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Abstract 

The aim of the current study is to quantify oxygen uptake, heart rate and molecular responses of human 

skeletal muscle associated with mitochondrial biogenesis following an acute bout of simulated soccer 

training.  

Muscle biopsies (vastus lateralis) were obtained from nine active men immediately pre-, post- and 3 h 

post-completion of a laboratory-based soccer-specific training simulation (LSSTS) on a motorised 

treadmill.  

The LSSTS was a similar intensity (55 ± 6% V̇O2max) and duration (60-min) as that observed in 

professional soccer training (e.g. standing 41%, walking 37%, jogging 11%, high-speed running 9% 

and sprinting 2%).  Post-exercise, muscle glycogen decreased (Pre; 397 ± 86 mmol∙kg-1 dw, Post; 344 

± 64 mmol∙kg-1 dw; P = 0.03), plasma lactate increased (P < 0.001) up to ~4-5 mmol.L-1, NEFA and 

glycerol increased (P < 0.001) to values of 0.6 ± 0.2 mmol.L-1 and 145 ± 54 μmol.L-1, respectively.  

PGC-1α mRNA increased (P = 0.009) 5-fold 3 h post-exercise. 

 

We provide novel data by demonstrating that soccer-specific training is associated with increases in 

PGC-1α mRNA.  These data may have implications for practitioners in better understanding the 

specific ‘muscle’ responses to soccer-specific training protocols in the field.   

 

Key Words: intermittent exercise, vastus lateralis, cell signalling, mitochondrial biogenesis 
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Introduction 
The aerobic fitness of soccer players is a fundamental component of an individual’s ability to 

repeatedly perform high-intensity activities during match-play (Stone & Kilding, 2009).  One major 

aim of training in soccer should, therefore, be to enhance the aerobic fitness of players.  Increases in 

aerobic performance following soccer-specific training are associated with both cardiovascular 

adaptations (Knoepfli-Lenzin et al., 2010) and skeletal muscle changes (Bangsbo, 1994; Krustrup, 

Christensen, et al., 2010b).  Adaptations in skeletal muscle following exercise begin at the molecular 

level resulting in morphological and metabolic changes in mitochondria that increase the rate of energy 

production from both aerobic and oxygen-independent pathways (Hawley, Tipton, & Millard-Stafford, 

2006).  Such alterations in mitochondria include long-term changes in mitochondrial protein content 

and enzyme activities in skeletal muscle.  For example, soccer training in untrained populations are 

shown to increase 3-hydroxyacyl co-enzyme A dehydrogenase (HAD), citrate synthase (CS) activity 

content and mean muscle fibre area and decreases the fraction of Type IIx fibres ((Bangsbo et al., 2010; 

Krustrup, Christensen, et al., 2010b).  These adaptations are deemed important in underpinning the 

improved exercise capacity and greater resistance to fatigue observed following training.  

 

Given the importance of the oxidative capacity to improve soccer specific performance, it is important 

to understand the process that drives this adaptive response.  At a molecular level, the regulation of 

training adaptation appears to be controlled by the cumulative effects of transient increases in mRNA 

transcripts encoding mitochondrial proteins that follow each acute training session (Egan, O'Connor, 

Zierath, & O'Gorman, 2013; Perry et al., 2010).  Upon the onset of contraction, alterations in various 

mechanical and metabolic characteristics initiate a host of primary signals (i.e. increased AMP/ATP 

ratio, Ca2+, reactive oxygen species (ROS), lactate, reduced muscle glycogen availability) that result in 

the activation of key signalling kinases that converge on the regulation of key transcription factors or 

co-activators.  For example, the adenosine monophosphate-activated protein kinase (AMPK) and p38 

mitogen activated protein kinase (p38MAPK) are suggested to be two important kinases that increase 

the activity of peroxisome proliferator-activated γ receptor coactivator (PGC-1α).  Although a host of 

factors are deemed to play a role in the adaptation to training (Coffey & Hawley, 2007), PGC-1α is 

regarded as the ‘master regulator’ controlling various processes of training adaptation, such as 

mitochondrial biogenesis, angiogenesis, antioxidant defence and inflammatory response (Egan et al., 

2010; Jäger, Handschin, St-Pierre, & Spiegelman, 2007; Olesen et al., 2010; Wright, Geiger, Han, 

Jones, & Holloszy, 2007).  Despite training adaptations occurring (albeit reduced) in the absence of 

functional PGC-1α, i.e. PGC-1α knockout models (REF), the importance of PGC-1α is characterised in 

rodent models demonstrating that overexpression increases oxidative enzyme activity (Lin et al., 2002), 

insulin sensitivity (Benton, Wright, & Bonen, 2008) and improved exercise capacity (Calvo et al., 

2008).     

