

CYP2C19 genotyping and mavacamten: predicting outcomes in normal, intermediate and rapid metabolisers in obstructive hypertrophic cardiomyopathy

Yande Kasolo^{1,8,9} · Edward Burford^{2,3} · Mohammed Obeidat⁴ · Glenda M Beaman^{5,6} · Thomas Monk⁷ ·
Rachel Bastiaenen^{2,3} · William G Newman^{5,6} · Robert M Cooper^{1,8}

Received: 23 September 2025 / Accepted: 22 December 2025

© The Author(s) 2026

Abstract

Purpose Mavacamten is the first targeted therapy for obstructive hypertrophic cardiomyopathy (oHCM). It is metabolised via cytochrome p450 enzymes, with variations in the *CYP2C19* gene having predominant influence on plasma concentrations of mavacamten. We aimed to outline the effect of *CYP2C19* metaboliser status on outcomes in patients taking mavacamten.

Methods We retrospectively analysed clinical and echocardiographic data in patients with symptomatic oHCM taking mavacamten. *CYP2C19* genotyping was undertaken by loop-mediated isothermal amplification (LAMP) on EDTA whole blood (LaCAR MDx, Liege Belgium) followed by Sanger sequencing of the coding exons of *CYP2C19*. Logistical regression was used to assess time taken to optimisation.

Results Fifty-five patients (59±13 years; 73% male) were included. Genotyping of *CYP2C19*2*, *CYP2C19*3*, and *CYP2C19*17* alleles was conducted. Due to low numbers in the ultrarapid ($n=1$) and poor ($n=2$) groups, statistical analysis was performed in intermediate, normal and rapid metabolisers. Using normal metabolisers as the reference, there was a non-significant trend towards faster optimisation in intermediate metabolisers (odds ratio 0.63 [95% CI: 0.12–3.19]) and rapid metabolisers (OR 0.55 [95% CI: 0.11–2.53]). While reductions in peak resting (40 ± 34.37 mmHg) and Valsalva (64 ± 35.23 mmHg) left ventricular outflow tract gradients were statistically significant across the cohort ($p<0.0001$), there was no interaction between differing *CYP2C19* groups and time ($p=0.69$).

Conclusion Excluding poor metabolisers, variations in the *CYP2C19* gene do not explain different clinical outcomes in patients with oHCM on mavacamten. Beyond genotyping of the targeted variants, *CYP2C19* sequencing did not provide any additional clinically relevant information.

Keywords Hypertrophic cardiomyopathy · *CYP2C19* · Mavacamten · Genotyping

Yande Kasolo and Edward Burford are joint first author.

✉ William G Newman
William.newman@manchester.ac.uk

Yande Kasolo
yande.kasolo@nhs.net

¹ Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK

² Inherited Cardiovascular Conditions Group, Guy's and St Thomas NHS Foundation Trust, London, UK

³ British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK

⁴ Division of Cardiovascular Sciences, University of Manchester, Manchester, UK

⁵ Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK

⁶ Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK

⁷ North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK

⁸ Research Institute of Sports and Exercise Science, Liverpool John Moores University, Liverpool, UK

⁹ Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Drive, Liverpool, Merseyside L14 3PE, UK

Introduction

Hypertrophic Cardiomyopathy (HCM) is a condition characterised by abnormal thickening of the left ventricular myocardium. It has a prevalence of at least 1 in 500 individuals and is most commonly caused by mutations in sarcomeric genes [1]. In HCM, there is upregulation of actin-myosin cross bridging in the cardiac myocytes, resulting in a hypercontractile state [2]. Dynamic left ventricular outflow tract (LVOT) obstruction is a core pathophysiological feature of HCM often resulting in symptoms such as chest pain, dyspnoea and exercise limitation [3]. Beta blockers, non-dihydropyridine calcium channel blockers and disopyramide have historically been used to treat LVOT obstruction [4, 5]. However, these non-targeted therapies are often poorly tolerated, with dose titration limited by adverse side effects [6, 7]. Invasive septal reduction therapies such as alcohol septal ablation and surgical myectomy improve long term survival and symptoms in patients with drug-resistant presentations [8]. However, these invasive procedures require centre-specific expertise and may not be appropriate in all patients.

