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Abstract 

The aim of this paper was to provide a proof of concept demonstrating that molecular 

modelling methodologies can be employed as a part of an integrated strategy to support toxicity 

prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. 

To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken 

in which molecular modelling methodologies were employed to predict the activation of the 

peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating 

event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches 

(virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was 

developed to screen for PPARγ full agonists and to predict their transactivation activity (EC50). The 

performance metrics of the classification model to predict PPARγ full agonists were balanced 

accuracy = 81%, sensitivity = 85% and specificity = 76%. The 3D QSAR model developed to 

predict EC50 of PPARγ full agonists had the following statistical parameters: q2
cv = 0.610, Nopt = 7, 

SEPcv = 0.505, r2
pr = 0.552. To support the linkage of PPARγ agonism predictions to prosteatotic 

potential, molecular modelling was combined with independently performed mechanistic mining of 

available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches 

investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP 

elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype 

development. 
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1. Introduction 

The traditional approach for the safety assessment of chemicals based on the observation of 

apical endpoints in animals is moving towards a new predictive paradigm based on upstream 

biological events that are determinants of the apical adverse outcome (OECD, 2013). This paradigm 

shift opens the door to a new toxicity-testing framework that evaluates biologically significant 

perturbations mediating key toxicity pathways by using innovative computational toxicology 

methods and a comprehensive array of in vitro tests (Krewski et al., 2010). In this context, the 

European FP7 Research Initiative SEURAT-1 (Safety Evaluation Ultimately Replacing Animal 

Testing; http://www.seurat-1.eu/) adopted the mode of action/adverse outcome pathway 

(MoA/AOP) framework as a means to understand human adverse health effects caused by repeated 

exposure to chemicals and to develop integrated tools for predictive toxicology (including in silico 

and experimental in vitro models), toward the replacement of in vivo chronic toxicity testing. One of 

the key elements of SEURAT-1 is the application of mechanistic knowledge acquired through the 

definition and description of specific AOPs to develop in silico tools for toxicity prediction. The 

FP7 COSMOS Project (Integrated In Silico Models for the Prediction of Human Repeated Dose 

Toxicity of Cosmetics to Optimise Safety; http://www.cosmostox.eu/), which is part of the 

SEURAT-1 Cluster, has explored and exploited multiple in silico approaches including 

(Quantitative) Structure-Activity Relationships ((Q)SARs), structural alerts and molecular 

modelling (MM). While the first two computational methodologies are now widely used in the field 

of toxicology and safety assessment, and even encouraged by different regulatory frameworks, the 

use of MM in predictive toxicology is not yet a standard procedure.  

MM methodologies have been used extensively in drug design for more than 30 years to 

provide cost-effective virtual analysis prior to synthesis. Such approaches aim to direct drug design 

efforts to synthesise highly selective and potent small molecules that bind to a target biomolecule. 

The latter is often a key protein involved in a particular metabolic or signaling pathway that is 

specific to a disease condition or pathology or to the infectivity and survival of a microbial 



 

pathogen. Therefore the array of intermolecular interactions that trigger dysregulation (inhibition or 

activation) of such a key biological target comprises the mechanistic basis behind the observed 

therapeutic effect. Since such interactions could initiate adverse effects and could play crucial role 

in the mechanisms of toxicity, the use of MM techniques can also be envisaged in the risk 

assessment framework. However, the use of MM tools, developed for drug discovery, to predict 

toxicity of chemicals requires that the methods are adapted and interpreted taking into account the 

differences (see Table 1) between the drug discovery and risk assessment frameworks (Rabinowitz 

et al., 2008). 

Table 1. Comparative analysis of the uses of MM approaches in drug discovery and risk assessment 

 

The present study provides a proof of concept that MM methodologies can be employed as 

part of an integrated strategy to support target organ toxicity prediction in the MoA/AOP 

framework. In particular, we present the use of MM to predict potential binding to, and potential 

activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ). The challenge of 

this study lays in the fact that in silico modelling of PPARγ ligands is traditionally directed to 

rational drug design and improvement of pharmacological over adverse effects (Al-Najjar et al., 

2011; Carrieri et al., 2013; Dixit and Saxena, 2008; Liao et al.,  2004; Lu et al., 2006; Rücker et al., 

2006; Shah et al., 2008; Sundriyal et al., 2009; Vidović et al., 2011), while risk assessment issues 

are poorly addressed (Vedani et al., 2007).  

PPAR𝛾 is one of the important nuclear hormone receptors that contribute to excessive 

accumulation of triglycerides in hepatocytes (liver steatosis or fatty liver) (Landesmann et al., 

2012). Our recent review (Al Sharif et al., 2014) has compiled the existing knowledge for PPARγ 

and non-alcoholic fatty liver disease (NAFLD), in particular liver steatosis, to develop a prosteatotic 

AOP, integrating the ligand-induced activation of the PPARγ as a MIE. Within the proposed AOP, 

the MIE induces up-regulation of target genes for lipid transport/binding proteins, fatty acid and 

triglyceride synthesising enzymes, and lipid droplet-associated proteins (LD proteins). Thus, the 



 

AOP covers the whole cascade of key molecular events and the subsequent cytological and 

histopathological manifestations of liver steatosis, namely increased number or size of LDs, ectopic 

TG deposition in hepatic instead of adipose tissue, and hepatomegaly. 

Therefore the AOP developed improves the mechanistic understanding of the role of PPAR𝛾 

activation as a MIE in the development of liver steatosis. In addition it underlines the key events 

and the data gaps for further in vitro/in silico exploration and maps the potential assays that could 

be proposed for development and/or modification to meet the needs of the in vitro safety assessment 

of toxicants (OECD, 2013; Patlewicz et al., 2015).  

