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Abstract 
This paper reports on the feasibility of using a novel and robust microwave sensing technology to detect and 

analyse various Silver based products such as Silver Nitrate and Silver Oxide. The focus of the investigation is to 

differentiate between the two products, identify the contamination and change in the sample size. A 

microwave sensor designed previously in house has been utilised to carry out this initial study to analyse the 

capability of microwave sensing technique to carry out the analysis. The change in the microwave spectra are 

used as an indicator of the difference in the silver products and any contamination they may have. The results 

and their detailed repeatability confirm the viability of using microwave sensing technique as a potential 

method to analyse various silver products. The curves obtained from the material response to microwaves are 

distinguishable and can be related to the materials’ properties. The study suggests a design and development 

of a bespoke unit as a dedicated analysis tool and to address any anomalies arising from the current feasibility. 

This will have a huge industrial benefit in terms of cost reduction and time associated with the industrial 

analysis. 

Keywords: Microwave sensing; non-destructive analysis; novel microwave analysis; Cavity resonator; silver 

products; silver products characterisation; industrial analysis.  
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1. Scope and application of the study 

A feasibility study was carried out as a proof of concept to initially investigate the potential of 

using a novel microwave based sensing technology to measure and detect silver products of 

various types, detect any contamination they may have and particle size/particle size 

distribution in real time. This work was carried out in collaboration with AmesGoldsmith UK 

Ltd addressing the problem around characterising both the silver nitrate and silver oxide in 

terms of various properties. Assessing these two products are the most important for 

Amesgoldsmith UK Ltd in terms of quality assurance and testing. Current practice at the 

premises of the industrial partner follows conventional mechanical and chemical methods of 

analysis and testing to study the type of silver products, contamination, particle size, particle 

size distribution, etc. These methods are time consuming, laborious to carry out and are often 

inefficient, inaccurate and inconsistent. To overcome these drawbacks, to improve the quality 

control and assessment of the material manufactured, and to improve the operational 

efficiency of the organisation, there was a need to come up with more efficient, robust and 

cost effective testing and analysis method. This feasibility study will provide the industrial 

partner involved in the work with sufficient information on the potential of introducing a new, 

innovative and novel method of measurement, analysis and detection. This investigation will 

also provide a ground for further research work to explore the possibility of carrying out 

detailed characterisation of the silver products through the use of microwave sensing 

technique as a real time alternative to conventional methods. Although this work presents a 

proof of concept, the ultimate aim in the future would be to design and develop a microwave 

sensing unit of a suitable dimension, size and shape for the industrial environment.   

2. Background 

Microwave based sensing is a relatively new and rapidly developing technology [1, 2]. It offers 

a great potential as a developing technology due to its accuracy, low cost of measurements 

both in static and continuous measurements as well as its capability to analyse samples in 

small sizes [3, 4]. It is an instantaneous and robust technique, non-invasive in nature, the 

sensor equipment operates at substantially low power and completely non-ionising in nature, 

i.e. operating at 0 dBm or 0.001 watt (1 mW). Despite the amount of power utilised it has 

fairly good penetration depth. It uses Electromagnetic (EM) waves in the microwave band of 

the spectrum (300 MHz to 300 GHz). It is an efficient technique and largely used for the 



  2 

characterisation of materials because it can easily propagate through low-loss substances 

such as plastics, glass, ceramic, etc. [1, 2, 5, 6]. It is a relatively straight forward technique and 

the instrumentation for measurements can be setup in minutes with the availability of 

measurement results in seconds providing real-time data [6, 7]. In addition to the advantages 

above there are certain disadvantages however including a higher degree of specialisation 

and simultaneous existence of multiple variables such as temperature, density, moisture, 

structure, etc. affecting the microwave measurements [8].  