 

It has been suggested that the molecular adaptations to training are highly specific to the type of 

training stimulus that is provided with factors such as volume, intensity, duration and mode of exercise 

all significant (Coffey & Hawley, 2007).  These parameters are probably important as a consequence of 

the prominent disruptions to cellular metabolism in driving transcription.  Recent years has seen a 
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move towards sports-specific conditioning rather than traditional athletic type training especially in 

sports such as soccer where the competitive demands restrict training time (Impellizzeri et al., 2006).  

This sports-specific conditioning frequently takes the form of structured technical and tactical practices 

that enable athletes to “train as you play” (Bishop, 2009).  The physiological responses to these types 

of activities have been characterized to some extent (Jeong, Reilly, Morton, Bae, & Drust, 2011) 

though it is currently unclear what impact such soccer-specific training has on whole body metabolic 

responses and the complex signalling networks that may underpin the molecular changes in skeletal 

muscle associated with exposure to this type of exercise. Indeed, whereas we (Bartlett et al., 2012) and 

others (Gibala et al., 2009) have shown that both supra-maximal and near-maximal models of high-

intensity interval exercise are capable of activating the aforementioned cell signaling pathways, it is 

currently unknown if the typical intensities, duration and activity profile of soccer-specific training is 

also sufficient to promote acute activation of those pathways that regulate an oxidative training 

adaptation. 

 

The aim of the present study was therefore to investigate whole body metabolic responses and the acute 

signalling responses associated with mitochondrial biogenesis in skeletal muscle of healthy men in 

response to a single bout of soccer-specific simulated intermittent exercise. To this end, we devised a 

laboratory based soccer-specific training simulation (completed on a motorised treadmill) that included 

the main movement categories inherent to soccer-specific exercise. We hypothesised that performing 

soccer-specific intermittent exercise would induce increases in the phosphorylation of important 

protein kinases, thereby leading to activation of PGC-1α mRNA expression. 
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Methods 

Nine males who regularly participated in team sport volunteered in the study (mean ± SD: age, 25 ± 4 

yr; body mass, 75 ± 7 kg; height, 1.75 ± 0.04 m; V
．

O2max 59 ± 6 ml·kg-1·min-1).  The experimental 

procedures and potential risks related to the study were explained verbally to all subjects.  Written 

participant information was also given during a familiarization session.  Informed consent was obtained 

from all subjects prior to participation.  Subjects refrained from strenuous exercise at least 48 h before 

the exercise trial.  None of the subjects had any current medical problems that were neurological and/or 

musculoskeletal or were under pharmacological treatment during the course of the study.  The study 

was approved by the local Ethics Committee of Liverpool John Moores University. 

 

Assessment of physiological fitness 

All participants completed a V̇O2max test using an incremental exercise test performed on a motorised 

treadmill (HP cosmos Pulsar® 4.0, h/p/cosmos, Germany). Oxygen uptake was measured continuously 

during exercise using an on-line gas analysis system (Cortex Metamax, Leipzig, Germany). The test 

began with a 3-min warm up stage at a treadmill speed of 10 km·h-1 followed by 3 min stages at 12 

km·h-1, 14 km·h-1 and 16 km·h-1. Upon completion of the 16 km·h-1 stage, the treadmill was inclined by 

2 % every 3 min until volitional exhaustion. The V
．

O2max was taken as the highest V
．

O2 value obtained 

in any 10-s period and was stated as being achieved by the following end-point criteria: 1) heart rate 

within 10 b·min-1 of age-predicted maximum, 2) respiratory exchange ratio > 1.1, and 3) plateau of 

oxygen consumption despite increased workload (Gilman, 1996).  

 

Experimental Design  

At least 3 days after the initial assessment of maximal oxygen consumption (V
．

O2max), subjects 

performed a single bout of a laboratory-based soccer-specific training simulation (LSSTS) on a 

motorised treadmill, which consisted of 3 identical 20-min blocks to create a 60 min protocol.  Heart 

rate (HR) (Polar S610i, Kempele, Finland) and oxygen consumption (Cortex Metamax, Leipzig, 

Germany) were measured continuously during the exercise protocol and ratings of perceived exertion 

(RPE CR 1-10) (Borg, 1970) were measured every 20 min throughout exercise and 30 min after 

completion of the LSSTS.  Blood samples were obtained pre-exercise, every 20-min during exercise, 

post-exercise and 3 h post-exercise.  Muscle biopsies were taken from the vastus lateralis pre-, post- 

and 3 h post LSSTS. During the recovery period between the post-exercise biopsy and 3-h biopsy, 

subjects remained seated in the laboratory.  

