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Abstract 

Studies have reported that electroencephalogram signals in Alzheimer’s disease patients usually have less 

synchronization than those of healthy subjects. Changes in electroencephalogram signals start at early 

stage but clinically, these changes are not easily detected. To detect this perturbation, three neural 

synchrony measurement techniques; phase synchrony, magnitude squared coherence and cross correlation 

are applied on three different databases of mild Alzheimer’s disease patients and healthy subjects. We 

have compared the right and left temporal lobe of the brain with the rest of the brain area (frontal, central 

and occipital), as temporal regions are relatively the first ones to be affected by Alzheimer’s disease. 

Moreover, electroencephalogram signals are further classified into five different frequency bands (delta, 

theta, alpha beta, and gamma) because each frequency band has its own physiological significance in term 

of signal evaluation. A new approach using principal component analysis before applying neural 

synchrony measurement techniques has been presented and compared with Average technique. The 

simulation results indicated that applying principal component analysis before synchrony measurement 

techniques show significantly better results as compare to the lateral one. At the end, all the 

aforementioned techniques are assessed by a statistical test (Mann-Whitney U test) to compare the results. 

1. Introduction 

Mild Cognitive Impairment (MCI) is characterized by impaired memory state of brain probably leading 

towards mild Alzheimer’s disease (MiAD) or Alzheimer’s disease (AD). This prodromal stage of AD is 

under a great influence of research since long time [1-3]. Statistics reported that 6-25% of MCI are 

transformed to AD annually and 0.2-4% from healthy person to AD [2, 4], revealing the fact that MCI is a 

transition state of MiAD and AD. 

Loss of functional connectivity between cortical and hippocampus has long been an important focus of 

researches to examine the cause of cognitive dysfunction in AD [5, 6]. Statistical analysis of 

interdependence among times series recorded from different brain areas, to study the functional 

interaction, is called “functional connectivity” [7]. Due to destructive characteristics of AD, it has also 

been characterized as a neocortical “disconnection syndrome” [8]. The brain’s visualization as a complex 

network of subsystems has led us to find out the factors that can best identify functional disorders in brain 

[9]. There is now ample evidence that formation of dynamic links in term of synchronization constitutes 

the functional integration of the brain [10-12].  

Electroencephalogram (EEG) signals are considered functional examples to evaluate cognitive 

disturbances and a diagnostic tool, especially when a diagnostic doubt exists even after the initial clinical 



procedures [13, 14]. A great deal of research has already been conducted to detect the fluctuations in 

(EEG) signals [2, 5, 15]. Alteration in the regional cerebral blood flow (rCBF) has been considered one of 

the causes of abnormality in EEG signals of AD [16, 17]. Studies on MCI have shown a decrease of alpha 

power [18, 19]  and an increase of theta (4-8 Hz) power [20, 21] in cortio-cortical and subcortical parts of 

the brain. Babiloni et al [2] claimed that the reduction of the synchronization likelihood occurs both at 

inter-hemispherical (delta-beta2) and fronto-parietal (delta-gamma) electrodes.  

Topographically analyzing the EEG signals, Micheal et al [22] reported a less synchronization of upper 

alpha band between central and temporal cortex. In line, a correlation between higher low-frequency 

amplitude and alpha-beta activity at frontal region may reflect an early sign of cortical atrophy during the 

course of AD [23]. Similarly, perturbation in cholinergic inputs from the basal forebrain to cortex and 

hippocampus indicates a decrease in cortical EEG coherence [24] that can be considered a biomarker for 

the early detection of AD [2]. Moreover, a combination of multi-linear interaction within the tensor 

formed by multiplying the subject x frequency x regions also provides a simple set of features for the 

interpretation and classification of AD at its early stage [25]. The concept of local and global methods is 

used to analyze synchronization between pairs of signals and entire EEG channels at the same time, 

respectively [15]. 

The studies, so far, have provided a very limited regional comparison of brain; for instance less 

synchronization has been reported between temporal and central regions [22] and also in fronto-parietal 

region [2]. Similarly, functional coupling of EEG rhythms by sensorimotor events is presented only in 

centro-parietal regions of brain [26]. A wider range of study is still required to analyze the 

synchronization likelihood in all parts of brain (right temporal, left temporal, frontal, central and 

occipital) at the same time, on different sets of data for AD. 

