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Abstract: A Neighbourhood Area Network is a functional component of the Smart Grid that 

interconnects the end user domain with the Energy Services Provider (ESP) domain. It forms the 

“edge” of the provider network, interconnecting homes instrumented with Smart Meters (SM) with 

the ESP. The SM is a dual interface, wireless communication device through which information is 

transacted across the user (a home) and ESP domains. The security risk to the ESP increases since 

the components within the home, interconnected to the ESP via the SM, are not managed by the 

ESP. Secure operation of the SM is a necessary requirement. The SM should be resilient to attacks, 

which might be targeted either directly or via the network in the home. This paper presents and 

discusses a security scheme for groups of SMs in a Neighbourhood Area Network that enable 

entire groups to authenticate themselves, rather than one at a time. The results show that a 

significant improvement in terms of resilience against node capture attacks, replay attacks, 

confidentiality, authentication for groups of SMs in a NAN that enable entire groups to 

authenticate themselves, rather than one at a time. 

Keywords: Smart Grid; authentication; Smart Meters; key management 

 

1. Introduction 

The Smart Grid (SG) can be defined as an electric system that uses information, two-way, 

cyber-secure communication technologies, and computational intelligence in an integrated fashion 

[1]. The system is used across the SG functional units, such as electricity generation, transmission, 

substations, distribution, and consumption to achieve a system that is clean, safe, secure, reliable, 

resilient, efficient, and sustainable. This definition covers the energy system from the generation to 

the end points of consumption of the electricity. Security is a critical issue because millions of 

electronic devices are inter-connected via communication networks throughout critical power 

facilities, which has an immediate impact on reliability of such a widespread infrastructure [2]. The 

Electric Power Research Institute (EPRI) identifies cyber security as one of the greatest challenges 

facing smart grid deployment [3]. The security of the grid will strongly depend on authentication, 

authorization, and privacy technologies. Privacy technologies are well matured. Federal Information 

Processing Standard (FIPS) approved Advanced Encryption Standard (AES) [4] and Triple Data 

Encryption Standard (3DES) [5] implementations are readily available. 

However, the available schemes and tools for a generic Internet infrastructure cannot be 

directly used on a SG infrastructure. Apart from the fact that the devices used in the various 

domains of the SG are very different in terms of function, capabilities as well as form factor, the 

security objectives of the SG are different from those of a generic Internet infrastructure [6–8]. The 

broad security objectives for the SG are mentioned as Availability, Integrity, and Confidentiality in 

the NIST report of the SGIP [7]. It mentions the need for additional security relating to cyberspace 
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and the physical security of the devices. The scope of our discussion is limited to the former. In 

particular, our focus is on key management that enables the security schemes. 

HAN – Home Area Network

S

M

SMs

Substation LAN

Backhaul Network

NAN – Neighbourhood Area Network

FAN - Field Area Network

WAN – Wide Area Network

NAN/FAN/AMI 

Demarcation

NAN/FAN/

AMI Demarcation

Core -Backhaul 

Demarcation  

Figure 1. Various segments of the smart grid (HAN, NAN, WAN) and the interconnectivity between them. 

The SG is a heterogeneous network with multiple devices and technologies interconnecting 

them. As a data network, it comprises three parts—the Home Area Networks (HANs), the 

Neighbourhood Area Networks (NAN), and the Wide Area Network [7]. The HAN and NAN are 

functional groups of the smart grid infrastructure that are interconnected in a functional hierarchy. 

The HAN performs the basic data collection, and interfaces with the smart grid via the smart meters. 

The SMs, in turn, interconnect and as part of the Advanced Metering Infrastructure (AMI), termed as 

the NAN, interface to a substation which houses the control gear for electricity supply. Several 

substations interconnect via a WAN to the core network at the provider’s premises.  

The devices in the HANs and NANs communicate with the core in the backhaul, accessible via 

the WAN. Interconnected wireless sensors/sensor enabled appliances constitute the HAN. The 

WAN and the HAN are interconnected via the NAN. The interconnection of wireless SMs providing 

a path from the HAN to resources in the WAN constitutes the AMI. The NAN segment of the smart 

grid is our area of interest in this paper. 

SMs require communicating with a data sink and a control centre for purposes of monitoring 

and management. The interconnectivity between the SMs includes an interface to the upstream 

network, typically another SM, playing the role of such an interface and termed as a gateway SM. 

The topology depends upon the wireless coverage, reachability, potential redundant paths, and 

similar design parameters. A single hop to the gateway SM from all devices in a locality is not 

practical and multiple hops to the gateway SM become necessary. It requires the intermediate nodes 

in the path to the gateway to forward data from the downstream nodes. Security mechanisms 

deployed must ensure that each node is authenticated centrally, as well as by the group. Each group 

member must be verifiably assured that the data they are forwarding is, indeed, from one of the 

members of the group that is currently active and transacting. The SMs in the group need to be 

updated about the group’s membership status, and active nodes, periodically. The security 

information that is relayed to the members of the group must reach only the validated members of 

the group. This is the setting for the discussion and addresses how a secure scheme is provided for a 

group of SMs that have a multi-hop path within the group, to reach the gateway SM.  

The rest of the paper is organized as follows. In Section 2 we present a literature review for key 

management and authentication solutions for NANs. Section 3 describes the network model for a 

smart grid and NAN. Section 4 proposes key management for NAN. Section 5 discusses the 

implementation and analyses the security features of the proposed scheme. Section 6 concludes the 

paper with a summary of results and future work. 

2. Group Authentication 

The significance of encryption of cryptography in smart grids remains a highly-discussed and 

debatable topic. There is a need for hiding information, which is present in the form of both data and 
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messages, in order to improve the business productivity of smart grids. Researchers have used 

different techniques in order to secure data in the smart grids in order to maintain the 

confidentiality, integrity, and authenticity of data, which have been discussed in the subsequent 

sections. In this section, the existing group authentication schemes are examined to identify how 

they are applicable in the context of the SG NAN. 

2.1. The Need for Group Authentication 

In a large-scale environment, such as the smart grid, network scalability and availability are 

two crucial design parameters for a secure scheme. To manage a large scale NAN, organising the 

NAN into groups of SMs is necessary to 

1. Localise the topology: the SMs are distributed geographically based on the location of the 

consumers. It is essential that these devices are within the radio range of each other to be able to 

communicate with each other. Therefore, it is necessary to form groups of SMs. Groups are 

typically formed with some nodes in each group having overlapping radio range with other 

group/s. Such overlap provides potential redundant paths, when necessary.  

2. Balance workload of intermediate relay hosts: SMs communicate to an upstream data sink in 

the smart grid via an intermediate host, typically a SM performing the role of a group gateway. 

It is necessary to limit the processing and storage load on the intermediate host that does the 

forwarding of data to and from the SMs. Typically, the SMs are organised into groups and 

assigned gateways to communicate with.  