As a logical further step the present study focused on in silico modelling of this particular MIE 

as a reliable early signal for hazard identification. Its nature – ligand-receptor interactions - 

determined the choice of MM approaches to be applied. Taking into consideration that the 

prosteatotic genomic activity of PPARγ is specifically triggered by full agonists, but not by partial 

agonists (Chigurupati et al., 2015), our modelling strategy included an initial analysis of the 

available data for full agonists (e.g. binding mode, efficacy range) and subsequent development of 

pharmacophore-based virtual screening (VS) procedure and 3D QSAR models.  

In order to strengthen the conclusions and to further confirm the prosteatotic activity of 

PPARγ, the results from the MM study were challenged with those of an independently applied, 

alternative approach, involving mechanistic data mining of available in vivo toxicity data, followed 

by ToxPrint chemotype analysis of chemical compounds associated with particular phenotypic 

effects (Mostrag-Szlichtyng et al., 2014). A chemotype is defined as a structural fragment encoded 

for connectivity and, where required, for physicochemical and electronic properties of atoms, 

bonds, fragments, and even a whole molecule (Yang et al., 2015).  

The chemotypes approach could be considered as a ligand based screening that relies on 

empirical prediction of the pathological condition based on the presence of particular substructures. 

Thus, while the MM study allowed for mechanistically justified prediction of the first step of the 

AOP, namely the MIE, the chemotype analysis predicts the adverse effect directly (in particular the 



 

histological and physiological manifestations of the pathology) disregarding the mechanistical basis 

of the MIE. The combinded application of both approaches proves to be helpful both for predictive 

purposes and in the analysis and understanding of the molecular mechanisms of the prosteatotic 

AOP. 

2. Materials and methods 

2.1. PPARγ ligands dataset used in the molecular modelling study 

2.1.1. PPARγ ligands and experimental data 

Structural and experimental data for 439 PPARγ ligands were collected from the Protein Data 

Bank (PDB) (www.rcsb.org, Berman et al., 2000) and from the literature. The dataset is publicly 

available at http://biomed.bas.bg/qsarmm/. The dataset includes the following experimental data; (i) 

binding affinity, IC50 (measured in in vitro binding assays – radioligand binding assay or 

fluorescence polarisation binding assay); (ii) potency, EC50 (measured in a cell based luciferase 

transcriptional reporter gene assay, evaluating the effect of the ligand-dependent PPARγ activation 

on the expression of its target reporter protein); (iii) relative efficacy,  %max (percent response in 

relation to the maximum response of a reference compound in the cell based transactivation assay). 

Experimental data measured in different human and animal cell lines were collected. The 

distribution of the ligands according to the cell line and relative efficacy toward PPARγ is shown in 

Figure 1 and summarised in Table S.1. of the Supplementary Material. 

Figure 1. PPARγ dataset: distribution of the ligands according to the cell line and their relative 

efficacy toward PPAR. Numbers 1 – 7 indicate the different species and cell lines: 1 – 

hamster/kidney (BHK21 ATCC CCL10), 2-4 – monkey/kidney (COS-1, COS-7, CV-1, respectively), 5 – 

human/kidney (HEK293), 6 and 7 – human/liver (HepG2, Huh-7, respectively) 

 

As explained in greater detail in subsequent sections, a subset of 170 PPARγ full agonists 

was extracted from the initial dataset since these compounds met the data requirements for 



 

modelling purposes. The selected ligands constituted a structurally diverse dataset of PPARγ full 

agonists with relative efficacy ≥ 70% and/or PDB ligands with structural features fitting the recently 

developed PPARγ full agonists’ pharmacophore (Tsakovska et al., 2014). Detailed information 

regarding the ligands retrieved from PDB and used for modelling is provided in Table S.2 of the 

Supplementary Material. The activity data were converted to micromolar concentrations and 

transformed to pEC50 (the negative logarithm of the EC50) values. For a small subset of reference 

compounds (farglitazar, rosiglitazone and pioglitazone) that have been tested on human and animal 

cell lines by different research groups, preference was given to human over animal data and the 

mean pEC50 values were taken when necessary. 

2.1.2. Chemical structures preparation 

The subset of 170 ligands utilised in this study comprised different homologous series 

retrieved from 15 literature sources as noted in Table 2. Among them, eight series of chemicals 

contain a PPARγ ligand with a crystal structure deposited in the PDB, one contains a PPARα ligand, 

and six do not contain resolved PDB structures (Table 2). The structures of the compounds within 

the series that include a PPARγ ligand deposited in PDB were built through modification of the 

PDB ligand. The structures of the other compounds were built either directly or from structurally 

similar PDB ligands. 

Table 2. PPARγ ligands selected for modelling: research group, molecular scaffold, numbers and 

PDB identifiers 

 

The stereochemistry in the ligands was fixed in accordance with the reported stereoisomery. 

When racemic mixtures were tested, the S stereoisomer was used for modelling as a commonly 

accepted active form (Rücker et al., 2006; Shah et al., 2008). The protonation state of the ligands 

that could not be deduced from the PDB complexes was also explored and the forms of the 

structures were selected corresponding to their protonation state at pH = 7.4 as calculated in 



 

ACD/Labs Percepta suite 2015 (ACD Inc.). When two forms were reported to coexist with equal or 

similar protonation state percentages, both structures were considered. Finally the structures were 

minimised with the MMFF94s force field including electrostatics. the preparation/ modification and 

optimisation of chemical structures were performed using the MM platform MOE v. 2014.0901 

(CCG Inc.). 

