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Abstract 

The Adverse Outcome Pathway (AOP) paradigm details the existing knowledge that links the 

initial interaction between a chemical and a biological system, termed the molecular initiating 

event (MIE), through a series of intermediate events, to an adverse effect. An important 

example of a well-defined MIE is the formation of a covalent bond between a biological 

nucleophile and electrophilic compound. This particular MIE has been associated with various 

toxicological endpoints such as acute aquatic toxicity, skin sensitisation and respiratory 

sensitisation. This study has investigated the calculated parameters that are required to predict 

the rate of chemical bond formation (reactivity) of a dataset of Michael acceptors. Reactivity 

of these compounds towards glutathione was predicted using a combination of a calculated 

activation energy value (Eact, calculated using Density Functional Theory (DFT) calculation 

at the B3YLP/6-31G+(d) level of theory, and solvent accessible surface area values (SAS) at 

the alpha carbon. To further develop the method a fragment-based algorithm was developed 

enabling the reactivity to be predicted for Michael acceptors without the need to perform the 

time-consuming DFT calculations. Results showed the developed fragment method was 

successful in predicting the reactivity of the Michael acceptors excluding two sets of chemicals; 

volatile esters with an extended substituent at the β-carbon and chemicals containing a 

conjugated benzene ring as part of the polarising group. Additionally the study also 

demonstrated the ease with which the approach can be extended to other chemical classes by 

the calculation of additional fragments and their associated Eact and SAS values. The resulting 

method is likely to be of use in regulatory toxicology tools where an understanding of covalent 

bond formation as a potential molecular initiating event is important within the adverse 

outcome pathway paradigm. 
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Introduction 

The Adverse Outcome Pathway (AOP) paradigm has been promoted as a key approach that 

may enable the demands of seventh amendment to the cosmetic directive and REACH to be 

met.1 An AOP details the existing knowledge that links the initial interaction between a 

chemical and a biological system, through a series of intermediate events, to an adverse effect. 

2 Clearly, biological pathways, the perturbation of which, can lead to an adverse effect, are 

diverse and complex. Thus the AOP concept is concerned with defining only the key, testable 

events in a given pathway. Consequently, there are significant efforts to develop in silico¸ in 

chemico and in vitro methods that enable such key events to be predicted and/or tested. The 

ultimate aim is that a series of alternative tests (developed from the knowledge of an AOP) will 

enable an animal test for a regulatory endpoint to be replaced. For example, the recently defined 

AOP for skin sensitisation has led to the development of a number of non-animal testing 

methods which may be used (in combination) to replace in vivo studies. 3 Within the AOP 

approach, in silico methods are typically used to define the chemistry associated with the initial 

chemical interaction between a chemical and the biological system, termed the Molecular 

Initiating Event (MIE). 

An important example of a well-defined MIE is the formation of a covalent bond between a 

biological nucleophile, such as the thiol group of cysteine or the amine group of lysine, and an 

electrophilic chemical such as acrolein.4 This particular MIE has been associated with various 

adverse outcomes such as; skin sensitisation, respiratory sensitisation, acute aquatic toxicity, 

liver toxicity, chromosomal aberration and a wide range of idiosyncratic drug toxicities. 5-10 

Given the importance of covalent bond formation as an MIE, various in chemico assays have 

been used to investigate the potential correlation between rate of covalent bond formation 

(reactivity) of chemicals and their ability to elicit a toxicological effect. 11 There are a number 

of reactive mechanisms by which an electrophilic chemical may react with a biological 

nucleophile.  An important and well-studied mechanism is Michael addition. For a chemical to 

act via Michael addition it must have an electron withdrawing group adjacent to a carbon-

carbon double bond; this results in an electron deficient carbon at the β-position. This allows 

for nucleophilic attack such as a thiolate nucleophile at the electron deficient β-position 

resulting in the formation of a resonance stabilised carbanion at the α-position, the carbanion 

is then protonated to produce the final product, a Michael adduct (Figure 1). 12 When 

considering Michael addition thiol reactivity there are three important factors, the impact of 

the electron withdrawing group, substitution at the α-position (where the inductive effect of the 
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substituent can stabilise/destabilise the negative charge at this position)  and substitution at the 

β-position of the carbon-carbon double bond. 

