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ΑBSTRACT 

 

A new method for seismic design of plane steel moment resisting framed structures is developed. 

This method is able to control damage at all levels of performance in a direct manner. More 

specifically, the method: a) can determine damage in any member or the whole of a designed 

structure under any given seismic load, b) can dimension a structure for a given seismic load and 

desired level of damage and c) can determine the maximum seismic load a designed structure can 

sustain in order to exhibit a desired level of damage. In order to accomplish these things, an 

appropriate seismic damage index is used that takes into account the interaction between axial force 

and bending moment at a section, strength and stiffness degradation as well as low cycle fatigue. 

Then, damage scales are constructed on the basis of extensive parametric studies involving a large 

number of frames exhibiting cyclic strength and stiffness degradation and a large number of seismic 

motions and using the above damage index for damage determination. Some numerical examples 

are presented to illustrate the proposed method and demonstrate its advantages against other 

methods of seismic design. 

 

Keywords: Seismic Design; Damage indices; Plane steel frames; Performance levels; Inelastic 

behavior; Low cycle fatigue 

 

1. INTRODUCTION 

 

In earthquake-resistant design of structures, different design methods have been used in practice or 

proposed by researchers. Among them, one can mention the force-based design (FBD), the 

displacement-based design (DBD) and the hybrid force/displacement based design (HFD). 

According to the FBD method, which is currently employed by existing seismic codes (e.g., 

EC8 2008), seismic forces are used as the main design parameters. This approach demands the 

design of the building against structural failures which might endanger human life on the basis of 

elastic analysis in conjunction with recommended constant values of the behavior (or strength 

reduction) factor, q to take approximately into account inelastic effects. Finally, deformations 

beyond which service requirements are no longer met after the detailing of the structure are checked 

near the end of the design. 

The DBD (Chopra and Goel 2001; Sullivan et al. 2003, Priestley et al. 2007) is a promising 

design method for seismic structural design. The basic idea here is the direct satisfaction of the 

serviceability requirements, the most important of which is the limitation of displacements. Thus, 

the DBD determines first the target displacements, then the appropriate stiffness of the structure and 

finally the structural and member forces, which lead to the dimensions of structural members. Thus, 

the displacements play here the fundamental role in design. 
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The HFD (Karavasilis et al. 2008a,b) is a new seismic design method for steel frames which 

combines the advantages of the well-known force-based and displacement-based seismic design 

methods. The main characteristics of this method are: (1) treats both drift and ductility demands as 

input variables for the initiation of the design process through a behavior factor, q, which depends 

on them and the characteristics of the structure (e.g. the number of stories); (2) makes use of current 

seismic code approaches as much as possible (e.g., conventional elastic response spectrum analysis 

and design); and (3) recognizes the influence of the type of the lateral load resisting system. 

The performance based design (PBD) (SEAOC 1999; Leelataviwat et al. 1999) introduces a 

new and general framework in seismic design of structures by defining performance levels and 

objectives. Thus, three to five structural performance levels are defined and should be achieved for 

increasing levels of earthquake actions by satisfying performance objectives for every performance 

level. These performance objectives mainly refer to the damage of a structure, which is quantified 

through indices, such as the interstory drift ratio (IDR), or the member plastic rotations.  

Displacement-based and in general performance-based seismic design methods employ 

indirectly (through displacements) or directly the concept of damage, usually quantified with the aid 

of various damage indices (Kamaris et al. 2013; Powell and Allahabadi 1988, Cosenza et al. 1993; 

Ghobarah et al. 1999). These indices are expressed in terms of deformation, dissipated energy or a 

combination of deformation and dissipated energy. 