3. Distribute the SMs into functional groups: from an electricity provider’s perspective, it helps to 

organise different categories of users into different groups (domestic, commercial, industrial, 

essential service provider, etc.) for purposes of estimating demand, geographically, validating 

the usage, and controlling theft. Often, domestic and non-domestic users are located 

geographically close and the need for creating groups of SMs for operational semantics is 

necessary. 

With the obvious need for grouping SMs in a smart grid, group management is a necessary 

function within the smart grid. Identification of a group member, and members’ joining/leaving the 

group, are typical group management functions that require authentication. The authentication may 

be performed autonomously by the group head or by an upstream entity in the smart grid.  

Often, it is not cost-effective to operate the SMs in a single-hop topology (to the upstream 

gateway) and, therefore, a multi-hop topology is necessary. The group members need to be 

validated as part of the group. Such validated members can communicate between themselves, 

primarily for purposes of forwarding data to/from the group head (providing multiple redundant 

paths to reach the group head). In the following section, we review literature relating to group 

authentication. 

2.2. Related Work 

Broustis et al., term the first scenario as a reverse single sign-on and succinctly describe a 

framework for group authentication which is applicable for mobile telecom networks and extendible 

to the M2M context, which is relevant to our discussion [9]. They introduce a gateway entity to 

coordinate/represent the group and this entity performs the required upstream authentication. The 

group authentication is based on a group challenge sent by the gateway to all devices. The devices 

individually respond to the gateway with their credentials. In the absence of the gateway, the 

upstream authentication server does the authentication and the overall saving in communication 

overhead remains one-sided (from the authentication server to the device group) [9]. 

The proposal in [9] is similar to our proposal in terms of having a gateway as an intermediary. 

In the scenario we consider, each node in the network authenticates with a central entity, the 

network operations centre (NOC). This includes all intermediate nodes (group leaders) that provide 

a path to the end nodes to reach the NOC. Operationally, each group leader has no autonomy to 

authenticate a group member, but it has sufficient information to validate that a group member 
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attempting to relay packets through it has indeed been authenticated, centrally. There could be a 

hierarchy of groups if necessary, functionally, to reach the NOC, resulting in a multi-hop path from 

the end device to the NOC. [9] does not discuss such an authentication requirement with multi-hop 

paths. 

Harn proposed a Group Authentication Scheme (GAS), where the role of a group manager is 

responsible for registering all members of the group and issuing a distinct token to each member 

[10]. Subsequently, the members of the group authenticate and interact with each other without the 

need for the group manager’s involvement. They propose a non-interactive basic t-secure m-user 

n-group authentication scheme ((t; m; n) GAS), where t is the threshold of the proposed scheme; m is 

the number of users participating; and n is the total number of group members. This scheme, based 

on Shamir’s secret-sharing [11], works for synchronous communications only. Therefore, they also 

propose an asynchronous (t; m; n) GAS, which can determine whether all users that participate in a 

group actually belong to that group [10]. The proposal in [10] is primarily for a many-to-many 

communication within a group (intra-group). It enables autonomous authentication within the 

group as well as detection of invalid members. The requirement for a SG scenario that we consider 

does not necessarily require a many-to-many characteristic. In addition, the limiting factor for the 

authentication scheme is the threshold t. There is no estimate of the scalability of t or the generic 

suitability of the scheme to resource-constrained devices. In the specific scenario we consider, the 

proposal in [10] is over-dimensioned. 

Mahalle et al., present a Group Authentication scheme for IoT based on Threshold 

Cryptography-based Group Authentication (TCGA) [12]. They extend [10] to use Pallier Threshold 

Cryptography [13], using its properties; namely, homomorphic addition, indistinguishability, and 

self-binding. Primarily, they address the problem of different groups (applications) requiring 

communicating with each other. The authentication scheme has a pre-authentication phase where a 

group head does the key distribution and followed by a group authentication phases where a secret 

session key is distributed. The group members rely on the group head to initiate all group 

communication. They demonstrate that their scheme performs better than [10]. However, the 

implementation is on WiFi-based laptops and reflects a scaled performance of their scheme on IoT 

platforms. Our scenario does not require communication within the group. Group members do not 

need to communicate between themselves. The authentication is done centrally and the intermediate 

nodes verify that a downstream node is already authenticated. We also intend to use only symmetric 

encryption on the motes to minimize any processing delays at the intermediate nodes. 

Yang et al., propose a generic framework for group authentication [14]. Their scenario considers 

password-based authentication in one go, for a user group. The focus is on reducing the time taken 

for authentication, like in [13], rather than authentication of a member, anonymously. The scheme is 

fairly close to our application scenario since the hierarchy of authentication 

(NOC—Gateway—Device) is quite similar (Server—group authenticator—end user). However, 

there is no evidence that it is applicable for low resource devices that we consider or the fact that the 

scheme will work (similar to the proposal in [9]) for multi-hop scenarios where an intermediate 

device needs to perform authenticated forwarding, as in our case. 

Wang et al., present a group authentication and a group key distribution scheme for ad hoc 

networks [15]. They argue that conventional group authentication protocols cannot serve the 

requirements of ad hoc networks since there is no designated group leader and the fact that the 

number of nodes in the network are not known in advance and can change dynamically. Therefore, 

schemes such as those in [10,13] cannot be deployed. The scheme proposed uses an identity-based 

bilinear pairing. There are five distinct phases, which include join and leave phases for the 

individual nodes. This is quite similar to the key management architecture schemes for SCADA 

networks discussed in [16]. Again, there is no specific mention of a multi-hop scenario requiring 

authenticated forwarding. Multi-hop scenarios are necessary for functional grouping as well as to 

build the radio path up to the NOC. Unlike in the case of WLANs used in [19], the radio range and 

the transmit power of the motes that we consider, are limited.  
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Nicanfar et al., address the authentication between a smart meter and the utility server termed 

as a Security Associate (SA). The SA is a dedicated server delegated to perform authentication by the 

central server at the NOC and is used for authentication by a group of SMs. They propose two 

separate schemes for authentication and key management, termed SGAS and SGKM, respectively. 

They propose a four-phase authentication approach, which has not been implemented and 

measured for performance [17]. They consider a mesh topology for SMs constituting the NAN, and 

use WiMax for interconnecting the smart meters. Their work is fairly close to the scenario we 

consider, from a topological perspective. Their functional requirement is similar to our requirement 

in that the authentication has to be done with a central entity. However, they delegate the central 

authentication autonomy to the SA. There are clear differences in the scenario we consider. Firstly, in 

our scenario such an intermediate node is merely a SM with the role of a gateway and with no 

autonomy. The risk of such delegation, we believe, is that the SA nodes are susceptible targets for 

attacks and can cause considerable impact in terms of the central server delegating the autonomy to 

a backup SA and the reachability of the SA from the end nodes. Secondly, they do not consider what 

we term as “authenticated forwarding”. The traffic from the downstream nodes is not validated at 

the intermediate nodes. Thirdly, they use an asymmetric encryption method for privacy and a 

broadcast mechanism for key distribution. We believe, while key distribution via broadcast does 

reduce the communication overhead, multicast is a more secure option. Our scenario uses a single 

central entity for authentication and individually distributes the keys to each of the nodes.  

