

LJMU Research Online

Whitaker, G and Rae, R

The gastropod parasitic nematode Phasmarhabditis hermaphrodita does not affect non-target freshwater snails Lymnaea stagnalis, Bithynia tentaculata and Planorbarius corneus

http://researchonline.ljmu.ac.uk/id/eprint/2903/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Whitaker, G and Rae, R (2015) The gastropod parasitic nematode Phasmarhabditis hermaphrodita does not affect non-target freshwater snails Lymnaea stagnalis, Bithynia tentaculata and Planorbarius corneus. NEMATOLOGY. 17 (6). pp. 679-683. ISSN 1388-5545

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

1	
2	The gastropod parasitic nematode
3	Phasmarhabditis hermaphrodita does not affect
4	non-target freshwater snails Lymnaea stagnalis,
5	Bithynia tentaculata and Planorbarius corneus.
6	
7	Whitaker, G. and Rae, R.*
8	
9	Liverpool John Moores University, School of Natural Sciences and Psychology,
10	Byrom St., Liverpool, L33AF, UK.
11	
12	* Corresponding author: e-mail: r.g.rae@ljmu.ac.uk
13	
14	Tel: 01512312486
15	
16	
17	
18	

19 Abstract

21	Phasmarhabditis hermaphrodita is a lethal parasite of several slug and
22	snail species that has been formulated into a biological control agent. However,
23	the complete host range of this nematode is poorly understood, in particular its
24	potential to affect non-target aquatic snail species. Here we exposed three
25	species of juvenile and adult freshwater snail (Lymnaea stagnalis, Planorbarius
26	corneus and Bithynia tentaculata) to 30 and 150 P. hermaphrodita per cm^2 and
27	assessed survival, as well as differences in weight for 66 days. We show that P.
28	hermaphrodita has no effect on the survival of L. stagnalis, P. corneus and B.
29	<i>tentaculata</i> after 66 days of exposure. In summary, we found little evidence of <i>P</i> .
30	hermaphrodita causing mortality to three freshwater snail species at two
31	different life stages and believe that <i>P. hermaphrodita</i> would have little effect on
32	non-target snail species in the wild.
33	
34	Keywords
35	
36	Slugs, aquatic snails, parasites, non-target organisms.
37	
38	
39	
40	
41	
42	The gastropod parasitic nematode Phasmarhabditis hermaphrodita is a
43	lethal parasite of several pest slugs and snails including Deroceras reticulatum

44 and Arion ater (Wilson et al., 1993; 2000) and has been formulated into a 45 biological control agent (Nemaslug®) for farmers and gardeners in Northern 46 Europe available from BASF-Becker Underwood (Rae et al., 2007). Once applied 47 nematodes seek out slugs and snails, responding to mucus and faeces, then 48 penetrate through the mantle and kill the host in between 4 and 21 days (Rae et 49 al., 2006; 2009a; Wilson et al., 1993; Tan and Grewal, 2001). P. hermaphrodita 50 has been used to protect many crops from slug damage including Chinese 51 cabbage (Rae et al., 2009b), winter wheat (Wilson et al., 1994) and oilseed rape 52 (Wilson et al., 1995).

53 The complete host range of P. hermaphrodita is poorly understood and 54 many slug and snail species have never been tested for their susceptibility 55 towards this nematode. One group of molluscs that have been neglected are 56 freshwater snails. There are only two studies that have focused on investigating the effects of P. hermaphrodita on aquatic snails, which showed that under lab 57 58 conditions P. hermaphrodita can kill the non-target snail Lymnaea stagnalis but 59 not Physa fontalis (Wilson et al., 1993; Morley and Morritt, 2006). Here we 60 decided to investigate whether P. hermaphrodita could kill three common nontarget species of freshwater snail including the Great Pond snail (L. stagnalis), 61 the Great Ram's-horn snail (Planorbarius corneus) and Bithynia tentaculata, 62 which are common, widely distributed snails which live in slow moving and 63 64 large ponds (Beedham, 1972). We also decided to examine whether the 65 susceptibility of snails to P. hermaphrodita could be due to differences in size as 66 previously it has been shown that *P. hermaphrodita* can kill juveniles of the snail 67 Helix aspersa, and the slugs A. ater and A. lusitanicus but adults remain resistant (Glen et al., 1996; Grimm, 2002). 68