2.1. Microwave theory and applications 

The Microwaves can be used to monitor changes in the permittivity of the material 

determined by the molecular structure of it. Any change in the molecular structure affects its 

permittivity properties and is reflected in the microwave spectrum obtained due to the 

interaction of waves to the material [2, 6, 7, 9]. Permittivity is simply a measurement of the 

response of a dielectric medium to the applied microwaves in the form of change in its electric 

field. It is dependent on the material’s ability to polarise in response to the applied field. The 

permittivity 𝜀𝑟 of the material is defined in equation (1) [6].  

𝜀𝑟 = 𝜀′ + 𝑗𝜀′′          (1) 

In equation (1) above, 𝜀′ represents the energy stored by a material and 𝜀′′ represents any 

losses of energy [6].  

Due to the multi-parameter nature of the microwave analysis technique, the interaction of 

microwaves with the material provides unique spectrum signatures resulting in the change in 

the material properties, i.e. its permittivity. This could be due to change in the frequency, 

attenuation or reflection of the signal measured in the form of scattering parameters also 

referred to as S-parameters. S-parameters are simply the transmitted S21 and reflected S11 

microwave powers. By considering how these parameters change at discrete frequency 

intervals, the change can be linked to the material type, its composition, concentrations of 

the constituents, size/size distribution, etc. in the sample [6, 9].  

Microwave sensing technique although in its infancy has been implemented in various 

industrial applications including glucose concentration monitoring [10], water industry 

including multiphase flow monitoring [11], characterisation of construction materials [12, 13], 
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food industry [14], water level measurements, material moisture contents, healthcare 

industry, etc. [9].  

3. Microwave sensing experimental setup  

The feasibility study utilised cavity based microwave sensors (cavity resonators) to study the 

properties of silver based products including silver oxide and silver nitrate. Resonance occurs 

in the cavity resonators when the electric and magnetic fields form a standing wave. A number 

of electromagnetic wave modes can occur in the cavity and each of these modes have its own 

resonant peak. Each of the resonant peaks generated by various modes has a quality factor 

𝑄. A high value of 𝑄  represents a sharp peak that may be easily analysed. However, the 

change in the resonant peak may also be useful to analyse the properties of a material under 

test [11].   

To satisfy the proof of concept criteria two existing resonant cavity sensors were utilised 

designed at the Radio Frequency & Microwave (RFM) Group of Liverpool John Moores 

University (LJMU). The reason to utilise two different resonant cavity sensors in the feasibility 

study was not only to show the effectiveness of the microwave sensors as a potential 

technology but also to see how various parameters such as the shape and the size can 

influence resonant frequencies (which are dependent on the dimensions) as well as quality of 

the results. The dimensions of the cavity has an influence on the modes generated (resonant 

peaks) and the response frequencies obtained. The final design for the industrial unit can be 

achieved through a modelling tool such as COMSOL or HFSS taking into consideration the 

dimensions as well as the types of the material tested, along with the results obtained from 

this study. For the sake of this study these sensors would be referred to as microwave sensor 

1 and microwave sensor 2. The microwave sensor 1 was a pan cake type cavity resonator 

whereas the microwave sensor 2 was a rectangular type cavity resonator. At the feasibility 

stage of investigation the focus was on a few parameters such as differentiating between 

silver oxide and silver nitrate, determination of contamination in the sample as well as sample 

size/sample size distribution. Although the two used sensors provided measurement 

capability in different frequency range (based on their size and shape), the overall aim was to 

show the effectiveness of the sensing technique. The cavity resonator can be classed as a 

black box where the microwaves are inserted from the input port interacting with the 

material and leaving through the output port. The interaction of these microwaves with the 
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material under test helps in characterising it. The aluminium cavities and experimental setup 

of the sensing system used in the study is shown in Figures 1 and 2. Both the sensors in Figures 

1 and 2 have a sample holder in the middle of the cavity, the microwave source, the Vector 

network analyser (VNA), cables and connectors.  

