

LJMU Research Online

McLaughlin, G, Morris, N, Kavanagh, PV, Dowling, G, Power, JD, Twamley, B, O'Brien, J, Talbot, B, Sitte, HH and Brandt, SD

Test purchase, synthesis and characterization of 3-fluorophenmetrazine (3-FPM) and differentiation from its ortho- and para-substituted isomers.

http://researchonline.ljmu.ac.uk/id/eprint/3143/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

McLaughlin, G, Morris, N, Kavanagh, PV, Dowling, G, Power, JD, Twamley, B, O'Brien, J, Talbot, B, Sitte, HH and Brandt, SD (2016) Test purchase, synthesis and characterization of 3-fluorophenmetrazine (3-FPM) and differentiation from its ortho- and para-substituted isomers. Drug Testing

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Test purchase, synthesis and characterization of 3-fluorophenmetrazine (3-FPM) and differentiation from its *ortho*- and *para*-substituted isomers

Gavin McLaughlin, ^{a,b*} Noreen Morris, ^a Pierce V. Kavanagh, ^b Geraldine Dowling, ^b John D. Power, ^{b,c} Brendan Twamley ^d John O'Brien, ^d Brian Talbot, ^e Harald H. Sitte ^{f,g} and Simon D. Brandt ^h

^a Department of Life and Physical Sciences, School of Science, Athlone Institute of Technology, Dublin Road, Westmeath, Ireland

^b Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland

^c Forensic Science Laboratory, Garda HQ, Dublin 8, Ireland

^d School of Chemistry, Trinity College Dublin, Dublin 2, Ireland

^e School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland

^{*f*} Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Vienna, Austria

^g Center for Addiction Research and Science, Medical University Vienna, Waehringerstrasse 13A, 1090 Vienna, Austria

^h School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK

*Correspondence to: Gavin McLaughlin, Department of Pharmacology & Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland. Email: gmclaug@tcd.ie or gavinmclaughlin@research.ait.ie

2-Fluorophenmetrazine (2-FPM)

3-Fluorophenmetrazine

(3-FPM)

١H

4-Fluorophenmetrazine (4-FPM)

1

Table of contents

- 1. Examples of 3-FPM products purchased from Internet vendors
- ¹H and ¹³C NMR spectra: Synthesized 2-FPM, 3-FPM and 4-FPM fumarate reference standards (d₆-DMSO, 600 / 150 MHz)
- ¹H and ¹³C NMR spectra: Synthesized 3-FPM vs. all five 3-FPM vendor samples (d₆-DMSO, 600 / 150 MHz)
- 4. Electron Ionization mass spectra for the underivatized [A-C] and derivatized (TFAA [D-F], HFBA [G-I], PFBA [J-L]) FPM isomers (synthesized reference standards)
- 5. GC-MS data obtained from vendor samples (underivatized)
- 6. GC-MS vendor samples 1 5 (3-FPM; derivatized with TFAA)
- 7. GC-MS vendor samples 1 5 (3-FPM; derivatized with HFBA)
- 8. GC-MS vendor samples 1 5 (3-FPM; derivatized with PFPA)
- 9. LC-Q-MS vendor samples 1 5 (3-FPM)
- 10. X-ray crystal data obtained for synthesized 3-FPM reference standard
- 11. Additional x-ray crystal data for 3-FPM vendor sample

1. Examples of 3-FPM products purchased from Internet vendors

 ¹H and ¹³C NMR spectra: Synthesized 2-FPM, 3-FPM and 4-FPM fumarate reference standards (d₆-DMSO, 600 / 150 MHz)

 ¹H NMR and ¹³C NMR spectra: Synthesized 3-FPM vs. all five 3-FPM vendor samples (d₆-DMSO, 600 / 150 MHz)

3-FPM HCI salt synthesized standard

¹H NMR (DMSO) δ 7.48–7.41 (m,1H, Ar-CH, [3']), 7.31–7.19 (m, 3H, Ar-CH, [2',4',6']), 4.51 (d, *J* = 9.8 Hz, 1H, CH, [2]), 4.09–3.91 (m, 2H, CH₂, [6]), 3.41–3.33 (m, 1H, CH, [3]), 3.30–3.17 (m, 2H, CH₂, [5]), 1.00 (d, *J* = 6.6 Hz, 3H, CH₃) ppm.¹³C NMR (DMSO) δ 162.40 (Ar-CF [1']), 140.31 (Ar-CH [5']), 130.80 (Ar-CH [3']), 124.20 (Ar-CH [4']), 115.93 (Ar-CH [2']), 114.70 (Ar-CH [6']), 80.43 (CH [2]), 63.62 (CH₂ [6]), 54.13 (CH [3]), 42.96 (CH₂ [5]), 14.61 (CH₃) ppm. ¹⁹F NMR (d₆-DMSO) δ –113.19 ppm.