2.2. Molecular modelling of PPARγ full agonists 

2.2.1. Protein preparation and docking in the PPARγ binding site  

The receptor’s ligand binding domain (X-ray structure of PPARγ with rosiglitazone, PDB ID 

1FM6) was initially prepared using the Protonate3D application in MOE. This application assigns 

the hydrogens following the optimal free energy proton geometry and ionisation states of titratable 

protein groups using the Generalized Born electrostatics model. The physiologically relevant 

parameters were set during the minimisation: temperature 310°K; pH = 7.4; ion concentration: 

0.152 mol/L. The ligands (see structures preparation described in the section 2.1.2.) were docked 

into the binding site of the prepared protein structure. The London dG scoring function, without 

subsequent refinement, was applied to estimate free energy of binding and to score the poses of the 

docked ligands accordingly. The selected scoring function combines terms for van der Waals 

interactions, hydrogen-bonding, hydrophobic effects and deformation effects associated with 

conformational entropy. Coefficients for these terms have been fitted from over 400 X-ray crystal 

structures of protein-ligand complexes with available experimental pKi data (MOE). The highly 

scored poses of each ligand with a negative value of the scoring function only were kept. They were 

used in the development of the VS protocol to predict PPARγ full agonists (section 3.2.1). 

2.2.2. 3D QSAR 

2.2.2.1. Alignment of structures and calculation of fields 

The ligands were aligned based on their docking poses in the PPARγ ligand binding domain 

using the VS protocol developed within this study (section 3.2.1). The final conformer for each 



 

ligand was selected from the output set of up to 10 best poses retained after its docking according to 

two criteria: (i) visual inspection relative to the corresponding structurally similar template - the 

PDB ligand used as scaffold in structure generation or the ligand UNT from 3IA6 PDB complex as 

one of the most active agonists with pEC50 = 7.886 and 103% relative efficacy and possessing 

structural features from among most of the structures that are typical features of the agonists 

(Casimiro-Garcia et al, 2009; Mahindroo et al., 2005); (ii) the value of the docking score (the 

smallest negative scores were preferred). The ligands extracted from the PDB complexes were 

maintained in their experimental bioactive conformations. 

The whole set was re-aligned by the “Fit Atoms” procedure in MM software suite SYBYL-

X v. 2.1 (Certara USA, Inc.) using the 4 essential pharmacophoric points of the PPAR 

pharmacophore model (Tsakovska et al., 2014). The ligand UNT (3IA6 PDB complex) was chosen 

as a template. The set of aligned structures was subjected to 3D QSAR modelling using the 

CoMSIA (Comparative Molecular Similarity Indices Analysis) approach within SYBYL. For this 

purpose the electrostatic, steric, hydrogen bond donor, hydrogen bond acceptor, and hydrophobic 

fields were calculated using the default CoMSIA settings.  

2.2.2.2. Model development and validation 

The structures were split into training and test sets and for the training set CoMSIA 3D 

QSAR models were to correlate ligands’ potency (pEC50) with similarity indices, related to field 

properties of each molecule, namely the steric, electrostatic, hydrophobic and hydrogen-bonding 

properties. The Partial Least Squares statistical method (PLS) was used for the CoMSIA modelling 

(Klebe, 1998). The cross-validation analysis was performed using the Leave-One-Out (LOO) 

procedure to evaluate the internal predictivity of the models. The statistical characteristics of the 

models were described by the cross-validated correlation coefficient q2
cv, the optimal number of 

PLS components, Nopt, and the cross-validated standard error of prediction, SEPcv. The non-cross-

validated model (characterised by the correlation coefficient, r2, standard error of estimate, SEE, 

and the F-value) was obtained for the best cross-validated model with Nopt. The sensitivity of the 



 

model to chance correlations was investigated by Y-randomisation test (ten randomisations) and by 

progressive scrambling (maximum: 20 bins, minimum: two bins and critical point: 0.85). For the 

purposes of the external validation the pEC50 values of a predefined test set of full agonists were 

calculated and the predictive r2 (r2
pr) was considered as a means to evaluate the model’s external 

predictivity. Identification of outliers was performed by means of two different criteria: (i) 

applicability domain outliers using the "extent of extrapolation" approach (Tropsha et al., 2003; 

Netzeva et al., 2005) as implemented in Enalos domain leverage node (Melagraki et al., 2009) in the 

KNIME analytics platform (Berthold et al., 2007); (ii) response outliers, using analysis of the 

residuals.. 

2.3. Chemotype analysis 

2.3.1. In Vivo Toxicity Data Mining used in the chemotype analysis 

The oRepeatTox DB, part of the COSMOS database (publically available at: 

http://cosmosdb.cosmostox.eu) developed within the COSMOS Project was used in the chemotype 

analysis. It includes in vivo oral repeated dose toxicity data for approximately 230 cosmetics-related 

chemicals. The database was built through consolidation of existing databases as well as harvesting 

new data.  

The COSMOS oRepeatTox DB chronic, subchronic and subacute (≥ 28 days) studies with 

rat, mouse and dog were mined for the phenotypic effects observed in liver. Mapping the 

morphological changes at various sites and combined phenotypic effects specifically related to 

steatosis, steatohepatitis or fibrosis onto the chemicals, led to the identification of 59 compounds 

associated with lipid deposition, liver fatty changes, cytoplasmic vacuolisation, cellular infiltration 

and/or inflammation in hepatocytes, ultimately leading to fibrosis (Mostrag-Szlichtyng et al., 2014). 

These structures were used in the subsequent chemotypes analysis. 