Subir et al., proposed an EAP-based [18] unified key management mechanism (UKMF) that can 

generate ciphering keys for multiple protocols of multiple communication layers from a single peer 

entity authentication procedure [19]. The unified key management mechanism is suitable for smart 

grid use cases, especially for smart metering, where smart meters are assumed to be low-cost 

wireless devices for which repeated peer entity authentication attempts for each protocol can 

contribute to increased system overhead. The proposed mechanism is flexible in that peer entity 

authentication can be treated as either network access authentication or application-level 

authentication. However, the mechanism has established that information discovery for bootstrap 

application ciphering is an important and as yet missing piece to realize the unified key 

management framework vision. This part needs further analysis by researchers. 

In summary, the key features that we intend to utilize for authentication and key management 

are a relatively simple authentication scheme for a group of devices, an activity monitor that 

characterizes the traffic from the devices, as well as a means of authenticated forwarding. In Section 

2.2, we clarify what we mean by group authentication in our context and define each of the features 

we require for our scheme, compare the availability of these features with the schemes discussed so 

far, and establish the security requirements of our scheme. The requirements are drawn for the SG 

model detailed in Section 3. These requirements are in addition to the basic security requirements, 

namely, confidentiality, integrity, non-repudiation, and forward/backward secrecy. 

2.3. Security Requirements 

For a group of SMs to authenticate, there are two potential scenarios to consider 

1. All the devices being able to authenticate in one go (single message) rather than one-to-one with 

the authentication server and each device with a unique verified identity, (Centralised 

Authentication) and  

2. All devices being able to authenticate between themselves in the absence of an upstream 

authentication server (Distributed Autonomous Authentication) 

The case we consider is in-between. Each node authenticates with the NOC, a central authority. 

There is no local autonomy to the group leader (or the gateway, as termed in this paper) to perform 

authentication, unless a group member has been previously authenticated by the NOC. Once a 

group member has been authenticated by a NOC, the group leader exercises control over the group. 

In the context of the SG, there is no apparent need to economise on communication overheads and 

the resulting delays, for two reasons. Firstly, smart meters have sustained power availability and 
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rarely have to use an on-board power source, which is limited. Secondly, the performance 

requirements for the SM on the AMI are of the order of a few seconds and can, therefore, 

accommodate multiple message exchanges for authentication. 

The topology determines three critical factors for any network—performance, availability, and 

cost—each one of them comprising several factors by themselves. In our context of threats and 

attacks, availability (redundancy, robustness, scalability) is critical. Performance, in terms of 

end-to-end delays (network latency, complexity of data routing, and processing) is sufficiently 

lenient. Costs are not considered as part of our discussion. The topology of the smart meter network 

can be different, including star, tree, mesh, or a cluster tree network. The topology formation 

depends upon the wireless range of the devices and, therefore, dependent on the location of the SMs. 

The most practical topology operationally feasible, we believe, is a partial mesh or a cluster tree 

topology. Therefore, the authentication scheme we propose should attempt to be topology-neutral 

and address a multi-hop scenario. 

With a multi-hop scenario, it is essential to ensure that any data being forwarded indeed 

belongs to the group and no one else. This evolves the need for validated forwarding of packets, 

both upstream and downstream. Each packet of data received is checked for its integrity as well as 

source. Therefore, validated forwarding at intermediate nodes where every forwarder on the 

routing path should be able to verify the authenticity and integrity of the messages is a necessary 

feature in the authentication scheme. 

The data from the end devices transits multiple nodes before reaching the central server. It 

could require multiple encryption/decryption tasks per packet at the intermediate nodes. This 

impacts the processing, memory requirement (packet length), and energy requirements per SM. 

Using symmetric cryptography contains these three factors when compared to asymmetric 

cryptography, for a given key length, in addition to a higher crypto-strength. The security scheme 

should use symmetric cryptography and provide a secure means for key management. 

Time synchronization of all devices on the network is another feature that several security 

schemes deploy. Using a time stamp in all packet data provides a sufficient time tracking for data 

freshness validation. It requires the time stamps to be monitored continually. Given that the data 

flow is between the devices and the NOC, the NOC provides a centralized repository for tracking 

the time stamps. We avoid adding the communication overhead of time synchronization across the 

network to the routing overhead we may incur due to the choice of topology. 

The features required by the security scheme for a scenario that we consider are indicated in the 

last column in Table 1. The scheme is expected to provide for an authentication mechanism for the 

nodes on the network with the primary goals of the authentication are to tag a node as part of the 

network and active, to distribute shared keys once the node’s identity is established as valid, and to 

distribute a shared secret within the group that is used for validated forwarding in intermediate 

nodes. 

By scalability, we mean the ability to add a large number of end devices and sufficient number 

of gateways for the number of groups formed. Scalability impacts performance (in terms of 

end-to-end delays), storage requirements (number of shared keys) on the intermediate devices 

including gateways, processing (delays due to forwarding traffic), and the delays in redistributing 

keys when a new node joins or an existing one leaves. Scalability is a desirable feature of the scheme. 

In the next section, we discuss the smart grid network model and consider the requirements for 

its secure operation. We also highlight the potential security threats we consider as a case study for 

testing the proposed solution. 
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Table 1. A comparison of the availability of features in security schemes. 

Features 
Security Schemes 

Broustis et al. [9] Harn [10] Wang et al. [15] Yang et al. [14] Nicanfar et al. [17] Subir et al. [19] Our Goal 

Topology S/M/CT M N/A N/A S M N/A S, M, CT 

Multi-hop paths Yes Yes Yes No Yes N/A Required 

Validated Forwarding at intermediate nodes Yes Yes Yes No Yes No Required 

Symmetric Crypto Yes No No No No EAS Required 

Resilient to NC attack No No No Yes No Yes Required 

Resilient to replay attack No Yes Yes Yes Yes Yes Required 

Resilient to Sybil attack Yes Yes Yes Yes Yes Yes Required 

Centralized Authentication No No No No Yes Yes Required 

Specifically designed for NAN No No No No Yes Yes Required 

Nodes are not time synchronized No Yes Yes No Yes No Required 

Scalability N/A N/A N/A N/A N/A N/A Required 
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3. The Smart Grid Network Model 

In this section, we present the smart grid network model considered for the discussion and 

detail the requirements for its secure operation. We also explain the potential security threats we 

consider for a case study to test the proposed solution. The smart grid network model considered for 

our discussion, is shown in Figure 2. 