 

Figure 1: Experimental setup utilising the pancake type microwave sensor 1, cables, 

connectors and Vector Network Analyser 

 

Figure 2: Experimental setup utilising the rectangular type microwave sensor 2, cables, 

connectors and Vector Network Analyser. 
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4. Samples measured and preparation 

The Silver samples analysed were provided by AmesGoldsmith UK Ltd. They were prepared 

and tested in two different types of sample tubes. A 15 ml polypropylene sample tube suitable 

for the analysis in the microwave sensor 1 (Figure 1) and a glass NMR tube suitable for testing 

in the microwave sensor 2 (Figure 2).  All the samples tested along with the types of sample 

tubes used are shown in Figure 3 (a) & (b).  

 

Figure 3: (a) Samples in 15 ml tubes tested in microwave sensor 1 (b) Samples in 15 ml tubes 

tested in microwave sensor 2 

The samples consisted of two types of silver products, i.e. Silver oxide and Silver Nitrate 

powders. Testing only two types of silver products was in response to the Amesgoldsmith UK 

Ltd requirements. These two products are the most important for them to be analysed and 

tested in the initial stage to make their post-production analysis more robust. However, the 

technique can be expanded to include other silver products in the future to meet the silver 

products industry demands. Each sample had a particle size range uniformly distributed 

across the sample tube. The type of samples tested are listed in Table 1 along with their 

description and type. Both the silver oxide and nitrate were analysed individually. Also, to 

determine the capability of microwave sensing technique to detect any contamination or 

foreign material, silver nitrate was mixed with a polymer (polyethylene) as 50% source of 

contamination as well as to study the change in size distribution. To further study the 

contamination properties other material might be introduced in future studies to elaborate 

on the effectiveness of using microwave sensing technique to determine the 

contamination/foreign material and percentage of it.  
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Table 1: Silver based samples analysed and tested using microwave sensing technique 

Sample # Sample Abbreviation Description and 
Sample Size (approx.) 
(microns) 

Samples tested in pancake type microwave sensor 1 

1 Empty cavity/sensor N/A 

2 Empty sample tube (air) N/A 

3 Silver nitrate (powder) 208-1260 

4 Silver oxide (powder) 180-1200 

5 Silver nitrate with polymer 
labelled as S1D as a source of 
contamination (50%) 

208-1260 (silver 
nitrate) + 300-400 
(polymer) 

Samples tested in rectangular type microwave sensor 2 

6 Empty cavity/sensor N/A 

7 Empty sample tube (air) N/A 

8 Silver nitrate (powder) 208-1260 

9 Silver oxide (powder) 180-1200 

10 Silver nitrate with polymer 
labelled as S1D as a source of 
contamination (50%) 

208-1260 (silver 
nitrate) + 300-400 
(polymer) 

  

5. Experimental procedure and measurements  

Both the S-parameters, S11 and S21,were initially measured over the full spectrum range of the 

VNA between 9 KHz and 13.6 GHz frequency for all the silver samples. This was to see which 

of these parameters give us the best results to identify the materials and their relevant 

properties. For this purpose the spectrums obtained over the full range were studied further 

in detail to identify the resonant peaks within the narrow frequency range. All the 

measurements were carried out using the microwave input power of 0 dBm (1mW), the signal 

bandwidth set to 10 kHz and 4,000 data points over the measured frequency range (for the 

signal to be of high quality). The measurements were carried out in a temperature controlled 

room set at 20°C to obtain consistent results. Since the microwave sensor technology is robust 

and real-time in nature, the results for each of the measurement was obtained in 5-10 

seconds.  

It is also important for an industrial application that the solution has to be simple and cost 

effective. In this regard, the area of interest need to be identified and narrowed in terms of 

the frequency range (to keep the cost of the microwave source lower). In addition, the 

measurements taken over the full range of the spectrum has both complexities at higher 

frequencies and unacceptable noise levels at low frequencies. To avoid higher order modes, 

complexities in the measurements and the cost associated with the development of sensors 
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at high frequencies suitable for the industrial use, the frequency above 6 GHz was eliminated 

from the full spectrum obtained. Furthermore, taking into account the noise levels or 

response of the material to the microwave, frequency below 1 GHz was removed in the 

detailed analysis (section 6). The detailed material response to microwaves, resonant peaks 

as a result and capability of the sensors to distinctively identify the materials are shown and 

discussed in the results and discussion section. It can be noticed in these initial results that 

the sensor had a potential to identify various properties of the silver products under test, 

hence a proof of concept.   