Synchronization, precisely speaking, is a coordination of “rhythmic oscillators” [27] for a repetitive 

functional activity. Whereas, neural synchronization is putatively considered a mechanism where brain 

regions simultaneously communicate with each other to complete a specific task such as perception, 

cognition, and action [28, 29]. Any disturbance in the brain, caused by a disease or any other infection, 

can highly affect the synchronization of brain. Quantitative analysis of EEG signals provides a better 

insight of synchronization between different parts of brain. For instance, less synchrony has been detected 

in the EEG signals of AD patients as compare to healthy persons [15]. 

Various synchrony measurement techniques have already been discussed to detect any perturbation in the 

EEG signals of AD patients [30]. Both linear such as coherence and nonlinear such as phase 

synchronization methods are widely used to quantify synchronization in electroencephalographic signals 

[6, 31, 32]. A comparison of occipital inter-hemispheric coherence (IHCoh) for normal older adults and 

AD patients reveals a reduced occipital IHCoh for both lower and higher bands of alpha [33]. Almost 

similar findings reported by Locatelli et al. [34] where a significant increase in delta coherence is noticed 

between frontal and posterior regions in AD patients while a decrease in alpha coherence  is shown in 

temporo-parieto-occipital areas. Spontaneous phase synchronization of different brain regions is 

calculated by Kuramoto’s parameter (ρ), which is particularly useful to measure multi-channel data [6]. 

Despite the considerable success of the above mentioned techniques to analyze disruption in the EEG 

signals of Alzheimer’s patients, further investigations are still required to fulfill the clinical requirements. 

For instance, in order to detect Alzheimer’s at its earlier stages we need to focus on those areas where 



Alzheimer’s attack at first and then we need to check its synchronization with the rest of the brain 

regions. Furthermore, additional novel and comprehensive methods are still required to check the validity 

of aforementioned techniques on EEG signals.    

The above overview suggests that, first, Spatial-Spectral Analysis of EEG signals can provide a measure 

of memory visualization. Second, neural synchrony measurement techniques have a potential to 

discriminate between AD patients and healthy subjects. What is still missing or ambiguous in the 

literature survey is the simultaneous comparison of all parts of brain with the right and left temporal (the 

most affected parts of brain) to analyze synchronization and also the implementation of new methods to 

apply synchrony measurement techniques. In this research work, the following novel contributions are 

considered:  

 We have filtered a dataset of MiAD patients into five different frequency bands (delta, theta, 

alpha, beta and gamma). For each frequency band we have computed neural synchronization to 

compare all parts of brain (frontal, occipital and central) with left and right temporal.  

 Furthermore, three different sets of MiAD patients are compared to check the validity of our 

methodology. A high inter-subject variability has been seen in the EEG signals of AD patients, 

especially with different level of severity and comorbidities [25, 35, 36]. Most of the existing 

studies focus on a single synchrony measure with a single set of data [37]. Also, they apply 

different measures to different datasets. In this case it is hard to compare the results to conclude a 

single hypothesis. To extract a general set of feature we have analysed three different databases, 

each from one hospital at a time.  

 In order to remove the ambiguity of biased results due to “features redundancy” we have applied 

PCA (Principal Component Analysis) technique before applying synchrony measurement 

techniques. Reducing features vector dimension, commonly known as feature reduction, will help 

to get accuracy results, and avoid over-fitting classification [38]. We compare the results with 

simple Average technique to analyze the pros and corns of the new proposed methodology.  

Besthorn et al [39]  applied PCA technique in the quantitative analysis of EEG signals to compress a 

group of predictor variables to a small set of factors or principle components. Later they applied linear 

discriminant classifier on these variables to discriminate AD patients from healthy subjects. Similarly, 

Peter et al [40] applied PCA to remove the artifacts from EEG signals that were generated by eye-blink. 

To the best of our knowledge and the literature we have surveyed so far, we could not find the application 

of PCA to remove the redundant features from the data that can generate a biased result to check the 

synchronization of brain areas. 