It comprises of three network segments: 

1. Home Area Network (HAN): one smart meter (SM) and N smart devices (SDs). This group of 

devices is interconnected in a star topology with a SM as the star point. 

2. Neighbourhood Area Network (NAN): mesh network (not necessary full mesh) of M SMs. SMs 

are divided into G groups. Group g (g = 1,..., G) has Mg SMs. Hence the following equation is 

considered: 

𝑀 = ∑ 𝑀𝑔

𝐺

𝑔=1

 (1) 

One SM of each group is selected as Group Controller (GC). The GC is hereafter termed as the 

gateway node, GW. 

3. Wide Area Network (WAN): Network (e.g., Internet) that connects GCs to the Network 

Operations Centre (NOC). 

 

Figure 2. Smart Grid Network Model. 

The data generating elements are part of the HAN. This data traverses the entire network to 

reach the NOC. The smart meters, which are a part of the NAN, generate data, as well as receive data 

from the NOC. Therefore, traffic to the NAN elements is two-way. Data may or may not be 

forwarded into the HAN by the smart meters, depending upon the deployment requirement. 

3.1. Threat Model and Assumptions 

There are two basic types of threats that need to be countered—attacks that originate due to 

malicious users eavesdropping to monitor the wireless communications between the nodes in the 

network, and attacks that originate due to the capture of a node, physically, or causing it to fail. 

Eavesdropping: unauthorized users may try to eavesdrop on exchanged data and control 

messages within the HAN and NAN. The eavesdroppers can use the information exchanged and the 

Internet
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exchange patterns to launch man-in-the-middle (MITM) attacks or replay attacks to impersonate a 

node. Therefore, all nodes should be authenticated and all messages should be encrypted. The keys 

used for privacy should not be easily guessable. 

Node Capture: physical node captures or forced failure of nodes, such as in a DoS attacks, 

amount to a node capture attack. In such an event, if the keys on the node are captured, the attacker 

should not be able to gain access to the network. The solution should minimize the impact of such 

attack on the remaining nodes and ensure the rest of the network functions normally.  

Authentication Scheme for NAN: in a Neighbourhood Area Network, authentication is 

required to secure routing in the network. Smart meters have to be registered with the group 

controller to obtain permission to communicate in the network. For our authentication process, we 

make the following assumptions: 

1. Smart meters are grouped together based on a policy and are aware of the group members. The 

events and functionalities of the policy are not in the scope of this paper. This work does not 

address the policy on which smart meter groups are constituted. 

2. Every smart meter in a group has a unique identity, which is a serial number and each group 

has a unique group identity, which are used in the authentication process. All network devices 

involved in the group authentication process know these details.  

3. The link layer between the smart meters and gateway are protected at the link layer, which 

makes communication encrypted at the link layer.  

4. Every smart meter in a group maintains a wireless connection with its gateway and the network 

topology between the home smart meter and the gateway node is a tree. The topology between 

the gateway and the utility could be a mesh. They form a cluster-tree topology between the SM 

and the gateway.  

5. The smart meters have pre-distributed shared symmetric keys, which are used for initiating the 

authentication process and keys during authentication.  

6. Symmetric cryptography yields a better cryptographic strength for a given key length 

compared to asymmetric cryptography. The resulting data length is close to the size of the 

input. 

7. Smart meters cooperate with one another to forward packets on multi-hop paths to the NOC. A 

routing protocol to handle the mesh topology is active and provides the shortest route from a 

given end device to the GW, within the group.  

8. GW nodes have sufficient power (more than the end devices) to be able to perform the 

forwarding from the group to the NOC and vice versa  

9. In the event of the failure of a gateway node, all nodes in the group will be unable to access the 

NOC, until the GW is reinstated/active. There is no fall-back node that will take on the role of a 

gateway. The failure rates of the GW are low.  

10. The groups and the group gateways are pre-identified and formed. These formations are not ad 

hoc and, therefore, there is no need for a node to play the role of a gateway 

11. The nodes on the network are not time synchronized.  

12. The value of the clock ticks of a node cannot be retrieved to set the same clock value on another 

node. Such an operation is possible only with a reset of the node, which essentially implies that 

the clock tick value is lost since the clock is reset. It can be argued that such is the exact function 

of a time protocol such as ntp, but sufficient care is taken to ensure that this value is not 

accessed by any network function. 

13. The NOC provides a central authentication service. It comprises a sufficiently large server with 

a fail-over configuration and able to maintain the state of all of the devices on the network. 

Given the nature of the service requirement of the smart meters in the smart grid, all 

authentication attempts, except the one at start-up upon installation, must be approved before 

the NOC sends an authentication response to the node requesting authentication. 

14. The NOC maintains a history of the metadata (originator-ID, timestamp, group-ID) over a 

sufficiently long period to derive statistics, such as message arrival epochs, message arrival 

times, inter-message times, message size, and activity profiles so that it knows when it can 



J. Sens. Actuator Netw. 2016, 5, x 10 of 21 

 

expect the next packet from a specific ID. Such a history is essential to detect malicious attack 

traffic since our scheme does not require the devices on the network to be time synchronized. 

3.2. Notations 

Having stated the assumptions made, we proceed with detailing the security scheme for the 

scenario in Figure 1. The following subsection begins with a listing of the notations used to detail the 

security scheme. This is followed by the details of the authentication process. 

Table 2. Notations for the authentication scheme for the NAN. 

Symbol Description 

𝐺 Unique group number 
𝑆𝑀𝑛,𝑔 Smart meter ID 
𝐺𝑊𝑔 A gateway for a group of smart meters to the NOC 

𝑀𝐾𝑁𝑂𝐶 Master Key for NOC 

𝑀𝐾𝐺𝑊 Master key for the group Gateway 

𝐾𝑠𝑚,𝑛𝑜𝑐  Symmetric key generated by 𝐾𝑠𝑚,𝑁𝑜𝑐 = F(𝑀𝐾𝑁𝑂𝐶||𝑆𝑀𝑛𝑔), and shared with NOC, and 𝑆𝑀𝑛𝑔. 

𝐾𝐺𝑊,𝑆𝑀 Symmetric key generated by 𝐺𝑊𝑔, and shared with 𝐺𝑊𝑔, and 𝑆𝑀𝑛𝑔. 

