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 

Abstract— The Internet of Things (IoT) will result in the 

deployment of many billions of wireless embedded systems 

creating interactive pervasive environments. It is envisaged that 

devices will cooperate to provide greater system knowledge than 

the sum of its parts. In an emergency situation, the flow of data 

across the Internet of Things may be disrupted, giving rise to a 

requirement for machine-to-machine interaction within the 

remaining ubiquitous environment. Geographic Hash Tables 

(GHTs) provide an efficient mechanism to support fault-tolerant 

rendezvous communication between devices. However, current 

approaches either rely on devices being equipped with a GPS or 

being manually assigned an identity. This is unrealistic when the 

majority of these systems will be located inside buildings and will 

be too numerous to expect manual configuration. Additionally 

when using GHT as a distributed data store, imbalance in the 

topology can lead to storage and routing overhead. This causes 

unfair work load, exhausting limited power supplies as well as 

causing poor data redundancy. To deal with these issues we 

propose an approach that balances graph-based layout identity 

assignment, through the application of multi fitness genetic 

algorithms. Our experiments show through simulation that our 

multi fitness evolution technique improves on the initial graph-

based layout, providing devices with improved balance and 

reachability metrics.  

 
Index Terms— data centric storage, evolutionary computing 

and genetic algorithms, information dispersal, load balancing, 

Wireless sensor networks 

I. INTRODUCTION 

DENTITY and addressing schemes are a key requirement of 

any network system. Such a scheme enables a device to be 

contacted and for the remote device to respond. In wireless 

mesh networks, devices are not simply endpoints but also 

route data; enabling the forwarding of information between 

endpoints. In the context of fixed wired networks, the routing 

function is commonly performed by dedicated devices; 

however, in wireless networks, devices must cooperate to 

enable global reachability. When all nodes in the network are 

able to communicate with one another, the network is said to 
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have converged. In order to facilitate convergence in a 

wireless multi-hop network, devices must run a routing 

process that provides a mechanism for each device to 

construct a local routing data structure. These local data 

structures enable a device to make forwarding decisions that 

result in a message being passed closer to its intended 

destination. Each forwarding decision is determined by a 

routing algorithm that operates on the data structure held by 

the individual device. In wireless multi-hop networks, 

information is forwarded from device to device until it reaches 

its final destination.  

Any routing and non-broadcast network architecture relies 

on parties being able to identify the originator and destination, 

in addition to suitable intermediate forwarding points in the 

network. For efficient or power-constrained routing, each 

device must have sufficient knowledge of the topology to 

forward the packets appropriately communicating nodes.  

In an IoT network, devices will be assumed to have IP 

(Internet Protocol)-compliant identities. Initially, it was 

considered that the application of IP on constrained devices 

was unrealistic; these devices may need to run for years on a 

set of batteries, and as such have limited processing, storage 

and bandwidth capabilities. However, there have been an 

increasing number of implementations of IPv6 stacks targeting 

low-power devices. 6LowPAN is one such low-power variant 

of IPv6; utilising header compression to enable the 

transmission of IPv6 within the limited 802.15.4 link layer 

frame [1]. Moreover, 6LowPAN, owing to the massive IPv6 

address space, provides the opportunity for every IoT device 

to have a globally-unique identifier. Coupling this identifier 

with the UDP-bound Constrained Application Protocol 

(CoAP) [2] service, being developed by the IETF’s CoRE 

working group, provides a full service URI; e.g. 

coap://fe80::202:b38e:ac13/pressure. Routing 6LowPAN 

packets between nodes is often accomplished using IPv6 

routing protocol for low-power, lossy links (RPL) [3].  

 Wireless Internet of Things devices will be deployed within 

private homes, industrial buildings and public spaces. In 

normal operating conditions, IoT nodes may co-operate with 

each other and a central gateway to connect them to a global 

identity space – usually the Internet. However, if devices are 

unable to communicate with each other or their gateway, then 

significant portions of the network risk losing the ability to 

transmit or relay information. When deployed in safety or 

mission-critical settings, devices must be able to operate to 

some degree during a systems failure. Furthermore, in many 

deployment situations, it may be desirable that remaining 
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active devices can provide some insight into the last known 

state of the failed or isolated devices. 

Distributed Hash Tables (DHTs) provide a mechanism to 

store information in a distributed manner; holding redundant 

copies of data at selected nodes about the network. 

Geographical Hash Tables (GHTs) modify this approach to 

provide nodes with both an identity and mechanism to route 

information within a wireless mesh network [4]. However, 

both of these approaches suffer shortcomings concerning 

reachability and distribution effectiveness, when applied in 

real-world deployment arrangements.  
In response, this work proposes EBL-GHT (Evolve, 

Balance, Localise – Geographic Hash Tables); a mechanism to 

provide position-relative virtual identities that preserve or 

improve reachability and provide balanced key allocation for 

nodes in position relative topologies. It is intended that once 

deployed the identities would be used by a routing protocol 

such as Greedy Perimeter Stateless Routing (GPSR).  

The rest of this paper is organised as follows: Section II 

provides a discussion of issues relating to Distributed and 

Geographical Hash Tables, while Section III details our 

background research. Section IV provides an overview of our 

proposed localisation mechanism. Section V provides an 

analysis of our approach. Section VI provides a summary and 

identifies the direction for future work. 

II.  HASH TABLES: KEYING AND ADDRESS SPACES 

When allocating nodes with an identity within the available 

identity space, it is important that the share of the address 

space that maps to that node is proportional. If the address 

space is imbalanced, then in a failure situation, a 

disproportionate loss of data and connectivity may occur. 

However, GHTs, when underpinned by a uniform hash 

function, can result in an unbalanced address space. To briefly 

illustrate this point, Fig. 1 shows a simple example of a one-

dimensional address space. In this example, due to the 

physical placement of the nodes, device 20 is assigned a 

disproportionately-large portion of the address space. 