Vendor one

¹H NMR (DMSO) δ 7.48–7.41 (m,1H, Ar-CH, [3]), 7.31–7.18 (m, 3H, Ar-CH, [2',4',6']), 4.50 (d, *J* = 9.8 Hz, 1H, CH, [2]), 4.08–3.92 (m, 2H, CH₂, [6]), 3.41–3.33 (m, 1H, CH, [3]), 3.29–3.16 (m, 2H, CH₂, [5]), 1.00 (d, *J* = 6.7 Hz, 3H, CH₃) ppm.¹³C NMR (DMSO) δ 161.24 (Ar-CF [1]), 139.95 (Ar-CH [5']), 130.48 (Ar-CH [3']), 123.80 (Ar-CH [4']), 115.57 (Ar-CH [2']), 114.93 (Ar-CH [6']), 80.09 (CH [2]), 63.27 (CH₂ [6]), 53.78 (CH [3]), 42.52 (CH₂ [5]), 14.26 (CH₃) ppm. ¹⁹F NMR (d₆-DMSO) δ –113.19 ppm.

Vendor two

¹H NMR (DMSO) δ 7.48–7.40 (m,1H, Ar-CH, [3']), 7.31–7.18 (m, 3H, Ar-CH, [2',4',6']), 4.50 (d, *J* = 9.8 Hz, 1H, CH, [2]), 4.09–3.91 (m, 2H, CH₂, [6]), 3.40–3.32 (m, 1H, CH, [3]), 3.30–3.17 (m, 2H, CH₂, [5]), 1.00 (d, *J* = 6.7 Hz, 3H, CH₃) ppm.¹³C NMR (DMSO) δ 162.05 (Ar-CF [1]), 139.93 (Ar-CH [5']), 130.47 (Ar-CH [3']), 123.80 (Ar-CH [4']), 115.41 (Ar-CH [2']), 114.43 (Ar-CH [6']), 80.10 (CH [2]), 63.27 (CH₂ [6]), 53.78 (CH [3]), 42.61 (CH₂ [5]), 14.27 (CH₃) ppm. ¹⁹F NMR (d₆-DMSO) δ –113.19 ppm.

Vendor three

¹H NMR (DMSO) δ 7.48–7.41 (m,1H, Ar-CH, [3']), 7.31–7.18 (m, 3H, Ar-CH, [2',4',6']), 4.50 (d, *J* = 9.9 Hz, 1H, CH, [2]), 4.09-3.91 (m, 2H, CH₂, [6]), 3.41–3.33 (m, 1H, CH, [3]), 3.30–3.17 (m, 2H, CH₂, [5]), 1.00 (d, *J* = 6.7 Hz, 3H, CH₃) ppm.¹³C NMR (DMSO) δ 162.05 (Ar-CF [1]), 139.96 (Ar-CH [5']), 130.48 (Ar-CH [3']), 123.85 (Ar-CH [4']), 115.44 (Ar-CH [2']), 114.21 (Ar-CH [6']), 80.10 (CH [2]), 63.27 (CH₂ [6]), 53.77 (CH [3]), 42.61 (CH₂ [5]), 14.27 (CH₃) ppm. ¹⁹F NMR (d₆-DMSO) δ –113.19 ppm.

Vendor four

¹H NMR (DMSO) δ 7.48–7.41 (m,1H, Ar-CH, [3']), 7.31–7.18 (m, 3H, Ar-CH, [2',4',6']), 4.52 (d, *J* = 9.8 Hz, 1H, CH, [2]), 4.09–3.90 (m, 2H, CH₂, [6]), 3.41–3.33 (m, 1H, CH, [3]), 3.30–3.17 (m, 2H, CH₂, [5]), 1.00 (d, *J* = 6.7 Hz, 3H, CH₃) ppm.¹³C NMR (DMSO) δ 162.05 (Ar-CF

[1]), 139.99 (Ar-CH [5']), 130.50 (Ar-CH [3']), 123.91 (Ar-CH [4']), 115.65 (Ar-CH [2']), 114.26 (Ar-CH [6']), 80.10 (CH [2]), 63.28 (CH₂ [6]), 53.78 (CH [3]), 42.61 (CH₂ [5]), 14.27 (CH₃) ppm. ¹⁹F NMR (d₆-DMSO) δ –113.22 ppm.

Vendor five

¹H NMR (DMSO) δ 7.48–7.41 (m,1H, Ar-CH, [3']), 7.31–7.18 (m, 3H, Ar-CH, [2',4',6']), 4.50 (d, *J* = 9.8 Hz, 1H, CH, [2]), 4.09–3.91 (m, 2H, CH₂, [6]), 3.40–3.32 (m, 1H, CH, [3]), 3.30–3.17 (m, 2H, CH₂, [5]), 1.00 (d, *J* = 6.7 Hz, 3H, CH₃) ppm.¹³C NMR (DMSO) δ 162.05 (Ar-CF [1]), 139.97 (Ar-CH [5']), 130.49 (Ar-CH [3']), 123.80 (Ar-CH [4']), 115.56 (Ar-CH [2']), 114.32 (Ar-CH [6']), 80.10 (CH [2]), 63.28 (CH₂ [6]), 53.78 (CH [3]), 42.61 (CH₂ [5]), 14.27 (CH₃) ppm. ¹⁹F NMR (d₆-DMSO) δ –113.22 ppm.