𝑃𝑟𝑜𝑥𝑦 𝑆𝑀𝑛,𝑔 Existing smart meter for authenticating a new smart meter 

𝐾𝑆𝑀,𝑆𝑀 Symmetric key shared between 𝑃𝑟𝑜𝑥𝑦 𝑆𝑀𝑛𝑔, and 𝑆𝑀𝑛𝑔 

𝐾𝐺𝑊𝑔
 Symmetric key shared with NOC and GW 

𝐴𝑉𝑖 Authentication value inside the group where 𝐴𝑉𝑖 = 𝐹(𝑅||𝑀𝐾𝐺𝑊) 

R Random number generated by 𝐺𝑊𝑔 to produce 𝐴𝑉𝑖 

The scheme addresses two cases—smart meters in multi-hop (mesh), and smart meters in star 

topology. 

3.3. Authentication of Group Gateway 𝐺𝑊 

We now describe the method that is used by NOC to authenticate 𝐺𝑊𝑔. Since not every 𝐺𝑊 

has a direct link to NOC, some 𝐺𝑊 will be authenticated via other 𝐺𝑊𝑔. 

Figure 3 shows a NAN topology indicating the hierarchical authentication structure/path that is 

used for 𝐺𝑊𝑔 authentication. For completeness, in the figure we also show SMs. The authentication 

of SMs is discussed in later sections. The group controller of a group g is denoted by 𝐺𝑊𝑔. The smart 

meter n of group g is denoted by 𝑆𝑀𝑛𝑔. 

NOC

SM1,1

GW1

SM2,1

SM1,3

GW2

GW3

GW4

SM1,2 SM2,2

SM1,4 SM2,4

SM2,3

SM3,4  

Figure 3. Authentication for Group Gateway. 

NOC creates a random master key 𝐾𝑁𝑂𝐶 . This key will be used to generate keys for each child 

𝐺𝑊𝑔 (𝐺𝑊𝟏 and 𝐺𝑊𝟐. etc.): 

𝐾𝐺𝑊𝑔
= ℱ(𝐾𝑁𝑂𝐶||𝐺𝑊𝑔) (2) 
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where ℱ( ) is a secure one-way hash function and || is the concatenation operator. The key 𝐾𝐺𝑊𝑔
 is 

stored at the corresponding 𝐺𝑊𝒈. The NOC does not need to store it, since it can be generated from 

𝐾𝑁𝑂𝐶 . In a similar way, each child node 𝐺𝑊𝒈 produces shared keys for its own child nodes. For 

example, if 𝐺𝑊1  has several child nodes as group gateways, 𝐺𝑊1  uses its master key 𝐾𝐺𝑊1
 to 

generate a key for each of its child nodes, 𝐺𝑊𝑔′: 

 𝐾𝐺𝑊𝑔′
 = ℱ (𝐾𝐺𝑊1

||𝐺𝑊𝑔′) (3) 

The keys generated are stored at the corresponding child nodes. Similarly, each of these nodes 

will generate keys for its child nodes and so on, until all the leaf nodes with no children have been 

reached. 

3.4. Case 1—Star-Star Topology 

In this scenario, we consider a star for NAN topology in the group, with 𝐺𝑊𝑔 at the centre. The 

GW nodes directly communicate with the NOC. This scenario is simple since each SM has a direct 

link (one-hop) to its GW. This means that no network discovery needs to be made, since GW can 

detect its network. The process of SM authentication is also simple, because each SM can be directly 

authenticated by the 𝐺𝑊𝑔. 

First, the pre-deployment phase is discussed. This phase assigns the master key 𝑀𝐾𝑁𝑂𝐶  to the 

NOC and is depicted in Figure 4. 

 

Figure 4. Pre-deployment for NAN in a star topology. 

Secondly, the smart meter authentication is highlighted. Specifically, a 𝑆𝑀𝑛𝑔that wants to join a 

group needs to be authenticated by 𝐺𝑊𝑔. As shown in Figure 4, initially, the new 𝑆𝑀𝑛𝑔will send a 

request message to 𝐺𝑊𝑔. This message includes B, which is the encrypted message (serial number of 

new 𝑆𝑀𝑛𝑔 ) using symmetric key 𝐾𝑠𝑚,𝑛𝑜𝑐 . Identity number of new smart meter, 𝑆𝑀𝑛𝑔 , and a 

timestamp, TS (this is used to mitigate the replay attacks). 
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Figure 4. Authentication for NAN in a star topology. 

The gateway 𝐺𝑊𝑔 will re-encrypt the message using 𝐾𝐺𝑊𝑔
 and forward the message to the 

NOC. The NOC received B and decrypted it using 𝐾𝑠𝑚,𝑛𝑜𝑐 and in order to validate the serial number 

of the new 𝑆𝑀𝑛𝑔. The NOC responds to 𝐺𝑊𝑔 with a confirmation after validating the serial number 

of the new 𝑆𝑀𝑛𝑔. The NOC will encrypt (𝐾𝐺𝑊,𝑠𝑚, 𝑇𝑆) using 𝐾𝑠𝑚,𝑛𝑜𝑐 and send it to the new 𝑆𝑀𝑛𝑔 via 

𝐺𝑊𝑔. After 𝑆𝑀𝑛𝑔 receives the message it decrypts it using 𝐾𝑠𝑚,𝑛𝑜𝑐 and obtains the shared key with 

𝐺𝑊𝑔. 𝐾𝐺𝑊,𝑠𝑚  𝑆𝑀𝑛𝑔 then replies with an acknowledgement message encrypted with the key. 

3.5. Case Two—Multi-Hop (Mesh) 

The SMs are interconnected in a partial mesh or a full-mesh topology. Each group in the NAN 

consists of a GW and its nodes. The GW nodes are, in turn, interconnected to the NOC in a star 

configuration i.e., all the GW nodes are one-hop away from the star point, the NOC. Nodes within a 

group will require multiple hops to reach either the GW or the NOC. A full-mesh topology is where 

every SMs has a circuit connecting it to every other SMs in a group. Figure 5 illustrates this topology. 

In this case, there are six SMs that form a partial mesh topology between them with a multi-hop path 

to the NOC. A pre-installation phase comprises storing the shared key between the SM and the 

NOC, 𝐾𝑠𝑚,𝑛𝑜𝑐 , the ID of the device 𝑆𝑀𝑛,𝑔, a group ID 𝐺, and a serial number 𝑆𝑁 on the devices. 
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Figure 5. Authentication for a multi-hop NAN topology. 

3.5.1. Network Discovery and Registration 

When a 𝑆𝑀𝑛𝑔 is initially switched on, it must learn about its neighbours in the network, which 

are within its range, in order to forward packets through them. To discover its neighbours, it 

broadcasts a Hello message and, at the same time, is listening for Hello packets that are broadcast by 

its neighbours (other 𝑆𝑀𝑛𝑔, 𝐺𝑊𝑔, or NOC). The network discovery process is repeated every T time 

units to accommodate updates in the NAN topology. After receiving a Hello message, each 

𝑆𝑀𝑛𝑔inserts information about its neighbour in the Neighbours table. These tables can be optionally 

sent to the NOC, so that it has a total view of the NAN.  