This work investigates this balancing problem inherent to the 

use of GHT address spaces in wireless Internet of Things 

sensor networks. In GHTs, a node’s identity relates to its 

physical position—either to a common reference, such as 

GPS, or simply relative to its position in regard to its 

neighbours [4]. Relating a node’s position to its identity in the 

hash table can provide additional resilience when storing 

information, owing to the fact that distance in the virtual 

address space also results in the physical separation of data 

within the sensor network. Distributing information between a 

set of autonomous peers provides a number of benefits over 

pre-planned orchestrated data distribution schemes. One 

important property is the even distribution of data between the 

collaborating nodes. If data is not distributed evenly, there is a 

risk of overloading individual nodes storage and processing 

capabilities. The risk of data loss due to node failure also 

increases.  

DHTs are usually constructed above existing converged 

identity spaces. On the Internet, devices have an established 

identifier, commonly an IP address, allocated to the device by 

an upstream service provider. Devices on the Internet can use 

this identifier to achieve global reachability, providing the 

opportunity for connected nodes to construct an overlay DHT. 

Nodes wishing to join a DHT generate a random identity and 

contact a node that is already a member of the DHT to initiate 

the joining process. The discovery of a DHT and the joining 

process is usually referred to as ‘bootstrapping’. The process 

of nodes joining with random identifiers should provide an 

even distribution of identities in the key space, resulting in 

nodes taking responsibility for an even portion of the identifier 

space. 

 The key is usually expressed as an integer of a predefined bit 

length. As such, the available address space is a product of this 

integer size. It is important that there is sufficient space so that 

nodes can pick an identity at random with a low probability of 

collision. It is also important that the keying space is 

sufficiently large so that data elements that are keyed into the 

space do not collide. Upon the node joining the DHT overlay, 

devices create neighbour relationships with other nodes in the 

overlay; the only nodes a device will contact directly using the 

underlying protocol, e.g. TCP/IP.  

Messages that require routing are passed between 

neighbours of the overlay using the distance of the key to the 

neighbour entry as a method of forwarding data closer to its 

destination. This process can introduce path stretch [5] as 

nodes bypass the topological view of the supporting network 

and instead forward information based on the overlay 

topology. It is this property that makes overlay-based 

distributed hash tables unsuitable for sensor network 

deployments; however, there is ongoing work to make 

adaptations to improve the use of overlay protocols in wireless 

environments [6].  

As an alternative to the traditional overlay-based DHT 

found on the Internet, wireless sensor networks can utilise 

position-relative identity spaces. In such schemes, nodes are 

provided with an identity relative to their physical location 

and/or another relative position metric, e.g. hop distance. A 

device can use its own identifier and those allocated to its 

neighbours to route information closer to a destination node—

a process referred to as ‘greedy forwarding’. Devices can use 

the same mechanism to distribute information into the GHT, 

as is found in a regular DHT; nonetheless, when using GHT, 

there is no underlying service that can be used to directly 

identify a device; rather, this information must be stored in the 

overlay. This is commonly referred to as a distributed 

'indirection point; requiring communicating devices to first 

lookup the current position-relative identity using the hash of 

the known identity. This relies on the node with which you 

want to communicate, having already performed the same 

hash function on its own identity and stored this in the overlay 

with its current address as the data element. 

 

Fig. 1. Address Space Imbalance – This simplified diagram depicts 
the imbalance caused in GHT where a node is allocated an identity 
that positions it within a disproportionally large region of address 
space.  



Before a device can take part in a GHT, it must first be 

associated with an identity that falls within the addressable 

range of the network. The network must be bounded; in a 

GHT, this is usually the x and y coordinates between 0 and N, 

where N is dependent on the key length. If the devices in the 

network are keying data using a consistent hash function, such 

as MD5 on unique data, this should see the even distribution 

of keys in the coordinate space. If there is an even distribution 

of nodes in the coordinate space—either through physical 

location or virtual coordinates—then there is a good 

probability that each node will have an equal proportion of the 

keys to be stored. However, geographic hash functions 

demonstrate undesirable behaviour with regard to even 

distribution of keys, explored below. 

For nodes to communicate, they need to be aware of their 

position so they can assume an appropriate identity, enabling 

them to forward and receive information. Commonly, schemes 

point to the use of GPS [7], although that has complications 

due to cost and the nature of deployment. In the absence of a 

reliable mechanism to determine location from fixed/physical 

external reference points, nodes can use a co-operative 

localisation approach. 

Individual sensors can detect their immediate neighbours in 

the network. Using this per-node neighbour information, 

localisation algorithms attempt to recreate the topology, 

identifying suitable candidate coordinates to be allocated to 

the individual nodes. Both localisation and GPS-based 

position schemes provide the GHT with an approximated 

location of the device in the physical space. If the nodes are 

physically spread evenly, then storage load will accordingly be 

distributed evenly. If they are not, the network will suffer from 

imbalance; individual nodes will be the closest available 

identity for a large portion of the address space. In an effort to 

preserve the robustness of the distribution, the scheme 

proposed should retain the distance assurance properties of the 

GHT with the balancing properties of a standard DHT. 

III. POSITION-RELATIVE DISTRIBUTED HASH TABLES 

A. Distributed and Geographical Hash Tables 

DHT provides a useful abstraction to facilitate reliable and 

robust data dissemination in wireless sensor networks. There 

are three main approaches to building a DHT in wireless 

sensor networks: 1) Overlay DHT, where the address space is 

built on top of an existing converged protocol [6]; 2) Virtual, 

where nodes construct a tree [8]; and 3) physical location-

based schemes [4], which map N-dimensional spaces onto the 

actual or estimated physical location of the node.  

In [5], Awad et al. propose a virtual location scheme, 

referred to as Virtual Chord Protocol (VCP). In the scheme, 

nodes are provided with an identity within the range spanning 

0–1. As nodes connect, they obtain an identity relating to that 

of a neighbour; this identity is used to route packets, as well as 

identity keys, that map to that node. Such a scheme may create 

unbalanced address spaces. This is intrinsic to their address 

allocation mechanism; as nodes join the system, the existing 

address space at a particular location will be partitioned. 

Depending on the ordering of nodes joining the system, areas 

of the address space may have been heavily partitioned and 

areas may have little partitioning; this results in data items 

being disproportionately placed at areas of low partitioning, 

resulting in an imbalance. 