 Electron Ionization mass spectra for the underivatized [A-C] and derivatized (TFAA [D-F], HFBA [G-I], PFBA [J-L]) FPM isomers (synthesized reference standards)

5. GC-MS data obtained from vendor samples (underivatized)

6. GC-MS vendor samples 1 - 5 (3-FPM; derivatized with TFAA)

Time-->

7. GC-MS vendor samples 1 - 5 (3-FPM; derivatized with HFBA)

8. GC-MS vendor samples 1 - 5 (3-FPM; derivatized with PFPA)

9. LC-Q-MS vendor samples 1 - 5 (3-FPM)

10. X-ray crystal data obtained for synthesized 3-FPM reference standard

Molecular structure of TCD213 (symmetry generated), thermal displacement 50%. Only symmetry unique atoms labeled for clarity

Packing diagram of TCD213 viewed down the c -axis. Hydrogen atoms omitted for clarity. Dashed lines indicate strong hydrogen bonding

Data collection details for TCD213.

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Omega	50.000	-49.59	299.31	72.00	-64.87	1.90	59	57.00	1.54184	45	0.6	100
Phi	50.000	109.35	77.69	0.45	-23.00	1.90	189	57.00	1.54184	45	0.6	100
Omega	50.000	106.14	152.22	174.20	-82.85	1.90	49	57.00	1.54184	45	0.6	100
Omega	50.000	109.19	343.24	225.00	64.87	1.90	72	57.00	1.54184	45	0.6	100
Phi	50.000	-43.14	348.51	0.45	23.00	1.90	189	57.01	1.54184	45	0.6	100
Omega	50.000	109.19	343.23	300.00	64.88	1.90	72	57.00	1.54184	45	0.6	100
Omega	50.000	-49.59	299.31	216.00	-64.88	1.90	59	57.00	1.54184	45	0.6	100
Phi	50.000	109.35	4.17	0.45	23.00	1.90	189	57.01	1.54184	45	0.6	100
Omega	50.000	109.50	151.33	265.05	-81.57	1.90	50	57.00	1.54184	45	0.6	100
Omega	50.000	-49.59	190.34	144.00	54.74	1.90	70	57.00	1.54184	45	0.6	100
Phi	50.000	94.35	80.80	0.45	-57.06	1.90	189	57.00	1.54184	45	0.6	100
Omega	50.000	-49.59	190.34	36.00	54.74	1.90	70	57.00	1.54184	45	0.6	100
Omega	50.000	-49.59	190.34	108.00	54.74	1.90	70	57.00	1.54184	45	0.6	100
Omega	50.000	109.19	343.24	360.00	64.87	1.90	72	57.00	1.54184	45	0.6	100
Omega	50.000	-49.59	190.34	180.00	54.74	1.90	70	57.00	1.54184	45	0.6	100
Omega	50.000	109.19	96.27	0.00	-54.74	1.90	70	57.00	1.54184	45	0.6	100
Omega	50.000	-11.01	228.92	360.00	54.74	1.90	70	57.00	1.54184	45	0.6	100
Omega	50.000	-49.59	190.34	252.00	54.74	1.90	70	57.00	1.54184	45	0.6	100
Phi	50.000	109.35	95.80	0.45	-57.06	1.90	189	57.00	1.54184	45	0.6	100
Omega	50.000	109.19	96.27	100.00	-54.74	1.90	70	57.00	1.54184	45	0.6	100
Omega	50.000	-49.59	190.34	216.00	54.74	1.90	70	57.00	1.54184	45	0.6	100
Phi	50.000	-2.55	11.00	0.45	57.06	1.90	189	57.00	1.54184	45	0.6	100

Crystal data and structure refinement for TCD213. Identification code tcd213 Empirical formula C₁₃H₁₆FNO₃ Formula weight 253.27 Temperature 100(2) K 1.54178 Å Wavelength Crystal system Monoclinic P21/c Space group a = 18.7821(8) Å Unit cell dimensions **□= 90°**. b = 7.7948(3) Å □= 91.8726(14)°. c = 8.7467(4) Å □ = 90°. 1279.86(9) Å³ Volume Ζ 4 1.314 Mg/m³ Density (calculated) 0.863 mm⁻¹ Absorption coefficient F(000) 536 0.320 x 0.090 x 0.060 mm³ Crystal size Theta range for data collection 2.354 to 70.115°. Index ranges -22≤h≤22, -9≤k≤9, -9≤l≤10 Reflections collected 14670 Independent reflections 2421 [R(int) = 0.0367] Completeness to theta = 67.679° 99.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7533 and 0.6276 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 2421 / 0 / 176 Goodness-of-fit on F² 1.081 Final R indices $[I>2\sigma(I)]$ R1 = 0.0516, wR2 = 0.1338 R1 = 0.0544, wR2 = 0.1354 R indices (all data) 0.261 and -0.292 e.Å⁻³ Largest diff. peak and hole