3.5.2. Authentication of the Smart Meters, 𝑆𝑀𝑛𝑔 

When 𝑆𝑀𝑛𝑒𝑤 requests to join a group, it needs to be authenticated by 𝐺𝑊𝑔. There are some SMs 

that have no direct link to 𝐺𝑊𝑔. Therefore, the authentication method shown in Figure 4 is not 

suitable, and we propose a two-step authentication scheme. The new SM, 𝑆𝑀𝑛𝑒𝑤 , will be 

authenticated through another, already authenticated, 𝑆𝑀𝑛𝑔, which is referred to as proxy𝑆𝑀𝑛𝑔.  
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Initially, the new 𝑆𝑀𝑛𝑒𝑤 sends an authentication request to the proxy 𝑆𝑀𝑛𝑔 (Figure 6). This 

message includes the following information:  

1. Mi which is the serial number of the new 𝑆𝑀𝑛𝑒𝑤, SNNSM, encrypted using 𝐾𝑛𝑒𝑤,𝑁𝑂𝐶 ,  

2. Identity number of new 𝑆𝑀𝑛𝑔, ID𝑆𝑀𝑛𝑔,  

3. Timestamp TS. 

The proxy𝑆𝑀𝑛𝑔 encrypts Mi along with its identity and TS using the shared key between 

proxy 𝑆𝑀𝑛𝑔 and 𝐺𝑊𝑔. After 𝐺𝑊𝑔 receives and decrypts the message, 𝐺𝑊𝑔 re-encrypts Mi using the 

key 𝐾𝐺𝑊𝑔
. NOC will decrypt Mi using 𝐾𝑔,𝑛𝑜𝑐, check the serial number of new 𝑆𝑀𝑛𝑒𝑤, SNNSM, and 

validate 𝑆𝑀𝑛𝑒𝑤.  

The NOC sends an authentication response, addressed to the new SM. The message, Xi consists 

of the encrypted master key of 𝐺𝑊𝑔 , 𝑀𝐾𝐺𝑊 using 𝐾𝑠𝑚,noc. When the new 𝑆𝑀𝑛𝑒𝑤 receives 𝑀𝐾𝐺𝑊, it 

sends an encrypted acknowledgement to 𝐺𝑊𝑔, using 𝑀𝐾𝐺𝑊. 𝐺𝑊𝑔 generates a random number R 

and multicasts the encrypted random number R, as a message, using the shared key 𝐾𝐺𝑊,𝑆𝑀, thereby 

refreshing the keys of the group when the new SM, 𝑆𝑀𝑛𝑒𝑤, is authenticated. When all SMs receive 

the encrypted message they decrypt the message using 𝐾𝐺𝑊,𝑆𝑀 to obtain the random number R. 

Then, each SM applies a one-way hash function on the random number R to generate the 

authentication value AVi. This authentication value is used by the gateway to authenticate nodes 

within the group. For example, for a group of SM with numbers between 10 to 20, the GW will 

multicast the key to all SM within a time duration of 5 s (timeout value) when using a wireless mesh 

network such as ZigBee or Wi-Fi. 

Figure 6 illustrates the following steps in a ladder diagram. 

1. SM sends an authentication request. 

2. NOC validates data and sends an authentication response. 

3. Authentication response contains 𝑀𝐾𝐺𝑊. 

4. GW sends R to the new SM. 

5. New SM sends an ACK to GW. 

6. GW multicasts R to the group. 

Following the authentication, the SM sends data to the NOC. The steps involved in 

communication are listed below. Notice the authenticated forwarding in steps 4 and 5. The 

intermediate nodes use a MAC to check the integrity and source of the packet that arrived. 

Additionally, note that the source node will ascertain that its data is delivered only when it receives 

an acknowledgement from the NOC. The details of the communication phase are out of the scope of 

this discussion. 

1. SM decides the neighbour to forward to, for a packet destined to the NOC. 

2. SM generates its encryption key 𝐾𝑓𝑜𝑟𝑤 , ℱ’ (𝑅||𝑆𝑀𝑛,𝑔) where ℱ’ is the one-way-hash function. 

3. SM generates a MAC for the message using 𝐾𝑓𝑜𝑟𝑤 . 

4. The neighbour receives the message with MAC and validates it. Knowing what node id it came 

from, it generates the forwarding key of the source.  

5. If successful, it generates a MAC and forwards it to a neighbour (to the GW, if it is the 

neighbour). If the MAC fails, the packet is simply dropped. 

Our scheme is scalable for the requirements of a SG. In our scheme, each gateway and its group 

transact individually with the NOC and have no interdependency on other gateways or groups, 

except for forwarding data to the NOC. When the devices are scaled, an appropriate number of 

gateways are included to match the number of groups formed. Each gateway and its group need 

access to keys for their own group, the gateway and the NOC. Each node will, therefore, have a 

pre-installed NOC key, a master GW key sent by the NOC, and a random secret R sent by the group 

gateway. All other keys necessary are derived from this information. Therefore, our scheme is 

scalable to any number of end devices. However, we realise the need to limit the number of nodes 

per group to keep the number of paths low, the routing delays low and, consequently, the 

end-to-end delays low. 
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Figure 6. Authentication of a SM—Case 2. 

3.5.3. Updating of 𝑀𝐾𝐺𝑊   

When 𝑆𝑀𝑛,𝑔 leaves its group and from the network, destroying old 𝑀𝐾𝐺𝑊 and allocating a 

new master gateway key to all nodes 𝑆𝑀𝑛,𝑔 in that group is very crucial. This is because the leaving 

node 𝑆𝑀𝑛,𝑔 may be replaced by a vulnerable node to relay false messages and communicate with 

other nodes; therefore, 𝑀𝐾𝐺𝑊 revoking/re-keying is required. The 𝑁𝑂𝐶 is responsible to inform the 

other 𝑆𝑀𝑛,𝑔  ∈ 𝐺𝑊𝑔 nodes in that group and send a new 𝑀𝐾𝐺𝑊 which is encrypted using 𝐾𝑠𝑚,𝑛𝑜𝑐. 

The following are the process steps of the updating 𝑀𝐾𝐺𝑊: 

1. A smart meter node 𝑆𝑀𝑛,𝑔  must send a network leaving request  𝐿𝑅𝐸𝑄  to the assigned 

dedicated node 𝐺𝑊𝑔 of that group. 𝐾𝐺𝑊,𝑆𝑀 ( 𝐿𝑅𝐸𝑄 , TS, ID 𝑆𝑀𝑛,𝑔).  