Given the exploratory nature of the study, our a priori hypothesis is, the proposed methodology would 

provide a better insight to investigate the decline in the neural synchronization of AD patients. It would 

provide a better topographical and spectral analysis of the brain regions eliminating the probability of 

biased result due to feature redundancy. 

The rest of this paper is structured as follows. Section 2 provides an overview of our synchrony 

measurement techniques, the utilized data and the filtering process using five frequency bands, 

methodology of the proposed technique, and statistical analysis of the results. Sections 3 and 4 are 

dedicated for discussion and conclusion, respectively. 



2. Methods  

2.1. Synchrony Measurement Techniques 

In this section, we briefly review the synchrony measurement techniques that we have implemented on 

our datasets which include phase synchrony, cross correlation and coherence.  

2.1.1. Phase Synchrony (Hilbert Transform) 

Synchronization of two periodic non-identical oscillators refers to the adjustment of their rhythmicity, i.e. 

the phase locking between the two signals [41, 42]. It refers to the interdependence between the 

instantaneous phases       and       of the two signals       and      , respectively.  It is usually 

written as: 

                                                                                                                     (1) 

Where n and m are integers indicating the ratio of possible frequency locking, and       is their relative 

phase or phase difference. To compute the phase synchronization, the instantaneous phase of the two 

signals should be known. This can be detected using analytical signals based on Hilbert Transform [9].  

                                                                 ̃                                                                        (2) 

Here z(t) is complex value with x(t) is a real time series and  ̃(t) is its Hilbert transform. 

2.1.2. Cross Correlation 

Cross correlation is a mathematical operation used to measure the extent of similarity between two 

signals. If a signal is correlated to itself, it is called auto-correlated. If we suppose that x(n) and y(n) (why 

not S1(t) and S2(t) make a uniform signals suggestion) are two time series then the correlation between is 

calculated as [43]: 
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Cross correlation returns a sequence of length 2*M−1 vector, where x and y are of length N vectors 

(N>1). If x and y are not of the same length then the shorter vector is zero-padded. Cross correlation 

returns value between −1 and +1. If both signals are identical to each other the value will be 1, otherwise 

it would be zero [15].  

2.1.3. Magnitude Squared Coherence 

The coherence functions estimates the linear correlation of signals in frequency domain [15].  The 

magnitude squared coherence is defined as the square of the modulus of the mean cross power spectral 

density (PSD) normalized to the product of the mean auto PSDs [44]. The coherence        between two 

channel time series is computed as: 

                                                                              
        

            
                                                               



       is the cross PSD estimate of x and y.        and        are the PSD estimates of x and y 

respectively. 

2.2. Data Description and Data Filtering  

2.2.1. Data Description 

The datasets we are analyzing, have been recorded from three different countries of European Union . 

Specialist at the memory clinic referred all patients to the EEG department of the hospital. All patients 

passed through a number of recommended tests; Mini Mental State Examination (MMSE) [45], The Rey 

Auditory Verbal Learning Test [46], Benton Visual Retention test [47] and memory recall tests [48]. The 

results are scored and interpreted by psychologists and a multidisciplinary team in the clinic. After that, 

each patient is referred to hospital for EEG assessment to diagnose the symptoms of AD. Patients were 

advised to be in a resting state with their eyes closed is this during the test. The sampling frequency and 

number of electrodes for three datasets are all different. Detailed information is as follows: 

2.2.2. Database A 

The EEG dataset A contains 17 MiAD patients (10 males; aged 69.4 ± 11.5 years) while 24 healthy 

subjects (9 males; aged 77.6 ± 10 years). They all are of British nationality. This data was obtained using 

a strict protocol from Derriford Hospital, Plymouth, U.K. and has been collected using normal hospital 

practices. EEG signals were obtained using the modified Maudsley system which is similar to the 

traditional 10-20 international system [49]. EEGs were recorded for 20 sec at a sampling frequency of 

256 Hz (later on sampled down to 128 Hz) using 21 electrodes. 

2.2.3. Database B 

This EEG dataset composed of 5 MiAD patients (2 males; aged 78.8 ± 5.6 years) as well as 5 healthy 

subjects (3 males; aged 76.6 ± 10.0 years). They all are of Italian nationality. Several tests, for instance; 