There have been many attempts to relate predict the reactivity and toxicity of chemicals known 

to act via Michael addition both experimentally (in chemico) and computationally (in silico). 

13-24 In chemico approaches involve either the determination of the kinetic rate constant, or 

more typically spectrophotometric methods that involve determination of the concentration of 

the electrophile required to deplete a model nucleophile such as glutathione (GSH). 18  In 

contrast in silico methods, such as the work of Mulliner et al  and Schwobel et al  use quantum 

mechanical methods to calculate the energy of activation for these types of electrophilic 

reactions, enabling the experimental rate values to be predicted using simple quantitative 

structure activity models. 19, 22 Furthermore, such in silico methods have been applied for the 

prediction of toxicity data where covalent protein binding is the molecular initiating event.  

It is clear from the literature that in silico methods involving the calculation of the activation 

energy are capable of predicting both chemical reactivity and, in turn, toxicity. However, these 

approaches require the use of time-consuming quantum chemical calculations which require 

proprietary software. This limits their use, and inclusion, in freely available in silico tools 

currently finding widespread use in regulatory toxicology (for example, the OECD QSAR 

Toolbox). Therefore, the aim of this study is to develop an in silico profiler capable of 

predicting chemical reactivity for Michael acceptors. The approach being based on a fragment 

method in which a database of pre-calculated energy of activation values are used within the 

in silico profiler, thus removing the need for the end-user to perform such calculations.  

Methods 

Data set 

The RC50 values for various Michael acceptors were determined using a previously published 

spectrophotometric peptide depletion assay. 25 Where RC50 is the concentration of electrophile 

required to deplete the concentration of glutathione (GSH) by 50%. Average RC50 values were 

calculated for chemicals which had multiple experimental values. RC50 values for poorly 

soluble chemicals were determined by the addition of 50% MeOH. A structurally diverse set 

of experimental data was profiled using previously published alerts for polarised aldehydes, 

ketones, esters, nitros, nitriles and cyclic ketones. 11 This resulted in a  subsequent dataset of 

72 chemicals covering 13 aldehydes, 17 ketones, 24 esters, nine nitro compounds, three nitrile 

containing compounds and six cyclic ketones (Table 1). Additionally individual standard 
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deviation values are stated, these values result in an average experimental error of 0.13 log 

units.   

[Table 1 here] 

Computational methods 

All calculations were carried out using the Gaussian 09 suite of software using density 

functional theory (DFT) utilizing the B3LYP/6-31G(d) level of theory. 26
 Energies of activation 

(Eact) values for transition state structures were calculated use thiolate as a model nucleophile.  

The use of a thiolate (rather than a thiol) nucleophile allows an intermediate to be isolated on 

the potential energy surface. This significantly simplifies the calculations as the intermediate 

can be isolated using a simple energy minimisation calculation rather than a transition state 

calculation. The Solvent Accessible Surface area (SAS) at the α-position was calculated for 

each chemical using the Chimera software. 27 The in silico profiler was encoded as a workflow 

using the open source KNIME environment. All experimental and calculated data are available 

in the supplementary information. This includes the fragment which is used for each chemical 

in table 1, calculated Eact (Kcal/mol), SAS values and predicted –Log RC50 values for each 

model.  

Statistical analysis 

Linear regression analysis was used to develop quantitative structure-activity relationship 

models to obtain correlations between -log RC50 values and the calculated descriptors (Eact 

and SAS values) using the Minitab (version 17) statistical software.  

Results and Discussion 

The initial aim of this study was to develop a fragment-based in silico profiler capable of 

predicting chemical reactivity for polarised alkenes (aldehydes, ketones and esters, chemicals 

1-54 in Table 1). This was achieved by systematically varying a series of alkyl and aryl 

substituents at each of the R groups (as shown in Figure 2) in order to establish the point at 

which increasing the alkyl chain size failed to increase the activation energy by more than 1 

kcal/mol (all analysis carried out by rounding the energy difference to the nearest kcal/mol). 