Mavacamten, a first-in class, allosteric inhibitor of cardiac myosin ATPase, targets the underlying hypercontractile physiology of HCM [9]. It is effective in reducing symptoms and improving exercise capacity, as demonstrated in phase III randomised controlled trials [10, 11]. In EXPLORER-HCM, significant reduction in LVOT gradient was seen at 30 weeks, with a 35.6mmHg greater mean reduction in peak post-exercise gradient compared with placebo (95% CI – 43.2 to – 28.1; $p < 0.0001$). 37% of patients on mavacamten met the primary endpoint, a composite of improved New York Heart Association (NYHA) symptom class and peak oxygen uptake (pVO_2) ($p < 0.0005$) [10].

The estimated oral bioavailability for mavacamten is at least 85%, with a rapid median time to maximum concentration (around 1 h) [9]. It is metabolised via the liver, predominantly through cytochrome p450 enzymes CYP2C19, CYP3A4 and CYP2C9. CYP2C19 is responsible for 74% of its metabolism [12, 13]. Individual variants in the *CYP2C19* gene lead to variation in mavacamten exposure, with five different metaboliser phenotypes reported: poor, intermediate, normal, rapid and ultrarapid [14]. Elimination half-life varies between these phenotypes: 6 days for ultrarapid metabolisers, 8 days for rapid metabolisers, 9 days for normal metabolisers, 10 days for intermediate metabolisers and 23 days for poor metabolisers [15].

In Europe and the United Kingdom (UK), the summary of product characteristics for mavacamten states that patients should be genotyped for *CYP2C19* to determine the appropriate dose. Poor metabolisers or those within

unknown metaboliser status start on a lower dose of 2.5 mg rather than 5 mg once daily. The European Medicines Agency outlines a strict dosing regimen, which is separated into a 12 week initiation phase, dose titration and a subsequent maintenance phase. Clinical review with echocardiography occurs at 4 weekly intervals during the first 12 weeks. Dose reduction or temporary cessation of mavacamten occurs if peak LVOT gradient drops to $< 20\text{mmHg}$, or if the left ventricular ejection fraction (LVEF) falls below 50%. Beyond this period, patients are titrated up to a maximal dose of 5 mg (poor metabolisers) or 15 mg in other metaboliser groups, with a target LVOT gradient $< 30\text{mmHg}$ and symptom resolution [15]. Currently in the UK, individuals are genotyped for the *CYP2C19*2*, *CYP2C19*3* and *CYP2C19*17* alleles to determine their metaboliser status. This practice differs from that in North America, where *CYP2C19* genotyping is not performed and hence does not inform dosing decisions. Given the time and cost incurred to facilitate genetic testing for these patients, assessment of its utility is an important avenue to explore.

Aims and methods

We sought to determine the effect of *CYP2C19* metaboliser status on outcomes in patients with obstructive HCM (oHCM) on mavacamten in two cardiomyopathy centres in the UK.

Study design and setting

Consecutive patients with symptomatic oHCM treated with mavacamten from two UK centres (Guy's and St Thomas' Hospitals and Liverpool Heart and Chest Hospital) were included in this retrospective study. Data from baseline, week 4, week 8, week 12 and the most recent visit was collated. This included dose, echocardiographic parameters and New York Heart Association (NYHA) class. Initiation dose was dictated by metaboliser status, with poor metabolisers starting on 2.5 mg and other metaboliser groups starting on 5 mg, as per the European summary of product characteristics.

Patient selection

Patients met established eligibility criteria for mavacamten therapy; including NYHA II-III symptoms, peak LVOT gradient $\geq 50\text{mmHg}$ and left ventricular ejection fraction (LVEF) $\geq 55\%$. Baseline characteristics are highlighted below in Table 1.

Genotyping

Patients had *CYP2C19* genotyping for the *CYP2C19*2*, *CYP2C19*3*, and *CYP2C19*17* alleles, undertaken by loop-mediated isothermal amplification (LAMP) on EDTA whole blood (LaCAR MDx, Liege Belgium) as per manufacturer's instructions at baseline and dosing in the drug initiation phase was determined by this. Poor metabolisers were commenced on 2.5 mg daily, with other phenotypes starting on 5 mg. Sanger sequencing of the nine coding exons and exon/intron boundaries of *CYP2C19* (NM_000769.4) was undertaken (primers table S1) on extracted DNA as described previously [16].