 



 

2.3.2. ToxPrint chemotypes 

The chemotype approach for chemical representation is supported by the open-source XML-

based query language, Chemical Subgraphs and Reactions Markup Language (CSRML). The 

chemotypes coded in CSRML were applied via a software tool, ChemoTyper, jointly developed by 

Altamira LLC and Molecular Networks GmbH for public use under a contract from US FDA’s 

Center for Food Safety and Nutrition (CFSAN) (available at www.chemotyper.org (Yang et al., 

2015)). The ToxPrint chemotypes (developed by Altamira LLC for FDA CFSAN’s CERES) were 

applied on the identified structures in the oRepeatTox DB (section 2.3.1). They are a set of chemical 

features and rules derived from various toxicity prediction models and safety assessment guidelines 

within FDA and other federal agencies and industries. They consist of predefined library of 729 

chemotypes and are publically available at www.toxprint.org (Yang et al., 2015).  

3. Results and discussion 

3.1. Dataset processing  

The initial dataset of 439 PPARγ full and partial agonists was passed through several filters 

to select the modelling dataset of 170 structures. The first step was focused on dataset refinement 

aiming to: (i) remove data gaps; (ii) select full agonists avoiding duplicates and data uncertainties; 

(iii) consider stereochemistry – with a preference for S stereoisomers when the potency of racemic 

mixtures was reported (see section 2.1.2). 

In the selection of full agonists special attention was paid to reduction of the number of the 

false negative predictions. The main task was to differentiate full and partial agonists in such a way 

to reduce the possibility of the VS missing full agonists with prosteatotic potential. This required a 

cutoff within the efficacy data to differentiate between full and partial agonists, such that it is both 

less restrictive toward marginal efficacy and relevant to the full agonism-based MIE. To our 

knowledge there are three classifications of PPARγ agonists regarding their relative efficacy. 

According to Bruning et al., (2007), transactivation more than 80% as compared to rosiglitazone, 

should be considered full, less than 50% – partial, and between 50% and 80% – intermediate. In 



 

another work (Acton et al., 2005) ligands reaching 20–60% of rosiglitazone’s maximal activation 

are deemed partial agonists. We adopted the threshold proposed by Henke et al. (1998) who 

considered full agonists those compounds that elicited in average at least 70% activation of PPARγ 

as compared to rosiglitazone. 

3.2. Molecular modelling 

The modelling study of PPARγ activation as a MIE in the AOP for liver steatosis was based 

on a two-step strategy presented schematically in Figure 2 and discussed in detail in sections 3.2.1 

and 3.2.2 below. 

Figure 2. Molecular modelling scheme to study PPARγ activation: VS to predict full agonists (step 

1) and 3D QSAR modelling to predict their potency (step 2) 

 

3.2.1. Virtual Screening to predict PPARγ full agonists 

A VS protocol was developed and validated to predict PPARγ full agonists using MOE 

(MOE, v. 2014.0901). It consists of three steps: (i) protein preparation (section 2.2.1.), (ii) docking 

of the ligands into the PPARγ binding site (section 2.2.1.) and (iii) filtering of the generated poses 

based on the recently developed pharmacophore model of PPARγ full agonists (Tsakovska et al., 

2014). The last step means the final poses that did not satisfy the pharmacophore were eliminated. 

Since the objective of the developed protocol was high throughput virtual screening, no further 

refinement of the poses was performed. In addition this eliminates the possibility of poses moving 

away from the pharmacophore. The pharmacophore model for PPARγ full agonists (Figure 3) 

provides four structural features capable of hydrogen bonding and ionic interactions (F1, F2, F4 and 

F6) and three hydrophobic and aromatic substructures (F3, F5 and F7) (Tsakovska et al., 2014). 

This seven-feature pharmacophore model is rather restrictive since it is based on the bioactive 

conformations of the most active agonists extracted from PDB. The visual inspection of all full 

agonists in PDB showed that the majority of them comprise 4 or 5 pharmacophore features; thus 



 

F1-F3, F5 and/or F4 were identified as essential pharmacophoric points (Figure 3). Therefore these 

pharmacophoric features were used in the proposed VS protocol. 

Figure 3. Pharmacophore model of PPARγ full agonists: the essential pharmacophoric points are 

surrounded by a dotted line 

 

To validate the VS protocol, docking with a filter based on the five-point pharmacophore 

model (F1 – F5, Figure 3) was applied to the subset of 170 PPARγ full agonists. In total 144 out of 

the 170 ligands were correctly predicted as full agonists (model sensitivity of 85%). Two additional 

validation procedures were performed on: (i) a subset of 87 PPARγ partial agonists retrieved from 

the initial dataset of PPARγ ligands; of which, 38 did not pass the filter and were correctly classified 

as not being full agonists (model specificity in relation to the partial agonists of 44%); (ii) a subset 

of 2527 decoys (compounds that are selected to resemble the receptor binders physicochemical 

properties but at the same time are topologically dissimilar to them in order to minimise the 

likelihood of the actual binding) randomly extracted from the full set of 25867 PPARγ decoys (each 

10th structure was selected after removal of duplicates) in DUD-E database (Directory of Useful 

Decoys - Enhanced, http://dude.docking.org, Mysinger et al., 2012); of which 1949 were correctly 

classified as not being full agonists (model specificity of 77%). Of the the total number of 

chemicals not considered to be full agonists (2614 compounds in total), 1987 were predicted 

correctly, revealing an accuracy for the model of 76%. Therefore the model had balanced accuracy 

of 81%. Obviously, the prediction model for PPARγ full agonists has high sensitivity and can 

discriminate between binders and non-binders quite well. At the same time discrimination between 

full and partial agonists is relatively low – quite a high number of partial agonists have been 

classified as being full agonists according to the model. This result may reflect the fact that the full 

and partial agonists share the same binding pocket in the PPARγ ligand binding domain and the 

structural differentiation between them is not fully defined. Taking into account that the model aims 

to predict PPARγ full agonists as potential liver toxicants, the relatively high number of false 



 

positive hits from the VS cannot be considered as a serious drawback.  

