. doi: 10.14573/altex.1912181

893 Sahlin U, Filipsson M, Öberg T (2011) A risk assessment perspective of current practice in
 894 characterizing uncertainties in QSAR regression predictions. *Mol. Inform.* 30: 551-564. doi:
 895 10.1002/minf.201000177

896 Sapounidou M, Norinder U, Andersson PL (2023) Predicting endocrine disruption using conformal
 897 prediction - A prioritization strategy to identify hazardous chemicals with confidence. *Chem. Res.*
 898 *Toxicol.* 36: 53-65. doi: 10.1021/acs.chemrestox.2c00267

899 Schmeisser S, Miccoli A, von Bergen M, Berggren E, Braeuning A, Busch W, Desaintes C, Gourmelon A,
 900 Grafström R, Harrill J, Hartung T, Herzler M, Kass GEN, Kleinstreuer N, Leist M, Luijten M, Marx-
 901 Stoelting P, Poetz O, van Ravenzwaay B, Roggeband R, Rogiers V, Roth A, Sanders P, Thomas RS, Marie
 902 Vinggaard A, Vinken M, van de Water B, Luch A, Tralau T (2023) New approach methodologies in
 903 human regulatory toxicology - Not if, but how and when! *Environ. Int.* 178:108082. doi:
 904 10.1016/j.envint.2023.108082

905 Schmitt BG, Roberts J, Kavanagh L, Dawick J, Frijus-Plessen N, Houthoff E, Klapacz J, Schowanek D, Shi
 906 Q, Zhang M, Hodges G (2025) Learning from experience: A retrospective analysis of read-across
 907 strategies for surfactants under REACH. *Regul. Toxicol. Pharmacol.* 162: 105884. doi:
 908 10.1016/j.yrtph.2025.105884

909 Schneider K, Schwarz M, Burkholder I, Kopp-Schneider A, Edler L, Kinsner-Ovaskainen A, Hartung T,
 910 Hoffmann S (2009) "ToxRTool", a new tool to assess the reliability of toxicological data. *Toxicol. Lett.*
 911 189: 138-144. doi: 10.1016/j.toxlet.2009.05.013

912 Schultz TW, Amcoff P, Berggren E, Gautier F, Klaric M, Knight DJ, Mahony C, Schwarz M, White A,
 913 Cronin MTD (2015) A strategy for structuring and reporting a read-across prediction of toxicity. *Regul.*
 914 *Toxicol. Pharmacol.* 72: 586-601. doi: 10.1016/j.yrtph.2015.05.016

915 Schultz TW, Chapkanov A, Kutsarova S, Mekenyany OG (2022) Assessment of uncertainty and credibility
 916 of predictions by the OECD QSAR Toolbox automated read-across workflow for predicting acute oral
 917 toxicity, *Comp. Toxicol.* 22, 100219. doi: 10.1016/j.comtox.2022.100219

918 Schultz TW, Cronin MTD (2017) Lessons learned from read-across case studies for repeated-dose
 919 toxicity. *Regul. Toxicol. Pharmacol.* 88: 185-191. doi: 10.1016/j.yrtph.2017.06.011

920 Schultz TW, Richarz A-N, Cronin MTD (2019) Assessing uncertainty in read-across: Questions to
 921 evaluate toxicity predictions based on knowledge gained from case studies. *Comp. Toxicol.* 9: 1-11.
 922 doi: 10.1016/j.comtox.2018.10.003

923 US EPA (United States Environmental Protection Agency) (2024) TSCA New Chemicals Program (NCP)
 924 Chemical Categories. US EPA, Office of Pollution Prevention and Toxics, Washington DC, USA. Available
 925 at: https://www.epa.gov/system/files/documents/2024-02/ncp_chemical_categories.pdf (accessed
 926 30 December 2025).