	Х	У	Z	U(eq)	
F(1)	8944(1)	10585(2)	5655(2)	58(1)	
C(2)	8935(1)	8860(3)	5963(3)	40(1)	
C(3)	9570(1)	8001(4)	6098(3)	43(1)	
C(4)	9551(1)	6269(4)	6427(3)	41(1)	
C(5)	8903(1)	5436(3)	6608(3)	34(1)	
C(6)	8270(1)	6337(3)	6445(2)	26(1)	
C(7)	8284(1)	8087(3)	6118(3)	33(1)	
C(8)	7555(1)	5464(3)	6572(2)	24(1)	
O(9)	7133(1)	6538(2)	7504(2)	27(1)	
C(10)	6441(1)	5821(3)	7699(2)	27(1)	
C(11)	6040(1)	5724(3)	6190(2)	25(1)	
N(12)	6448(1)	4661(2)	5102(2)	22(1)	
C(13)	7207(1)	5222(2)	4977(2)	22(1)	
C(14)	7599(1)	3898(3)	4040(2)	29(1)	
O(15)	6294(1)	1573(2)	6411(2)	32(1)	
O(16)	5617(1)	-317(2)	7602(2)	26(1)	
C(17)	5753(1)	618(2)	6481(2)	23(1)	
C(18)	5252(1)	585(2)	5112(2)	22(1)	

Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for TCD213. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F(1)-C(2) 1.371(3) C(3)-C(2)-F(1) 118.7(2) C(2)-C(3)1.369(4) C(3)-C(2)-C(7)123.5(2) F(1)-C(2)-C(7)C(2)-C(7)1.374(3) 117.8(2) C(3)-C(4)1.382(4) C(2)-C(3)-C(4)117.9(2) C(3)-H(3) 0.9500 C(2)-C(3)-H(3) 121.0 C(4)-C(5) 1.394(3)C(4)-C(3)-H(3)121.0 C(4)-H(4)0.9500 C(3)-C(4)-C(5)120.5(2) C(3)-C(4)-H(4)C(5)-C(6)1.384(3) 119.8 C(5)-H(5) 0.9500 C(5)-C(4)-H(4)119.8 C(6)-C(7)1.394(3) C(6)-C(5)-C(4)120.2(2) C(6)-C(8)1.513(3) C(6)-C(5)-H(5)119.9 C(7)-H(7) 0.9500 C(4)-C(5)-H(5)119.9 C(8)-O(9) 1.427(2) C(5)-C(6)-C(7)119.7(2) C(8)-C(13) 1.534(3) C(5)-C(6)-C(8)121.71(19) C(8)-H(8) 1.0000 C(7)-C(6)-C(8)118.55(19) O(9)-C(10) 1.430(2)C(2)-C(7)-C(6)118.2(2) C(10)-C(11) 1.499(3) C(2)-C(7)-H(7)120.9 120.9 C(10)-H(10A) 0.9900 C(6)-C(7)-H(7)O(9)-C(8)-C(6) C(10)-H(10B) 0.9900 106.83(15) C(11)-N(12) 1.492(2) O(9)-C(8)-C(13) 111.33(16) C(11)-H(11A) 0.9900 C(6)-C(8)-C(13)110.00(15) C(11)-H(11B) 0.9900 O(9)-C(8)-H(8) 109.5 C(6)-C(8)-H(8)N(12)-C(13) 1.499(2) 109.5 N(12)-H(12A) 0.91(3) C(13)-C(8)-H(8) 109.5 N(12)-H(12B) 0.95(3) C(8)-O(9)-C(10) 111.30(14) C(13)-C(14) 1.522(3) O(9)-C(10)-C(11) 110.28(16) C(13)-H(13) 1.0000 O(9)-C(10)-H(10A) 109.6 C(14)-H(14A) 0.9800 C(11)-C(10)-H(10A) 109.6 0.9800 O(9)-C(10)-H(10B) 109.6 C(14)-H(14B) C(11)-C(10)-H(10B) 109.6 C(14)-H(14C) 0.9800 O(15)-C(17) 1.261(2) H(10A)-C(10)-H(10B) 108.1 O(16)-C(17) 1.255(2) N(12)-C(11)-C(10) 109.67(16) N(12)-C(11)-H(11A) C(17)-C(18)1.500(3) 109.7 C(18)-C(18)#1 1.324(4) C(10)-C(11)-H(11A) 109.7 C(18)-H(18) 0.92(2) N(12)-C(11)-H(11B) 109.7

C(10)-C(11)-H(11B)

Bond lengths [Å] and angles [°] for TCD213.