6. Results and discussion 

As mentioned earlier, results of both the measurands S11 and S21 for the microwave sensor 1 

and microwave sensor 2 were narrowed down to highlight the response resonant peaks of 

interest. The identified resonant peaks from sensor 1 for both the S11 and S21 parameters are 

shown in Figure 4 and 5 respectively. It should be noted that the peaks were identified as per 

the measurement type, i.e. S11 from 4.8-5.5 GHz and S21 from 1-6 GHz.  

 

Figure 4: Reflected power, S11 (dBm) measurements from microwave sensor 1, 4.8-5.5 GHz 
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Figure 5: Transmitted power, S21 (dBm) measurements from microwave sensor 1, 1-6 GHz 

Similarly, for microwave sensor 2, the resonant peaks identified in case of both the S11 and 

S21 parameters are shown in Figure 6 and 7 respectively. Once again, the frequency range for 

the peaks varied depending on the type of measurements, i.e. S11 from 2-5 GHz whereas S21 

from 1.4-5 GHz respectively.  

 

Figure 6:  Reflected power, S11 (dBm) measurements from microwave sensor 2, 2-5 GHz 
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Figure 7: Transmitted power, S21 (dBm) measurements from microwave sensor 2, 1.4-5 GHz 

It can be noticed from Figure 4-7 that the frequency range in which the resonant peaks are 

identified varies depending upon the type of resonant cavity sensor including its dimensions 

and size, as well as the areas where modes are generated inside the cavities on the application 

of micro  wave signal. 

6.1.  Re-calibration and measurements 

The VNA instrument was calibrated to obtain the results from Figure 4-7. After identifying the 

resonant peaks, as per the highlighted areas in Figure 4-7 the instrument (VNA) was re-

calibrated to study the highlighted frequency range and to achieve better microwave 

response to the material interaction. In the case of microwave sensor 1, the resonant peak 

(response of material to microwave) was detected between 5-5.15 GHz for S11 parameter as 

per in Figure 4 and presented in Figure 8.  
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Figure 8: Reflected power, S11 (dBm) measurements from microwave sensor 1, 5-5.15 GHz 

Figure 8 when analysed showed that each of the material has a distinctive resonant peak with 

a high quality factor. Empty cavity and empty tube were taken as the control samples. This 

was to see how much shift in the frequency and change in the amplitude occurs on 

introducing the silver based samples. The peaks of the control samples were at 5.1058 and 

5.0985 GHz for both the empty cavity and empty tube respectively, a shift of approximately 

7.3 MHz between them. This shows the sensitivity of the sensing technology to detect a 

material after a polypropylene sample tube was inserted into the cavity. When looking at the 

peak resonant frequency of silver nitrate, it was identified at 5.0540 GHz.  The shift in the 

frequency was to the left from the empty tube and was approximately 44.5 MHz which is 

significant. To test the repeatability and accuracy of the microwave sensing technique 

immediately, the silver nitrate sample was retested resulting in the peak very close to the 

original signal. The slight difference could be caused probably due to the instrumentation 

error. This demonstrates that the technique is repeatable and can incur minimum error if the 

sensor is designed carefully, a detailed repeatability follows. In case of the silver oxide the 

resonant peak was at 5.0942 GHz. The shift of the spectrum frequency from the empty tube 

sample was about 4.3 MHz which is reasonably measureable keeping in mind the sensitivity 

of the sensor. When repeated, the resonant peak was generated at the same frequency 

showing promising result in terms of accuracy of the sensor and its practical application. An 
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additional sample was tested consisting of a blend of Silver nitrate and a polymer powder to 

see the feasibility of using microwave sensor to detect the contamination or foreign material. 