MMSE, the clinical dementia rating scale (CDRS) and the geriatric depression scale (GDS) were 

conducted to evaluate the cognitive state of the patients. The MMSE result for healthy subjects is (29.3 ± 

0.7) while for MiAD patients is (22.3 ± 3.1). EEGs were recorded for 20 sec at a sampling frequency of 

128 Hz using 19 electrodes at the University of Malta, Msida MSD06, Malta.  

2.2.4. Database C 

This dataset consists of 8 MiAD patients (6 males; aged 75 ± 3.4 years) and 3 healthy subjects (3 males; 

aged 73.5 ± 2.2 years). They all are of Romanian Nationality. The AD patients have been referred by a 

neurologist for EEG recordings. All subjects are diagnosed with AD by means of psychometric tests 

(MMSE, CDR, OTS), neuroimaging (CT) and clinical examination (gender, age, disease, duration, 

education and medication). The MMSE result for healthy subjects is (28-30) while for MiAD patients it is 

(20-25).  EEG data is recorded using a large equidistant 22-channel arrangement conforming to the 

international federation of clinical neurophysiology (IFCN) standards [50] for digital recording of clinical 

EEG from the Ecological University of Bucharest. The time series are recorded for 10 to 20 minutes at a 

sampling frequency of 512 Hz using 22 electrodes. The signals are notch filtered at 50 Hz. Further details 

about the data can be found in [51].  



For current research work, we have obtained a version of the data that is already preprocessed of artifacts 

by using Independent Component Analysis (ICA), a blind source separation technique (BSS). Details of 

these procedures can be found in [52]. For ICA processed data, the least corrupted 20s recordings have 

been selected for further analysis.  

2.2.5. Data filtering into five frequency bands 

EEG time series are classified into five frequency bands. Each frequency band has its own physiological 

significance [6] [53]. 

 Delta (δ: 1 ≤ f ≤ 4 Hz): these are characterized for deep sleep and are correlated with different 

pathologies. 

 Theta (θ: 4 ≤ f ≤ 8 Hz): play an important role during childhood. High theta activities in adults are 

considered abnormal and associated with brain disorders. 

 Alpha (α: 8 ≤ f ≤ 12 Hz): usually appear during mental inactive conditions and under relaxation. 

They are best seen during eye closed and mostly pronounced in occipital location.  

 Beta (β: 12 ≤ f ≤ 25 Hz): are visible in central and frontal locations. Their amplitude is less than 

alpha waves and they mostly enhance during tension. 

 Gamma (γ: 25 ≤ f ≤ 30 Hz): are best characterized for cognitive and motor functions.  

Bandpass filter is applied to each EEG channel to extract the EEG data in specific frequency band 

[F:(F+W)] Hz. Butterworth filters were used (of 2nd order) as they offer good transition band 

characteristics at low coefficient orders; thus, they can be implemented efficiently [54].   

2.3. Methodology 

In this research work, a novel methodology using PCA and neural synchrony measurement of the brain is 

proposed. We have compared our proposed method with other methods which takes the average of 

synchrony measures for all channels in one region of the brain. As mentioned previously, we are 

comparing the right and left temporal lobe with the frontal, central and occipital so there are total 7 

comparisons of the brain ((left temporal-right temporal (LT-RT)), (left temporal-frontal (LT-F)), (left 

temporal-central (LT-C)), ( left temporal-occipital (LT-O)), (right temporal-frontal (RT-F)), (right 

temporal-central (RT-C)), and (right temporal-occipital (RT-O))) for all frequency bands (δ, θ, α, β, γ).  A 

brief description of these methods is given below. 



 

Fig.1. The 21 Channels used for EEG recording 

2.3.1. First Method (Taking average of synchrony measures for all channels of one region) 

First we apply neural synchrony measurement techniques on each channel pair (time series of two 

channels) of two different regions for all frequency bands and then we take the average of those results. 

For instance, we apply phase synchrony measure on each channel pair of right and left temporal ((F7-F8), 

(F7-T4), (F7-T6), (T3-F8), (T3-T4), (T3-T6), (T5-F8), (T5-T4), (T5-T6) and then we take the average result of 

right temporal-left temporal. We compare the left temporal lobe with the frontal (FP1, FP2, FPz, F3, F4), 

central (Fz, C3, Cz, C4, Pz) and occipital (P3, P4, O1, O2, Oz). Similarly, we compare the right temporal lobe 

(F8, T4, T6) to rest of the brain area. The same technique has been used for rest of the synchrony measures 

i.e. cross correlation and coherence.  