109.7

H(11A)-C(11)-H(11B)	108.2	C(13)-C(14)-H(14A)	109.5
C(11)-N(12)-C(13)	113.18(15)	C(13)-C(14)-H(14B)	109.5
C(11)-N(12)-H(12A)	106.9(15)	H(14A)-C(14)-H(14B)	109.5
C(13)-N(12)-H(12A)	114.9(15)	C(13)-C(14)-H(14C)	109.5
C(11)-N(12)-H(12B)	109.7(14)	H(14A)-C(14)-H(14C)	109.5
C(13)-N(12)-H(12B)	107.7(14)	H(14B)-C(14)-H(14C)	109.5
H(12A)-N(12)-H(12B)	104(2)	O(16)-C(17)-O(15)	124.49(18)
N(12)-C(13)-C(14)	108.63(15)	O(16)-C(17)-C(18)	118.34(17)
N(12)-C(13)-C(8)	110.37(15)	O(15)-C(17)-C(18)	117.16(17)
C(14)-C(13)-C(8)	111.96(16)	C(18)#1-C(18)-C(17)	123.9(2)
N(12)-C(13)-H(13)	108.6	C(18)#1-C(18)-H(18)	118.6(14)
C(14)-C(13)-H(13)	108.6	C(17)-C(18)-H(18)	117.4(14)
C(8)-C(13)-H(13)	108.6		

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z+1

Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for TCD213. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	U11	U22	U33	U23	U13	U12	
F(1)	50(1)	37(1)	89(1)	6(1)	12(1)	-17(1)	
C(2)	40(1)	37(1)	44(1)	1(1)	5(1)	-14(1)	
C(3)	31(1)	56(2)	41(1)	0(1)	4(1)	-16(1)	
C(4)	26(1)	58(2)	39(1)	0(1)	-2(1)	0(1)	
C(5)	31(1)	39(1)	31(1)	2(1)	-2(1)	-2(1)	
C(6)	28(1)	31(1)	18(1)	-3(1)	1(1)	-4(1)	
C(7)	31(1)	33(1)	35(1)	-1(1)	3(1)	-5(1)	
C(8)	27(1)	22(1)	22(1)	0(1)	1(1)	-1(1)	
O(9)	28(1)	29(1)	25(1)	-6(1)	5(1)	-6(1)	
C(10)	29(1)	29(1)	24(1)	-2(1)	6(1)	-5(1)	
C(11)	26(1)	25(1)	26(1)	1(1)	3(1)	0(1)	
N(12)	24(1)	21(1)	21(1)	0(1)	-1(1)	-1(1)	
C(13)	24(1)	21(1)	22(1)	1(1)	1(1)	-1(1)	
C(14)	27(1)	33(1)	26(1)	-7(1)	0(1)	1(1)	
O(15)	32(1)	29(1)	34(1)	9(1)	-9(1)	-10(1)	
O(16)	28(1)	29(1)	22(1)	4(1)	-2(1)	-3(1)	

McLaughlin et al. – Drug	Testing and	Analysis –	Supplementary	Information
--------------------------	-------------	------------	---------------	-------------

C(17)	26(1)	20(1)	23(1)	-2(1)	1(1)	2(1)
C(18)	24(1)	21(1)	21(1)	1(1)	2(1)	3(1)

Hydrogen coordinates ($x~10^4$) and isotropic displacement parameters (Å $^2x~10~^3$) for TCD213.

	х	У	Z	U(eq)	
H(3)	10009	8578	5969	51	
H(4)	9984	5641	6531	49	
H(5)	8895	4246	6844	40	
H(7)	7855	8727	6005	40	
H(8)	7622	4321	7076	28	
H(10A)	6174	6541	8415	32	
H(10B)	6488	4657	8144	32	
H(11A)	5565	5208	6333	30	
H(11B)	5971	6893	5769	30	
H(12A)	6389(13)	3550(40)	5380(30)	33(6)	
H(12B)	6229(12)	4730(30)	4110(30)	29(6)	
H(13)	7214	6345	4425	27	
H(14A)	8084	4299	3872	43	
H(14B)	7347	3737	3052	43	
H(14C)	7617	2805	4594	43	
H(18)	5321(11)	1390(30)	4360(30)	22(5)	

Torsion angles [°] for TCD213.