Geographic Hash Tables, as proposed by Ratnasamy et al. 

in [9], detail the Data Centric Storage where user data is 

pushed into an identity space formed by the physical real-

world coordinates obtained via GPS sensors. This type of 

scheme can be useful when the accuracy of placement is 

essential; however, the strictness of identity related to a 

physical real-world position relies on the good physical 

distribution of nodes throughout the coordinate space to 

combat imbalance. Alternative similar approaches may use 

localisation in an effort to estimate the position of the nodes. 

This does nothing to improve the balancing issue, but does 

remove the requirement for GPS sensors. Alabno et al in [10] 

address the issue of non-uniformity of data placement. The 

approach outlined makes an estimation of network density 

dividing the address space into areas with coordinating nodes, 

the scheme relies on individual nodes knowing their 

geographic position within the network. 

Scatterpastry [6] can be implemented using either overlay 

or underlay DHT. When using the overlay mechanism, there 

must be an existing Layer 2 frame-forwarding mechanism in 

place on the network, such as Destination-Sequenced Distance 

Vector (DSDV), for example[11]. However, the issue with this 

sort of approach is that the transmission in the DHT space 

causes path stretch in the Layer 2 space.  

B. Localisation 

Localisation algorithms provide a mechanism to identify the 

positions of individual nodes within wireless networks. Such 

information can then be provided to the individual devices so 

they can make forwarding decisions. Depending on the 

network deployment requirements, it might be possible to 

equip a subset of the nodes with a GPS or physically record 

their location. This provides valuable information when 

attempting to identify the location of the remaining nodes. 

These extrapolative, absolute location approaches are referred 

to as anchor-based localisation schemes. In [12], nodes use the 

hop-based position estimate from GPS-enabled device, which 

leads to a decentralised system, although it is reliant on the 

external GPS system and the continued operation of the subset 

of devices equipped with GPS receivers.  

Anchor-free localisation does not require information 

external to the sensor network; instead, it utilises the 

information from the sensor network with the aim of 

estimating the relative positioning of devices. Usually, 

individual devices transmit the information they hold about 

the network back to a central co-ordinating unit. The 

information passed could include the following: Neighbour 

Identities, Node Identity, Signal Strength or incoming packets 

(RSSI), bit error rates, and ultrasonic/temperature or other 

sensory information. This information can be used by the 

localisation algorithm with the aim of determining the location 

of the devices.  

Owing to the high search space, it is common for 

approaches to use probabilistic meta-heuristics. For example, 

in [13], Chagas et al. apply Genetic Algorithms and Simulated 

annealing using RSSI values from sensors to identify their 

location. Other schemes make use of graph-drawing 

algorithms and produce good results [14], typically using 



Kamada-Kawai or Fruchterman-Reingold. Kamada-Kawai 

utilises spring force [15], whereas Fruchterman-Reingold uses 

an opposed force-directed algorithm [16]. In [17], Nawaz et al. 

detail an anchor-free localisation mechanism that utilises a 

modified graph-drawing algorithm. The approach is based on 

the Kamada-Kawai graph drawing algorithm [15], utilising a 

sensor equipped with range-finding devices.  

Genetic Algorithms (GAs) have also been used for 

localisation. GAs require the specification of a fitness 

function; a mechanism to evaluate a given outcome’s 

suitability. They are a type of evolutionary search heuristic 

that model natural selection based on fitness. In [18], Zhang et 

al. detail the implementation of a GA to identify a node’s 

position in a bounded two-dimensional space. The mutation of 

individual node position is bound by their current location, 

and the fitness function rewards the correct placement of 

nodes with respect to their neighbours. 

C. Summary 

GHT networks, to fulfil their primary purpose, require an 

identity that provides a node with the opportunity to conduct 

greedy forwarding. If we are also to use the GHT for 

distributed data storage, we need the address space to be 

evenly distributed across the nodes in the topology. 

If the protocol was to use GPS sensors, the network would 

be bound to those identities, meaning that, in order to obtain 

even data distribution, it would be required that the physical 

nodes be positioned in a grid layout; unrealistic for many 

scenarios. Equally, the localisation scheme could provide a 

relative or anchored location; though this does nothing to 

address the underlying location dependency. 

A scheme is required to allocate addresses that are relatively 

positioned to maintain reachability but which are distant 

enough to provide equal coverage of the two-dimensional 

bounds of the DHT. The next section will detail an approach 

to a) create node identities that retain their position in relation 

to their neighbours and also b) provide even coverage of the 

identity space. This is referred to as a position-relative 

topology. 

IV. DESIGNING THE EBL-GHT 

The purpose of this work is to design and evaluate a 

mechanism that will allocate a unique identifier to the 

individual nodes within the target sensor network. The ID 

allocated to the node will enable it to take part in a position-

relative GHT (using greedy forwarding). The importance of 

the relationship between the identity and its physical position 

relates to the ability of the nodes within the network to use a 

multiple keying function that separates the placement of data 

within the DHT.  
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Equation (1) specifies a key rotation algorithm, where P 

nodes can create keys k based on the MD5 hash value of each 

node’s Universal Resource Identifier (md5(uri)), bound by the 

dimensions of the key space (xmax and ymax) and distribution 

count (d). If the data is distributed at a number of points across 

two dimensions within the DHT - and the DHT’s space relates 

to the physical space - this would lead to better redundancy 

given localised failure and redundancy no worse in the case of 

random failure, as found in previous work [19]. It is the 

intention that the scheme be used both in industrial and home 

settings, where it would be useful that the state of devices in 

the network is preserved in the event that a proportion of the 

system is lost.  

For example, in a home IoT network, an oven could be left 

on, causing a house fire. The information relating to how the 

fire started could be passed into the remaining network and, 

depending on the extent of the damage to the building, the 

state and spread of the fire could be modelled to provide 

information relating to the cause, thus facilitating a reduction 

in the risk of future incidents. Alternatively, the information 

could be extracted in real-time to provide essential 

information to first responders. This would require that the 

responders know the mechanism used to key information and 

the URI used by the individual devices.  