The resonant peak of the sample was detected in between Silver nitrate and Silver oxide 

samples. The peak was at 5.0887 GHz and the shift of the peak from the empty tube sample 

was to the left by a value of 9.8 MHz. The signal peak was to the right of the silver nitrate 

showing an addition of some foreign material to the pure silver nitrate product and was to 

the left from the silver oxide spectrum. This change in the spectrum could also be attributed 

to the change in the size/size distribution. However, this needs further investigation.   

The amplitude change was also observed in addition to the frequency shifts. Both these 

changes in frequency and amplitude could be used to represent the difference in the material 

type and the existence of the foreign material (polymer) acting as a contamination source. In 

the case of the blend of silver nitrate and polymer, it can also be attributed to the change in 

the size of the sample contents. Although the results demonstrate promising output and 

capability of the microwave sensing technique to detect these changes, it requires further 

investigation through a design of a dedicated sensor to closely look at these changes and link 

them with the individual properties causing the changes.   

On careful analysis of the S21 parameter representing the transmitted power of the 

microwave sensor 1 as in Figure 5, it was found that the material response to the microwave 

was more obvious at two frequency ranges, i.e. 1.66-1.8 GHz and 4.9-5.3 GHz frequency range 

as shown in Figure 9 and 10 respectively. A similar pattern of shifts to Figure 8 was observed 

for all the samples in Figure 9.  
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Figure 9: Transmitted power, S21 (dBm) measurements from microwave sensor 1, 1.66-1.8 

GHz 

 

Figure 10: Transmitted power, S21 (dBm) measurements from microwave sensor 1, 4.9-5.3 

GHz 

A significant shift of the spectrum was observed in Figure 9 to the left from the control 

samples, i.e. empty cavity and empty tube. The maximum shift occurred in the case of silver 
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nitrate and silver nitrate when repeated, both almost overlapping each other. The shift was 

towards left similar to the results in S11 parameter in Figure 8. The peak frequency of the silver 

nitrate sample was detected at 1.6890 GHz to the left of the empty cavity at 1.6648 GHz and 

empty tube at 1.6654 GHz. This was a difference of approximately 24.2 MHz and 23.6 MHz 

respectively from the empty cavity and empty tube samples. Silver oxide peak was detected 

at 1.6699 GHz again to the left of the control samples. The difference was approximately 5.1 

MHz from the empty cavity and 4.5 MHz from the empty tube sample. The initial repetition 

showed approximately similar results overlapping the original spectrums. When looking at 

the blend of silver nitrate and polymer, the peak was at 1.6692 GHz, 4.4 MHz to the left from 

the empty cavity and 3.8 MHz to the left from the empty tube sample. When analysing Figure 

10 it can be observed that the resonant frequency for the empty cavity and empty tube 

sample was detected at approximately 5.1 GHz and 5.0974 GHz respectively. When 

comparing it with the silver products, the peak for the silver oxide sample was at 5.0933 GHz 

representing a shift of approximately 4.1 MHz to the left. On the other hand, the peak 

resonant frequency for the silver nitrate sample was measured at around 5.0545 GHz with a 

significant shift to the left of approximately 42.9 MHz from the empty tube sample. The 

resonant peak of the blend of silver nitrate contaminated with the polymer sample was 

measured and the peak was detected at approximately 5.0889 GHz. This value was between 

the silver nitrate and silver oxide sample whereby silver oxide was to the right of the silver 

nitrate and polymer blend and silver nitrate was to the left of the blend. The shift from the 

silver nitrate sample to the right showed the contamination.   

A deep analysis was carried out to show the repeatability of the observed results. The 

measurements were repeated 5 times in addition to the first analysis shown in Figure 8-10. 