After getting the results, we compare the neural synchronization of AD patients and healthy subjects, for 

all three measurement techniques (phase synchronization, cross correlation and coherence), by Mann-

Whitney U test. Figure 2 shows all the steps of our Average method. 

2.3.2. Second Method (PCA based neural synchrony measure) 

In this method, instead of applying synchrony measurement techniques directly on the filtered data, first 

we apply Principal Component Analysis (PCA) technique on all channels of one. This eliminates any 

redundant information that a region could provide. For instance, we apply PCA on all three channels of 

left temporal lobe (F7, T3, T5) and consequently it provides a single signal without any redundant 

information. Then we apply PCA on all channels of right temporal lobe (F8, T4, T6). After that, we apply 

synchrony measure on these two regions. Similarly, we apply PCA on all other channels of a region; 

frontal (FP1, FP2, FPz, F3, F4), central (Fz, C3, Cz, C4, Pz) and occipital (P3, P4, O1, O2, Oz) and compute the 

synchrony measure with left and right temporal. The rest of the procedure is similar to the first proposed 

method.  



 

Fig.2. Average and PCA Methods 

2.3.3. Principal Component Analysis (PCA) 

The basic purpose of PCA is to reduce the dimensionality of a dataset to convert it to uncorrelated 

variables providing maximum information about a data while eliminating interrelated variables. In other 

words it transforms the highly dimensional dataset (of m dimensions) into low dimensional orthogonal 

features (of n dimension) where n<m [55].  

In our case we apply PCA on all channels in one particular region, for instance, the application of PCA 

for the left temporal lobe as is shown in Fig.3 (a) using  channel (F7, T3, T5) are converted into a single 

signal as shown in Fig. 3(b). The generated temporal signal contains almost all information from the left 

temporal lobe while eliminating any redundant information. 

Left Temporal Signals (Channel (F7, T3, T5)) Left Temporal Signal (After Applying PCA) 

 
 

(a)                                                                             (b) 

Fig.3. Application of PCA on left temporal lobe channels signals 
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2.4. Statistical Analysis 

To investigate whether there is a significant difference between the EEG signals of MiAD patients and the 

control subject and also to prove the probable significance of our proposed methodology, we apply 

Wilcoxon ranksum (Mann-Whitney) test [reference] on our datasets. A ranksum function is a non-

parametric test which allows us to check whether the statistics at hand, in our case synchrony results, take 

different values from two different populations. Lower p-values indicate higher significance in term of 

large difference in medians of two populations [15].   

Since we are applying three different synchrony measures on three different sets of data, first we consider 

our first proposed method (Taking average of synchrony values) to compute the synchrony measure. We 

apply all three measures for all 7 different comparisons of brain for all frequency bands and compute the 

results by Mann-Whitney test. Then we apply the same techniques on all, above mentioned, three datasets 

using the second proposed method (PCA based synchrony measures). This will enable us to compare our 

results in two different perspectives: 

i. Investigating three different synchrony measures at a time will help us to compare which measure 

works better for EEG signals.  

ii. Secondly, we are able to compare two different methods for three synchrony measures using 

three different datasets. 

In addition to evaluating the statistical significance of our proposed method, this will also help us to 

differentiate the MiAD patients from healthy subjects.  

3. Results and Discussions  

The aim of the present study is to find the relationship of EEG synchronization with AD and thus to 

explore further dimensions in disconnection theorem of cognitive dysfunction in AD. And also, to 

investigate a better method to detect any changes in EEG synchrony that can be considered a biomarker 

for the early detection of AD. Here we investigate and discuss results in two different angles. First, we 

discuss the role of synchrony measures to examine a change in EEG synchrony in MiAD patients and 

later we confer the significance of applying PCA before synchrony measures.  