2. The 𝐺𝑊𝑔 will inform the other 𝑆𝑀𝑛,𝑔 nodes in its group (multicast) and 𝑁𝑂𝐶 (unicast) about 

the leave using the messages 𝐾𝐺𝑊,𝑆𝑀 ( 𝐿𝑆𝑀𝑛,𝑔 , TS, ID 𝐺𝑊 ) and 𝐾𝐺𝑊,𝑁𝑂𝐶  ( 𝐿𝑆𝑀𝑛,𝑔 , TS, ID 𝐺𝑊 ). 

3. Removing the node  𝐿𝑆𝑀𝑛,𝑔 with 𝐿𝑅𝐸𝑄 . 

4. 𝑁𝑂𝐶 regenerates a new master gateway key 𝑀𝐾′𝐺𝑊  and sends it to the specific gateway. 

This, in turn, multicasts to all the remaining 𝑆𝑀𝑛,𝑔 in the group, encrypted using 𝐾𝑠𝑚,𝑛𝑜𝑐. 

The updating of 𝑀𝐾𝐺𝑊 process described above introduces a cost of re-keying. This cost has 

two factors: 

1. Additional processing overhead. Assume that the generation of a 𝑀𝐾𝐺𝑊  key requires × CPU 

cycles. The processing overhead, Oproc noc = 1 × (because NOC has to generate one key 

𝑀𝐾𝐺𝑊 for 𝐺𝑊. 

2. Communication overhead that includes two multicast and two unicast messages. The unicast 

messages are between the gateway and the NOC and the multicast messages are within the 

group. 

4. Security Analysis 

The authentication scheme is analysed against the two classes of threats mentioned in Section 4. 

A Sybil attack is an impersonation attack that is the result of eavesdropping and the node capture 

attack is the physical nodes capture which is very likely in the context of the SG network.  
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The authentication scheme described in the previous sub-section is two-way secure, meaning 

that after the authentication process, both parties’ new SM and GW can verify the authenticity of 

each other. The authenticity of GC is varied since the Authentication Request from the SM is 

encrypted using GW’s key. Additionally, in the Authentication Response, GW sends the SN of the 

new SM. Only GW and SM know the mapping of SN to the ID number of SM. The authenticity of the 

new SM is verified in a similar way. First of all, the Authentication Response is encrypted using SM’s 

key and, therefore, only SM is able to decrypt it using its shared key. Additionally, the new SM 

provides to proxy SM both its ID number and SN, which provide additional security. 

Denial of service (DoS) makes a node, as well as the service on it, inaccessible by others. An 

attacker sends a large number of packets, malicious or otherwise, addressed to the node and 

effectively at a rate which can block out all other communication. This causes the node receiving the 

packets to exhaust its storage and computing power, processing the packets that arrive from the 

attacker. Such a risk is imminent in a multi-hop network where the communication between two end 

points is routed via intermediate smart meters. The proposed authentication scheme authenticates 

every participant on the network before accepting any traffic from it. While this reduces the 

probability of spurious data on the network, the spurious traffic remains a problem. If such traffic 

targets a gateway node, then an attack can potentially incapacitate all nodes that communicate using 

that gateway. Additional means of detecting such intrusions and methods of isolating the attack 

traffic are necessary to handle such vulnerabilities.  

Our scheme does not handle jamming attacks. Jamming attacks are DoS attacks that targets the 

wireless communication frequency in the smart grid. When nodes are in close range, large amounts 

of noise may be generated in these appliances. It is difficult to avoid jamming in our scheme because 

the victim and its client may not catch the attack. In this kind of attack, the attacker prevents legal 

users from having access to information and services by targeting the victim’s device and the 

network connection. This attack stops the user from making outgoing connections on the smart grid. 

The communication can be jammed so as to make the signal noise very low, and this could lead to 

the failure of specific portions of the smart grid [20].  

4.1. Node Capture Attack 

A node capture attack is both a challenging and interesting attack with a goal taking control 

over a smart meter’s communication after physically gaining access [42]. This attack could easily be 

carried out because smart meters are placed on customer premises and not within the utility 

provider’s physical premises. Abdullah et al. [21] presented studies on the attacks and vulnerabilities 

of smart meters in a NAN and list node attack as the least attended, yet significantly dangerous, to 

the smart grid network. Most of the schemes discussed in [22–26] show a vulnerability to node 

capture attacks. A successful attack could reveal shared keys, thereby permitting an attacker to 

participate in encryption and decryption processes or, in a worst case scenario, inject false data into 

the smart grid network to comprise other nodes.  

Our proposed group authentication scheme is secured against node capture attacks. Even if the 

keys are captured by an attacker and used to send data, the data packet would get validated for 

forwarding, but the packet would be tagged as an invalid packet since the time stamp of the packet 

sent by the attacker would not match the timestamp value expected by the NOC. The NOC records 

the timestamps of all the packets it receives, node ID-wise, so it knows what to expect in the next 

incoming packet from a particular node. However, if by some means, the malicious node is able to 

retrieve the timestamp information from the captured node and set its local clock to that of the 

captured node, then the scheme will be effectively broken. This condition breaks the assumption 

number 8 in 3.1.  

4.2. Replay Attack 

Both schemes present in [26,27] show a vulnerability to replay attack. Our scheme is secure 

against replay attacks because it uses shared keys for communication, as well as time stamps. Both 

the communicating parties, based on a shared random secret, generate the shared key. By knowing 



J. Sens. Actuator Netw. 2016, 5, x 16 of 21 

 

the shared random secret one cannot derive the shared secret key. Therefore, it will be 

computationally difficult for an attacker to generate data, which is validated with an appropriate 

time stamp. Similarly, replaying previously transmitted data will render the data invalid since the 

time stamps are encrypted along with the data and, when verified at the receiving end, will not 

match with the expected value of the time stamp recorded on the receiving device [28].  

In the event that an attacker, by some means, is able to decrypt the captured packet and retrieve 

the contents of the packet, the node identity, the authentication value, and its time stamp will be 

available to the attacker. Using them, valid data packets can be generated and spurious data can be 

sent to the NOC. However, this requires the attacker node to estimate the clock ticks of the active 

node and replay the packets for them to be accepted by the NOC. If the attacker is able to retrieve the 

value of the clock ticks of the node it has captured packets from, and regenerates the packets with 

valid time stamps, then the scheme can be broken. This again breaks assumption 8 in 3.1. However, 

such an attack is not termed as a replay attack, since the packets are re-crafted using the time stamp 

from the clock tick value synchronized with the node and other values from the captured packets.  

4.3. Sybil Attack 

In a Sybil attack, a malicious node assumes multiple fake identities and attempts to inject traffic 

into the network. Our scheme prevents vulnerability to such attacks by falling back on the need to 

validate the authentication value and time stamp value in a packet. The authentication value is 

derived from the random number shared by the gateway. This value is encrypted with the key 

shared with the gateway and verified at the gateway. So, in order to fake multiple identities, the 

attacker node must have access to all the shared keys of the nodes it intends to fake [28]. If the 

attacker is able to get these keys and the random value from the gateway, the ID of the node can be 

faked. However, in order to successfully transmit data the attacker will require having valid time 

stamps that the NOC can validate. Like in the earlier cases, the scheme will be broken if the attacker 

successfully synchronizes the clock tick values of the nodes that are being faked. In such a scenario, 

assumption 8 in 3.1 is broken. 