 

Exercise protocol  

The development of the Laboratory Soccer Specific Training Simulation (LSSTS) has been previously 

described and validated (Jeong, Reilly, Morton, Drust 2013).  In brief, the LSSTS attempted to recreate 

the physiological demands imposed on professional soccer players during an ‘in-season’ soccer 
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training session. The laboratory-based soccer-specific training simulation was devised for a motorized 

treadmill (HP cosmos Pulsar® 4.0, h/p/cosmos, Germany) for researchers interested in examining the 

specific metabolic and molecular responses to football training.  Whilst it may be ‘more realistic’ to 

study a ‘real pitch based’ training session, obtaining muscle biopsies in the field is logistically 

problematic owing to issues of accurate sampling time points for multiple participants as well as 

ensuring safe and ethically approved locations for minor procedures. 

 

The proportion of time designated for each discrete activity-category was the same as those recorded in 

the actual training session and the movements included consisted of walking, jogging, high speed 

running and sprinting.  Static pauses were also included in which subjects remained stationary on the 

treadmill.  A small portion of the activities in the ‘field’ training session involved utility activities such 

as sideways (2.1%) and backward movements (2%), however, these types of movements were not 

incorporated within the protocol due to the technical limitations of the equipment used and the safety 

issues associated with including these activities. As a consequence of these omissions, the sum of the 

percentage time in these two movements in training was added to the walking and jogging categories 

included in the protocol.  The speeds of each movement on the treadmill were based on previous 

observations obtained during match play (Mohr, Krustrup, & Bangsbo, 2003).  The relevant speeds 

utilised for walking, jogging, running and high-speed running were ~6 km∙h-1, ~12 km∙h-1, ~19 km∙h-1 

and ~23 km∙h-1 respectively.  The duration of each discrete bout of activity in the protocol was closely 

matched to those observed during the training session (Table 1).  This permitted the total number of 

bouts for each discrete activity in the simulation to be calculated.  A block of exercise incorporated 93 

discrete activities that included 26 static pauses, 28 walks, 17 jogs, 16 high-speed runs and 6 sprints. 

The LSSTS thus incorporated a total 279 activities within 3-repeated identical blocks.  Once the total 

numbers of bouts in each activity category were established, the order of the presentation of activities 

was determined.  High-intensity activities were separated by low-intensity recovery periods to replicate 

the cyclical nature of the movement patterns observed in the training session.  The time required to 

complete all speed changes between the different activity categories was monitored following the 

development of the exercise protocol for the simulation.  This enabled the total time for the speed 

transitions included in the treadmill protocol to be calculated. The total time for changing speeds 

between the different categories of activities was 336 s during each block.  The final duration of a 

block was then determined by summing the total exercise time that would be performed at constant 

speeds of each activity and the total transition time that was required to change between speeds. As a 

result a block of exercise lasted 20 minutes 36 seconds (Figure 1).  This block was then repeated a total 

of 3 times, thereby resulting in the total protocol time closely resembling the total duration of the 

training session (61 min 48 seconds). 

 

Dietary control 

Subjects were instructed to follow their habitual diet for the 48 h preceding the LSSTS.  Subjects 

refrained from ingesting any alcohol and caffeine for at least 48 h prior to the testing session and 
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subjects were required to attend the laboratory on the morning of testing in a fasted state.  In the 30 min 

preceding exercise, subjects consumed a volume of water (5 ml·kg-1).  During exercise subjects were 

not allowed to drink.  Only plain water was provided during the recovery period between the post-

exercise and 3 h biopsies.  This was calculated to compensate the loss of body fluid during exercise 

(1.5L x loss of body mass (kg)). 

 

Muscle biopsies 

Muscle biopsies were obtained from separate incision sites (2-3 cm apart) from the lateral portion of 

the vastus lateralis muscle pre-, post- and 3 h after the exercise protocol using a Bard Monopty 

Disposable Core Biopsy Instrument 12 gauge x 10 cm length (Bard Biopsy Systems, Tempe, AZ, 

USA).  Samples were obtained (four passes per biopsy each containing approximately 20-30 mg per 

pass) under local anaesthesia without epinephrine (0.5 % Marcaine, Astrazeneca, USA).  They were 

immediately frozen in liquid nitrogen and stored at –80 C for later analysis.  