3.1. Functional disconnection of brain regions due to lower synchronization  

We have observed that all of the synchrony measures, tested in this paper, show a decrease in EEG 

synchrony for MiAD patients as compare to healthy subjects. However, cross correlation shows a higher 

number of significant results at the p=0.01 level as compare to phase synchrony and coherence. We have 

examined mostly the areas that have shown less functional connectivity for all three synchrony measures 

are right temporal- central (RT-C) for delta, theta and alpha bands and also left temporal-occipital (LT-O) 

for delta and alpha bands. The rest of this paper discusses these two regions where we find highly 

significant results compared to the rest of the regions. 

First we discuss dataset A for all three synchrony measures with PCA based method. The p-values for 

cross correlation in RT-C region are 2.47x10-4, 1.46x10-4, 0.009 for delta, theta and alpha bands 

respectively. In LT-O region the smallest p-vales for delta and theta bands are 8.50x10-5 and 6.8x10-5 

respectively. The 2nd best measure which has given us remarkable results is phase synchrony, where we 



get 0.0067, 0.0403, and 0.0585 p-values for delta, theta and alpha bands respectively in RT-C region. We 

get 0.0041 and 0.0271p-values for delta and alpha bands in LT-O region. Lastly, the coherence function 

shows significant results in RT-C region for delta band, p-vale=0.0378 and in LT-O 9.8x10-4 and 0.05 for 

delta and alpha bands respectively. Coherence function does not provide significant results and hence 

contradicts Bahar theory [56] where control group showed higher values of evoked coherence in delta, 

theta and alpha bands in the left fronto-parietal electrode pairs as compare to AD patients. 

Lower p values at delta and alpha bands are shown by Babiloni et al [2] at fronto-parietal couplings of 

electrodes which indicates a lower synchronization in MCI and AD subjects. Further to the previous 

findings, our results show a higher difference of synchronization for temporal, occipital and central areas 

in MiAD patients at delta, theta and alpha level. They show lower magnitudes of delta, theta and alpha 

bands in temporal, central and occipital areas in MiAD patients than the compared healthy subjects.  

Temporal regions are characterized for short term and long term memory and any neuronal change on 

these sites is a clear indication of progression of AD.  

Interestingly, we find a decrease in alpha band synchronization for all three synchrony measures in almost 

all regions. For instance, for cross correlation p-value<0.01 in almost all parts of the brain, for phase 

synchrony the p-values are 0.058, 0.0038, 0.011, and 0.027 in RT-C, RT-O, RT-F and LT-O respectively. 

This shows the importance of alpha rhythm for the early detection of AD which is in accordance with the 

phenomena that alpha rhythms are mainly modulated by thalamo-cortical and cortio-cortical systems [57]. 

Alpha band is mainly related to a subjects global attentional readiness and engagement of specific neural 

channels for the elaboration of sensorimotor or semantic information [2].  

As aforementioned, mostly the areas that show lower dysfunctional connectivity are right temporal-

central and left temporal-occipital. A lower synchronization in these connections, especially in RT-C 

region, for alpha band indicates a disturbance in the perception and integration of somatosensory 

information, visuospatial processing, and cognitive disorder. This information is in line with clinical 

findings presented in [58] for increasing visual and spatial deficits in MCI and MiAD patients. Table 1 

shows the significant p-values in different parts of the brain in different frequency bands for dataset A.   

 

 

 

 

 

 

 

  



Synchrony Measure Brain-Connections Frequency regions P-values 

Cross Correlation RT-C  Delta (δ) 2.47x10-4 

Theta(θ) 1.46x10-4 

Alpha(α) 0.009 

RT-O Delta (δ) 6.9 x10-5 

Theta(θ) 2.7 x10-5 

Alpha(α) 0.0029 

RT-F Delta (δ) 5.01x10-4 

Theta(θ) 6.8 x10-5 

Alpha(α) 0.0062 

LT-C Delta (δ) 4.3 x10-5 

Theta(θ) 3.8 x10-5 

Alpha(α) 0.0192 

LT-O Delta (δ) 8.5 x10-5 

Theta(θ) 6.8 x10-5 

Alpha(α) 0.0052 

LT-F Delta (δ) 2.2 x10-4 

Theta(θ) 5.4 x10-5 

Alpha(α) 0.0091 

LT-RT Delta (δ) 3.3 x10-4 

Theta(θ) 6 x10-5 

Alpha(α) 0.0253 

Phase Synchrony RT-C Delta (δ) 0.0067 

Theta(θ) 0.0403 

Alpha(α) 0.05 

RT-O Delta (δ) 0.0041 

Alpha(α) 0.0271 

Coherence RT-C Delta (δ) 0.0378 

RT-O Delta (δ) 0.0378 

Alpha(α) 0.0192 

Table.1. P-values for dataset A, different frequency bands in different brain connections 