70	Materials and Methods	
71		
72	Source of invertebrates	
73		
74	P. hermaphrodita was purchased from BASF-Becker Underwood and was	
75	stored at 10°C prior to use. Freshwater snails (L. stagnalis, B. tentaculata and P.	
76	corneus) were supplied by Sciento, U.K. and collected from ponds at Calderstones	
77	Park, Liverpool. Snails were kept in fresh water at 10°C prior to use.	
78		
79	Infection assay with freshwater snails exposed to P. hermaphrodita	
80		
81	<i>P. hermaphrodita</i> were mixed with tap water and numbers of nematodes per 100 μ l <	\sim
82	were quantified. Non-airtight plastic boxes (10 x 9 x 6 cm) were filled with 120 ml of	
83	fresh water. Evaporation of water was monitored by weighing boxes every 5 days	
84	and adding fresh pond water if necessary to maintain approximately the same	
85	volume throughout the experiment. To three boxes the recommended rate of <i>P</i> .	
86	hermaphrodita was applied (30 nematodes per cm ²) and to another three boxes five	
87	times the recommended rate was applied (150 per cm ²). Three boxes received no	
88	nematodes and acted as the controls. For the first experiment, ten juvenile L.	
89	stagnalis (mean weight = 0.48 ± 0.03 g, n = 90) were added to each box. To	
90	investigate the difference in weight of snails when infected with P. hermaphrodita	
91	we also exposed adult <i>L. stagnalis</i> to a high dose of 150 <i>P. hermaphrodita</i> per cm ²	
92	(mean weight = 4.03 \pm 0.13 g, n = 60). This experimental set up was also repeated for	

Formatted: Font: 12 pt
Formatted: Line spacing: Double
Formatted: Font: 12 pt
Formatted: Font: Not Bold
Formatted: Font: Not Bold
Formatted: Font: 12 pt

93	both sizes of <i>P. corneus</i> (juvenile mean weight = 0.118 ± 0.004 , n = 90; adult mean	
94	weight = 2.14 \pm 0.12, n = 60) and only one size of <i>B. tentaculata</i> (mean weight =	
95	0.302 \pm 0.006, n = 90) was exposed to 0, 30 and 150 <i>P. hermaphrodita</i> per cm ² . All	
96	species of snails were weighed before and after the experiment to determine if the	
97	nematode caused any effect on weight gain and food consumption which has been	
98	documented in other molluscan species (Glen et al., 2000). Snails were provided	
99	with food including pond weed and cabbage ad libitum.	
 100	Survival was monitored every 3-4 days for 66 days. Any dead snails were	
101	dissected to examine nematode penetrance.	
102		
103	Data analysis	
104		
105	Survival of snails was analysed using the log rank test carried out in	
106	OASIS (Yang et al., 2011) and the weight of snails before and after nematode	
107	treatment was compared using a Student t-test.	
108		
109	Results	
110		
111	The effect of <i>P. hermaphrodita</i> on the survival of juvenile and adult <i>L.</i>	
112	stagnalis, P. corneus and B. tentaculata.	
113		
114		
115	<i>P. hermaphrodita</i> applied at both 30 and 150 nematodes per cm^2 had no	
116	significant effect on the survival of juvenile or adult L. stagnalis after 66 days	
117	exposure (P>0.05) (Fig 1a, b). Similarly, P. hermaphrodita had no effect on the	

Formatted: Font: Not Bold Formatted: Font: 12 pt, Not Bold survival of both juvenile and adult *P. corneus* at both doses (30 and 150 nematodes per cm²) (P>0.05) (Fig 2a, b). Also adult *B. tentaculata* were resistant to both doses of *P. hermaphrodita* as there were no significant differences in survival over 66 days (P>0.05) (Fig 3). Therefore, *P. hermaphrodita* had no effect on the survival of three species of aquatic snails when applied at two different doses for 66 days.

124

The effect of *P. hermaphrodita* on the weight of juvenile and adult *P. corneus* and adult *B. tentaculata*

127

128 There was no significant difference between the weight of juvenile or 129 adult P. corneus on day 0 and day 66 when exposed to no nematodes, 30 and 150 130 *P. hermaphrodita* per cm² (P>0.05) (Fig 4a, b). However, there was a significant difference between the weight of *B. tentaculata* on day 0 and day 66 (P<0.001) 131 (Fig 4c), but this was the case for the untreated and both doses of P. 132 133 hermaphrodita, hence these snails lost weight in general throughout the 134 experiment regardless of treatment. Therefore, P. hermaphrodita has no effect on 135 the weight gain of aquatic snails.