 

Muscle analysis 

Muscle Glycogen  

Approximately 2-3 mg (i.e. one pass) of freeze-dried sample was powdered and subsequently 

hydrolyzed by incubation in 500 µl of 1 M HCl of 3-4 hr at 100˚C. After cooling to room temperature, 

samples were neutralized by the addition of 250 µl 0.12 mol∙L-1 Tris-2.1 mol∙L-1 KOH saturated with 

KCl. Following centrifugation, 150 µl of supernatant was analysed in duplicate for glucose 

concentration according to the hexokinase method using a commercially available kit (GLU-HK, 

Randox Laboratories, Antrim, UK). Glycogen concentration is expressed as mmol/kg dry weight (dw), 

and intra-assay coefficients of variation was < 5%.   

 

Western blotting 

Approximately a 20-30 mg piece of frozen muscle was ground to powder and homogenised in 120 μl 

of ice cold lysis buffer (25 mM Tris/HCl [pH 7.4], 50 mM NaF, 100 mM NaCl, 5 mM EGTA, 1 mM 

EDTA, 10 mM Na-Pyrophoshatase, 1 mM Na3VO4, 0.27 M sucrose, 1 % Triton X-100, 0.1 % 2-

mercaptoethanol) and supplemented with a protease inhibitor tablet (Complete mini, Roche Applied 

Science, West Sussex, UK). Homogenates were centrifuged at 14,000 g for 10 min at 4˚C and the 

supernatant was collected. The protein content of the supernatant was determined using a bicinchoninic 

acid assay (Sigma, UK). Each sample was diluted with an equal volume of 2X Laemmli buffer 

(National Diagnostics, USA) and boiled for 5-min at 100 ˚C. For each blot, a standard and internal 

control was loaded along with 50-100 µg of protein from each sample and then separated in Tris-

glycine running buffer (10 X Tris/Glycine, Geneflow Ltd, Staffordshire, UK) using self-cast 4% 

stacking and 10 % separating gels (National Diagnostics, USA). Gels were transferred semi-dry onto 

nitrocellulose membrane (Geneflow Ltd, Staffordshire, UK) for 2-h at 200 V and 45 mA per gel in 
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transfer buffers (anode 1; 0.3 M Tris, 20 % methanol, pH 10.4; anode 2; 0.25 M Tris, 20 % methanol, 

pH 10.4; cathode; 0.4 M 6-amino hexanoic acid, 20 % methanol, pH 7.6). After transfer, membranes 

were blocked for 1 h at room temperature in Tris-buffered saline (TBST: 0.19 M Tris pH 7.6, 1.3 M 

NaCl, 0.1 %Tween-20) with 5% non-fat milk. The membranes were then washed for 3 x 5 min in 

TBST before being incubated overnight at 4˚C with phospho-specific anti-bodies for AMPKThr172 and 

p38MAPKThr180/Tyr182 (all from Cell Signaling, UK) as well as total protein of GAPDH (from Cell 

Signaling, UK) all at concentrations of 1:1000 in 1 X TBST. The next morning, membranes were 

washed for a further 3 x 5 min in TBST and subsequently incubated with anti-species horseradish 

peroxidise-conjugated secondary antibody (Bio-Rad or Dako, UK) for 1-h at room temperature. After a 

further 3 x 5 min washes in TBST, membranes were exposed in a chemiluminescence liquid 

(SuperSignal, Thermo Fisher Scientific, Rockford, IL, USA) for 5-min. Membranes were visualised 

using a Bio-Rad Chemi-doc system, and band densities were determined using Image Lab image-

analysis software. All raw densitometry data were used for statistical analysis. However, because it is 

technically incorrect to compare densitometry data between gels (and hence, between subjects), for 

graphical purposes each subject’s pre-exercise values was normalised to 1 (hence no error bars are 

shown for this time point) such that values at post-exercise and 3 h post-exercise are subsequently 

expressed as fold change relative to pre-exercise values. This approach has been used previously by us 

(Bartlett et al., 2012; 2013; Morton et al., 2009) and other researchers (Perry et al., 2010).  GAPDH 

was used for normalisation to phosphorylated proteins where appropriate (Serpiello et al. 2012).  We 

confirmed through a one-way analysis of variance (ANOVA) for repeated measures that there was no 

change in GAPDH at any time point measured. 