3.2.2. 3D QSAR modelling to predict pEC50 of PPARγ full agonists 

A further logical step in the evaluation of the PPARγ full agonists is the quantitative prediction 

of their transactivation activity. The ligand-induced in vitro transactivation (expressed as potency, 

EC50) was chosen as a relevant dependent variable capable to reflect the agonistic activity of the 

compounds studied. The EC50 covers the complex cascade of receptor binding and activation 

followed by the downstream molecular events triggering gene expression, therefore it is an 

appropriate in vitro experimental model of the link between the MIE (PPARγ activation) and the 

earliest downstream key event – increased synthesis of target proteins. Although complex in its 

nature and thus challenging to be modelled, EC50 may reflect, in a more complete manner, the 

mechanism behind the particular pathology (Rücker et al., 2006; Sundriyal et al., 2009). Therefore, 

a 3D QSAR model to predict pEC50 values of full agonists was developed. The whole 3D QSAR 

modelling process is presented in the multistep workflow (Figure 4) and described below. 

 Figure 4. The 3D QSAR modelling workflow to predict the potency of full PPARγ agonists 

 

Dataset processing and structure alignment (1st and 2nd steps, Figure 4) 

The dataset of full agonists to be subjected to 3D QSAR modelling (1-st step) was selected as 

described in section 3.1. The final set of 170 compounds from 6 research groups’ publications 

included structures and potency data measured in human (77 ligands) or animal (93 ligands) cell 

lines. In the 2nd step all ligands were aligned according to the procedures described in Section 

2.2.2.1 with a 4-feature pharmacophore used as a filter of the generated docking poses. Preliminary 

3D QSAR analysis was performed on the whole dataset and 48 outliers were removed based on 

criteria defined in section 2.2.2.2.  

Model generation and validation (3rd and 4th steps, Figure 4)  

Since the preliminary CoMSIA 3D QSAR analyses on separated human and animal data 



 

indicated similar results, the final analysis was performed on a combined data set. In the final data 

set, nearly 40% of the structures have been tested on human cell lines.  

After exclusion of outliers, the remaining dataset was split into training (n=83) and test 

(n=39) sets (3rd step). The training set was assembled to include structures from all selected research 

groups as well as to cover a broad structural variety and a wide range of activities (pEC50 = 5.4 – 

9.1). The remaining compounds comprised the test set of similar structural variability and pEC50 

range (pEC50 = 5.5 – 8.1). The relatively high number of the test compounds (about half of the 

training set) ensures a robust validation of the derived model.  

Based on the LOO cross-validation procedure the best model was selected that included 

three fields (electrostatic, hydrogen bond acceptor and hydrophobic) and had the following 

statistical parameters: q2
cv = 0.610, Nopt = 7, SEPcv = 0.505. The statistical parameters are 

comparable with other published models predicting transactivation activity of PPARγ full agonists. 

However, the training set considered in this study is the largest of any published, comprising 

structurally diverse compounds, covering as much as possible the available structural data in PDB 

and the literature to ensure a broader applicability domain of the model. 

A further Y-randomisation procedure was applied to assess the probability of generating a 

good model by chance. This procedure (also known as scrambling) is based on comparison of the 

statistical performance of the original model to models built on randomly permuted responses 

among the original descriptors pool. If all QSAR models obtained in the Y-randomisation test have 

high q2
cv values, it implies that the original QSAR model is not acceptable as a predictive tool. In 

the present study, a Y-randomisation test was performed ten times with a low average q2
cv = -0.114 

and high SEPcv = 0.824 thus indicating the proposed CoMSIA model is acceptable. To investigate 

the stability of the model further, progressive scrambling was applied. This procedure analyses the 

sensitivity of the developed model to small systemic perturbations of the response variable. It is 

particularly useful for large redundant datasets where the q2
cv obtained from LOO cross-validation 

may give a false sense of confidence, because a “near-by” molecule, with very similar descriptor 



 

values, to each of the omitted  molecules is likely to remain in the training data (SYBYL-X, 2013). 

The statistical parameters resulting from the applied progressive scrambling to the CoMSIA, 

together with a brief description of the descriptors are presented in the Table 3. When assessing the 

results, two general considerations have to be taken into account: (i) since the introduced noise 

makes the parameter Q2 quite conservative, a value of Q2 as low as 0.35 signifies that the original, 

unperturbed model is robust (ii) the effective slope is the critical statistic, therefore stable models 

have slopes near unity (SYBYL-X, 2013). Comparison between these reference values and the 

results of the progressive scrambling further confirmed the stability of the developed model (Table 

3). 

Table 3. Progressive scrambling of the CoMSIA model 

 

The model was also validated on the external test set of 39 structures (4-th step). Good 

predictive power was obtained for the model (r2
pr = 0.552, comparable to q2

cv) demonstrating the 

stability of the predictions. The plot of predicted pEC50 values obtained by the optimal non-cross-

validation 3D QSAR model versus observed pEC50 values for the training and the test set 

compounds is given in Figure 5. 

Figure 5. Predicted (pEC50 predicted) vs. observed pEC50 (pEC50 observed) values for training (83) 

and test (39) set compounds. Regression statistics: r2 – determination coefficient; SEE – standard 

error of estimate, F (1, 120) – F-ratio between explained and unexplained variance for the given 

number of degrees of freedom at 95% level of significance. 