Statistical analysis

Patients were considered optimised once treatment entered the maintenance phase and no further dose titration was required, conventionally when the LVOT gradient was <30mmHg. Descriptive statistics were used to outline baseline characteristics. Logistical regression was performed to assess whether *CYP2C19* metaboliser status predicted time to optimisation. Change in ejection fraction (EF) and LVOT gradient was derived using two-way repeated measures ANOVA.

Results

55 patients (59±13 years; 73% male) commenced on mavacamten between December 2023 and September 2024 were included. *CYP2C19* metaboliser status was confirmed in the initiation phase (Table 1). Treatment was permanently discontinued in 2 patients due to non-adherence.

Genetics

Genotyping of the *CYP2C19*2*, *CYP2C19*3*, and *CYP2C19*17* alleles was successfully conducted for all 55 individuals (Table 2). The genotypes are consistent with published allele frequencies [17]. Additional Sanger sequencing of *CYP2C19* identified no additional rare or novel variants and the *CYP2C19* metaboliser status was not altered for any individual compared to that determined by the genotyping of the three functional alleles.

Time taken to optimisation

44 patients (80%) were optimised by most recent follow up (mean 20.0 ± 12.64 weeks, 95% CI 16.16–23.84). A binary logistic regression model was used to assess whether *CYP2C19* metaboliser status predicted delayed

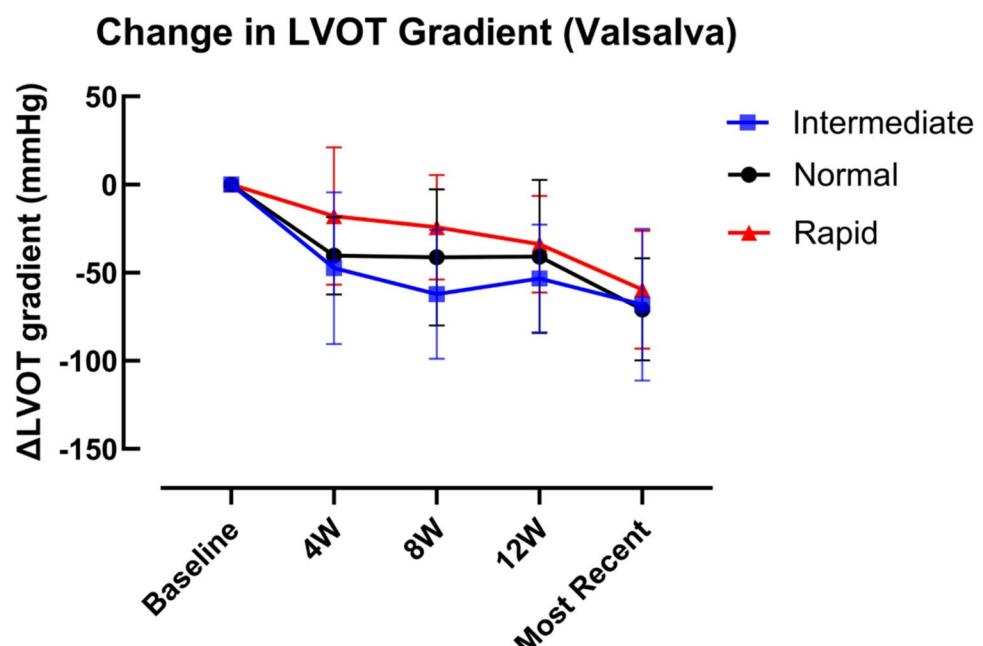
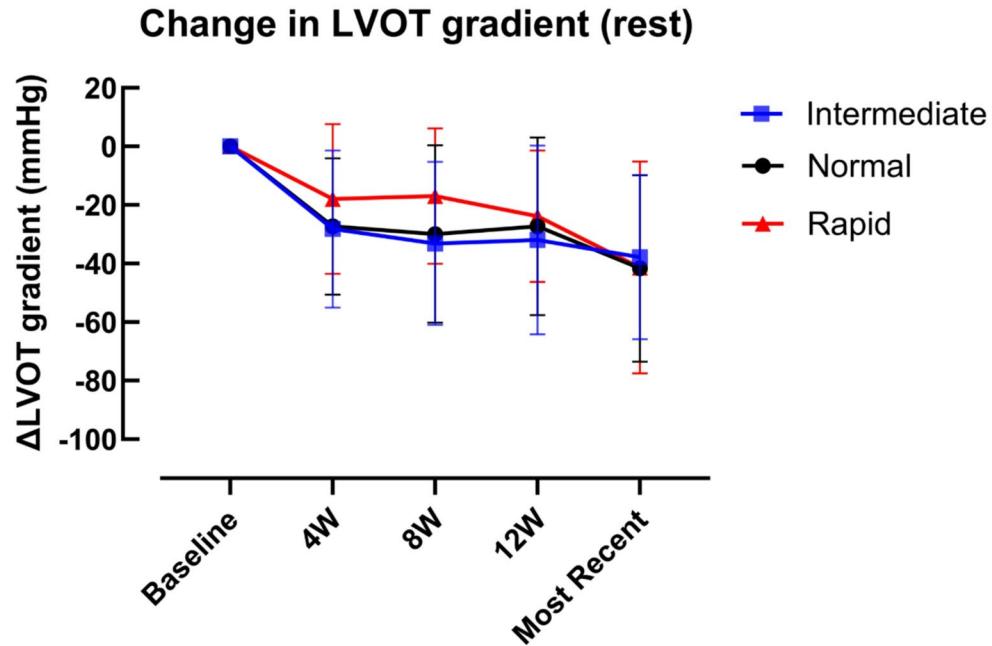
Table 1 Baseline characteristics of patient cohort on Mavacamten