F(1)-C(2)-C(3)-C(4)	179.2(2)
C(7)-C(2)-C(3)-C(4)	-0.9(4)
C(2)-C(3)-C(4)-C(5)	0.2(4)
C(3)-C(4)-C(5)-C(6)	0.6(4)
C(4)-C(5)-C(6)-C(7)	-0.8(3)
C(4)-C(5)-C(6)-C(8)	177.57(19)
C(3)-C(2)-C(7)-C(6)	0.6(4)
F(1)-C(2)-C(7)-C(6)	-179.4(2)
C(5)-C(6)-C(7)-C(2)	0.2(3)
C(8)-C(6)-C(7)-C(2)	-178.23(19)
C(5)-C(6)-C(8)-O(9)	135.24(19)
C(7)-C(6)-C(8)-O(9)	-46.4(2)
C(5)-C(6)-C(8)-C(13)	-103.8(2)
C(7)-C(6)-C(8)-C(13)	74.6(2)
C(6)-C(8)-O(9)-C(10)	-179.91(15)
C(13)-C(8)-O(9)-C(10)	60.0(2)
C(8)-O(9)-C(10)-C(11)	-63.8(2)
O(9)-C(10)-C(11)-N(12)	58.4(2)
C(10)-C(11)-N(12)-C(13)	-51.9(2)
C(11)-N(12)-C(13)-C(14)	171.34(16)
C(11)-N(12)-C(13)-C(8)	48.2(2)
O(9)-C(8)-C(13)-N(12)	-51.4(2)
C(6)-C(8)-C(13)-N(12)	-169.58(15)
O(9)-C(8)-C(13)-C(14)	-172.51(15)
C(6)-C(8)-C(13)-C(14)	69.3(2)
O(16)-C(17)-C(18)-C(18)#1	-12.9(3)
O(15)-C(17)-C(18)-C(18)#1	165.9(2)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1

Hydrogen bonds for TCD213 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(3)-H(3)F(1)#2	0.95	2.55	3.412(3)	151
C(11)-H(11A)O(16)#3	0.99	2.47	3.417(2)	160
N(12)-H(12A)O(15)	0.91(3)	1.80(3)	2.685(2)	165(2)
N(12)-H(12B)O(15)#4	0.95(3)	2.58(2)	3.372(2)	141.7(19)
N(12)-H(12B)O(16)#4	0.95(3)	1.78(3)	2.693(2)	160(2)
C(13)-H(13)O(9)#5	1.00	2.36	3.325(2)	163
C(14)-H(14B)O(15)#4	0.98	2.42	3.326(2)	154

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1 #2 -x+2,-y+2,-z+1 #3 -x+1,y+1/2,-z+3/2 #4 x,-y+1/2,z-1/2 #5 x,-y+3/2,z-1/2

11. Additional x-ray crystal data for 3-FPM vendor sample

Asymmetric unit of TCD179. Displacement ellipsoids shown at 50%. Only chiral center and donor hydrogen atoms labeled

Packing diagram of TCD178 viewed down the c-axis. Dashed lines indicate strong hydrogen bonding. Hydrogen atoms omitted for clarity

Data collection details for TCD178.

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Omega	45.000	17.70	9.07	300.00	-54.74	0.90	137	27.00	0.71073	50	30.0	100
Omega	45.000	17.70	9.07	180.00	-54.74	0.90	137	27.00	0.71073	50	30.0	100
Omega	45.000	17.70	9.07	60.00	-54.74	0.90	137	27.00	0.71073	50	30.0	100
Phi	45.000	17.70	277.61	266.70	23.00	0.90	234	27.00	0.71073	50	30.0	100
Phi	45.000	17.70	8.02	180.20	-57.06	0.90	204	27.00	0.71073	50	30.0	100
Omega	45.000	17.70	9.07	120.00	-54.74	0.90	137	27.00	0.71073	50	30.0	100
Phi	45.000	17.70	355.25	356.20	-23.00	0.90	204	27.00	0.71073	50	30.0	100
Omega	45.000	17.70	9.07	240.00	-54.74	0.90	137	27.00	0.71073	50	30.0	100
Omega	45.000	17.70	9.07	0.00	-54.74	0.90	137	27.00	0.71073	50	30.0	100
Omega	45.000	2.69	353.17	0.00	-54.74	0.90	139	27.00	0.71073	50	30.0	100
Omega	45.000	2.69	353.17	90.00	-54.74	0.90	139	27.00	0.71073	50	30.0	100
Omega	45.000	18.80	262.34	32.98	55.93	0.90	140	27.00	0.71073	50	30.0	100

Crystal data and structure refinement for to	d178.				
Identification code	tcd178				
Empirical formula	C ₁₁ H ₁₅ CIFNO				
Formula weight	231.69				
Temperature	100(2) K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	Сс				
Unit cell dimensions	a = 6.1009(4) Å	□= 90°.			
	b = 29.1650(18) Å	□= 111.322(2)°.			
	c = 7.0747(5) Å	□ = 90°.			
Volume	1172.66(14) Å ³				
Z	4				
Density (calculated)	1.312 Mg/m ³				
Absorption coefficient	0.313 mm ⁻¹				
F(000)	488				
Crystal size	0.224 x 0.168 x 0.075 mm	1 ³			
Theta range for data collection	1.396 to 26.410°.				
Index ranges	-7≤h≤7, -35≤k≤36, -8≤l≤8				
Reflections collected	15389				
Independent reflections	2152 [R(int) = 0.0568]				
Completeness to theta = 25.242°	100.0 %				
Absorption correction	Numerical				
Max. and min. transmission	1.0000 and 0.7644				
Refinement method	Full-matrix least-squares	on F ²			
Data / restraints / parameters	2152 / 4 / 145				
Goodness-of-fit on F ²	1.029				
Final R indices [I>2σ(I)]	R1 = 0.0346, wR2 = 0.06	64			
R indices (all data)	R1 = 0.0427, wR2 = 0.06	87			
Absolute structure parameter	0.03(3)				
Largest diff. peak and hole	0.386 and -0.234 e.Å ⁻³				