 

The fractional contributions of the CoMSIA electrostatic, hydrogen bond acceptor and 

hydrophobic fields related to the differences in the transactivation activity were 0.293, 0.346 and 

0.360, respectively. These results indicate that the model is not dominated by any of the three fields 

and they explain similar portions (approximately one third each) of the variation in the pEC50 data. 

While the significance of the electrostatic field has been already emphasised by other 



 

authors, the hydrogen bond acceptor and hydrophobic effects have not been explicitly discussed in 

relation to variations in pEC50 in the 3D QSAR models published so far (Shah et al., 2008; 

Sundriyal et al., 2009). The parity between the three fields can be explained by their role in the 

agonist interactions: each field has its own contribution and complements the others. The hydrogen 

bond acceptor field, together with the electrostatic fields, contribute mostly to the ligand-receptor 

interactions, while the hydrophobic effects stabilise the occupancy of the ligand binding domain of 

PPARγ to guarantee the optimal orientation and distances of the ligand to the key amino acid 

residues within the pocket. This indirectly mediates the specific donor-acceptor interactions 

between the receptor activation helix H12 and the electronegative substructures of the full agonists 

and is a prerequisite for the electrostatic effects over the whole interface area. Thus, the stabilisation 

of the receptor in its active agonist conformation by the ligand binding can be explained by complex 

molecular interactions that are additive in their nature and mutually benefit each other. 

3.3. Linking PPARγ full agonism prediction to observed in vivo phenotypic effects associated 

with chronic liver disease development: Case study using COSMOS oRepeatTox DB 

 Predicting full agonistic activity of PPARγ ligands by MM approaches involved 

investigating key protein-ligand interactions. However, increasing the scientific confidence in an 

AOP requires coupling a comprehensive understanding of the nature of the interaction between the 

chemical and the biological system, with mechanistic understanding of the biological response 

(OECD, 2013). In this particular case it requires going beyond prediction of the MIE and exploring 

its relation to later key events, at superior levels of organisation (tissue, organ, organism), that are 

phenotypic effects specific to the pathology (Patlewicz et a., 2015). Thus a two-step procedure, 

combining chemotype analysis and MM was proposed to predict respectively: (i) prosteatotic 

compounds; (ii) those compounds identified as being prosteatotic which potentially act through 

binding and activation of PPARgamma. 

This procedure was applied on the COSMOS oRepeatTox DB. First pathologically justified, 

ontology-based data mining of the available in vivo toxicity data from COSMOS oRepeatTox DB 



 

was performed independently of the MM. The chemicals associated with liver steatosis, 

steatohepatitis and fibrosis phenotypic effects were identified and subjected to ToxPrint chemotypes 

structural analysis (section 2.3.2). The results were challenged with the MM predictions. This 

research is described in detail below. 

3.3.1 ToxPrint Chemotype Analysis 

The structural analysis of the 59 compounds identified through data mining of the COSMOS 

oRepeatTox DB (see section 2.3.1) was performed in terms of ToxPrint chemotypes. It included 

matching the substructural fragments present in the chemicals associated with liver 

steatosis/steatohepatitis/fibrosis with the predefined library of ToxPrint chemotypes. Chemical 

categories identified for liver steatosis/steatohepatitis/fibrosis included alcohols, diols, glycol ethers, 

aminophenols, aromatic amines, aromatic halides, polychlorinated short alkanes and halogenated 

amines. Figure 6a presents the result of ToxPrint chemotype analysis performed with the 

ChemoTyper for the case study compound, piperonyl butoxide (Mostrag-Szlichtyng et al., 2014). 

3.3.2 Integrating MM approach with ToxPrint Chemotype analysis 

Structural analysis revealed that the identified set of chemicals contains potential PPARγ 

agonists (e.g.: piperonyl butoxide), i.e. compounds with rigid hydrophobic substructural fragments 

and flexible aliphatic chains. In order to verify the hypothesis arising from the in vivo toxicity data 

mining/ToxPrint chemotype analysis, the VS procedure developed (section 3.2.1.) was applied to 

the subset of 59 compounds with liver phenotypic effects (Mostrag-Szlichtyng et al., 2014). The VS 

involved docking query structures in the binding pocket of PPARγ and filtering them with the 

pharmacophore model of full agonists to retrieve only the potential full agonists. Piperonyl butoxide 

was retrieved as a hit in the VS procedure, i.e. predicted as a PPARγ full agonist (Figure 6b). 

Therefore PPARγ activation by piperonyl butoxide binding may be the MIE triggering further 

downstream events and leading to the adverse outcome effect outlined. 

Figure 6. Integrated application of ToxPrint chemotypes and the pharmacophore based VS 



 

procedure to retrieve the prosteatotic compound piperonyl butoxide as potential PPARγ full agonist. 

6a. ChemoTyper structural analysis of piperonyl butoxide: matching the substructural fragments 

present in query chemical (left-hand side) with the predefined library of ToxPrint chemotypes 

(right-hand side). 6b. Matching of the piperonyl butoxide’s structure to the PPARγ pharmacophore 

model: F1 (Don/Acc), F3 (Hyd/Aro), F4 (Don/Acc) and F5 (Hyd/Aro) essential pharmacophoric 

features 

 

Therefore the application of ToxPrint chemotypes analysis to the selected dataset of 59 

structures provided opportunities to identify structures with particular phenotypic effects to the 

liver. Further, the application of the VS procedure developed predicted one of them (piperonyl 

butoxide) as a potential PPARγ full agonist.  