	N=55 (SD or %)
Age	59 (±13)
Sex	
Male	40 (73)
Female	15 (27)
Ethnicity	
White (British/European)	46 (84)
Black (African/Caribbean)	4 (7)
Asian	2 (4)
Other	3 (5)
CYP2C19 metaboliser status	
Ultrarapid	1 (2)
Rapid	16 (29)
Normal (extensive)	21 (38)
Intermediate	15 (27)
Poor	2 (4)
HCM Genotype	
Pathogenic variant in sarcomeric gene	10 (18)
No pathogenic variant identified	33 (60)
Variant of unknown significance	4 (7)
HCM genetic panel not tested/outcome awaited	8 (15)
Prior HCM treatment	
Beta blocker	46 (84)
Non-DHP calcium channel blockers	8 (15)
Disopyramide	24 (44)
Previous SRT	4 (7)
NYHA class at baseline	
I	0
II	24
III	31
IV	0
NYHA at most recent follow up	
I	35
II	17
III	3
IV	0

optimisation, defined as taking more than 12 weeks to reach target dose or not yet being optimised at last follow-up. Due to low numbers, patients with poor ($n=2$) and ultra-rapid ($n=1$) phenotypes were excluded. Among the remaining 50 patients, *CYP2C19* status (intermediate and rapid vs.

Table 2 Frequencies of *CYP2C19* genotypes and predicted metaboliser status

<i>CYP2C19</i> Genotype	Metaboliser status	N=55 (%)	CPIC CYP2C19 Approximate genotype frequencies %
*1/*1	Extensive (normal)	21 (38)	39
*1/*2	Intermediate	11 (20)	18
*1/*17	Rapid	16 (29)	27
*2/*17	Intermediate	4 (7)	6
*2/*2	Poor	2 (4)	2
*17/*17	Ultrarapid	1 (2)	4



normal) was entered as a categorical predictor, using normal metabolisers as the reference.

Intermediate metabolisers had an odds ratio (OR) of 0.63 (95% CI: 0.12–3.19), and rapid metabolisers had an OR of 0.55 (95% CI: 0.11–2.53). The model's area under the receiver operating characteristic curve (AUC) was 0.57, indicating poor discriminative ability. These findings suggest that CYP2C19 phenotype did not meaningfully predict time to optimisation.