 

Real time Reverse Transcription-Polymerase Chain Reaction (RT-PCR)  

RNA isolation and cDNA synthesis  

Total RNA was isolated from one pass of muscle biopsy per time point (20-30 mg) using Trizol 

reagent (Invitrogen), according to the manufacturer’s protocol.  RNA quality and quantity were 

determined using Implen Nanophotometer (Implen, Munchen, Germany) and the RNA was stored at -

80oC.  cDNA was synthesised using random hexamers (Applied Biosystems) and Superscript III 

enzyme (Life Technologies), using manufacturer’s protocol.   

Gene expression analysis by RT-qPCR  

Gene specific expression data was obtained using probes selected from Human Universal Probe 

Library (PGC-1α – probe 13 and GAPDH – probe 60) (Roche Diagnostics) with custom designed 

primers (MWG Eurofins). Forward and reverse primers for PGC-1α were as follows: 5’-

TGAGAGGGCCAAGCAAAG-3’ and 5’-ATAAATCACACGGCGCTCTT-3’, respectively.  One μl 

of each sample were analysed in duplicates with negative controls using AB 7500 Real-Time 

Quantitative PCR instrument (Applied Biosystems) and Agilent Brilliant II qPCR Master Mix with 

Low ROX (Agilent Technologies). One microliter of cDNA, 500 nM of each primer and 200 nM of 

probe were used for each 20 μl reaction. The following cycling parameters were used: 50˚C for 2 
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minutes, initial denaturation at 95˚C for 10 minutes, followed by 40 cycles of denaturation at 95˚C for 

15 s and annealing/elongation at 60˚C for 1 minute. Data was collected and analysed using AB SDS 

1.43 Software (Applied Biosystems, Foster City, USA). Changes in mRNA content were calculated 

according to the 2-ΔΔCt method where GAPDH was used as the housekeeping gene (Heid et al. 1996).  

Forward and reverse primers for GAPDH were as follows: 5’- GCTCTCTGCTCCTCCTGTTC-3’ and 

5’- ACGACCAAATCCGTTGACTC-3’, respectively.   

 

Venous blood samples and biochemical analysis 

Blood samples were obtained pre-, during and post-exercise and drawn from a superficial vein in the 

antecubital crease of the forearm using standard venepuncture techniques (Vacutainers Systems, 

Becton, Dickinson).  Samples were collected into vacutainers containing EDTA and lithium heparin 

and were stored on ice until centrifugation at 2,000 rpm for 15 min at 4°C.  Following centrifugation, 

aliquots of plasma were stored at -80˚C for later analysis.  Samples were analysed for plasma glucose, 

lactate, glycerol and NEFA concentration using commercially available kits (Randox Laboratories, 

Antrim, UK). 

 

Statistical analysis 

The responses of blood metabolites, protein and mRNA contents to the laboratory-based soccer-

specific training simulation were evaluated using a one-way analysis of variance (ANOVA) for 

repeated measures. The Least Significant Difference (LSD) post-hoc test for multiple comparisons was 

performed in order to examine the effect of time (i.e., pre-, 20-min, 40-min, post-exercise and 3-h after 

exercise).  Muscle glycogen analysis (pre- to post-exercise) was conducted via a paired samples t-test.  

Results are presented as means ± standard deviation (SD). P-values < 0.05 were considered significant. 
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Results 

Physiological responses to LSSTS 

The physiological responses to the laboratory-based soccer-specific training simulation are presented in 

Table 3.  The average intensity of the LSSTS was 55 ± 6 % V̇O2max which corresponded to an average 

heart rate of 150 ± 12 b.min-1 (77 ± 6 % HRmax) and average RPE across the 60 min LSSTS of 6 ± 1. 

 

Blood metabolites 

Blood glucose concentration did not change either during or following the LSSTS (P = 0.218). 

Compared with pre-exercise (1.6 ± 0.6 mmol·L-1), blood lactate significantly increased during (20-min, 

4.6 ± 2.1 mmol·L-1; 40-min, 5.0 ± 2.5 mmol·L-1) and immediately post-exercise (5.3 ± 2.6 mmol·L-1) 

(P < 0.001) (Table 4).  There were also significant changes in NEFA and glycerol following exercise. 