In general the integrated application of different approaches (in vivo toxicity data 

mining/ToxPrint chemotype analysis/molecular modelling) enables the identification of chemicals 

(1) associated with liver steatosis/steatohepatitis/fibrosis phenotypic effects; (2) containing alerting 

ToxPrint chemotypes; (3) predicted to be PPARγ full agonists. For the considered case of piperonyl 

butoxide these would respectively include: (1) effects observed in 1-year study with dogs, namely 

relative liver weight increase, hepatocytes hypertrophy, clinical chemistry (alkaline phosphatase and 

cholesterol) changes and effects observed in 90-days study with mice: absolute liver weight 

increase, hypertrophy and cellular infiltration of hepatocytes (http://cosmosdb.cosmostox.eu); (2) 

alerting substructural features, for example the glycol side chain (Fig. 6A); (3) structural features 

defining full PPARγ agonists (Fig. 6B). The case of piperonyl butoxide shows that pathology 

relevant mining of in vivo toxicity data combined with structural analysis and the results of the MM 

study complement each other within the developed AOP framework. 

The combined use of the chemotypes and pharmacophore based approach was further 

exploited as a basis for development of 3D chemotypes for liver steatosis. It includes: (i) coding the 

essential pharmacophore points as particular structural features extracted from the PPARγ full 



 

agonists dataset; (ii) determining the distances between the essential pharmacophoric points; (iii) 

based on (i) and (ii), coding the disconnected graphs with the 3D distances. At this stage the steps 

(i) and (ii) have been developed (Table 4). 

Table 4. Distances (Å) between the essential pharmacophoric points within the PPAR full agonists 

 

4. Conclusions 

In this paper a case-study involving the combined use of different MM methodologies 

(docking, pharmacophore, 3D QSAR) is presented to screen chemicals based on their potential 

ability to bind and activate PPARγ. The VS procedure developed showed good discrimination 

between binders and non-binders and a high sensitivity in the prediction of binders that are full 

agonists. This demonstrates the feasibility of the approach for screening chemicals for hepatotoxic 

potential with the aim of minimising false negative predictions. A 3D QSAR model was developed 

based on structurally diverse dataset of full agonists as extracted from the collected PPARγ ligands 

dataset. The model successfully predicts the complex effect of transactivation activity which is 

associated with a number of downstream prosteatotic molecular events. The results of the MM were 

combined with independently applied mechanistic mining of in vivo toxicity data followed by 

ToxPrint chemotypes analysis, to provide insights into the molecular mechanisms associated with 

the particular AOP. The combined application of the described approaches is able to facilitate the 

process of MoA/AOP analysis. In addition it is a basis for 3D chemotypes development, which 

includes information about the spatial structural features, crucial for the ligand-receptor 

interactions.  The definition of chemotypes predictive of PPARγ-mediated adverse effects is also of 

broader toxicological significance since the MIE has been implicated in a range of adverse effects, 

including developmental and reproductive toxicity (see putative AOPs in the OECD AOP 

Knowledge Base; www.aopkb.org). 

The integrated approach developed within this study could be used for an in silico screening of 

hepatic PPARγ agonists that can function as steatosis inducers. Particularly the MM approaches are 



 

primarily useful for mechanistic (MIE) elucidation, whereas chemotypes are more amenable to 

toxicological screening, thus complementing each other. Their combined application provides the 

basis both for prioritising compounds potentially of major concern for liver toxicity and / or 

grouping chemicals potentially sharing a common AOP (e.g., from PPARγ activation to liver 

steatosis) with a view to supporting read-across of toxicological properties. The integration of such 

multistage in silico prediction within the AOP framework exemplifies the global effort toward 

development of robust and mechanistically justified alternatives to animal testing and thus brings us 

a step closer to a new generation of hazard identification strategies. 
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Table 1. Comparative analysis of the uses of MM approaches in drug discovery and risk assessment 

 DRUG DISCOVERY RISK ASSESSMENT 

GOALS 

Explore the chemical space in order to 

extract a molecule with a given activity 

and desired properties  

Evaluate the possible risk of an adverse effect 

initiated by a specific molecule in biological 

systems (humans and environment) under defined 

conditions of exposure 

CHEMICAL 

SPACE 

Drugs have prescribed chemical properties 

to ensure strong interactions with a 

specific target and specific absorption, 

distribution, metabolism, excretion and 

toxicity (ADMET) profiles 

Chemicals span a large chemical space; 

“undesirable” property space from an ADMET 

perspective; elicit effects from both weak and 

strong interactions with targets 

MAIN TASKS  

- Hit identification; Lead generation/ 

optimisation; ADMET optimisation;  

- Drug candidates screening: 

identification of the most potent 

chemicals; reducing the number of false 

positives (i.e. chemicals incorrectly 

predicted to have the desired therapeutic 

properties) 

- Support existing data; Priority setting & data gap 

filling; Mechanistic information 

- Screening of chemicals: reducing the number of 

false negatives (i.e. chemicals incorrectly 

predicted to be non-toxic) 



Table 2. PPARγ ligands selected for modelling: research group, molecular scaffold, numbers and PDB identifiers 

DATA SOURCE 

TEMPLATES FOR 

STRUCTURE 

GENERATION 

Research 

group * 
Scaffold used in the source paper 

Ligands 

(number) 

PDB 

complex 

code 

PDB 

ligand 

code 

Comment 

1a 

 

10 3G9E RO7 
 

 



 

1b 

 

12 3FEJ CTM 
 

1c 

 

17 2GTK 208 
 

2a 

 

12 2Q8S L92 

 
 