As described in the previous section, providing the exact 

location of a node via GPS is costly and can be difficult to 

implement indoors. In an effort to overcome the lack of an 

exact geospatial address, we can approximate the relative 

positioning between nodes given a complete map of the 

wireless network. Other research shows that the Fruchterman-

Reingold algorithm [16] is a good approach to estimating the 

individual node positions within a network given a set of 

edges, vertices and weights. The algorithm provides a similar 

layout to the target physical topology; an assertion extensively 

tested by Efrat et al [14].  

Fig. 2 shows the original node position (top left), the 

Fruchterman-Reingold-based layout using the node and 

neighbour relations with equal weighting on node links (top 

right). The bottom diagram gives an indication of the poor 

 

Fig.2. Fruchterman-Reingold localization – This collection of diagrams 
shows the relationship between a node’s physical position (top left) and 
the Fruchterman-Reingold estimation. Shapes in the bottom diagram 
show “gaps” in this notional address space. 



distribution of identities; creating three voids in the address 

space, represented by the three shapes. Data falling in these 

“spaces” would overload the adjacent nodes. 

Fig. 3 shows the effects of this problem (using the igraph 

library [20]). We see the placement of keys in a virtual address 

space; following the identity assignment provided by the 

Fruchterman-Reingold algorithm. The notional/virtual address 

space is represented by the whole square while the nodes 

assigned address space occupy the top right triangle. The blue 

lines indicate both the direction and distance between where a 

key is located in notional address space, and the physical node 

where it has actually been persisted. 

As can be seen, half of the nodes in the topology store over 

half of the keys; with those nodes along the edge between the 

real and virtual address space particularly overloaded. If a 

proportion of those nodes are lost, a disproportionate amount 

of the distributed data would also be lost. An ideal visual 

representation would be one with few, short blue lines. 

Considering the coordinates for the nodes’ initial position, 

the virtual topology can be tested using simulation to 

determine the total key space imbalance. This metric provides 

a measure of fitness that can be used to draw comparisons 

against attempts to create an improved topology. However, the 

balance is not the only important measure; the topology must 

also be evaluated to ensure that data items are reachable by 

corresponding nodes using greedy forwarding. Importantly, if 

greedy forwarding fails, routes can still be evaluated using the 

techniques discussed in GPSR [21]. Device longevity can be 

increased by reducing the requirement for nodes in the 

network to perform the calculation required to identify a route 

when greedy forwarding fails.  

Therefore, it can be stated that a good candidate topology is 

one that that nodes are provided with an address relative to its 

position in the network. This will maintain the ability to use 

simple greedy forwarding of data and provide nodes with an 

even share of the total distributed storage requirement of the 

network.  

To solve this multi-criteria problem, the use of Genetic 

Algorithms will be evaluated to provide a better solution than 

is provided by the Fruchterman-Reingold algorithm in 

isolation.  

A. The role of Genetic Algorithms 

The search for an optimal state through self-organisation is 

distinct from any higher system intent or goal. Genetic 

Algorithms are reliant on a) a properly specified fitness 

function, and b) the environment to dictate the fitness of 

individuals to thrive and prosper.  

Global optimisation looks to find the best possible elements 

within the set of all possibilities evaluated by a set of criteria; 

this is referred to as the set of objective functions. The 

objective function evaluates the current genome population of 

the model. Genomes can then be ordered by their fitness, 

identifying those candidates that are closer to the optimum. 

Once ordered by fitness, individual genomes can be selected 

to reproduce through the application of crossover and 

mutation. This process continues bound by time, evolution 

limit, improvement heuristic measure or through the genomes 

reaching a certain optimisation threshold.  

The solution is therefore deemed the best possible subject to 

the bounding criterion, which does not necessarily result in the 

best solution. Usually, evolutionary algorithms are used when 

the search space is large, and it would therefore be unfeasible 

to use an analytical solution or there exists no analytical 

solution to the problem space. This work therefore examines 

the use of genetic algorithms, themselves a type of 

evolutionary algorithm; with the objective to solve the address 

space balancing problem seen in position-relative identity 

spaces where identity is mapped to a coordinate space. 

Genetic Algorithms can utilise multiple objective functions 

that might specify naturally opposing criteria. In the case of 

this work – and Wireless Localisation for distributed storage - 

these functions concern a) the distribution of data relative to 

their intended location and, b) the ability to successfully use 

greedy forwarding to locate and retrieve data.  

B. EBL-GHT  

This section details our novel address localisation scheme. It 

utilises Genetic Algorithms to generate optimised position-

relative topologies for use in GHT.  

 EBL-GHT is a centralised algorithm; individual nodes 

distribute neighbour information to a central node that has 

access to the computational resource that is sufficient to 

execute the GA. Once the topology has been generated, nodes 

are provided with a position-relative identity by this central 

node. The reasoning behind a centralised approach is twofold; 

firstly due to the need for global knowledge, and secondly the 

computational overhead of the algorithms involved. 

 

1) Initialisation 

EBL–GHT is intended to run alongside existing IoT protocols, 

e.g. 6LowPAN; providing a redundancy mechanism for M2M 

communications, or as an alternative to the client-server model 

found in 6LowPAN. When running alongside Internet 

Protocol schemes, nodes will utilise the IP address/service 

identifier tuple to access services distributed within the GHT. 

Initially, nodes will be identified by a random number that is 

used for topology construction. Following the position-relative 

(PR-DHT) construction phase, nodes will be assigned a 

position-relative two-dimensional GHT address.  

In order to start the initialisation procedure, nodes on the 

network will receive a broadcast from a central coordinating 

 

Fig. 3. Address space and key distance. Blue lines approximate the 
direction and distance between a key’s notional location in address 
space, and the actual node where it is stored. Many long lines, as 
here, indicate non-optimal placement and node overloading.    



node. For redundancy, there could be multiple coordinating 

nodes, with individual nodes only responding to a single 

coordinator. This can be achieved by nodes selecting the 

coordinating node with the largest ID. The broadcast will be 

re-sent by each node in the network where a depth counter will 

be incremented and forwarded by each node in the network; 

this will create a distributed tree rooted at the coordinator 

node. Individual nodes will have generated a random identity 

and transmit initial “HELLO” messages to their connected 

neighbours, which will facilitate each node building an 

immediate neighbour table. Nodes will transmit their 

neighbour table back to the coordinating node. Upon the 

coordinating node receiving the neighbour maps from all 

nodes in the network, it can then reconstruct the entire 

topology. This completes Stage 1 of the protocol.  