Among the works dealing with damage-based seismic design methods one can mention the 

following representative ones: 

i) those of Park et al. (1987) with an explicit tolerable level of damage and of Panyakapo (2008) 

based on a damage-based capacity-demand method 

ii) those of Aschheim (2002) and Safar and Ghobarah (2008) based on yield displacement spectra 

where damage is considered indirectly  

iii) those of Kawashima and Aizawa (1986), Ballio and Castiglioni (1994), Tiwari and Gupta 

(2000), Kunnath and Chai (2004), Lu and Wei (2008) and Teran-Gilmore and Bahema-

Arredondo (2008) based on inelastic spectra obtained with the aid of a damage dependent 

behavior or strength reduction factor 

iv) those of Malhotra (2002), Bozorgnia and Bertero (2004), Panyakapo (2004) and Ghobarah and 

Safar (2010) employing damage or cyclic demand spectra.  

In this paper, the Direct Damage Controlled Design (DDCD) method, a new design method for 

steel moment resisting framed structures under earthquake excitation, is proposed. The basic 

advantage of DDCD is the dimensioning of structural members or whole framed structures with 

damage directly controlled at both local and global levels. In other words, the designer can select a 

priori the desired level of damage in a structural member or a whole structure and direct his design 

in order to achieve this preselected level of damage. In addition, the method can determine damage 

in any member or the whole of a designed structure under any seismic load and can also determine 

the maximum seismic load a designed structure can sustain in order to exhibit a desired level of 

damage. The proposed method works with a new seismic damage index recently developed by the 

authors (Kamaris et al. 2013) and detailed damage scales developed herein through extensive 

parametric studies involving a large number of frames and seismic motions. The DDCD method 

controls damage directly and not indirectly through deformation as the DBD or the HFD methods, 

is more accurate than any of the abovementioned methods and in addition it can be employed in 

three different ways, i.e., for damage determination, member dimensioning or maximum seismic 

load determination. However, the proposed method requires nonlinear dynamic analysis, which is 

usually time consuming. 

The method can be considered as a much improved extension from the static to the dynamic 

case of a design method previously developed by the authors (Hatzigeorgiou and Beskos 2007; 

Kamaris et al. 2009) for plane concrete / masonry and steel frames, respectively. In Hatzigeorgiou 

and Beskos (2007) damage was an internal variable in the stress-strain relation for concrete and 

computed as a function of deformation, while in Kamaris et al. (2009) damage was expressed in the 

form of a damage index defined for simple elastoplastic behavior without cyclic deterioration in 
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stiffness and strength as it is presently the case. Furthermore, the present method does not require 

directly or indirectly special damage-based design spectra and associated damage dependent 

behavior or strength reduction factors as it is the case with Kawashima and Aizawa (1986), Ballio 

and Castiglioni (1994), Tiwari and Gupta (2000), Kunnath and Chai (2004), Lu and Wei (2008), 

Teran-Gilmore and Bahema-Arredondo (2008), Malhotra (2002), Bozorgnia and Bertero (2004), 

Panyakapo (2004) and Ghobarah and Safar (2010), works in the framework of three damage levels 

obtained herein through extensive parametric studies, which is not the case with the 

abovementioned authors and provides all the three aforementioned design options instead of just the 

first and/or the second design option as it is the case with Kawashima and Aizawa (1986), Ballio 

and Castiglioni (1994), Tiwari and Gupta (2000), Kunnath and Chai (2004), Lu and Wei (2008), 

Teran-Gilmore and Bahema-Arredondo (2008), Malhotra (2002), Bozorgnia and Bertero (2004), 

Panyakapo (2004) and Ghobarah and Safar (2010). To be sure, Abbas and Takewaki (2010) and 

Abbas (2011) have also considered the aforementioned third design option (determine the seismic 

load for a desired damage level) separately by employing a completely different approach. The 

present design method works with a time domain dynamic inelastic analysis, which is a more 

complicated approach than the ones based on inelastic spectrum analysis. However, unlike methods 

based on spectrum analysis, takes into account material and geometric nonlinearities directly and in 

a more accurate way. Finally, the present work is also characterized by detailed building examples 

which illustrate all three design options of the method in contrast to almost all the above design 

methods (Kawashima and Aizawa 1986; Ballio and Castiglioni 1994; Tiwari and Gupta 2000; 

Kunnath and Chai 2004; Lu and Wei 2008; Teran-Gilmore and Bahema-Arredondo 2008; Malhotra 

2002; Bozorgnia and Bertero 2004; Panyakapo 2004), which emphasize their method and present 

very simple one-storey examples or (mainly) no building examples at all. 