For example, examining how the calculated activation energy changes when varying the 

substituents at position R1 for a series of aldehydes (R2 = R3 = hydrogen) shows that on going 

from methyl to ethyl the activation energy increases by 4.2 kcal/mol. In contrast, extending the 

alkyl chain further from ethyl to propyl decreases the activation energy by 0.2 kcal/mol (Table 

2). This change is significantly less than the cut-off value of 1 kcal/mol (or less) meaning that 
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all alkyl chains of two carbons or more can be reasonably predicted using the calculated 

activation energy value of the ethyl group. This analysis enables two fragments to be defined 

that can be used to calculate the activation energy of chemicals with simple alkyl chains at this 

position (R = Me and Et). The analysis also showed the need to include i-propyl and t-butyl 

groups due to their increased steric hindrance. An analogous analysis was carried out into the 

effect of alkyl chain length on the polarised aldehydes at position R2 (Table 2). 

The effect of a benzene ring on the calculated activation energy for the polarised aldehydes 

was also investigated at positions R1 and R2. Taking the effect at R1 as an example, the results 

showed that the activation energy increases significantly on going from R1 = Me to Ph (-1.5 to 

3.4 kcal/mol). As expected, the results also showed that increasing the number of CH2 groups 

between the alkene and the benzene ring caused a decrease in the associated activation energy 

(compare R1 = C6H5 to CH2C6H5). In terms of defining fragments for the effect of a benzene 

ring at this position it is useful to compare the aryl substituent with the corresponding alkyl 

substituent. For example, comparing the activation energy values of R1 = CH2C6H5 to R1 = 

CH3 shows there to be an energy difference of 2.7 kcal/mol, which when rounded to the nearest 

kcal/mol is significantly in excess of the 1 kcal/mol (or less) cut-off. In contrast, comparing R1 

= CH2CH2C6H5 to R1 = CH2CH3 shows there to be an energy difference of 1.1 kcal/mol, 

(sufficiently close to the1 kcal/mol s) cut-off. This means that two fragments are required to 

define the effect of a benzene ring at the β-position (R1), with R1 = CH2CH3 being used to 

predict chemicals with a benzene ring three or more carbons away from the β-carbon of the 

alkene. As previously, an analogous analysis was carried out for the polarised aldehydes at the 

α-position (R2) (Table 2).  

 

[Table 2 here] 

 

[Table 3 here] 

 

The structure-activity analysis into the effect of alkyl and aryl substituents on the calculated 

activation energy was repeated for the polarised ketones and esters in the dataset (varying 

groups at positions R1, R2 and R3, data shown in the supplementary information) resulting in 

the definition of 407 fragments, these are summarised in Table 3. These fragments cover both 

singly substituted chemicals and all possible combinations of the fragments shown in Table 3. 
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Predicting glutathione reactivity using fragment-based in silico profiler 

The ability of the fragment-based in silico profiler to predict glutathione reactivity was 

investigated for a total of 54 chemicals (13 polarised aldehydes, 17 polarised ketones and 24 

polarised esters). Initial modelling using only the calculated activation energy value (Eact) 

failed to produce a statistically significant model due to chemicals with an α-substituent being 

consistently over-predicted (model 1 in Table 4 and Figure 3, Chemicals with an alpha-

substituent shown as filled squares). Inclusion of a solvent accessible surface area (SAS) 

descriptor for the α-position resulted in the significantly improved model (model 2 in Table 4 

and Figure 3). The mechanistic relevance of this descriptor likely stems from the nature of the 

intermediate in the Michael reaction which involves the formation of a resonance stabilised 

negative charge on the α-carbon atom. The solvation of this charge plays a key role in the 

stability of the transition state and thus overall reactivity. This solvation effect can be modelled 

by the inclusion of the steric SAS parameter, with the less solvent accessible α-substituted 

chemicals being less stabilised due to solvent molecules being sterically hindered from 

solvating the charge by the presence of the substituent compared to chemicals without an α-

substituent. 

 [Table 4 here] 

Model 2 successfully improves the prediction for the majority of the chemicals in the dataset. 