136

137 Discussion

138

Previous studies have shown that *P. hermaphrodita* may affect non-target
aquatic molluscs including *L. stagnalis* (Wilson et al., 1993; Morley and Morritt,
2006). However, in our studies we have shown that *P. hermaphrodita* is unable
to kill a selection of non-target freshwater snails including *L. stagnalis*, *B.*

tentaculata and *P. corneus* at two different doses of *P. hermaphrodita* (30 and
144 150 nematodes per cm²) after 66 days exposure. Ultimately, this study shows
145 that *P. hermaphrodita* poses little risk to non-target fresh water snails.

146 The host range of *P. hermaphrodita* is best characterized in terrestrial slugs and 147 snails. Pestiferous slugs such as D. reticulatum and D. panormitanum are highly 148 susceptible to P. hermaphrodita (Wilson et al., 1993) but other species such as 149 Limax maximus and L. pseudoflavus (Rae et al., 2008; Grewal et al., 2003) are 150 resistant. Resistance in other species is dependent on size as adult A. lusitanicus 151 and A. ater are resistant to P. hermaphrodita but juveniles are susceptible (Glen et al., 1996; Grimm, 2002). Similarly, in terrestrial snails, some species of 152 terrestrial snails are resistant to P. hermaphrodita including Cepaea nermoralis, 153 154 Oxychilus helveticus, Pnentina ponentina, Discus rotundatus and Clausilia 155 bidentata (Wilson et al., 2000; Coupland, 1995; Iglesias et al., 2003). It is unknown why there are these differences in susceptibility to P. hermaphrodita 156 157 but some terrestrial snails, such as the Giant African snail (Achatina fulica) have 158 the ability to encapsulate and kill invading nematodes in their shell (Williams 159 and Rae, 2015), which has also been shown in slugs (Rae et al., 2008). However, 160 upon dissection of dead snails no encapsulated nematodes were observed so 161 perhaps this defensive ability is only in terrestrial molluscs. Similarly, we rarely 162 found P. hermaphrodita inside the snails, but this is not uncommon when P. 163 hermaphrodita is exposed to other snails e.g. H. aspersa (Rae et al., 2009a). Either 164 it is harder for P. hermaphrodita to penetrate into snails than slugs or our 165 experimental assay is suppressive to nematode infection. However, this seems 166 unlikely as two studies (Morley and Morritt, 2006 and Wilson et al., 1993) showed that P. hermaphrodita can kill L. stagnalis under similar conditions. One 167

Formatted: Indent: First line: 0 cm

Formatted: Font: Italic

Formatted: Font: Italic
Formatted: Font: Italic

168	important factor maybe the way snails were reared. Morley and Morritt (2006)
169	showed that laboratory reared <i>L. stagnalis</i> were susceptible to <i>P. hermaphrodita</i>
170	In our study we collected snails from the wild, which have been exposed to an
171	array of naturally occurring parasites and may potential have a stronger immune
172	system and are able to cope with <i>P. hermaphrodita</i> . Perhaps laboratory reared <i>L</i> .
173	stagnalis used in Morley and Morritt (2006) may potentially have unchallenged
174	and impaired immune systems, which made them more susceptible to <i>P</i> .
175	hermaphrodita?
176	In conclusion we have shown that <i>P. hermaphrodita</i> has little
177	pathogenicity towards wild caught freshwater snails and therefore poses little
178	threat to non-target aquatic snails.
179	
180	Acknowledgements
181	
182	We are very grateful to Beverly McGrath for maintenance of snails.
183	
184	

185 References

186

187	Beedham, G.E.	(1972). Identification	of the British	Mollusca.	Hulton	Group	Keys.
-----	---------------	-------	-------------------	----------------	-----------	--------	-------	-------

188 Hulton Educational Publications Ltd, Bath, UK.

189

Coupland, J.B. (1995). Susceptibility of helicid snails to isolates of the nematode *Phasmarhabditis hermaphrodita* from southern France. *Journal of Invertebrate Pathology*. 66, 207-208.

193

Glen, D.M., Wilson, M.J., Hughes L., Cargeeg, P. & Hajjar, A. (1996). Exploring and
exploiting the potential of the rhabditid nematode *Phasmarhabditis hermaphrodita* as a biocontrol agent for slugs. In: Slugs and Snails: Agricultural,
Veterinary and Environmental Perspectives, BCPC Symposium Proceeding, No
66, ed. By Henderson, I.F., Britsh Crop Protection Council, Alton, Hants, UK, 271280.