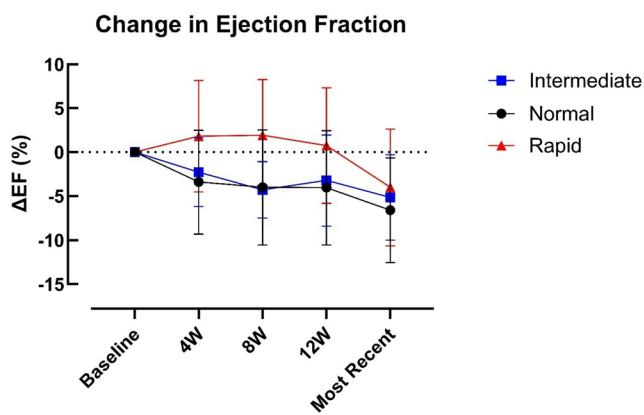
LVOT gradient

Overall reductions in both peak resting (40 ± 34.37 mmHg) and Valsalva (64 ± 35.23 mmHg) gradients were statistically significant ($p < 0.0001$). Progressive reduction in gradient was observed in rapid, intermediate and normal metabolisers from baseline to the most recent follow-up (Fig. 1). Whilst reduction appeared to be slower in rapid metabolisers, particularly from weeks 4 to 8, this trend was not statistically significant ($p = 0.43$). There was no interaction between

Fig. 1 Change in LVOT gradient at rest and with Valsalva manoeuvre in normal, intermediate, and rapid CYP metaboliser groups. Data are mean \pm SD. Two-way repeated-measures ANOVA with Geisser–Greenhouse correction demonstrated a significant effect of time for both resting and Valsalva gradients (both $p < 0.0001$), with no effect of CYP metaboliser group (rest $p = 0.43$; Valsalva $p = 0.38$) and no time \times group interaction (rest $p = 0.69$; Valsalva $p = 0.71$)

group and time ($p=0.69$), indicating that the degree of gradient reduction was similar across all metaboliser types and not influenced by CYP2C19 status.

Rapid reduction in gradients in the initiation phase (<20mmHg), leading to dose reduction or temporary cessation of mavacamten, was observed in three patients (5%). Two of these patients were normal metabolisers and one was a rapid metaboliser. These patients are now in the maintenance phase of treatment with optimised gradients.


Left ventricular ejection fraction (LVEF)

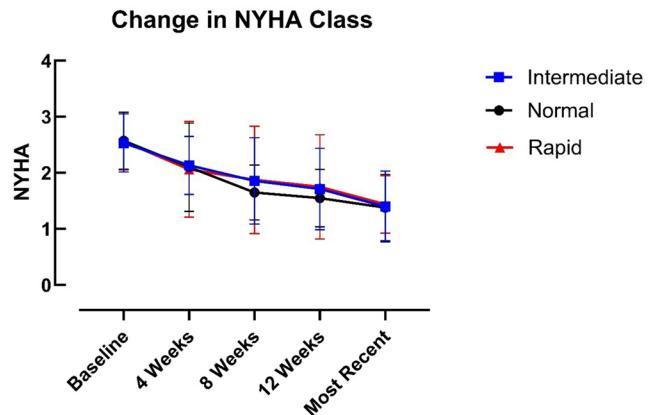
Post-hoc comparisons demonstrate that in the initiation phase, rapid metabolisers had a marginally smaller reduction in EF at four and eight weeks compared to normal metabolisers ($p=0.04$ and 0.03 , respectively), and at eight weeks ($p=0.006$) compared to intermediate metabolisers (Fig. 2). These differences were transient and resolved by 12 weeks.

One patient had a drop in EF<50% (intermediate metaboliser) during treatment. LV impairment resolved on mavacamten withdrawal, and the patient has since been established back on mavacamten with optimised gradients and preserved LVEF.

New York heart association class (NYHA)

All patients had NYHA 2–3 symptoms at baseline. Symptoms improved significantly over time ($p<0.0001$) in all groups, however there were no significant differences

Fig. 2 Change in left ventricular ejection fraction (LVEF) during mavacamten therapy across CYP metaboliser groups. Data are shown as mean \pm SD. Two-way ANOVA demonstrated significant effects of time ($p<0.0001$) and CYP metaboliser group ($p=0.0091$), with no time \times group interaction ($p=0.21$). Tukey post-hoc testing showed higher EF in rapid metabolisers than normal metabolisers at 4 and 8 weeks ($p=0.04$ and $p=0.03$, respectively) and higher EF in rapid than intermediate metabolisers at 8 weeks ($p=0.006$); no other between-group comparisons were significant, and these differences were no longer evident by 12 weeks


between metaboliser groups at any timepoint ($p=0.63$) (Fig. 3). Nearly two-thirds of the group had improved to NYHA 1 at most recent follow up (64%).