However, closer inspection of the data shows methyl and ethyl crotonate to be significant 

outliers with errors of 1.07 and 0.99 log units respectively (Figure 4). Both methyl and ethyl 

crotonate have high predicted Log VP values (Table 5), as the experimental assay is carried 

out in scintillation vials loss of the compound during the reaction may cause an issue.21 It may 

be possible that this is not being shown with the unsubstituted esters as they are reacting 

sufficiently fast enough for the reaction to occur before the loss of reactive compound. This is 

therefore having a greater effect on the slower reacting β-substituted esters. With this in mind 

it could be suggested that β-substituted esters with Log VP values of 0.9 or greater are out of 

the predictive domain of this model.  

[Table 5 here] 

An additional set of chemicals were also poorly predicted by model 3 (Figure 4, chemicals 

highlighted as filled squares), these being chemicals in which a phenyl ring conjugated to the 

carbonyl or ester moiety acts as the polarising group (Table 6). The reactivity of these 

chemicals was consistently under-predicted with error values ranging from 0.76 – 0.92 log 
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units. Interestingly, the analogous chemical 4-phenyl-3-buten-2-one in which the polarising 

group is a simple alkyl ketone is well predicted by model 3 with an error of -0.04 log units. 

This suggests that the full electron-withdrawing effect of a conjugated phenyl group at position 

R3 is not fully captured in the calculations (it is important to note that additional chemicals 

where R3 is alkyl or hydrogen and the β-position is substituted with aromatic ring are well 

predicted by the model – see supplementary information table S1 chemicals 12, 13, 27, 57-61). 

Removing these four chemicals from model 3 resulted in model 4 (Table 4 and Figure 3) with 

an average error of 0.28 Log units.  

[Table 6 here] 

 

Prediction of other chemical classes using the fragment-based in silico profiler  

To demonstrate how the fragment-based in silico profiler may be expended to cover additional 

chemical classes, a second dataset of 18 chemicals (compounds 55 – 72 in Table 1) with 

reactivity data was investigated. The chemicals within this dataset required Eact values for an 

additional five fragments to be calculated, along with three fragments previously defined 

(Table 7).  These Eact values were used in conjunction with model 4 to predict –logRC50 values 

for these 18 chemicals with an average error of 0.62 log units (Figure 4 - left hand plot shows 

the predicted values for these 18 chemicals as square data points in comparison to the chemicals 

used in the derivation of model 4). The results suggest that for the polarised nitros that 

substituents at the α-position have significantly less effect on reactivity than for chemicals 

polarised by either an aldehyde, ketone or ester moiety. This can be rationalised in terms of the 

resonance stabilisation of the intermediate for the polarised nitros for which two possible 

resonance forms exist (Figure 5). It is possible that the nitro group is sufficiently polarising that 

the negative charge is localised mainly on the oxygen rather than the α-carbon, resulting in 

solvation at this position becoming less important. Excluding the SAS parameter for the 

polarised nitros (in effect assuming that these chemicals have an SAS value equivalent to 

hydrogen) results in a significant improvement in the predicted –logRC50 values for these 

chemicals (Figure 4, right hand lot), with an average error of 0.44 log units. Interestingly, 

among the polarised nitros three of the compounds contain halogenated phenyl groups at the 

β- position, these are predicted well (see supplementary information table S1 chemicals 59-61). 

This suggests that using phenyl alone was sufficient enough of a prediction and that the 

applicability domain of this method may extend further to alkyl and phenyl with varying 

substitutions. 

[Table 7 here]  
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Conclusions 

 

The aim of this work was to develop an in silico profiler capable of predicting reactivity for 

polarised aldehydes, ketones and esters acting via Michael addition.  The results showed that a 

combination of pre-calculated Eact values coupled with a descriptor for the solvent accessible 

surface area at the α-carbon was able to accurately predict chemical reactivity as measured in 

a glutathione depletion assay. Two sets of chemicals were poorly predicted by the approach, 

these being: volatile esters with an extended substituent at the β-carbon and chemicals 

containing a conjugated benzene ring as part of the polarising group. The study also 

demonstrated the ease with which the approach can be extended to other chemical classes by 

the calculation of additional fragments and their associated Eact and SAS values. The approach, 

and associated in silico profiler enables chemical reactivity to be predicted without the use of 

time-consuming quantum mechanics calculations and is likely to be of use in regulatory 

toxicology tools where an understanding of covalent bond formation as a potential molecular 

initiating event is important within the adverse outcome pathway paradigm.  
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Table 1: Michael acceptors with corresponding –Log RC50 values investigated in the current 

study. Where RC50 is the concentration of reactive chemical required to deplete GSH by 50 % 

in 120 minutes. 