In Stage 2, the graph is processed by the Fruchterman-

Reingold algorithm to establish the physical node positions. 

The implementation utilises the Fruchterman-Reingold 

algorithm from the igraph library [20] as it provides a good 

representation of the original network.  

In Stage 3, the layout is rotated through 360 degrees to find 

the minimum bounding box. Subsequently, a border is added 

based on the average distance between neighbours and 

transposes the layout to the required key size. At this point, the 

virtual unbalanced topology has been constructed, with each 

node assigned an address within the key boundary. In an effort 

to balance the topology, it will be passed into the genetic 

algorithm where it will be evolved to provide a better balance. 

The resulting topology will provide no worse reachability than 

is provided by the topology at Stage 3. 

 

2) GA-directed evolution of a force-directed topology 

This section will detail the application of Genetic Algorithms 

to balance the localised topology created in Stage 3. This 

research has shown that genetic algorithms can be used to find 

a better solution than the worst case in large search spaces 

within a bounded search time. Another important aspect of 

Genetic Algorithms is their ability to fuse multiple metrics to 

find an optimum that satisfies multiple vectors. The important 

metrics in this case are the reachability count and the total key 

space distance imbalance. 

 The reachability metric I, as shown in (2), is defined as the 

difference between the expected total number of keys 𝐾𝑖 to be 

stored by each node and the actual return count 𝑅𝑖 from each 

node in the topology querying each saved state of every other 

node n in the topology.  
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The key space imbalance metric, as detailed in (3), is the total 

displacement D of the virtual two-dimensional coordinates of 

all data items d(x,y), currently stored in the DHT at nodes 

n(X,Y) from the virtual node coordinate that each of the data 

items are being stored. 
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It is normal practice that a Genetic Algorithm is seeded 

using a random population; however, through 

experimentation, it has been determined that a random 

population fails to evolve and form a network that meets the 

fitness and reachability of the initial layout algorithm provided 

at the end of Stage 3. The approach taken in this work seeds 

the Genetic Algorithm with the coordinates provide by Stage 

3, which provides the population with a better than random 

starting point. In Stage 4, the x and y coordinates of the Stage 

3 topology are encoded into the population P chromosome of 

ten candidates. Two chromosomes (𝐶1𝐶2 ) are treated as 

parents and 8 (𝐶3. . 𝐶10 ) as children, applying mutations to 

each of the 8 in pairs (𝑝2. . 𝑝5 ) using the following mutation: 

levels 𝑀 = 𝐿𝑜𝑔(𝑛𝑜𝑑𝑒𝑐𝑜𝑢𝑛𝑡) ^2 .  
The mutations are limited to a random co-ordinate within 

four radius levels surrounding the existing coordinate in the 

chromosome; this allows the search space to be gradually 

expanded. The candidate co-ordinates are then copied into the 

simulator model. The model initialises, enabling the nodes to 

form a PR-DHT. Each node then saves its own state using a 

three-position replication strategy, utilising the rotation 

algorithm shown previously in (1). Once all save operations 

have been completed, each node is requested to retrieve every 

saved state within the system. Once this is complete, each 

genome is scored using the key displacement metric and 

sorted with the lowest key displacement score being awarded 

position 1 and the highest being placed in position 10. Any 

chromosome that has a saved key return metric any worse than 

the best will not be processed; this helps to ensure that the 

reachability of the topology improves or remains constant for 

each evolution. 

Children (𝐶3. . 𝐶10 ) are subsequently populated using 

genomes (𝐶1𝐶2 ), applying an interleaving crossover, as shown 

in Fig. 4, that alternates with an even-and-odd-node position 

 

Fig. 4. Crossover and mutation – This shows the mutation strategy for 
the evolution of the topology. Note the crossover of the node 
coordinates and application of mutation to coordinate sets. 



as the starting chromosome entry. Mutation is applied, and the 

process evolves for a set number of generations. The mutation 

function generates a random coordinate within a fixed radius 

of the original coordinate, which reduces the opportunity for 

the network to get stuck in a local optimum. This could 

otherwise occur by finding a poor candidate that satisfies an 

initial low reachability metric and improves on the key space 

distance metric. Upon completion of the mutation phase, the 

process of testing the topology starts again, which is repeated 

until the expiration of the time constraints placed upon the 

process, or until the topology reaches a steady state; that is, no 

improvement on the score for a set number of evolutions. 

When the genetic balancing phase is complete, the new 

identities are distributed to the devices in the network. In order 

to reduce the overhead associated with broadcasting each ID, a 

minimum spanning tree is drawn over the topology and 

traversed, transmitting the ID of the node and the required 

neighbour IDs to complete the tree. Neighbours will populate 

the remaining neighbours using local neighbour broadcasts; 

enabling the protocol to limit the packet size required. 

  

3) Alternating fitness functions to improve performance 

As described in the previous section, two metrics have been 

defined to evaluate the suitability of the evolved network. 

They each provide a fitness evaluation in terms of a) 

reachability and b) key displacement/imbalance, respectively. 

It is difficult to combine parameters that are not coincident. 

For example a company’s profitability is not usually 

coincident with its employee wellbeing metric. To provide a 

suitable topology we evolve, alternating between different 

fitness functions, testing for reachability for ff generations and 

then key displacement for ff generations. This provides an 

equal timeslot for each function to influence the topology as 

well as limiting the effect that any individual function has 

within a single evolutionary phase. 

V. EVALUATION 

This section will evaluate the application of Genetic 

Algorithms to the localisation of nodes within a wireless 

sensor network. This section begins with a brief overview of 

the simulation environment used for all evaluative data-

gathering runs. The following two sub-sections then provide 

empirical justification for two defining features of this work; 

the non-random approach to GA seeding, and the application 

of an alternating-target fitness function influencing the GA’s 

evolutionary path. 

This section concludes with a review of the capability of 

the EB-GHT to create balanced position-relative identity 

spaces across a range of test topologies, followed by a brief 

evaluation of the execution time implications of this approach. 