927 Vrijenhoek NG, Wehr MM, Kunnen SJ, Wijaya LS, Callegaro G, Moné MJ, Escher SE, Van de Water B
 928 (2022) Application of high-throughput transcriptomics for mechanism-based biological read-across of
 929 short-chain carboxylic acid analogues of valproic acid. *ALTEX* 39: 207-220. doi:
 930 10.14573/altex.2107261

931 Wareing B, Urbisch D, Kolle SN, Honarvar N, Sauer UG, Mehling A, Landsiedel R (2017) Prediction of
 932 skin sensitization potency sub-categories using peptide reactivity data. *Toxicol. in Vitro* 45: 134-145.
 933 doi: 10.1016/j.tiv.2017.08.015

934 Westmoreland C, Bender HJ, Doe JE, Jacobs MN, Kass GEN, Madia F, Mahony C, Manou I, Maxwell G,
 935 Prieto P, Roggeband R, Sobanski T, Schütte K, Worth AP, Zvonar Z, Cronin MTD (2022) Use of New
 936 Approach Methodologies (NAMs) in regulatory decisions for chemical safety: Report from an EPA
 937 Deep Dive Workshop. *Regul. Toxicol. Pharmacol.* 135: 105261. doi: 10.1016/j.yrtph.2022.105261

938 Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. *J. Chem. Inform. Comp. Sci.* 38:
 939 983-996. doi: 10.1021/ci9800211

940 Wohlleben W, Mehling A, Landsiedel R (2023) Lessons learned from the grouping of chemicals to
 941 assess risks to human health. *Angew. Chem. Int. Ed. Engl.* 62 :e202210651. doi:
 942 10.1002/anie.202210651

943 Wu S, Blackburn K, Amburgey J, Jaworska J, Federle T (2010) A framework for using structural,
 944 reactivity, metabolic and physicochemical similarity to evaluate the suitability of analogs for SAR-
 945 based toxicological assessments. *Regul. Toxicol. Pharmacol.* 56: 67-81. doi:
 946 10.1016/j.yrtph.2009.09.006

947 Wu S, Daston G, Rose J, Blackburn K, Fisher J, Reis A, Selman B, Naciff J (2023a) Identifying chemicals
 948 based on receptor binding/bioactivation/mechanistic explanation associated with potential to elicit
 949 hepatotoxicity and to support structure activity relationship-based read-across. *Curr. Res. Toxicol.* 5:
 950 100108. doi: 10.1016/j.crtox.2023.100108

951 Wu S, Ellison C, Naciff J, Karb M, Obringer C, Yan G, Shan Y, Smith A, Wang X, Daston GP (2023b)
952 Structure-activity relationship read-across and transcriptomics for branched carboxylic acids. *Toxicol.*
953 *Sci.* 191: 343-356. doi: 10.1093/toxsci/kfac139

954 Yordanova DG, Kuseva CD, Ivanova H, Schultz TW, Rocha V, Natsch A, Laue H, Mekyan OG (2024) *In*
955 *silico* predictions of sub-chronic effects: Read-across using metabolic relationships between parents
956 and transformation products. *Comp. Toxicol.* 30: 100314, doi: 10.1016/j.comtox.2024.100314

957 Yordanova DG, Schultz TW, Kuseva CD, Mekyan OG (2021) Assessing metabolic similarity for read-
958 across predictions. *Comp. Toxicol.* 18: 100160. doi: 10.1016/j.comtox.2021.100160

959 Zhou YH, Gallins PJ, Rusyn I, Wright FA (2025) An approach to uncover significant direct and mediated
960 relationships in multi-dimensional new approach methods (NAMs) data: A case study of hazard
961 evaluation of petroleum UVCBs. *Sci. Total Environ.* 985: 179724. doi: 10.1016/j.scitotenv.2025.179724

962

Highlights

- Uncertainty in read-across assessments is categorised into seven criteria
- Read-across uncertainty has been characterised and the relative impact identified
- Assessment of (overall) uncertainty based on chemical structure and properties
- Simple and transparent template for uncertainty in read-across
- Tolerable uncertainty of the accepted read-across identified

This work was supported by the project RISK-HUNT3R: RISK assessment of chemicals integrating HUMAN centric Next generation Testing strategies promoting the 3Rs. RISK-HUNT3R has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 964537 and is part of the ASPIS cluster and the QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence (QUANTUM-TOX) HORIZON-EIC-2023-PATHFINDEROPEN-01 Project number: 101130724.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Mark Cronin is a current member, and Prof Terry Schultz a former member, of the Expert Panel for Fragrance Safety (<https://fragrancesafetypanel.org>).