	х	у	z	U(eq)	
 Cl(1)	4715(1)	8004(1)	4430(1)	24(1)	
F(1)	10310(4)	5536(1)	10628(3)	36(1)	
C(1)	8078(6)	5555(1)	9213(5)	26(1)	
C(2)	6351(7)	5300(1)	9544(6)	29(1)	
C(3)	4093(7)	5326(1)	8112(6)	30(1)	
C(4)	3601(6)	5606(1)	6407(5)	26(1)	
C(5)	5381(6)	5861(1)	6123(5)	22(1)	
C(6)	7680(6)	5837(1)	7560(5)	23(1)	
C(7)	4849(7)	6181(1)	4335(6)	21(1)	
C(8)	4682(6)	6680(1)	4970(5)	20(1)	
N(9)	4279(5)	6985(1)	3170(4)	21(1)	
C(10)	6024(6)	6912(1)	2177(5)	26(1)	
O(11)	6664(4)	6137(1)	3521(4)	25(1)	
C(11)	6123(7)	6408(1)	1715(5)	28(1)	
C(13)	2737(7)	6760(1)	5794(6)	30(1)	

Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for tcd178. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F(1)-C(1)	1.367(4)	C(3)-C(2)-H(2)	121.1
C(1)-C(6)	1.377(5)	C(2)-C(3)-C(4)	120.5(3)
C(1)-C(2)	1.376(5)	C(2)-C(3)-H(3)	119.7
C(2)-C(3)	1.384(5)	C(4)-C(3)-H(3)	119.7
C(2)-H(2)	0.9500	C(5)-C(4)-C(3)	120.3(3)
C(3)-C(4)	1.396(5)	C(5)-C(4)-H(4)	119.9
C(3)-H(3)	0.9500	C(3)-C(4)-H(4)	119.9
C(4)-C(5)	1.389(5)	C(4)-C(5)-C(6)	119.7(3)
C(4)-H(4)	0.9500	C(4)-C(5)-C(7)	120.7(3)
C(5)-C(6)	1.403(5)	C(6)-C(5)-C(7)	119.5(3)
C(5)-C(7)	1.510(5)	C(1)-C(6)-C(5)	117.8(3)
C(6)-H(6)	0.9500	C(1)-C(6)-H(6)	121.1
C(7)-O(11)	1.427(5)	C(5)-C(6)-H(6)	121.1
C(7)-C(8)	1.537(4)	O(11)-C(7)-C(5)	108.6(3)
C(7)-H(7)	1.0000	O(11)-C(7)-C(8)	110.4(3)
C(8)-N(9)	1.498(4)	C(5)-C(7)-C(8)	110.9(3)
C(8)-C(13)	1.518(5)	O(11)-C(7)-H(7)	109.0
C(8)-H(8)	1.0000	C(5)-C(7)-H(7)	109.0
N(9)-C(10)	1.489(5)	C(8)-C(7)-H(7)	109.0
N(9)-H(9A)	0.918(13)	N(9)-C(8)-C(13)	109.0(3)
N(9)-H(9B)	0.910(14)	N(9)-C(8)-C(7)	108.7(3)
C(10)-C(11)	1.511(5)	C(13)-C(8)-C(7)	113.7(3)
C(10)-H(10A)	0.9900	N(9)-C(8)-H(8)	108.4
C(10)-H(10B)	0.9900	C(13)-C(8)-H(8)	108.4
O(11)-C(11)	1.437(4)	C(7)-C(8)-H(8)	108.4
C(11)-H(11A)	0.9900	C(10)-N(9)-C(8)	113.1(3)
C(11)-H(11B)	0.9900	C(10)-N(9)-H(9A)	107(2)
C(13)-H(13A)	0.9800	C(8)-N(9)-H(9A)	113(2)
C(13)-H(13B)	0.9800	C(10)-N(9)-H(9B)	108(3)
C(13)-H(13C)	0.9800	C(8)-N(9)-H(9B)	112(2)
		H(9A)-N(9)-H(9B)	103(3)
F(1)-C(1)-C(6)	117.9(3)	N(9)-C(10)-C(11)	109.5(3)
F(1)-C(1)-C(2)	118.3(3)	N(9)-C(10)-H(10A)	109.8
C(6)-C(1)-C(2)	123.8(3)	C(11)-C(10)-H(10A)	109.8
C(1)-C(2)-C(3)	117.8(3)	N(9)-C(10)-H(10B)	109.8
C(1)-C(2)-H(2)	121.1	C(11)-C(10)-H(10B)	109.8

Bond lengths [Å] and angles [°] for tcd178.