200

Glen, D.M., Wilson, M.J., Brain, P. & Stroud, G. (2000). Feeding activity and
survival of slugs *Deroceras reticulatum*, exposed to the rhabditid nematode, *Phasmarhabditis hermaphrodita*, a model of dose response. *Biological Control* 17,
73-81.

206	Grewal,	S.K.,	Grewal,	P.S.	&	Hammond	R.B.	(2003).	Susce	ptibility	of No	orth
207	America	n n	ative a	nd	no	n-native	slugs	(Mollu	isca:	Gastrop	oda)	to

208	Phasmarhabditis hermaphrodita	(Nematoda:	Rhabditidae).	Biocontrol,	Science
209	and Technology 13, 119-125.				

Grimm, B. (2002). Effect of the nematode *Phasmarhabditis hermaphrodita* on
young stages of the pest slug *Arion lusitanicus. Journal of Molluscan Studies* 68,
25-28.

213

Iglesias, J., Castillejo, J. & Castro, R. (2003). The effects of repeated applications of
the molluscicide metaldehyde and the biocontrol nematode *Phasmarhabditis hermaphrodita* on molluscs, earthworms, nematodes, acarids and collembolans:
a two year study in North West Spain. *Pest Management Science* 59, 1217-1224.

218

Morley, N.J. & Morritt, D. (2006). The effects of the slug biocontrol agent, *Phasmarhabditis hermaphrodita* (Nematoda), on non-target aquatic molluscs. *Journal of Invertebrate Pathology* 92, 112-114.

222

Rae, R.G., Robertson, J.F. & Wilson, M.J. (2006). The chemotactic response of *Phasmarhabditis hermaphrodita* (Nematoda: Rhabditida) to cues of *Deroceras reticulatum* (Mollusca: Gastropoda). *Nematology* 8, 197-200.

226

Rae, R.G., Robertson, J.F. & Wilson, M.J. (2007). Biological control of terrestrial
molluscs using *Phasmarhabditis hermaphrodita-* progress and prospects. *Pest Management Science* 63, 1153-1164.

230

Rae, R.G., Robertson, J.F. & Wilson, M.J. (2008). Susceptibility and immune
response of *Deroceras reticulatum*, *Milax gagates* and *Limax pseudoflavus*

233	exposed to the slug parasitic nematode Phasmarhabditis hermaphrodita. Journal
234	of Invertebrate Pathology 97, 61-69.
235	
236	Rae, R.G., Robertson, J.F. & Wilson, M.J. (2009a). Chemoattraction and host
237	preference of the gastropod parasitic nematode <i>Phasmarhabditis hermaphrodita</i> .
238	Journal of Parasitology 95, 517-526.
239	
240	Rae, R.G., Robertson, J.F. & Wilson, M.J. (2009b). Optimization of biological
241	(Phasmarhabditis hermaphrodita) and chemical (iron phosphate and
242	metaldehyde) slug control. Crop Protection 28, 765-773.
243	
244	Williams, A.J. & Rae, R. 2015. Susceptibility of the Giant African Snail (Achatina
1 245	fulica) exposed to the gastropod parasitic nematode Phasmarhabditis
246	hermaphrodita. <u>SubmittedJournal of Invertebrate Pathology, in press</u> .
1 247	
248	Wilson, M.J., Glen, D.M. & Pearce, J.D. (1993). Biological control of molluscs.
249	World Intellectual Property Organisation, International Patent Publication
250	Number WO 93/00816.
251	
252	Wilson, M.J., Glen, D.M., George, S.K., Pearce, J.D. & Wiltshire, C.W. (1994).
253	Biological control of slugs in winter wheat using the rhabditid nematode
254	Phasmarhabditis hermaphrodita. Annals of Applied Biology 125, 377-390.
255	
256	Wilson, M.J., Hughes, L.A. & Glen, D.M. (1995). Developing strategies for the
257	nematode, Phasmarhabditis hermaphrodita, as a biological control agent or slugs

- 258 in Integrated Crop Management Systems. Integrated Crop Protection: Towards
- 259 Sustainability? British Crop Protection Council (BCPC), 33-40.
- 260
- Wilson, M.J., Hughes, L.A., Hamacher, G.M. & Glen, D.M. (2000). Effects of *Phasmarhabditis hermaphrodita* on non-target molluscs. *Pest Management*
- 263 Science 56, 711-716.
- 264
- 265 Yang, J-S., Nam H-J, Seo, M., Han, S.K., Choi, Y., Nam, H.G., Lee, S.J. & Kim, S. (2011).
- 266 OASIS: online application for the survival analysis assays performed in aging
- 267 research. PLoS ONE 6, e23525