Similarly, for dataset B and dataset C we found low p-values in the same regions for same frequency 

bands but not as much significant as for the dataset A. One thing in common in all three datasets is they 

show lower p-values in alpha frequency bands in the RT-C region.  

3.2. Significance of PCA approach over Average approach 

Our second hypothesis was to show the significance of using PCA techniques to eliminate the redundant 

information from the data that can give biased results, before applying synchrony measures. As expected, 

we found a big difference in results with and without PCA method. We have found that more than 90% of 

the values are better in case of PCA method as compare to Average method for all of three datasets. 

For instance, for dataset A, in case of PCA method, we have found 8 significant values below 0.01 

(p<0.01) and 11 significant values below 0.05 (p<0.05) while only 2 values below 0.01 (p<0.01) and 8 

values below 0.05 (p<0.05) in case of Average method for phase synchrony measure. Similarly, for cross 



correlation measures, although the difference is not very high yet the PCA method has shown more 

significant values. For example, the number of p-values below 0.01(P<0.01) are 26 while almost all 35 

values below 0.05 (p<0.05) while for Average method 22 values are below 0.01 while 30 values below 

0.05 (p<0.05). As aforementioned, coherence function doesn’t perform better as compare to other two 

synchrony measures but again we found more significant results in case of PCA method as compare to the 

Average method. 

Synchrony Measure Method P<0.01 (Total Values) P<0.05 (Total Values) 

Cross correlation PCA 26 35 

Average 22 30 

Phase Synchrony PCA 8 11 

Average 2 8 

Table.2. Total number of Significant Values in case of PCA and Average method 

The reults are also shown by boxplot in Fig 4 that show the difference of p-values for all three synchrony 

measures in all 7 brain comparsion for dataset A. They compare the results of synchrony measures for 

PCA and Average methods. 

 

Fig.4. Boxplots show the results of three synchrony measures for PCA and Average methods 

Similarly, for dataset B and dataset C, the results of PCA method are more significant as compare to 

Average method. This clearly shows that using PCA method before synchrony measures has two 

advantages: 
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 As the redundant information is eliminated from the datasets, the results are not biased and are 

more reliable. 

 Secondly, it proves that application of PCA generates more significant results as compare to 

obsolete methods.  

 

4. Conclusion 

The aim of the current study was to show the significance of applying PCA method to eliminate 

redundant information from the datasets to get more reliable results. In this study, three different datasets 

where selected with different specifications and three different synchrony measures are applied to prove 

the significance of our approach. Moreover we have compared our proposed method with Average 

methods to compute synchronization in MiAD patients as well as in control subjects.  

Results revealed that cross correlation measure showed higher difference in synchronization of MiAD and 

control subjects as compare to phase synchrony while coherence function did not perform very well. They 

have also indicated that alpha and theta bands play a major role in identifying the change in 

synchronization from MiAD and control subjects especially in right temporal-central region (RT-C) and 

also in left temporal-occipital (LT-O) region.  

Furthermore, the original contribution of this research work is the comparison of previous methods of 

applying synchrony measures with PCA based method. Our proposed method proved the importance of 

eliminating redundant information, from EEG time series, that may come from consecutive electrodes. It 

should be noted that comparison with previous findings is problematic due to the significant differences 

in the utilized methodology and the utilization of different kinds of synchrony measures on different kinds 

of datasets. However, our results are consistent with most of the studies on the loss of average EEG 

synchrony in different parts of the brain for MiAD patients and also in accordance with the clinical 

findings.  

Furthermore, we have successfully shown the importance and significance of our proposed method, to 

detect lower synchronization in MiAD patients, as compare to the Average method for all three datasets.  

Future work will involve the study of much significant results of lower synchronization in case of 

datasets B and datasets C as compare to dataset A.  
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