 
 
 
 



 

 

2b 

 

3 3IA6 UNT 
 

3 

 

10 3VSO EK1 
 



 

4a 

 

10 no no  

4b 

 

9 no no  

4c 

 

25 no no  

5a 

 

13 1KNU YPA 
 



 

5b 2 no no 

1KNU/ 

YPA used 

as a 

template 

5c 3 no no 

1KNU/ 

YPA used 

as a 

template 

6a 

 

12 no no 

1FM9/570 

used as a 

template  

6b 

 

11 3BC5 ZAA 
 



 

 

6c 

 

9 3KDU NKS 

NKS used 

only as a 

template 

however 

not 

included 

in the 

modelling 

dataset 

since 

3KDU is 

a complex 

of PPARα 



 

7 

 

1 1I7I AZ2  

8 

 

1 1FM6 BRL  



 

 

1 1FM9 570  

9 

 

1 1K74  544 



 

10 

 

1 2ATH 3EA  

11 

 

1 2F4B EHA  



 

12 

 

1 2HWR DRD  

13 

 

1 2XKW PIB  



 

14 

 

1 3AN3 M7S  

 

1 3AN4 M7R  



 

15 

 

1 3GBK 2PQ  

16 

 

1 3VJI J53  

* 1a –  Bènardeau et al.; 2009; 1b – Grether et al., 2009; 1c – Kuhn et al., 2006; 2a – Casimiro-Garcia et al., 2008; 2b – Casimiro-Garcia et al., 2009; 3 – 

Ohashi et al., 2013; 4a – Otake et al., 2011a; 4b – Otake et al., 2011b; 4c – Otake et al., 2012; 5a – Sauerberg et al., 2002; 5b – Sauerberg et al., 2003; 5c 

– Sauerberg et al., 2005; 6a – Devasthale et al., 2007, 6b – Zhang et al., 2009 and 6c – Ye et al., 2010., 7 – Cronet et al., 2001; 8 – Gampe et al., 2000; 9 

– Xu et al., 2001; 10 – Mahindroo et al., 2005; 11 – Mahindroo et al., 2006a; 12 – Mahindroo et al., 2006b; 13 – DOI: 10.2210/pdb2xkw/pdb; 14 – 

Ohashi et al., 2011; 15 –Lin et al., 2009; 16 – Kuwabara et al., 2012. Indices a, b, and c correspond to different papers of one and the same research 

group designated by a number. 
 

http://dx.doi.org/10.2210/pdb2xkw/pdb
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Table 3. Statistics of the CoMSIA model’s progressive scrambling 

Parameter Description Calculated value 

Q2 

The predictivity of the model after potential effects 

of redundancy have been removed, that is, the 

expected value of q2 at the specified critical point 

for r2
yy' (the correlation of the scrambled responses 

with the unperturbed data) 

0.437 

cSDEP 
The estimated cross-validated standard error at the 

specified critical point  
0.598 

dq/dr 

The slope of q2 - the cross-validated correlation 

coefficient evaluated at the specified critical point 

with respect to the correlation of the original 

dependent variables versus the perturbed dependent 

variables 

1.06 

 

 

Table 4. Distances (Å) between the essential pharmacophic points within the PPAR full agonists 

Feature F1-F2 F1-F3 F1-F5 F2-F3 F2-F5 F3-F5 

Average, Å 2.76 6.4 13.1 5.8 13.1 9.3 

minmax, Å 1.93.4 4.99.2 11.215.5 4.47.3 10.815.4 7.111.7 

Feature F1-F2 F1-F3 F1-F5 F2-F3 F2-F5 F3-F5 

Average, Å 2.76 6.4 13.1 5.8 13.1 9.3 

minmax, Å 1.93.4 4.99.2 11.215.5 4.47.3 10.815.4 7.111.7 
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Figure 1. PPARγ dataset: distribution of the ligands according to the cell line and their relative 

efficacy toward PPAR. Numbers 1 – 7 indicate the different species and cell lines: 1 – 

hamster/kidney (BHK21 ATCC CCL10), 2-4 – monkey/kidney (COS-1, COS-7, CV-1, 

respectively), 5 – human/kidney (HEK293), 6 and 7 – human/liver (HepG2, Huh-7, respectively) 

 

Figure 2. Molecular modelling scheme to study PPARγ activation: VS to predict full agonists (step 

1) and 3D QSAR modelling to predict their potency (step 2) 

 

Figure 3. Pharmacophore model of PPARγ full agonists: the essential pharmacophoric points are 

surrounded by a dotted line 

 

Figure 4. The 3D QSAR modelling workflow to predict the potency of full PPARγ agonists 

 

Figure 5. Predicted (pEC50 predicted) vs. observed pEC50 (pEC50 observed) values for training (83) 

and test (39) set compounds. Regression statistics: r2 – determination coefficient; SEE – standard 

error of estimate, F (1, 120) – F-ratio between explained and unexplained variance for the given 

number of degrees of freedom at 95% level of significance. 

 

Figure 6. Integrated application of ToxPrint chemotypes and the pharmacophore based VS 

procedure to retrieve the prosteatotic compound piperonyl butoxide as potential PPARγ full agonist. 

6a. ChemoTyper structural analysis of piperonyl butoxide: matching the substructural fragments 

present in query chemical (left-hand side) with the predefined library of ToxPrint chemotypes 

(right-hand side). 6b. Matching of the piperonyl butoxide’s structure to the PPARγ pharmacophore 

model: F1 (Don/Acc), F3 (Hyd/Aro), F4 (Don/Acc) and F5 (Hyd/Aro) essential pharmacophoric 

features 
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