The measurements of both the S11 and S21 parameter were carried out to observe the 

frequency shift and the amplitude change in the case of each sample. The average of the 

resonant peaks for the repeated results were taken and the frequency shift calculated for the 

averaged results for each of the sample. Some of the results are presented in Table 2 to 

evident the repeatability of the results in Figure 8 & 10. It can be seen from the results that 

the outcome in case of the sensor 1 is very consistent and aligns with the measurements 

discussed above in terms of both the resonant peaks and the shifts observed with change in 
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the material. Negligible changes in the frequency shift after repetitions were observed 

between the empty tube samples and the material samples in comparison to Figure 8 & 10.  

Table 2: Results of repetition of the samples indicating the resonant peaks and the 

frequency shifts for both the S11 and S21 parameters of the sensor 1 

 

Sample type Measurement type Frequency range 
(GHz) 

Resonant 
frequency (GHz) 

Frequency 
difference/Shift 
(MHz) from the Empty 
tube sample 

Empty cavity  
 
S11 

 
 
5-5.15 

5.1060 0 

Empty tube 5.0975 8.5 

Silver oxide 5.0934 4.1 

Silver Nitrate 5.0546 43.0 

Silver Nitrate 
+ S1D 

5.0883 9.2 

Sample type Measurement type Frequency range 
(GHz) 

Resonant 
frequency (GHz) 

Frequency 
difference/Shift 
(MHz) 

Empty cavity  
 
S21 

 
 
4.9-5.3 

5.1038 0 

Empty tube 5.0979 5.9 

Silver oxide 5.0925 5.4 

Silver Nitrate 5.0546 43.3 

Silver Nitrate 
+ S1D 

5.0891 8.8 

 

The results from Figure 8, 9, and 10 showed pretty consistent trend in the shift of the 

microwave spectrums each of which indicated an individual and identifiable sample type. The 

measurements were consistent and repeatable as well, as in Table 2. A database can be built 

from the spectrums and neural network techniques can be used for further elaboration of the 

results when designing a bespoke sensor.        

The results of the S11 parameter from the rectangular microwave sensor 2 were also 

promising, resulting in the sharp resonant peaks for the individual samples. From the results 

of Figure 6 the frequency range of 2.26-2.61 was identified and highlighted as a point of 

further investigation. The instrument was re-calibrated and measurements re-taken around 

this frequency. The results are shown in Figure 11.  

On careful study of the result in Figure 11, it can be seen that each of the material has a 

distinctive resonant peak with a high quality factor. The peaks of the empty cavity and empty 

tube were at 2.4416 and 2.4321 GHz respectively. When looking at the peak resonant 
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frequency of the silver oxide identified at 2.4294 GHz, the shift of the frequency from the 

empty tube was approximately 2.7 MHz which is considerable again keeping in mind the 

sensitivity of the measurement technique. The Silver oxide sample was immediately retested 

resulting in the peak occurring exactly at the same frequency as the original to show the 

instant repeatability of the results. This demonstrates that the technique is repeatable (a 

detailed repeatability follows) and can incur minimum error despite the sensor type. In the 

case of silver nitrate sample the peak frequency was identified at 2.4224 GHz. The shift of the 

frequency from the silver oxide sample was approximately 7 MHz again resulting in a 

measurable shift. When repeated, the resonant peak was generated at the same frequency. 

A contaminated sample was also tested with this sensor consisting of silver nitrate and a 

polymer powder.  

 

Figure 11: Reflected power, S11 (dBm) measurements from microwave sensor 2, 2.26-2.61 

GHz 

The resonant peak was detected in between the silver nitrate and the silver oxide samples. 

The shift of the peak was towards the right from the silver nitrate showing an addition of 

some foreign material to the pure silver nitrate. The peak was detected at 2.4247 GHz, a 2.3 

MHz shift to the right of the silver nitrate, and sufficient to differentiate between the samples 

due to the sensitivity of the technique. To further detail the repeatability and accuracy of the 
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sensing technique, the samples were repeated 5 times in addition to the measurements 

shown in Figure 11 and the results presented in Table 3. The resonant peaks for each of the 

material type were averaged and the shifts calculated. It can be observed that the results 

were showing similar trend as in Figure 11 with reliable and repeatable resonant peaks as well 

as the associated frequency shifts. 