 

2. HYSTERETIC MODELS THAT INCORPORATE STRENGTH AND STIFFNESS 

DEGRADATION 

 

Several hysteretic models have been proposed in the literature. Some of them have hysteresis rules 

that account for stiffness degradation by modifying the path by which the reloading branch 

approaches the backbone curve, e.g., the peak oriented model (Clough and Johnston1966) or 

various ‘pinching’ models (Takeda et al. 1970). In addition, smooth hysteretic models have been 

developed that include a continuous change of stiffness due to yielding, and sharp changes due to 

unloading, e.g. the Bouc-Wen model (Wen 1976). The need to model both stiffness and strength 

degradation led to the development of more versatile models like those of Sivaselvan and Reinhorn 

(2000), which include rules for stiffness and strength degradation as well as pinching. Song and 

Pincheira (2000) developed a model that is capable of representing cyclic strength and stiffness 

degradation based on dissipated hysteretic energy. This is essentially a peak-oriented model that 

considers pinching based on degradation parameters. Erberik and Sucuoğlu (2004) and Sucuoğlu 

and Erberik (2004) developed low-cycle fatigue, hysteresis and damage models for deteriorating 

systems on the basis of test data and analysis. Ibarra et al. (2005) created a model in which four 

modes of cyclic deterioration are defined with respect to the backbone curve based on the hysteretic 

response of the component. This was improved later by Lignos and Krawinkler (2011). In addition, 

models which trace the collapse capacity of steel braced frames or moment-resisting frames 

subjected to earthquakes have been proposed by Lavan et al. (2009), Sivaselvan et al. (2009), 

Krishnan and Muto (2012), Jin and El-Tawil S.(2003) and Li and El-Tawil (2013). In the commercial 

computer program Ruaumoko (Carr 2006), stiffness and strength degradation can be taken into 

account, among others, through a linear function that depends on the inelastic cycles a member 

sustains. This model is described next and used in this work because of its simplicity and agreement 

with experiments. 

Ruaumoko (Carr 2006) is a program that performs nonlinear dynamic analysis with the aid of 

the finite element method and the concept of concentrated plasticity. Bending moment M - axial 

force N interaction is modeled by an M-N curve, like the one shown by Fig. 2, which indicates the 
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formation of a plastic hinge at a member. Furthermore, it utilizes, among others, a material behavior 

model that takes into account strength degradation. To allow for strength deterioration, the yield 

levels in the interaction diagram, may be reduced as functions of load reversals from the backbone 

or spine curve of the hysteresis rule. More specifically, for the two dimensional (2D) case examined 

herein, the strength loss in each loading direction is governed by a deterioration parameter that 

scales the initial strength and is a linear function of the number of inelastic cycles. It must be noted 

that the cycles number is defined as the number of times the hysteresis rule leaves the post-yield 

back-bone or skeleton curve divided by 2 and this might be greater than the number of cycles of 

hysteresis, particularly if there has been a one sided ratchet-like behavior of the hysteresis. This 

parameter f is given by the equation 

 

1

2 1

1
( ) 1rS

f n n
n n


  


 (1) 

 

where n is the number of cycles, n1 is the cycle at which degradation begins, n2 the cycle at which 

degradation stops and Sr the residual strength factor that multiplies the initial yield strength to 

produce the residual strength. It is assumed that the stiffness deteriorates so that the yield 

displacement remains constant. Typical values of n1, n2 and Sr can be 3, 55 and 0.55, respectively. 

For these values of the abovementioned parameters, f is equal to 0.96 when n is 8, according to Eq. 

(1). 

This has been extended recently to allow for a tri-linear degradation of strength with cycle 

number. It must be noted that in Ruaumoko (Carr 2006) it is not possible to have complete 

elimination of strength. If any action (axial force or bending moment) has both positive and 

negative yield actions equal to zero, the action is assumed to be elastic. This means that the action 

has infinite yield strength. A 1% strength is close enough to zero for engineering purposes and this 

is the minimum value permitted for Sr. 