A. Simulation Environment Overview 

The results presented in this section have been generated by a 

Python Discrete Event Distributed system simulator developed 

for this work. Simulation runs were executed on Ubuntu 12.04 

running on an Intel i5-4200U (Haswell-ULT) 1.6 GHz 

machine, with 4GB of DDR3 RAM. 

 The simulator permits us to simulate the networked 

environment where nodes are placed physically, 

corresponding to five different layouts in two different sizes. 

Nodes operate independently with their own isolated state 

machines; there is no global knowledge provided to devices. 

Communication between nodes is achieved through input 

packet buffers. Where the simulator identifies nodes in the 

communication range, a buffer relationship is established, thus 

enabling them to communicate. 

The simulator is able to drive a genetic algorithm through a 

series of evolutions where a population of 10 test networks are 

created, made up as follows:  

To test the robustness of the approach, 5 different topology 

types have been created with 2 size variations for each 

topology. These topologies are shown across Fig.5 (Triangle, 

H, Square, and Hole Shapes) and Fig. 6 (L-shaped). The 

topology types have been chosen due to their range of local-

minimum-inducing features. The square grid pattern is 

intended to give ideal results, both in terms of the geographic 

node dispersion, and the opportunity for the Fruchterman-

Reingold algorithm to produce a topology with excellent 

characteristics. 

This serves as both a benchmark and a mechanism to 

validate the simulator. The square topology provides a 

comparative measure for the other topology types; a source of 

exemplar results for reachability, balance and key distance. 

Each topology is evolved through a total of 200 cycles. These 

networks simulate the storage of 9 keys per node, then retrieve 

the entire key space. In each evolution step, the coordinates of 

the nodes are mutated according to the method described in 

the previous section.  

 

Fig. 5. Simulation topologies used (clockwise from top left) Triangle, 
H, Hole, and Square. The square topology acts as a reference, 
whereas the other topologies have local-optimum-inducing features 



B. Using Fruchterman-Reingold to Seed the GA 

It is common to populate an open-search-space genetic 

algorithm with a random initial distribution and then evolve to 

an optimum; however, in this work, the genetic algorithm is 

seeded with a Fruchterman-Reingold graph layout of the 

topology. The use of graph-drawing to address the problem of 

localisation for nodes without GPS devices has been shown to 

be effective in other work on sensor localisation [22].  

However, in order to validate this decision for this work, 

comparative experiments were undertaken with random 

seeding against layout algorithm seeded GAs. Firstly, the GA 

is seeded with a randomly-arranged 16 nodes. The network is 

then evolved for 100 cycles and its fitness measured. This 

experiment is then repeated under the same conditions but 

seeded using the Fruchterman-Reingold (FR) layout. The 

results in Table 1 identify the advantages of using the FR 

approach.  

The initial FR approach has a total state loss of 0; after 100 

cycles, the Random topology still has a total loss of 44, having 

started with a total loss of 74. The individual key loss shows 0 

at the end of 100 cycles for the FR layout, with 1,355 

individual keys for the Random topology. Key displacement 

and key deviation both show similar properties, being worse in 

the random initialisations over the FR approach. Such results 

provide justification for the decision to start with a topology 

that is pre-localised rather than a random one. 

C. Evaluation of the Alternating Fitness Function 

To recap; the joint aims of EBL–GHT are a) to create an 

identity scheme that improves the reachability of nodes using 

greedy forwarding as this will require fewer devices to employ 

a routing algorithm to circumvent local minimum, whilst b) at 

the same time improving the topology balance so that items 

that are saved into the topology are evenly distributed.  

The approach taken in this work is thus centred on using 

two fitness functions; one to evaluate the total distance that 

keys are saved from their ideal location and one to measure 

reachability. The latter is calculated as the total number of 

nodes that are able to see every state from every device on the 

network.  

In the simulated environment, the performance of the GA is 

measured with the 2 fitness functions applied separately, 

jointly, and finally applied alternatively – switched each ff 

generations. For the purposes of the latter experiment, ff was 

5; such that the fitness function alternated every 5 generations. 

The simulations in this section were carried out using the L-

shaped topology pattern, shown in Fig.6. Each test was carried 

out across 200 generations. 

Table 2 shows the resulting performance of these 

approaches. Alternating fitness on key loss and distance 

provides the greatest reduction in key loss, and also the 

greatest reduction in key displacement. Accumulating key loss 

and distance provides the worst key loss difference but also 

provides good maximum deviation values for data-store 

displacement.  

Testing key loss alone provides poor results in all tests, 

whereas testing key distance fails to complete with the 

alternating approach. Accumulating key loss and distance 

provides a better deviation but, owing to the comparatively 

poor reachability score (i.e. lost keys), the results show that 

alternating between key loss and distance provides the better 

approach.  

Fig. 7 shows the network’s performance during the 

alternating fitness evolution; the bottom plot represents key 

loss, while the top plot represents data displacement. The 

network’s current fitness measure is shown by the blue over-

plot: 

 

Fig. 6. L-shaped topology used in GA seeding and fitness function 
simulations. 

TABLE 1 
FRUCHTERMAN-REINGOLD VS RANDOM SEEDING 

 Fruchterman-Reingold Random 

Start State Loss  0 74 

End State Loss 0 44 

Start KL 244 1457 

End KL 0 1355 

Start KD 4282.97 4726.81 

End KD 2291.41 4138.56 

Start MSD 4.63 5.13 

End MSD 3.5 4.75 

KL = Individual Key Loss, KD = Key Displacement, MSD = Maximum 

Store Deviation; (Values to 2dp; lower values are better) 

TABLE 2 
FITNESS FUNCTIONS TEST 

 

Alternating 

KL / KD 

Fitness 

Accumulated 

KL/ KD  

Fitness 

KL 

Fitness 

KD 

Fitness 

Start KL 244 184 189 314 

End KL 0 145 97 215 

KL Difference 244 39 92 99 

Start KD 4282.97 3563.14 4036.78 3968.01 

End KD 2291.41 2259.01 3350.73 2341.93 

KD Difference 1991.56 1304.13 686.06 1626.08 

Start MSD 4.63 4.75 5 5.25 

End MSD 3.5 2.86 4.63 4.75 

MSD difference 1.13 1.88 0.38 0.5 

KL = Key Loss, KD = Key Displacement, MSD= Max Store Deviation 

(Values to 2dp; lower values are better). 