H(10A)-C(10)-H(10B)	108.2
C(7)-O(11)-C(11)	110.3(3)
O(11)-C(11)-C(10)	111.0(3)
O(11)-C(11)-H(11A)	109.4
C(10)-C(11)-H(11A)	109.4
O(11)-C(11)-H(11B)	109.4
C(10)-C(11)-H(11B)	109.4
H(11A)-C(11)-H(11B)	108.0
C(8)-C(13)-H(13A)	109.5
C(8)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(8)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5

Anisotropic displacement parameters $(Å^2x \ 10^3)$ for tcd178. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	U11	U ²²	U33	U23	U13	U12	
CI(1)	22(1)	26(1)	22(1)	-1(1)	6(1)	2(1)	
F(1)	33(1)	39(1)	29(1)	5(1)	2(1)	4(1)	
C(1)	29(2)	24(2)	23(2)	-2(2)	6(2)	3(2)	
C(2)	41(2)	24(2)	26(2)	0(2)	17(2)	2(2)	
C(3)	35(2)	26(2)	33(2)	0(2)	20(2)	-5(2)	
C(4)	26(2)	26(2)	28(2)	-2(2)	12(2)	-1(1)	
C(5)	27(2)	21(2)	23(2)	-1(1)	14(2)	1(1)	
C(6)	22(2)	22(2)	26(2)	0(1)	10(2)	0(1)	
C(7)	20(2)	25(2)	20(2)	2(2)	8(1)	-2(2)	
C(8)	16(2)	27(2)	14(2)	3(1)	2(2)	3(1)	
N(9)	22(2)	20(2)	20(2)	1(1)	6(1)	2(1)	
C(10)	24(2)	28(2)	28(2)	4(2)	14(2)	2(1)	
O(11)	32(1)	25(1)	26(1)	4(1)	20(1)	6(1)	
C(11)	37(2)	29(2)	26(2)	4(2)	22(2)	4(2)	
C(13)	32(2)	30(2)	31(2)	5(2)	16(2)	7(2)	

Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for tcd178.

	x	У	Z	U(eq)	
H(9A)	4330(60)	7291(5)	3490(50)	16(9)	
H(2)	6698	5113	10716	35	
H(3)	2867	5152	8290	35	
H(4)	2043	5623	5437	31	
H(6)	8922	6009	7397	28	
H(7)	3313	6091	3272	26	
H(8)	6217	6766	6045	24	
H(10A)	7595	7018	3086	31	
H(10B)	5563	7092	904	31	
H(11A)	4589	6311	708	33	

H(11B)	7340	6358	1117	33
H(13A)	1242	6648	4815	44
H(13B)	2607	7089	6020	44
H(13C)	3107	6596	7081	44
H(9B)	2810(40)	6949(12)	2220(50)	31(10)

Torsion angles [°] for tcd178

F(1)-C(1)-C(2)-C(3)	179.3(3)
C(6)-C(1)-C(2)-C(3)	0.9(5)
C(1)-C(2)-C(3)-C(4)	-0.7(5)
C(2)-C(3)-C(4)-C(5)	0.4(5)
C(3)-C(4)-C(5)-C(6)	-0.1(5)
C(3)-C(4)-C(5)-C(7)	-177.2(3)
F(1)-C(1)-C(6)-C(5)	-179.1(3)
C(2)-C(1)-C(6)-C(5)	-0.6(5)
C(4)-C(5)-C(6)-C(1)	0.2(5)
C(7)-C(5)-C(6)-C(1)	177.4(3)
C(4)-C(5)-C(7)-O(11)	-138.3(3)
C(6)-C(5)-C(7)-O(11)	44.6(4)
C(4)-C(5)-C(7)-C(8)	100.2(4)
C(6)-C(5)-C(7)-C(8)	-76.9(4)
O(11)-C(7)-C(8)-N(9)	56.6(4)
C(5)-C(7)-C(8)-N(9)	177.1(3)
O(11)-C(7)-C(8)-C(13)	178.2(3)
C(5)-C(7)-C(8)-C(13)	-61.3(4)
C(13)-C(8)-N(9)-C(10)	-176.6(3)
C(7)-C(8)-N(9)-C(10)	-52.2(4)
C(8)-N(9)-C(10)-C(11)	52.3(4)
C(5)-C(7)-O(11)-C(11)	175.3(3)
C(8)-C(7)-O(11)-C(11)	-62.9(4)
C(7)-O(11)-C(11)-C(10)	62.9(4)
N(9)-C(10)-C(11)-O(11)	-56.3(4)

Hydrogen bonds for tcd178 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(9)-H(9A)Cl(1)	0.918(13)	2.169(14)	3.084(3)	175(3)
C(8)-H(8)Cl(1)#1	1.00	2.65	3.632(3)	167
N(9)-H(9B)Cl(1)#2	0.910(14)	2.184(17)	3.066(3)	163(3)

Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+3/2,z+1/2 #2 x-1/2,-y+3/2,z-1/2

End of supplementary information