ID Chemicals SMILES 
RC50 

Average 

- Log 

RC50 

Average 

(mM) 

Aldehydes 
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1 Trans-2-pentenal O=C/C=C/CC 0.33 ± 0.02 0.48 

2 Trans-2-octenal O=C/C=C/CCCCC 0.28 ± 0.02 0.56 

3 Trans-2-Nonenal O=C/C=C/CCCCCC 0.41 ± 0.05 0.39 

4 Trans-2-Hexenal O=C/C=C/CCC 0.43 ± 0.11 0.37 

5 Acrolein O=CC=C 0.07 ± 0.03 1.14 

6 
Trans-2-methyl-2-

butenal 
O=C/C(C)=C/C 11.71 ± 1.88 -1.07 

7 2-Methyl-2-pentenal O=CC(=CCC)C 20.74 ± 1.21 -1.32 

8 4-Methyl-2-pentenal O=CC=CC(C)C 1.15 ± 0.15 -0.06 

9 Trans-2-butenal O=C/C=C/C 0.21 ± 0.02 0.67 

10 E-2-Decen-1-al O=C/C=C\CCCCCCC 0.21 ± 0.05 0.67 

11 Trans-2-Decenal O=C/C=C/CCCCCCC 0.17 ± 0.02 0.77 

12 Trans-cinalamdehyde O=C\C=C\C1=CC=CC=C1 0.96 ± 0.24 0.02 

13 
α-Methyl-trans-

cinnamaldehyde * 
C\C(C=O)=C/C1=CC=CC=C1 21.60 ± 7.04 -1.33 

Ketones 

14 Methyl vinyl ketone O=C(C=C)C 0.06 ± 0.03 1.23 

15 1-Hexen-3-one O=C(C=C)CCC 0.06 ± 0.00 1.23 

16 1-Penten-3-one O=C(C=C)CC 0.05 ± 0.00 1.29 

17 3-Penten-2-one O=C(C=CC)C 0.15 ± 0.09 0.83 

18 3-Hepten-2-one O=C(C=CCCC)C 0.67 ± 0.11 0.17 

19 3-Octen-2-one O=C(C=CCCCC)C 0.57 ± 0.16 0.24 

20 3-Nonen-2-one O=C(C=CCCCCC)C 0.54 ± 0.11 0.27 

21 3-Decen-2-one O=C(C=CCCCCCC)C 0.58 ± 0.16 0.24 

22 4-Hexen-3-one O=C(C=CC)CC 0.34 ± 0.05 0.46 

23 1-Octen-3-one O=C(C=C)CCCCC 0.02 ± 0.01 1.78 

24 3-Methyl-3-penten-2-one O=C(C(=CC)C)C 9.77 ± 1.23 -0.99 

25 5-Methyl-2-hepten-4-one CC(C)C(=O)C=CC 0.37 ± 0.02 0.44 

26 Trans-3-nonen-2-one CC(=O)/C=C/CCCCC 0.60 ± 0.03 0.22 

27 4-phenyl-3-buten-2-one CC(=O)\C=C\C1=CC=CC=C1 3.53 ± 0.07 -0.55 

28 Trans-chalcone * 
O=C(\C=C\C1=CC=CC=C1)C1=CC=CC=C

1 
0.40 ± 0.08 0.40 

29 2-hydroxychalcone 
OC1=CC=CC=C1\C=C\C(=O)C1=CC=CC=

C1 
0.28 ± 0.08 0.83 

30 4-hydroxy chalcone 
OC1=CC=C(\C=C\C(=O)C2=CC=CC=C2)C

=C1 
0.41 ± 0.29 0.39 

Esters 

31 Isobutyl acrylate CC(C)COC(=O)C=C 0.48 ± 0.06 0.32 

32 n-Hexylacrylate CCCCCCOC(=O)C=C 0.82 ± 0.08 0.09 

33 Butyl Acrylate CCCCOC(=O)C=C 0.77 ± 0.02 0.11 

34 Methyl crotonate COC(=O)\C=C\C 21.25 ± 4.95 -1.33 

35 Ethyl Acrylate CCOC(=O)C=C 0.52 ± 0.05 0.29 

36 Methyl acrylate COC(=O)C=C 0.49 ± 0.10 0.31 

37 Methyl methacrylate COC(=O)C(C)=C 69.19 ± 7.12 -1.84 

38 Tert-butyl acrylate CC(C)(C)OC(=O)C=C 1.28 ± 0.030 -0.11 