Finally, the model used herein does not incorporate the effect of softening per inelastic cycle of 

the moment - rotation hysteretic behavior of steel beams and columns. In contrary, other models as 

the Ibarra et al. (2005) model, take into account this phenomenon, which seems to be crucial in 

collapse assessment of structures. This issue is addressed by Ibarra and Krawinkler (2011), where 

an important influence on collapse capacity is reported when the post-capping slope of the 

backbone curve of the system is relatively flat (i.e. the system is more ductile). It is also observed 

that the collapse capacity may be reduced up to 20–30% when the post-capping stiffness, ac, is 

decreased from -0.10 to -0.30. 

For the calibration of the above material model of Ruaumoko 2D (Carr 2006), results from 

experiments performed by Ricles et al. (2000) were used. These experimental studies focused on the 

cyclic inelastic performance of full-scale welded unreinforced flange moment connection 

specimens. The experiment C2 of these studies was simulated by Ruaumoko 2D (Carr 2006) and 

the moment-rotation curves of the right beam of the connection were evaluated. The experimental 

curve is shown in Fig. 1, together with the one simulated by Ruaumoko 2D (Carr 2006). The 

agreement between the experimental and the numerical curves is considered to be satisfactory. 

Parameters n1, n2 and Sr can be affected by the geometric and material characteristics of a steel 

cross section, but a parametric study to highlight this effect has not been conducted in this work. 

The main scope of this paper is to develop a new design method based on the proposed damage 

index and a damage scale for performance based design, so an assumption that all sections 

deteriorate in the same manner as the calibrated one has been made. This probably has an influence 

to the regression formulae discussed in the next section, but this influence is not much. On the other 

hand, that does not change the main philosophy of the proposed design method. Herein, the general 

rules of the method are presented and thus it is possible for a designer to make other assumptions. 

For example, one can take into account the impact of section properties on the degradation models 

or use more advanced deteriorating models. 
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Figure 1. Moment-rotation hysteresis loops as obtained experimentally and analytically. 

 

3. THE DAMAGE INDEX 

 

In this section a damage index for steel members recently proposed by the authors (Kamaris et al. 

2013) and used in this work because of its merits is briefly described for reasons of completeness. 

This damage index is defined at a section of a structural member by the equation (Kamaris et al. 

2013) 

 
2 2

2 2

( ) ( )

( ) ( )

S A S A

S

B A B A

M M N Nc
D

d M M N N

  
 

  
 (2) 

 

In the above, the bending moments MA, MS and MB and the axial forces NA, NS and NB as well 

as the distances c and d are those shown in the bending moment M - axial force N interaction 

diagram of Fig. 2 for a plane beam-column element. Thus, this damage index takes into account the 

interaction between the bending moment MS and axial force NS acting at the specific section at a 

time instant during the loading history. 

Figure 2 depicts a lower bound damage curve, the limit between elastic and inelastic material 

behavior and an upper bound damage curve, the limit between inelastic behavior and complete 

failure. Thus, damage at the former curve is zero, while at the latter curve is one. Equation (2) is 

based on the assumption that damage evolution varies linearly between the above two damage 

bounds. Points (MA, NA) and (MB, NB), can be found by drawing a line that connects point (MS, NS) 

to the origin of the axes. The intersection of the lower and upper bound damage curves to the above 

line determines the abovementioned points. 
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Figure 2. Bending moment-axial force interaction diagram and definition parameters of proposed 

damage index. 

 

The lower bound curve of Fig. 2 is the one found in finite element programs of concentrated 

plasticity and indicates the formation of a plastic hinge at a member. In Ruaumoko (Carr 2006) 

program, used herein, the lower bound curve is described as 

 

0.88
1 0.9 0.2

1 0.9 0.2

pl pl

pl pl

pl

pl pl

pl pl

M N
for M and N N

f M f N

M M N
for M and N N

f M f N

    
 


    

 

 (3) 

 

where Npl and Mpl are given by the expressions 

 

,pl y pl pl yM f W N f A   (4) 

 

with fy being the yield stress of steel, Wpl the section plastic modulus and A the sectional area.  