The attacker can simply re-initiate an authentication process, to overcome the time stamp 

problem. Re-authentication is a directed activity controlled by the NOC and therefore, any attempt 

to re-authenticate will immediately be detected by the NOC, thereby mitigating the attack. If this 

authentication attempt is successful, then the scheme breaks. This can occur if assumption 9 in 3.1 is 

broken. 

5. Implementation 

The authentication scheme was implemented on TelosB motes using TinyOS version 2.1 [29]. 

TelosB is an open source platform that includes a mote with sensors and the development platform. 

TinyOS is a small, open-source, energy-efficient software operating system, which supports large 

scale, self-configuring sensor networks. Both TelosB and TinyOS were developed by UC Berkeley 

(city, state, country) [29].  

Six motes were used, one each in a role as the NOC and as a GW, and four others in a mesh 

communicating to the NOC, via the GW. The motes were pre-loaded with the addresses of the NOC 

and the GW nodes, as well as the master key of the NOC. The NOC and the GW nodes were 

switched on, respectively, and the GW authenticated with the NOC. Subsequently, the nodes were 

switched on, one-by-one. Note that the implementation on the motes did not use the link layer 

encryption facility. The nodes were physically located such that each node was in the radio range of 

only two other nodes. This ensured that there were at least two two-hop paths from the nodes to the 

GW.  

Two specific measurements were made. The time taken for encryption/decryption (AES [5,28], 

with block size 16, key size 128 bits) was measured. Figure 7 provides a snapshot of the packet 

transit across the nodes labelled L-SM (leaf node), H-SM (intermediate node), GW (group gateway), 

and NOC (the NOC). Each line starts with a time stamp in microseconds, indicates the source and 

destination node addresses (L-SM and NOC only), followed by the application data size (33 Bytes), 
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the time to encrypt/decrypt the packet contents on the node (in microseconds), and the name of the 

routine providing the information.  

 

Figure 7. The output of the motes from the L-SM to NOC and back. 

The total delay for the authentication process of a mote, using a two-hop path, was measured. 

The average encryption and decryption times on end nodes are 6 ms and 6.2 ms; on intermediate 

nodes (authenticated forwarding), including the GW node, 3.9 ms and 4.2 ms; and on the NOC, 8.2 

ms and 6.5 ms. The average RTT from an end node to the NOC was 196 ms. The average RTT 

between a pair of nodes on the network was 25 ms. The entire authentication process Figure 8 took 

331 ms. 

 

Figure 8. Time taken for AES encryption of a 16 byte block on motes in a mesh topology. 

The time taken for encryption and decryption of a 16-byte block of the application packet is 

shown in Figures 8 and 9, respectively. This measurement was done using the microsecond timer 

implemented in TinyOS. The timer was fired before and after the encrypt/decrypt operations, within 

the application. Therefore, the measurement includes the TinyOS overheads (interrupt servicing, 

packet reception, etc.). The dataset contains a hundred measurements on each mote and Figures 8 

and 9 indicate the mean of the dataset and the standard deviation. 

The path from the L-SM to the NOC is a three-hop path. Each mote in the path will need to 

process packets from its downstream, in addition to its own packets, which leads to an increase in 

the overall encryption time. This is evident from the increasing encryption and decryption times as 

well as the increasing value of the standard deviation of the dataset, which is plotted as an error bar. 
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Figure 9. Time taken for AES decryption of a 16 byte block on motes in a mesh topology. 

The round trip time (RTT) for an authentication packet (network transit time + processing time 

on each mote) from the L-SM to the NOC and back, was measured for the star and mesh topologies. 

Figures 9 and 10 indicate the RTTs without and with the security turned on (labelled as 

RTT-SECURE). The RTT for the mesh (Figure 10) topology is an order of magnitude higher than that 

for the star topology (see Figure 9). The limitation of the implementation is the inability to examine 

the performance of the authentication scheme when the number of nodes is scaled up. This requires 

physical configuration and deployment of a large number of motes. Specifically, the load on the 

gateway node and its impact on the authentication delay require evaluation. 

 

Figure 10. RTT from L-SM to NOC in a star topology (one hop). 

Such an evaluation is currently being attempted as a simulation in OPNET [30]. A network of 

nodes interconnected using ZigBee is simulated. These nodes, in a cluster-tree topology, are scaled 

up to large numbers towards two specific objectives. First, to measure end-to-end network delays 

(from the leaf nodes to the NOC, multi-hop path), and second, to emulate the application 

(authentication and sensor data) packet flows and measure the authentication delays, when nodes 

join/leave the network. Subsequently, the intent is to study the effect of physical node capture and 

node failures in terms of the extent of impact on node reachability and, hence, the portion of the 

network that is effectively non-functional. 
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Figure 11. RTT from L-SM to NOC in Mesh topology (three hops). 

6. Conclusions 

In this paper, we proposed a security scheme for groups of SMs in a Neighbourhood Area 

Network that enable entire groups to authenticate themselves, rather than on at a time.. In particular, 

the scenario of a multi-hop network is considered where the nodes require multiple hops to 

communicate with the NOC, which is the entity that issues the keys. Two topology scenarios, 

star-star and mesh, are considered and separate authentication processes are defined for their 

operation. We propose a hierarchical control scheme for authentication; all nodes initially 

authenticate with the NOC and, subsequently, the group gateway autonomously issues an 

authentication token to the authenticated members in its group. We mention how the proposed 

approach is two-way secure as both involved parties, the group controller and the smart meters, are 

able to successfully verify each other.  

The authentication scheme was implemented in real-world environment using TelosB motes. 

We found out that the average encryption and decryption times on end nodes are 6 ms and 6.2 ms, 

on intermediate nodes (authenticated forwarding), including the GW node, 3.9 ms and 4.2 ms, and 

on the NOC, 8.2 ms and 6.5 ms. The whole authentication protocol took 331 ms. 

In our future work we are going to evaluate the performance of the authentication scheme in a 

large network using a simulation tool [30]. We intend to examine the performance of the scheme in a 

large network, simulating failures of gateway nodes and measuring the impact of single and 

multiple gateway node failures in terms of the number of nodes that are rendered unreachable. The 

topology of the networks will be star, partial mesh, and full mesh between the gateway nodes. In 

addition, the impact of node failures resulting from attacks on the overall network will be evaluated. 

In addition several of security scenario case studies will be analysed [21]. 
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