Table 3: Results of repetition of the samples indicating the resonant peaks and the 

frequency shifts for the S11 parameter of the sensor 2 

 

Sample type Measurement type Frequency range 
(GHz) 

Resonant 
frequency (GHz) 

Frequency 
difference/Shift 
(MHz) from the Empty 
tube sample 

Empty cavity  
 
S11 

 
 
2.26-2.61 

2.4487 0 

Empty tube 2.4412 7.5 

Silver oxide 2.4393 1.9 

Silver Nitrate 2.4319 9.3 

Silver Nitrate 
+ S1D 

2.4342 7.0 

 

In the case of S11 measurements, amplitude change was also identified in addition to the 

frequency shifts in the case of each sample. As in Figure 8, these changes in the frequency 

and amplitude can be attributed to the difference in the material type, the existence of the 

foreign material (polymer) acting as a contamination source and to the change in the size of 

the sample contents as in the case of a blend of silver nitrate and polymer. Although, the 

results and their repetitions demonstrate promising output and capability of the microwave 

sensing technique these changes require further investigation to closely look at these changes 

and link them with the individual properties causing them.   

As far as the parameter S21 is concerned from microwave sensor 2 (Figure 7), the results didn’t 

provide sufficient information in terms of generating quality resonant peaks. Hence, S21 was 

not further analysed.  

6.2. Statistical analysis 

To monitor and assess the variation in the repeat measurement of each sample, standard 

deviation test was used for both the cavities for the results presented in the section 6.1. Each 

of the sample was tested for the variation in the resonant peak obtained on repetition. The 

results were promising and the variation in the standard deviation obtained from the 5 times 
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repeated measurements was less than 0.001% from the corresponding averaged resonant 

frequency of the sample. This shows the accuracy of the sensor when the measurement was 

repeated. The variation can be improved further by a careful design of a bespoke cavity sensor 

unit. The results are presented in Figure 12 for the two sensors along with the percentage of 

deviation from the average value in Table 4.  

 

Figure 12: Averaged resonant frequency and the corresponding standard deviation of the 5 

times repeated measurements of each sample (a) S11 measurements of the sensor 1, 

frequency: 5-5.15 GHz (b) S21 measurements of the sensor 1, frequency: 4.9-5.3 GHz (c) S11 

measurements of the sensor 2, frequency: 2.26-2.61 GHz 

Table 4: Averaged resonant frequency and the Standard deviation test results of the 

accuracy of repetitions along with the percentage in the deviation from the averaged values 

 

Sample type Measurement 
type (sensor 1) 

Frequency 
range 
(GHz) 

Averaged 
resonant 
frequency 
(GHz) 

Standard deviation 

𝝈 =  √
∑(𝒙−𝝁)𝟐

𝑵
 

(MHz) 

Deviation in % 
from the 
avergaged 
resonant 
frequency 

Empty cavity  
 
 
 
S11 

 
 
5-5.15 

5.1060 1.99 <0.0003% 

Empty tube 5.0975 0.02 <0.00001% 

Silver oxide 5.0934 0.0735 <0.00001% 

Silver Nitrate 5.0546 0.478 <0.0001% 

Silver Nitrate 
+ S1D 

5.0883 0.303 <0.0001% 
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Empty cavity  
 
 
 
S21 

 
 
4.9-5.3 

5.1038 1.89 <0.0004% 

Empty tube 5.0979 1.02 <0.0003% 

Silver oxide 5.0925 1.28 <0.0003% 

Silver Nitrate 5.0546 0.384 <0.00008% 

Silver Nitrate 
+ S1D 

5.0891 0.569 <0.0001% 

Sample type Measurement 
type (sensor 2) 

Frequency 
range 
(GHz) 

Averaged 
resonant 
frequency 
(GHz) 