The concentration of NEFA was significantly higher at 40-min (0.5 ± 0.1 mmol·L-1), immediately post-

exercise (0.6 ± 0.2 mmol·L-1) and 3 h post completion of the LSSTS (0.8 ± 0.2 mmol·L-1) compared 

with pre-exercise (0.4 ± 0.3 mmol· L-1) (P < 0.001).  Glycerol concentration during (20-min, 69 ± 28 

μmol·L-1; 40-min, 105 ± 46 μmol·L-1), immediately post-exercise (145 ± 54 μmol·L-1) and 3 h post 

completion of the LSSTS (64 ± 22 μmol·L-1) were also significantly higher than pre-exercise (29 ±19 

μmol·L-1) (P < 0.001) (Table 4). 

 

Muscle glycogen 

There was a significant reduction in muscle glycogen following the laboratory-based soccer specific 

training when compared to pre-exercise muscle glycogen concentrations (Pre; 397 ± 86 mmol/kg dw, 

Post; 344 ± 64 mmol/kg dw; P = 0.039) (Figure 2). 

 

Signaling responses to LSSTS 

There was no change in the phosphorylation of AMPK (Post, 1.2 ± 0.2; 3h, 1.2 ± 0.3) or p38MAPK 

(Post, 1.4 ± 1.4; 3h, 1.3 ± 1.3) immediately post-exercise or 3 h post-exercise compared with pre-

exercise (P > 0.05) (Figure 3A and 3B). 

 

PGC-1α mRNA 

Although there was no change in PGC-1α mRNA expression immediately post-exercise, there was a 

significant 5-fold increase 3 h post-exercise compared with pre- and post-exercise levels (P = 0.009) 

(Figure 4). 
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Discussion 

The aim of the current study was to examine the acute whole body metabolic and molecular responses 

associated with mitochondrial biogenesis in human skeletal muscle following a laboratory simulated 

soccer-specific training protocol.  We show novel data by demonstrating that laboratory simulated 

soccer-specific exercise increases the expression of PGC-1α mRNA.  There was, however, no change 

in phosphorylation of AMPK and p38MAPK, when measured by western blot, suggesting the increase 

in PGC-1α mRNA expression may possibly be independent of AMPK and p38MAPK.  These results 

imply that soccer-specific training can lead to beneficial increases in PGC-1α mRNA in skeletal 

muscle though the upstream signalling events that coordinate this transcriptional response during 

soccer-specific training are unclear.  As such these data may have implications for better understanding 

the specific ‘muscle’ responses to soccer-specific training protocols in the field. 

In order to address our aim, we developed a novel laboratory simulated soccer-specific bout of training 

using activity profiles that mimics professional soccer players’ ‘in season’ habitual training.  Although 

previous soccer-specific laboratory simulations have been designed to simulate soccer matchplay 

(Drust, Reilly, & Cable, 2000; Gregson, Drust, Batterham, & Cable, 2002), to the author’s knowledge, 

no previous attempt has been made to develop a laboratory-based simulation that represents soccer-

specific training sessions completed by elite professional players.  Indeed, the work-rates and the 

relevant duration of each discrete bout of activity employed in this protocol were similar to that 

observed in the field based session (Table 1).  It is acknowledged that the total number of discrete 

movements was slightly different between the training session and simulation. This is a consequence of 

the treadmill used in the simulation and the transition time that the equipment takes to change speeds 

between different movements.  We also recognise the difference in time spent between 60-80 % HRmax 

in our simulation (Table 2), which we propose is probably due to the omission of the small utility 

movements and technical and tactical elements inherent to soccer activity.  Despite these limitations 

key physiological responses to soccer training, i.e. average HR, time spent above 80 % HRmax and s-

RPE to the LSSTS were similar to those recorded in the actual training sessions of the elite 

professional players (Jeong et al. 2013) (Table 2).  From a metabolic perspective, the increase in blood 

lactate at 20 minutes into the exercise bout (4.6 ± 2.1 mmol·L-1) and increases in NEFA and glycerol at 

20 min, 40 min and immediately post-exercise are similar to the patterns observed in matchplay 

(Bangsbo, 1994; Bangsbo, Nørregaard, & Thorsø, 1991; Krustrup et al., 2006).  Collectively, the 

LSSTS would therefore appear to be a valid representation of the organisation of field based 

professional soccer training and as such makes it a suitable tool for the examination of the metabolic 

and molecular responses to this type of soccer-specific activity.  