D. Alternating fitness function effects 

This section discusses the evaluated capability of EBL–GHT 

in creating position-relative identities for devices in 

Geographic Hash Tables. Each generated topology is assessed 

to measure how well it fulfils the following requirements: 

Reachability / Key Loss (KL). Reduce the total number of 

states that devices in the network are unable to retrieve. To 

provide an assessment of reachability, each node saves a 

set number of keys into the topology. Following the 

completion of the save operation, each node on the network 

retrieves each of the save states from every other device in 

the topology. Upon receipt, each node keeps track of the 

number of returned states. Following the completion of the 

save and retrieval steps, the number of keys that have been 

distributed and the number that should have been returned 

are calculated. The network score is based on the number 

of missing keys.  

Key Distance (KD). As described in Section IV and Fig. 3, 

the notional available key space can be represented by a 2-

dimensional space. The actual assigned or persisted 

location of a key is likely to, owing to the topological 

properties and available key space, differ from its ideal 

notional location. As such, the EBL-GHT should reduce the 

total distance that all keys in the network rest from their 

intended destination in the key space. Initially, nodes are 

provided with an identity that is relative to their position in 

the network. Data will then route to a point that is closer to 

the target, eventually reaching a node that is closest (best 

case) or hitting local minimum and saving on a device that 

is not the closest to the destination coordinate (worse 

case). If a node has a disproportionate quantity of the 

address space, more keys will be placed on this node. Some 

keys will have been intended for the location that the node 

occupies, whereas other data would have been destined for 

coordinates that are distant from the device. The 

probability that a network has zero key space distance is 

extremely low. It would require an infinite number of 

devices spread out equally across a square area or the data 

items keying exactly to the address of nodes in the topology 

evenly.  

Maximum data store deviation. Reduce the storage 

imbalance in the network. This is achieved by calculating 

the mean store size across the nodes, and then calculating 

the maximum deviation. We look to reduce the maximum 

deviation to distribute data more evenly across the 

network.  

These criteria are first assessed in the smaller set of reference 

topologies. The results from these experiments are shown in 

Table 3. The small topology patterns shown earlier in Fig. 5 

and Fig. 6 have limited node counts and operate within a 

smaller network boundary of 100x100 metres. Experiments 

showed that this limits their opportunity to improve storage 

balance, and a small change can have a very pronounced effect 

(positive or negative) on this balance.  

However, the results of our experiments show that all 

topologies do still improve their reachability, with the 15-node 

triangle topology achieving full reachability. The L-shape 

topology with 16 nodes, the H-shape topology network with 

19 nodes and the Hole topology with 21 nodes are all missing 

a number of states. The topologies still suffering missing 

states are those most likely to exhibit local-minimum-inducing 

features. Notably, however, they do show excellent 

improvements over the use of Fruchterman-Reingold alone, 

with an improvement in the reachability of 559 states for the H 

topology, 276 for the Hole-shaped topology and 213 for the L-

shaped topology. This would reduce the number of route 

calculations required to identify alternative paths to 

establishing those data elements not accessible by greedy 

forwarding alone.  

The final key deviation for the square topology with 25 

nodes is worse that the initial topology. However, at evolution 

118, the results show a maximum deviation of 1.3 with no 

missing keys. The circular hole-shaped topology with 21 

nodes also has a worse maximum deviation. However, as with 

the square topology, a previous generation had a better 

deviation with a score of 1.8 with an equivalent missing key 

count. 

Therefore, in order to obtain the best results, it is possible 

that saving historical best deviation and missing key count and 

comparing that to the final evolved topology may be the best 

approach. 

  The results in Table 4 show the effect of EBL-GHT on 

larger topologies bound by an area of 160x160 metres. As was 

seen in the small topology, the square with 64 nodes provides 

excellent reachability and storage balance. The square 

topology provides a reachability loss count of 0 before and 

after the 200 evolution steps. The topology also exhibits a 

slight improvement in storage balance. The L-shaped topology 

Fig. 7. Alternating fitness function and effect on network score; the 

current fitness selection, (the blue line), is shown to switch between 

key displacement and key loss. 

TABLE 3 
SMALL TOPOLOGY RESULTS 

 
Square 

(25) 

L Shape 

(16) 

H Shape 

(19) 

Triangle 

(15) 

Hole 

(21) 

Starting KL 0 244 562 132 458 

Ending KL 0 31 3 0 182 

KL difference 0 213 559 132 276 

Starting KD 1759.9 4282.9 2338.1 2323.2 2384.6 

Ending KD 1508.7 2291.4 1787.9 1367.9 1906.3 

KD difference 251.2 1991.6 550.1 955.3 478.3 

Starting MSD 1.8 4.6 3.3 5.9 2.5 

Ending MSD 2.5 3.5 2.4 3.2 3.1 

MSD  

difference 
-0.64 1.1 0.8 2.7 -0.6 

KL = Key Loss, KD = Key Displacement, MSD= Max Store Deviation; 

(Values to 1dp; lower values are better). 



with 48 nodes shows an improvement but an increase in key 

imbalance.  

As was observed through the small topologies, a previous 

evolution had improved balance characteristics, achieving a 

balance of 4.4. However, this time, the key loss is slightly 

higher with a loss of 14,000 keys at evolution 107. There is 

also a deviation of 4.05 with a key loss of 2,000, which leads 

to decisions as to the importance of reducing key balance 

against the cost of key reachability. The H-shaped topology 

with 54 nodes, the Triangle topology with 36 nodes and the 

Hole topology with 52 nodes all improve their key counts. The 

H, Triangle and Hole topology also improve their key 

imbalance. 

E. Execution Time and Performance Implications 

The previous sections have illustrated the quality of 

resulting localisation and position-relative identities generated 

by the proposed approach. This section will discuss some of 

the performance implications, starting with a review of the 

execution time for EBL-GHT by network size. The results 

over a variety of sizes are presented in Table 5: 

The GA execution time is bound by node count, rather than 

topology. The results shown in the table show an exponential 

increase in runtime against size; runtime can be affected by a 

reduction in candidates in each evolution. For the scenario 

given – a long term deployed network with infrequent or 

periodic changes – a lengthy predicted runtime such as this is 

not problematic. EBL-GHT could provide bootstrap / refresh 

functionality and used as a response to triggers such as 

growing key imbalance.    