The upper bound curve of Fig. 2 has a similar form with the M-N interaction formula given in 

EC3 (2010) provisions, with the hardening effect not taken into account, i.e., with u=y or 

equivalently, Nu=Ny. Thus this curve can be expressed as 

 
2

1
u u

M N

f M f N

 
  

  
 (5) 

 

where Nu and Mu are the ultimate axial force and bending moment, respectively, which cause failure 

of the section and are equal to 

 

,u u pl u uM f W N f A   (6) 

 

with fu being the ultimate stress of steel. The factor f is the scale factor of Eq. (1) that is used so as 

phenomena of strength and stiffness degradation to be taken into account. 
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The increase of damage related to strength reduction due to low-cycle fatigue is taken into 

account by following the idea of Sucuoğlu and Erberik (2004) and results of extensive parametric 

studies of the authors as described in (Kamaris et al. 2013). This increase of damage ΔDs can be 

computed by the empirical expression 

 
0.292 0.9140.56s sD n D     (7) 

 

where Ds is the damage index of Eq. (2) at that loading cycle. 

Consequently, for a combination of moment MS and axial force NS computed at a member 

section, one can easily evaluate the damage index there by using Eqs (2) and (7) at each time step of 

a nonlinear dynamic analysis. The calculation of M-N pairs is conducted with the aid of the 

Ruaumoko 2D finite element program (Carr 2006). In this program, material nonlinearities are 

taken into account through a bilinear moment-rotation model, that incorporates strength and 

stiffness degradation in the framework of concentrated plasticity (plastic hinge model), while, 

geometrical nonlinearities are modeled by including large displacement effects. The computation of 

the damage index is done with the aid of a computer program in FORTRAN constructed by the 

authors. 

The above damage index, as described in (Kamaris et al. 2013), is calibrated against 

experimental results and proves to be better than many of the most well known damage indices in 

the literature. 

 

4. ESTABLISHMENT OF DAMAGE PERFORMANCE LEVELS 

 

Damage is used here as a design criterion. Thus, the designer, in addition to a method for 

determining damage, also needs a scale of damage in order to decide which level of damage is 

acceptable or desirable for his design. Many damage scales can be proposed in order to select 

desired damage levels associated with the strength degradation and capacity of a structure to resist 

further loadings. Table 1 has been constructed on the basis of available data in the literature 

associated mainly with steel frames and provides three performance levels (IO = Immediate 

Occupancy, LS = Life Safety and CP = Collapse Prevention) associated with modern performance-

based seismic design with the corresponding limit response values (performance objectives) in 

terms of IDR = interstorey drift ratio, θpl = plastic rotation at member end, μθ = local ductility and d 

= damage. The relevant references are also shown in Table 1. At this point one should mention that 

the damage limit values of the various references, correspond to different definitions of damage 

indices and hence they should be treated with caution. 

In this section, new damage scales for plane steel moment resisting frames for the 

aforementioned three performance levels are constructed on the basis of extensive parametric 

studies involving a large number of frames and seismic motions. More specifically, in the following 

subsections, the frames and seismic motions considered are described and the computational 

methodology used to establish these damage scales is presented in detail. 
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Figure 3. Geometry of a typical plane regular moment resisting steel frame. 
 

4.1. Steel frames considered 

 

A set of 36 plane steel moment resisting frames was employed for the parametric studies of this 

work. These frames are regular and orthogonal with storey heights and bay widths equal to 3 m and 

5 m, respectively (Fig. 3). Furthermore, they have the following characteristics: number of stories ns 

with values 3, 6, 9, 12, 15, and 20; number of bays nb with values only 3 and 6 since it was found 

from preliminary studies that nb has a rather small effect on a damage scale (Karavasilis et al. 2007, 

Karavasilis et al. 2008a). Various cases for the number of bays have been studied to examine the 

validity of this assumption and it was concluded that nb is not important for the dynamic response of 

structures. A characteristic example of this study is presented herein, where damage of a three 

storey - three bay frame is compared to that of a three storey - six bay frame. The two frames were 

Table 1. Performance levels and corresponding limit response values given by several authors. 