PGC-1α is suggested to be the ‘master regulator’ of endurance training adaptation.  In the current study 

we observed a 5-fold increase at 3 h post-exercise in the expression of PGC-1α mRNA following 60-

min of soccer-specific laboratory simulated activity.  Although this time-course and magnitude of fold 

change is similar to that observed previously in human skeletal muscle in both running (Bartlett et al., 

2012) and cycling exercise (Cochran, Little, Tarnopolsky, & Gibala, 2010; Gibala et al., 2009) this is 

the first study to examine PGC-1α mRNA responses following soccer-specific activity.  Such findings 
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may suggest that cumulative bouts of soccer training enhances the oxidative capacity of skeletal muscle 

and thus increases the capacity for both fat and carbohydrate utilisation during exercise (Pilegaard & 

Richter, 2008).  Furthermore, the global effect observed in soccer-specific training such as small-sided 

games (Impellizzeri et al., 2006) may be partly mediated by the transient increases in expression of 

PGC-1α mRNA, which, over time culminate in mitochondrial biogenesis (Egan et al., 2013; Perry et 

al., 2010).  Engaging in regular soccer activity (60 min) is also becoming well recognised as a valid 

mode of exercise for improving aspects of human health and for decreasing the risk of developing 

lifestyle diseases (Krustrup, Christensen, et al., 2010b; Randers et al., 2010; 2012).  Indeed, the 

increases in PGC-1α mRNA may provide clues as to one of the potential mechanisms controlling 

improvements in oxidative capacity, lipid oxidation, insulin sensitivity, phenotype transformation and 

body composition that are characteristic following periods of soccer training (Krustrup, Aagaard, et al., 

2010a).          

Following the observation of increased PGC-1α mRNA, we attempted to explore the upstream 

mechanisms that may be partly responsible.  Interestingly, we observed no change in phosphorylation 

status of both AMPK and p38MAPK.  This is to the authors knowledge the first study to demonstrate 

an increase in PGC-1α mRNA expression independent of any changes in two of its upstream regulators, 

AMPK and p38MAPK.  Firstly, the failure to highlight such a signalling cascade may be associated 

with the low average intensity of the soccer-specific laboratory training simulation (approximately 55 ± 

6 V̇O2max) (Egan et al., 2010).  Secondly, the extended recovery periods of low-intensity activity 

between the high-intensity activities may be too long in duration, therefore, allowing recovery of the 

cellular energy status (i.e. free AMP) resulting in a dampened AMPK signalling response.  Thirdly, 

muscle glycogen is shown to be a regulator of AMPK activity (Philp, Hargreaves, & Baar, 2012).  In 

considering the soccer-specific training simulation utilised just 14 % of pre-exercise muscle glycogen 

levels and that we have shown 30-45 % muscle glycogen utilisation to increase AMPK 

phosphorylation (Bartlett et al., 2012) it would appear the overall intensity and substrate utilisation 

isn’t great enough to initiate AMPK signalling.  In addition to finding no change in AMPK we also 

observed no alteration in phosphorylation status of p38MAPK.  It is unclear as to why the exercise bout 

in the current study failed to activate p38MAPK but the relatively short periods of high-intensity 

activity may not be long enough to induce mechanical disturbances that would result in activation of 

p38MAPK.  It is acknowledged that soccer training contains a small amount (approx. 4 %) of utility 

movements (backwards, sideways), as well as eccentric muscle loading, heading, kicking and tackling, 

however, due to the current LSSTS being performed on a motorised treadmill and performing these 

utility movements is a safety risk to the participant it is difficult to rule out that during actual field-

based soccer training greater mechanical disturbances may occur within skeletal muscle due to the 

increased ‘cutting’ movements and technical actions.  With this in mind, it is possible that a Type II 

error occurred.  Whilst, both AMPK and p38MAPK demonstrated no change, one candidate that may 

be responsible for the increased transcriptional response of PGC-1α is that of calcium (Ca2+) signalling.  

For example, it is well known that Ca2+ plays a crucial role in the contraction-relaxation cycle of 

skeletal muscle such that transient increases in intracellular Ca2+ leads to an increase in CaMK 

signalling (Chin, 2004).  Furthermore, high-intensity contractions result in changes in the amplitude 
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and frequency of calcium oscillations that appear consistent with the discrete bouts of high-intensity 

activity in the current study (Baylor & Hollingworth, 2003).  Taken together, it may be speculated that 

the high-intensity activities during the course of the 60 minute LSSTS may result in transient increases 

in intracellular Ca2+ that subsequently activate CaMKII leading to increased expression of PGC-1α 

mRNA.  As such, future studies should attempt to quantify activation of calcium related signalling in 

response to the typical activity profiles that are inherent to soccer-specific training.  