39 Propyl acrylate CCCOC(=O)C=C 0.85 ± 0.08 0.07 
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40 2-Hydroxy ethyl acrylate OCCOC(=O)C=C 0.27 ± 0.03 0.57 

41 
2-Hydroxyethyl 

methacrylate 
CC(=C)C(=O)OCCO 33.40 ± 1.33 -1.52 

42 
2-Hydroxypropyl 

methacrylate 
CC(O)COC(=O)C(C)=C 21.15 ± 9.20 -1.33 

43 Phenyl acrylate CC(=C)C(=O)OC1=CC=CC=C1 0.02 ± 0.01 1.64 

44 Isoamyl acrylate CC(C)CCOC(=O)C=C 0.68 ± 0.22 0.17 

45 N-pentylacrylate CCCCCOC(=O)C=C 0.81 ± 0.02 0.09 

46 Ethyl crotonate CCOC(=O)\C=C\C 17.95 ± 0.78 -1.25 

47 Methyl trans-2-pentnoate CC\C=C\C(=O)OC 5.05 ± 0.42 -0.70 

48 Ethyl trans-2-hexenoate CCC\C=C\C(=O)OCC 0.76 ± 0.10 0.12 

49 Methyl-2-hexenoate CCC\C=C\C(=O)OC 2.46 ± 1.37 -0.39 

50 
Methyl-4-methyl-2-

pentnoate 
COC(=O)\C=C\C(C)C 1.28 ± 0.25 -0.11 

51 Ethyl tiglate CCOC(=O)C(\C)=C\C 14.34 ± 3.32 -1.15 

52 Ethyl methacrylate * CCOC(=O)C(C)=C 33.75 -1.53 

53 Butyl methacrylate * CCCCOC(=O)C(C)=C 43.27 -1.63 

54 2-Ethylhexyl acrylate * CCCCC(CC)COC(=O)C=C 0.44 ± 0.03 0.36 

Nitros 

55 1-Nitro-1-cyclohexene C1CCCC=C1N(=O)(=O) 0.03 ± 0.01 1.56 

56 4-Methyl-β-nitrostyrene 

(mixture of cis and trans) N(=O)(=O)C=Cc1ccc(C)cc1 

0.10 ± 0.03 0.94 

57 Trans-β-Nitrostyrene c1ccccc1/C=C/N(=O)=O 0.09 ± 0.02 1.21 

58 Trans-4-Methyl-β-

nitrostyrene O=N(=O)/C=C/c1ccc(C)cc1 
0.08 ± 0.01 1.09 

59 Trans-4-Chloro-β-

nitrostyrene c1cc(Cl)ccc1/C=C/N(=O)(=O) 
0.07 ± 0.03 1.14 

60 Trans-4-Bromo-β-

nitrostyrene O=N(=O)/C=C/c1ccc(Br)cc1 
0.07 ± 0.00 1.18 

61 4-Fluoro-β-nitrostyrene O=N(=O)C=Cc1ccc(F)cc1 0.05 ±0.01 1.29 

62 Trans-4-Methoxy-β-

nitrostyrene O=N(=O)/C=C/c1ccc(OC)cc1 
0.04 ± 0.02 1.36 

63 Trans-β-methyl-β-

nitrostyrene c1ccccc1/C=C/(C)N(=O)(=O) 
0.06 ± 0.01 1.19 

Nitriles 

64 2-

Methyleneglutaronitrile N#CC(=C)CCC#N 
22.92 ± 3.45 -1.36 

65 
Cyclohexene-1-

carbonitrile (1-

cyanocyclohexene) C1(C#N)=CCCCC1 

28.16 ± 40.45 -1.45 

66 1-Cyclopentene-1-

carbonitrile N#CC1=CCCC1 
20.51 ± 0.95 -1.31 

Cyclic Ketones 

67 2-Cyclohexen-1-one O=C1CCCC=C1 0.32 ± 0.13 0.50 

68 2-cyclopenten-1-one O=C1CCC=C1 0.67 ± 0.17 0.18 

69 2-Methyl-2-cyclopenten-

1-one CC1=CCCC1=O 
9.92 ± 1.24 -1.00 
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70 4,4-Dimethyl-2-