Discussion

Our study has shown that *CYP2C19* genotyping does not appear to provide additional benefit in predicting response to mavacamten in intermediate, normal and rapid metabolisers.

Establishing CYP2C19 metaboliser status is currently mandated in Europe and the UK. This differs with North America, where genotyping is not part of the dose initiation protocol, and all patients are commenced on 5 mg once daily. Whilst this is the case, there is still an emphasis on close monitoring and consideration of potential drug-drug interactions [18]. Genetic testing incurs additional time and financial resource for genetic and cardiomyopathy services. Clarifying the utility of this is therefore important. Currently, only determination of CYP2C19 poor metaboliser status results in an alteration to mavacamten dose. It is important to establish if different metaboliser status results in altered responses to the drug or identification of other CYP2C19 variants by extended genotyping adds value.

Variants in the CYP2C19 enzyme affect the terminal half-life ($t_{1/2}$) and hence alter drug exposure of mavacamten [9]. There is established data that supports the lower initiation dose in poor metabolisers, with reduced enzyme function leading to higher drug levels and increased risk of adverse events such as LV systolic dysfunction. Whilst the pharmacokinetic profile of mavacamten suggests that identification of poor metabolisers is beneficial, our study was unable to demonstrate this due to low representation from this group. This may be in part related to our demographic of patients

Fig. 3 Change in NYHA class from baseline to most recent follow-up in normal, intermediate and rapid metaboliser groups. Data represent median values. Two-way ANOVA showed a significant effect of time ($p<0.0001$), with no effect of metaboliser group ($p=0.63$) and no time \times group interaction ($p=0.99$)

(84% White European, see Table 1). Poor metaboliser status varies by ethnicity, with the lowest prevalence seen in the European population (2.1%) and the highest prevalence in Far East Asians (11.9%) [19].

It is worth noting that some of the pharmacokinetic properties of mavacamten may not directly translate to real world practice. Following a single dose of 15 mg mavacamten, AUC increased by 241% and maximum peak concentration increased by 47% in poor metabolisers compared to normal metabolisers [20]. However, as was the case in both EXPLORER and VALOR HCM, the 15 mg dose was proportionally less represented, with only 20% of our cohort established on this in our study [10, 21].

Beyond assessing drug efficacy, predicting which patients may be at increased risk of adverse outcomes is important. In our study, adverse events such as development of LV impairment and rapid reduction in LVOT gradient in the initiation phase were rare, occurred in individuals with different *CYP2C19* genotypes, and therefore were not explained by specific variants in the *CYP2C19* gene. While the trajectory of LVOT gradient (Fig. 1) and LVEF (Fig. 2) in rapid metabolisers may support a slower effect of the drug in these patients, which is in line with the pharmacokinetic properties of mavacamten, this did not result in different clinical outcomes by most recent follow up (4–60 weeks). Symptomatic improvement was also consistent irrespective of metaboliser status.

Our study has several limitations. Firstly, our small cohort of majority male, White European patients, and the lack of representation from ultrarapid and poor metaboliser groups limits our ability to extrapolate our results to larger, more diverse oHCM populations. Secondly, though we did not identify rare *CYP2C19* alleles, our cohort was small and our testing approach would not identify non-coding or structural genetic variants. The low adverse event rate also meant that formal statistical comparisons between *CYP2C19* genotypes in this group were not performed. As we could not include the poor metabolisers in our statistical analysis, it is not clear whether *CYP2C29* genotyping and subsequent dose amendment in this cohort translates to a better safety profile of the drug. Whilst the elimination half-life of mavacamten (23 days in poor metabolisers compared to 6–10 days for other phenotypes) supports more cautious dosing in this group, presently our data do not support amendments to the UK and European protocol.