However, in a rapidly changing or unstable system, a non-

trivial execution runtime is likely to be unsuitable. Whilst 

beyond the scope of this paper, optimisations and further 

localisations could minimise the execution times for changes 

to an existing network. For example, providing the boundary 

topology of the network is unchanged, addition or removal of 

nodes could be treated as an incremental change and identities 

allocated locally and in-network.  

 

The results provided in Table 6 show the number of packets 

transmitted during the initialisation phase. This includes the 

generation of each node’s neighbour table, the construction of 

the root anchored tree and the distribution of neighbour tables 

to the root node.  

The packet cost for position-relative address allocation 

quantifies the cost in the root node allocating every other node 

its address. As the resulting network requires routing, this 

includes the overhead of each multi-hop retransmission.  

This sort of overhead is typical of a multi-hop network, 

which relies on (or relays data to) a centralised co-ordinating 

node. This work has not considered optimising this overhead, 

but a degree of improvement could be attained by aggregating 

data when nodes transmit the neighbour map back, and in 

address allocation. However, in this case, care would have to 

be taken in managing neighbour map dimensions to avoid 

overrunning frame size. 

The following section identifies some further avenues for 

investigation regarding performance implications and 

optimisation in future work. 

VI. SUMMARY, DISCUSSION AND FUTURE WORK 

This paper detailed a novel technique for generating 

balanced position-relative identities for use in Geographical 

Hash Tables in the IoT. The approach, EBL–GHT, utilises a 

novel alternating fitness function combining the benefits of 

two metrics to improve an initial topology. This work also 

introduces the novel technique of evolving based on the output 

of wireless network simulation to generate layer topology 

improvements. 

The simulation results have shown that the approach 

detailed improves on the initial Fruchterman-Reingold layout 

for all layout types; both for key loss and store-size deviation. 

This will reduce the total power consumed by the network 

when making greedy forwarding decisions, reducing the 

TABLE 4 
LARGE TOPOLOGY RESULTS 

 
Square 

(64)  

L Shape 

(48)  

H Shape 

(54) 

Triangle 

(36) 

Hole 

(52) 

Start KL 0 1972 4737 2626 5760 

End KL 0 1397 1921 576 3895 

KL  

difference 
0 575 2816 2050 1865 

Start KD 4118.3 7482.3 7602.3 6683.7 8679.5 

End KD 3756.4 5042.2 4850.9 4144.6 6455.1 

KD  

difference 
361.9 2440.2 2751.4 2539.1 2224.4 

Start MSD 3.0 4.9 5.1 6.4 4.7 

End MSD 2.8 5.3 4.5 4.2 3.7 

MSD  

difference 
0.3 -0.4 0.6 2.2 0.9 

KL = Individual Key Loss, KD = Key Displacement, MSD = Max Store 

Deviation; (Values to 1dp; lower values are better) 

TABLE 5 
GA EXECUTION TIMES 

Total Nodes 

Single 

Evolution 

Time 

Total Time (200 cycles) 

25 2.9s 580s (9’40”) 

36 7.4s 1480s (24’40”) 

49 16s 3200s (53’20”) 
64 31s 6200s (103’20”) 

81 56s 11200s (186’40”) 

100 95s 19000s (316’40”) 

(As described in Section IV, during a single evolution, 10 candidate networks 

are evaluated. ) 

 

TABLE 6 
GA PACKET OVERHEAD 

Nodes 

Initialisation / 

neighbour 

data (packets) 

Position 

relative 

address 

allocation 

(packets) 

Total overhead 

(packets) 

25 140 40 180 

36 244 100 344 

49 392 196 588 
64 592 336 928 

81 852 528 1380 

100 1180 780 1960 

(Initialisation and distribution packet cost quantifies the packet overhead in 

initialising and distributing neighbour data and the root anchored tree) 

 



requirement of the angle calculations needed by local 

minimum avoidance techniques. The reduction of imbalance 

in data-store size results in a fairer distribution of state 

amongst individual devices. 

In summary, the following conclusions have been 

established through this study and experimentation: 

Force-directed layouts and topology balance. The 

Fruchterman-Reingold graph layout used in isolation produces 

a good representation of a target topology given the neighbour 

relationships of all devices. However, the topology alone 

provided poor balance and reachability when using 

rendezvous on top of a Geographical Routing Protocol using 

Greedy Forwarding.  

Evolution of force-directed layouts. Using a Genetic 

Algorithm, it is possible to evolve the initial coordinates 

provided by the Fruchterman-Reingold algorithm. This 

improves balance and reachability using rendezvous 

communications on top of Geographical Routing. 

Alternating fitness functions. Adopting an alternating 

fitness function approach can improve the ability of the GA to 

find an optimal solution, when compared to those metrics 

being used alone or through aggregation of metrics. 

This research study opens up a rich seam of potential future 

work. There is scope for immediate future work in terms of 

further improving the efficiency and efficacy of the GA 

approach. Clear performance gains have been achieved by the 

use of an alternating fitness function, over a crude aggregation 

of both fitness metrics. However, there is work to do in terms 

of analysing the ff variable tuning, and in turn, the fitness 

“switchover”.  

Furthermore, in terms of performance, while the GA can 

easily be bounded by the number of generations it will 

evaluate; it is still a time consuming process. Building each 

test network and evaluating it is computationally costly. As 

such, while the process has use in terms of an initialisation or 

periodic network (re)structuring operation, it is not realistic to 

consider it a mechanism for real-time adaptation. Future work 

will investigate these issues of timeliness; including further 

efficiency improvements and parallelisation approaches. 

Specifically we will look to add stochastic network planning 

capabilities to low power devices using hybrid integrated SOC 

+ FPGA technology. The authors believe that the many 

billions of devices that will be deployed to the Internet of 

Things will require in-network/on-silicon solutions to 

stochastic network planning and operations.  
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