Conclusion 

In conclusion, we present data that furthers the understanding of the physiology of soccer.  From a 

‘muscle’ perspective, it has previously been unclear as to the molecular responses to soccer-specific 

training.  These data demonstrate that a single 60 min session of soccer-specific training activates the 

expression of PGC-1α mRNA in human skeletal muscle though this occurs independent of any change 

in AMPK and p38MAPK.  This would suggest that there might be other signals, i.e. Ca2+, involved in 

the activation and transcriptional response of human skeletal muscle.  Moreover, the global effect of 

soccer-specific intermittent exercise on aerobic performance and human health may be partly mediated 

by adaptations associated with mitochondrial biogenesis in human skeletal muscle. 
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Fig 1 Schematical representation of the 20 min 36 s LSSTS.  This block of training 

was completed three times to form a 60-min simulated soccer training session. 

 

Fig 2 Muscle glycogen changes pre- and post- the laboratory-based soccer-specific 

intermittent protocol. * Denotes significant difference compared to pre-exercise (P < 

0.05). 

 

Fig 3 PGC-1α mRNA expression following the laboratory-based soccer-specific 

training simulation.  * Denotes significantly different compared to pre- and post-

exercise (P < 0.05). 

 

Fig 4 Phosphorylation of AMPK (A) and p38MAPK (B) following the laboratory-

based soccer-specific training simulation.
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Table 1. The activity profiles employed in a laboratory-based soccer-specific training 

simulation and the actual training session observed.  Adapted from Jeong et al. 

(2013). 

 SP Wk Jg HSR Sp 

Training      

Total time (%) 41 37 11 9 2 

Total number for each movement 104 147 135 63 23 

Average duration of each movement (s) 14 12 6 5 3 

Simulation      

Total time (%) 41 37 11 9 2 

Total number for each movement 78 84 51 48 18 

Average duration of each movement (s) 14 12 6 5 3 

SP; Static pause, Wk; Walking, Jg; Jogging, HSR; High Speed Running, Sp; Sprinting 

 

 

 

Table 2.  The physiological responses during the laboratory-based soccer-specific 

training simulation and the actual training session observed. * Denotes significant 

difference between groups (P < 0.05).  Adapted from Jeong et al. (2013). 

 
 

Mean HR 

(b.min-1) 

Mean % 

of HRmax 

% of time spent in the HR zone (% of HRmax) 

TL (AU) 

100-90 90-80 80-70 70-60 60-50 < 50 

Training 

(n=10) 
137 ± 8 72 ± 3 0.4 ± 1 22 ± 12 41 ± 8 * 19 ± 3 * 15 ± 7 2 ± 2 365 ± 63 

Simulation 

(n=10) 
136 ± 10 71 ± 5 3 ± 3 21 ± 15 33 ± 10 26 ± 7 13 ± 8 4 ± 6 356 ± 64 

HR; Heart rate, HRmax; Maximal heart rate, TL; Training load 
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Table 3.  Physiological responses during the LSSTS. 

HR-heart rate, V
．

O2max –maximal oxygen consumption, RPE-ratings of perceived exertion, RER-

respiratory exchange ratio 

 

 

Exercise Variable Means ± SD 

HR (b·min-1) 150 ± 12 

HR (% HRmax) 77 ± 6 

Minute ventilation (L·min-1) 65 ± 17 

Oxygen consumption (L·min-1) 2.4 ± 0.6 

V
．

O2 (ml·kg-1·min-1) 32 ± 3 

% V
．

O2max (%) 55 ± 6 

Session-RPE (AU) 6 ± 1 
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Table 4 Responses of blood metabolites to the laboratory-based soccer-specific 

intermittent protocol. * Denotes significantly different to pre-exercise (P < 0.05). 

 

 Pre +20 min +40 min Post 3 h 

Glucose 

(mmol.L-1) 
5.29 ± 0.62 5.53 ± 0.30 5.59 ± 72 5.89 ± 0.66 5.03 ± 0.27 

Lactate 

(mmol.L-1) 
1.57 ± 0.57 4.64 ± 2.08 * 5.01 ± 2.46 * 5.30 ± 2.56 * 1.01 ± 0.27 

NEFA 

(mmol.L-1) 
0.45 ± 0.27 0.37 ± 10 0.44 ± 12 0.60 ± 0.22 0.79 ± 0.20 * 

Glycerol 

(μmol.L-1) 
29 ± 19 69 ± 28 * 105 ± 46 * 145 ± 54 * 64 ± 22 * 
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FIGURE 1. 
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FIGURE 2. 
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FIGURE 3. 
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FIGURE 4.  
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