Conclusion

Outside *CYP2C19* poor metabolisers, variations in the *CYP2C19* gene do not appear to effect clinical outcomes in oHCM patients on mavacamten. Whilst a larger and more

varied patient cohort is needed to further evaluate this, our study indicates that dose adjustments outside of the *CYP2C19* poor metaboliser group are not warranted. Due to small sample size, we were unable to provide definitive evidence as to whether amended dosing in poor metabolisers translates to improved treatment outcomes and a reduction in adverse events. It is therefore unclear whether this practice in the UK and Europe confers any advantage compared to the North American model of care. Nevertheless, the data do not support amendments to the current dosing protocol.

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1007/s00228-025-03991-8>.

Acknowledgements William G Newman and Glenda Beaman are supported by Innovate UK (10058536), the Manchester NIHR Biomedical Research Centre BRC (NIHR 203956), the NHS England Genomics Programme through the Pharmacogenetics and Medicines Optimisation Network of Excellence and the Manchester British Heart Foundation Centre of Research Excellence. The Inherited Cardiovascular Conditions Group at Guy's and St Thomas' would like to acknowledge Bristol-Myers-Squibb for the collaborative working project which contributed to establishing their service, and Jane Draper, Guy's and St Thomas' NHS foundation trust for her contribution.

Author contributions Yande Kasolo, Edward Burford, Mohammed Obeidat, Rachel Bastiaenen, William G Newman, and Robert M Cooper contributed to the study conception and design. Data collection was performed by Yande Kasolo and Edward Burford. Data Analysis was performed by Mohammed Obeidat. **CYP2C19** genotyping was performed by Glenda M Beaman and Thomas Monk. The final draft of the manuscript was written by Yande Kasolo and Edward Burford, and all authors commented on prior versions. All authors read and approved the final manuscript.

Funding This research received no specific grant from any funding agency or organization for the submitted work.

Data availability The data underlying this article will be shared on reasonable request to the corresponding author.

Code availability Not applicable.

Declarations

Ethics approval Ethical approval was not required for this study, as it reports retrospective analysis of fully anonymized data from routine clinical practice, without any interventions or modifications to patient care. All data were collected in accordance with institutional and national guidelines for clinical reporting and patient confidentiality. Patient confidentiality was maintained throughout.

Consent to participate The study was conducted using anonymised retrospective data with no patient identifiers present in the manuscript. As laid down in the Declaration of Helsinki (1964), consent to participate was not required.

Consent for publication Consent for publication is not applicable as this study does not contain any identifiable person's data in any form.

Competing interests William G Newman is a co-founder of an early-stage health technology start-up, Fava Health Ltd. Rachel Bastiaenen has received speaker fees for Bristol Myers Squibb, consulting fees for Pfizer and speaker fees for Medtronic. Robert M Cooper is Chief Investigator UK for SEQUOIA and ACACIA trials of Aficamten in HCM. Rachel Bastiaenen and Robert M Cooper have received consulting fees from Bristol Myers Squibb. Yande Kasolo is a sub-investigator for ACACIA, FOREST and MAPLE trials of Aficamten in HCM. Edward Burford has received honoraria from Bristol Myers Squibb for speaking at educational events.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

1. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary artery risk development in (Young) adults. *Circulation* 92(4):785–789. <https://doi.org/10.1161/01.cir.92.4.785>
2. Maron BA, Wang RS, Carnethon MR, Rowin EJ, Loscalzo J, Maron BJ et al (2022) What Causes Hypertrophic Cardiomyopathy? *Am J Cardiol* 179:74–82. <https://doi.org/10.1016/j.amjcard.2022.06.017>
3. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA et al (2003) Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. *N Engl J Med* 348(4):295–303. <https://doi.org/10.1056/NEJMoa021332>
4. Kaltenbach M, Hopf R, Kober G, Bussmann W, Keller M, Petersen Y (1979) Treatment of hypertrophic obstructive cardiomyopathy with verapamil. *Heart* 42(1):35–42
5. Cohen LS, Braunwald E (1967) Amelioration of angina pectoris in idiopathic hypertrophic subaortic stenosis with beta-adrenergic Blockade. *Circulation* 35(5):847–851
6. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS et al (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American college of cardiology Foundation/American heart association task force on practice guidelines developed in collaboration with the American association for thoracic Surgery, American society of echocardiography, American society of nuclear cardiology, heart failure society of America, heart rhythm society, society for cardiovascular angiography and Interventions, and society of thoracic surgeons. *J Am Coll Cardiol* 58(25):e212–e60
7. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy. *Pol Heart J (Kardiologia Polska)* 72(11):1054–1126
8. Ommen SR, Maron BJ, Olivotto I, Maron MS, Cecchi F, Betocchi S et al (2005) Long-term effects of surgical septal myectomy on survival in patients with obstructive hypertrophic cardiomyopathy. *J Am Coll Cardiol* 46(3):470–476. <https://doi.org/10.1016/j.jacc.2005.02.090>
9. Grillo MP, Erve JCL, Dick R, Driscoll JP, Haste N, Markova S et al (2019) In vitro and in vivo Pharmacokinetic characterization of mavacamten, a first-in-class small molecule allosteric modulator of beta cardiac myosin. *Xenobiotica* 49(6):718–733. <https://doi.org/10.1080/00498254.2018.1495856>
10. Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P et al (2020) Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* 396(10253):759–769. [https://doi.org/10.1016/s0140-6736\(20\)31792-x](https://doi.org/10.1016/s0140-6736(20)31792-x)
11. Desai MY, Owens A, Geske JB, Wolski K, Naidu SS, Smedira NG et al (2022) Myosin Inhibition in patients with obstructive hypertrophic cardiomyopathy referred for septal reduction therapy. *J Am Coll Cardiol* 80(2):95–108. <https://doi.org/10.1016/j.jacc.2022.04.048>
12. Chiang M, Sychterz C, Perera V, Merali S, Palmisano M, Templeton IE et al (2023) Physiologically based Pharmacokinetic modeling and simulation of Mavacamten exposure with Drug-Drug interactions from CYP inducers and inhibitors by CYP2C19 phenotype. *Clin Pharmacol Ther* 114(4):922–932. <https://doi.org/10.1002/cpt.3005>
13. Medicines and Healthcare Products Regulatory Agency. MHRA products: Camzyos (2024) [Accessed 2025 Jul 14]. Available from: <https://mhraproducts4853.blob.core.windows.net/docs/16c463c53f3ee48479bc36f92f021f3a813a1898>
14. Johansson I, Ingelman-Sundberg M (2011) Genetic polymorphism and toxicology—with emphasis on cytochrome p450. *Toxicol Sci* 120(1):1–13. <https://doi.org/10.1093/toxsci/kfq374>
15. European Medicines Agency (EMA). Camzyos (mavacamten): Summary of Product Characteristics (2023) [Accessed 10 Aug 2025]. Available from: https://www.ema.europa.eu/en/documents/product-information/camzyos-epar-product-information_en.pdf
16. Beaman GM, Lopes FM, Hofmann A, Roesch W, Promm M, Bijlsma EK et al (2022) Expanding the HPSE2 genotypic spectrum in urofacial syndrome, a disease featuring a peripheral neuropathy of the urinary bladder. *Front Genet* 13:896125. <https://doi.org/10.3389/fgene.2022.896125>
17. Lee CR, Luzum JA, Sangkuhl K, Gammal RS, Sabatine MS, Stein CM et al (2022) Clinical pharmacogenetics implementation consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. *Clin Pharmacol Ther* 112(5):959–967. <https://doi.org/10.1002/cpt.2526>
18. Camzyos (2025) (mavacamten) [prescribing information]. U.S. Food and Drug Administration. Silver Spring (MD): FDA; [Accessed 28 Nov 2025]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/214998s010lbl.pdf
19. Ionova Y, Ashenhurst J, Zhan J, Nhan H, Kosinski C, Tamraz B et al (2020) CYP2C19 allele frequencies in over 2.2 million Direct-to-Consumer genetics research participants and the potential implication for prescriptions in a large health system. *Clin Transl Sci* 13(6):1298–1306. <https://doi.org/10.1111/cts.12830>
20. Full prescribing information [mavacamten] (CAMZYOSTM) (2022) [Accessed 2025 Aug 10]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/21499
21. Desai MY, Owens A, Wolski K, Geske JB, Saberi S, Wang A et al (2023) Mavacamten in patients with hypertrophic cardiomyopathy referred for septal reduction: week 56 results from the VALOR-HCM randomized clinical trial. *JAMA Cardiol* 8(10):968–977. <https://doi.org/10.1001/jamacardio.2023.3342>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.