cyclohexen-1-one CC1(C)CCC(=O)C=C1 
1.01 ± 0.11 -0.01 

71 1-Acetyl-1-cyclohexene CC(=O)C1=CCCCC1 2.06 ± 0.54 -0.31 

72 1-Acetyl-1-cyclopentene CC(=O)C1=CCCC1 3.90 ± 4.19 -0.59 

Average RC50 values are given for chemicals with multiple measurements, RC50 values were provided by T. W Schultz using 

a previously published spectrophotometric peptide depletion assay.18 * indicates - chemicals that were unreactive in the 

standard 120 minute GSH assay with DMSO, for these chemicals values were obtained using 50% MeOH as solvent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Calculated activation energy values for polarised aldehydes (R groups as defined in 

Figure 2). Analogous data for polarised ketones and esters is available in the supplementary 

information. 

R1 R2 R3 Eact (kcal/mol) 

CH3 H H -1.5 

CH2CH3 H H 2.7 

CH2CH2CH3 H H 2.5 

 i-propyl  H H 3.7 

t-butyl H H 5.6 



17 
 

C6H5 H H 3.4 

CH2C6H5 H H 1.2 

CH2CH2C6H5 H H 1.8 

CH2CH2CH2C6H5 H H 2.2 

H H H -5.4 

H CH3 H -1.7 

H CH2CH3 H -1.9 

H CH2CH2CH3 H -2.0 

H i-propyl H -0.3 

H t-butyl H 2.4 

H C6H5 H -8.7 

H CH2C6H5 H -2.2 

H CH2CH2C6H5 H -2.5 

H CH2CH2CH2C6H5 H -2.5 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Summary of the fragments defined for polarised aldehydes, ketones and esters (R 

groups as defined in Figure 2) 

Chemical class  R1 R2 R3 

Polarised aldehydes Alkyl: H, CH3, 

CH2CH3, i-propyl, t-

butyl 

Aryl: C6H5, 

CH2C6H5, CH2CH3 

Alkyl: H, CH3, i-

propyl, t-butyl 

Aryl: C6H5, CH3 [for 

(CH2)nC6H5, n>=1] 

H 
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[for (CH2)nC6H5, 

n>=2] 

Polarised ketones Alkyl: H, CH3, 

CH2CH3, i-propyl, t-

butyl 

Aryl: C6H5, CH3 [for 

(CH2)nC6H5, n>=1]  

Alkyl: H, CH3, i-

propyl, t-butyl 

Aryl: C6H5, 

CH2C6H5, CH2CH3 

[for (CH2)nC6H5, 

n>=2] 

Alkyl: CH3, i-

propyl, t-butyl 

Aryl: C6H5, 

CH2C6H5, CH2CH3 

[for (CH2)nC6H5, 

n>=2] 

Polarised esters Alkyl: H, CH3, 

CH2CH3, i-propyl, t-

butyl 

Aryl: C6H5, CH3 [for 

(CH2)nC6H5, n>=1] 

Alkyl: H, CH3, i-

propyl, t-butyl 

Aryl: C6H5, 

CH2C6H5, 

CH2CH2C6H5, 

CH2CH2CH3 [for 

(CH2)nC6H5, n>=3]   

Alkyl: OCH3, O-i-

propyl, O-t-butyl 

Aryl: OC6H5, OCH3 

[for (CH2)nC6H5, 

n>=1]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Summary statistics for models 1-4 as shown in Figure 3. Model 1 has no SAS value 

as it uses Eact as a single descriptor. 