Performance 

Levels 
IDR θpl μθ Damage 

IO 

0.2% (Ghobarah 2004) 

1-2% (Leelataviwat et al. 1999) 

1.5% (SEAOC 1999) 

0.6% (Grecea et al. 2002) 

0.5% (Vasilopoulos and Beskos 2006) 

0.7 % transient                        

negligible permanent (FEMA-273 1997) 

≤θy (FEMA-273 

1997) 

2 (FEMA-

273 1997) 

 

10-20% (Ghobarah 2004)  

≤5% (Vasilopoulos and 

Beskos 2006) 

0.1-10% (ATC13 1985) 

LS 

0.4-1.0% (Ghobarah 2004) 

2-3% (Leelataviwat et al. 1999) 

3.2 % (SEAOC 1999) 

1.5% (Vasilopoulos and Beskos 2006) 

2.5 % transient                             

  1% permanent (FEMA-273 1997, 

Grecea et al. 2002) 

≤6θy (FEMA-

273 1997) 

7 (FEMA-

273 1997) 

 

20-40% (Ghobarah 2004) 

≤20% (Vasilopoulos and 

Beskos 2006) 

10-30% (ATC13 1985) 

CP 

1.8% (Ghobarah 2004) 

3-4% (Leelataviwat et al. 1999) 

3.8% (SEAOC 1999) 

3% (Vasilopoulos and Beskos 2006) 

5 % transient                                  

   5% permanent (FEMA-273 1997) 

 

 

 

≤8θy (FEMA-

273 1997) 

≤0.04 rad 

(Grecea et al. 

2002) 

9 (FEMA-

273 1997) 

 

40-80% 

(Ghobarah 2004) 

≤50% (Vasilopoulos and 

Beskos 2006) 

30-60% (ATC13 1985) 
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subjected to the 40 ground motions of Table 3 and an incremental nonlinear dynamic analysis was 

performed in order to record the maximum damage of columns and beams, which are the variables 

used in the establishment of the proposed damage scale. The average maximum damage for the 

columns and beams of the first frame was 0.48 and 0.58 respectively. For the second frame these 

values were 0.50 and 0.55, indicating that there is a relative small difference in damage between the 

two frames, even though they correspond to different values of the parameter nb. In addition, other 

researchers have presented similar conclusions as far as this parameter, which confirms that our 

choice not to examine this parameter is valid (Karavasilis et al. 2007, Karavasilis et al. 2008a). 

Capacity factors α with various values within practical limits were utilized. This capacity factor α of 

a frame is defined as 

 

,1, ,RC av RB avM M   (8) 

 

where MRC,1,av is the average of the plastic moments of resistance of the columns of the first storey 

and MRB,av is the average of the plastic moments of resistance of the beams of all the stories of the 

frame. Gravity load on the beams is assumed to be equal to 27.5 KN/m (dead and live loads of 

floors), while the yield stress of steel was set equal to 235 MPa. The frames have been designed in 

accordance with the provisions of Eurocodes EC3 (2010) and EC8 (2008). The expected design 

ground motion was defined by the acceleration response spectrum of EC8 (2008) with a peak ground 

acceleration equal to 0.35 g and a soil class B. Data of the frames, including values for ns, nb, a, 

beam and column sections and first and second natural periods, are presented in Table 2 

(Karavasilis et al. 2007). In that table, expressions of the form, e.g., 260–360(1–4) + 240–330(5–6) 

mean that the first four stories have columns with HEB260 sections and beams with IPE360 

sections, whereas the next two higher stories have columns with HEB240 sections and beams with 

IPE330 sections. 

 

Table 2. Steel moment resisting frames considered in parametric studies. 
 