Standard deviation 

𝝈 =  √
∑(𝒙−𝝁)𝟐

𝑵
 

(MHz) 

Deviation in % 
from the 
avergaged 
resonant 
frequency 

Empty cavity  
 
 
S11 

 
 
 
2.26-2.61 

2.4487 0.708 <0.0002% 

Empty tube 2.4412 0.448 <0.0001% 

Silver oxide 2.4393 0.837 <0.0004% 

Silver Nitrate 2.4319 0.894 <0.0004% 

Silver Nitrate 
+ S1D 

2.4342 0.436 <0.0001% 

 

7. Conclusions and Recommendations 

An initial feasibility study was carried out to assess the capability of using a novel, robust and 

an instantaneous microwave sensing technique to analyse silver based products. The results 

were promising exhibiting accuracy and repeatability that are the attributes required for any 

industrial application. To extensively test the repeatability and reliability of the microwave 

sensing technique, a detailed repetition of the samples was carried out to monitor the 

resonant peaks generated and the frequency shifts. The results were very consistent with the 

initial graphs presented in Figure 8-11. Results of some of the repetitions i.e. Figure 8, 10 and 

11 are also presented in Table 2 and 3. It is clear from the results that the technique is capable 

of detecting various properties of silver products such as their type, contamination, particle 

size and/or particle size distribution, etc. Further research work, however, is required to 

design and develop a dedicated unit with minimum errors and to further explore the 

capability of detecting multiple parameters, linking them back to the material itself. 

Potentially, the technique can be further developed as an alternative to conventional time 

consuming physical and chemical testing methods.  

Analysis of individual peaks and smaller sections enabled the investigation to find the 

capability of microwave sensors to differentiate between samples. The following are some of 

the conclusions and recommendations from the investigation.  
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 The sensor spotted the individual samples of silver oxide and silver nitrate showing 

the difference between the samples and contamination in them along with the size 

change in the blend (as in Table 1).  

 The differences between the samples were noticeable, however, these results 

although promising and showing the potential of microwave sensing to do the silver 

products analysis, yet need further investigation through the design of a dedicated 

sensor that can eliminate any errors encountered in using the microwave sensor in 

this study. The recommended further investigation will help to relate the changes 

due to material interaction with microwaves to specific properties of silver based 

materials.  

 An in-depth repeatability of the measurements showed that the output was reliable 

and the results consistent with the initial measurements. The results presented in 

Table 2 and 3 showed both the resonant peaks and the frequency shift patterns to 

evidence the claim. 

 The results of the standard deviation test (Figure 12 and Table 4) showed a high 

accuracy of both the sensors in the case of repetition. The percentage of deviation 

from the averaged resonant frequency was very small. This can be improved further 

by a careful design of the bespoke sensor unit.    

 Further investigation will also assist in building up a database containing all the 

microwave spectrums captured from the measurements for the future reference and 

analysis. It will also help in targeting the anomalies in the existing technique and 

sensor itself to provide more accurate results. The results stored can then be related 

to various properties of silver based materials.    

From the results and discussion it has been demonstrated that microwave sensing can be 

developed as a technology to assist the industry dealing with silver based products. The 

results propose a next stage of the study whereby a bespoke prototype sensor with 

appropriate dimensions is suggested to be designed and developed with the aim to target the 

industrial needs. This could have a positive and significant impact on the quality control and 

assurance process at Amesgoldsmith Ltd in specific. In general, the prototype will provide a 

potential option to the industry dealing with silver based products in terms of analysing and 

testing batch of samples instantaneously under operational time constraints. Microwave 
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sensing technique will also be helpful in assessing the quality and validate the products within 

the tight constraints that exist to assure the quality of the product. This can be done with 

minimum costs and more accurately through this technique. The cost effectiveness comes 

from designing a unit operating within a lower narrow band of frequency range operating at 

a very low power. The project can be carried out in collaboration and can be phased to target 

priority requirements of the industrial partner. 
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