Model N a b c R2 R2-adj R2-Pred 
Average 

Error  

-Log RC50 = a + b.Eact + c.SAS Alpha 

1 54 0.80 -0.15 X 0.52 0.51 0.48 0.60 

2 54 -1.05 -0.09 -0.11 0.77 0.76 0.74 0.41 
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3 52 -1.30 -0.07 0.12 0.81 0.80 0.78 0.37 

4 48 -1.48 -0.06 0.13 0.87 0.86 0.85 0.29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. The predicted error values for predicted –Log RC50 of β-substituted esters with 

corresponding Log Vapour Pressure (VP) values. 

Compound 
-Log RC50 

(mM) 

Predicted -Log 

RC50 (mM) 
Error Log VP 

Methyl crotonate -1.33 -0.32 1.01 1.26 

Ethyl crotonate -1.25 -0.32 0.93 0.91 

Methyl trans-2-pentenoate -0.70 -0.37 0.33 0.98 
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Ethyl trans-2-hexenoate 0.12 -0.37 -0.49 0.14 

Methyl-2-hexenoate -0.39 -0.37 0.02 0.54 

Methyl-4-methyl-2-

pentenoate -0.11 -0.69 -0.58 0.80 

Ethyl tiglate -1.16 -1.72 -0.56 0.52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Predicted –log RC50 values chemicals with a conjugated phenyl polarising group. 

Chemical Structure 
-Log 

RC50 

Predicted -Log 

RC50 
Error 

Chalcone 

 

0.40 -0.37 0.77 
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2-Hydroxy-chalcone 

 

0.56 -0.37 0.92 

4-Hydroxy-chalcone 

 

0.39 -0.37 0.76 

4-Phenyl-3-buten-2-

one 

 

-0.55 -0.51 -0.04 

Phenyl-acrylate 

 

1.64 0.94 0.76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Fragments required to predict reactivity of polarised nitros, polarised nitriles and 

cyclic ketones. 

Chemical Fragment used 
New or existing 

fragment 

Polarised Nitros  
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1-Nitro-1-cyclohexene 

 

New 

4-Methyl-b-nitrostyrene 
 

New 

Trans-b-nitrostyrene 

Trans-4-methyl-b-nitrostyrene 

Trans-4-chloro-b-nitrostyrene 

Trans-4-bromo-β-nitrostyrene 

4-Fluoro-b-nitrostyrene 

Trans-4-methoxy-b-nitrostyrene 

Trans-b-methyl-b-nitrostyrene 

 

New 

Polarised nitriles 

2-Methyleneglutaronitrile 
  

New 

Cyclohexene-1-carbonitrile 

 

New 
1-Cyclopentene-1-carbonitrile 

 Polarised cyclic ketones 

2-Cyclohexen-1-one 
 

Existing 
2-cyclopenten-1-one 

2-Methyl-2-cyclopenten-1-one 
 

Existing 1-Acetyl-1-cyclohexene 

1-Acetyl-1-cyclopentene 

4,4-Dimethyl-2-cyclohexen-1-

one 

  

Existing 

 

 

 

 

 

 

 

‡
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Figure 1. The proposed mechanism and transition state of acrolein (an electrophile) and a thiol 

nucleophile (R = glutathione, alkyl). 
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Figure 2: General structure for polarised aldehydes (R3 = H), polarised ketones (R3 = C) and 

polarised esters (R3 = OC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

 

 

Figure 3: Predicted versus experimental values for -LogRC50 for all models in the current study. 

Model 1: Eact only; model 2: Eact with SAS at the α-position included model 3: Eact with SAS 

at the α-position excluding three volatile β-esters 4: Eact with SAS at the α-position excluding 

three volatile β-esters and four compound with phenyl electron withdrawing group 
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Model 2 Model 1 

Model 4 
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Figure 4: Predicted versus experimental –Log RC50 values for polarised nitros, polarised 

nitriles and polarised cyclic ketones (shown as filled in squares) using model 4 in comparison 

to the polarised aldehydes, ketones and esters in the initial dataset (shown as filled circles). 

Left hand plot shows polarised nitros with the inclusion of the SAS descriptor.  Right hand plot 

shows polarised nitros with the SAS descriptor value set to hydrogen for all chemicals.  
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‡

 

Figure 5: Michael addition mechanism for the reaction between thiol nucleophile and 

nitroethene (R = alkyl, GSH). 

 