General data  Sections Periods 

Frame ns nb α Columns: (HEB) & Beams: (IPE) T1(sec) T2(sec) 

1 3 3 1.30 240-330(1-3) 0.73 0.26 

2 3 3 1.60 260-330(1-3) 0.69 0.21 

3 3 3 1.90 280-330(1-3) 0.65 0.19 

4 3 6 1.30 240-330(1-3) 0.75 0.23 

5 3 6 1.60 260-330(1-3) 0.70 0.21 

6 3 6 1.90 280-330(1-3) 0.66 0.20 

7 6 3 1.60 280-360(1-4)+260-330(5-6) 1.22 0.41 

8 6 3 1.97 300-360(1-4)+280-330(5-6) 1.17 0.38 

9 6 3 2.27 320-360(1-4)+300-330(5-6) 1.13 0.37 

10 6 6 1.60 280-360(1-4)+260-330(5-6) 1.25 0.42 

11 6 6 1.97 300-360(1-4)+280-330(5-6) 1.19 0.40 

12 6 6 2.27 320-360(1-4)+300-330(5-6) 1.15 0.38 

13 9 3 2.19 340-360(1)+340-400(2-5)+320-360(6-7)+300-330(8-9) 1.55 0.54 

14 9 3 2.43 360-360(1)+360-400(2-5)+340-360(6-7)+320-330(8-9) 1.52 0.53 

15 9 3 2.93 400-360(1)+400-400(2-5)+360-360(6-7)+340-330(8-9) 1.46 0.51 

16 9 6 2.19 340-360(1)+340-400(2-5)+320-360(6-7)+300-330(8-9) 1.57 0.55 

17 9 6 2.43 360-360(1)+360-400(2-5)+340-360(6-7)+320-330(8-9) 1.53 0.53 

18 9 6 2.93 400-360(1)+400-400(2-5)+360-360(6-7)+340-330(8-9) 1.47 0.51 

19 12 3 2.60 400-360(1)+400-400(2-3)+400-450(4-5)+360-400(6-

7)+340-400(8-9)+340-360(10)+340-330(11-12) 

1.90 0.66 

20 12 3 3.00 450-360(1)+450-400(2-3)+450-450(4-5)+400-450(6-

7)+360-400(8-9)+360-360(10)+360-330(11-12) 

1.78 0.62 

21 12 3 3.63 500-360(1)+500-400(2-3)+500-450(4-5)+450-450(6-

7)+400-400(8-9)+400-360(10-11)+400-330(12) 

1.72 0.60 

22 12 6 2.60 400-360(1)+400-400(2-3)+400-450(4-5)+360-400(6-

7)+340-400(8-9)+340-360(10)+340-330(11-12) 

1.90 0.67 
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Table 2. Continued. 

 

General data  Sections Periods 

Frame ns nb α Columns: (HEB) & Beams: (IPE) T1(sec) T2(sec) 

23 12 6 3.00 450-360(1)+450-400(2-3)+450-450(4-5)+400-450(6-

7)+360-400(8-9)+360-360(10)+360-330(11-12) 

1.78 0.63 

24 12 6 3.63 500-360(1)+500-400(2-3)+500-450(4-5)+450-450(6-

7)+400-400(8-9)+400-360(10-11)+400-330(12) 

1.72 0.61 

25 15 3 3.87 500-300(1)+500-400(2-3)+500-450(4-5)+450-400(6-

7)+400-400(8-12)+400-360(13-14)+400-330(15) 

2.29 0.78 

26 15 3 4.49 550-300(1)+550-400(2-3)+550-450(4-5)+500-400(6-

7)+450-400(8-12)+450-360(13-14)+450-330(15) 

2.22 0.75 

27 15 3 4.76 600-300(1)+600-400(2-3)+600-450(4-5)+550-450(6-

7)+500-450(8-9)+500-400(10-12)+500-360(13-

14)+500-330(15) 

2.10 0.72 

28 15 6 3.87 500-300(1)+500-400(2-3)+500-450(4-5)+450-400(6-

7)+400-400(8-12)+400-360(13-14)+400-330(15) 

2.30 0.78 

29 15 6 4.49 550-300(1)+550-400(2-3)+550-450(4-5)+500-400(6-

7)+450-400(8-12)+450-360(13-14)+450-330(15) 

2.21 0.75 

30 15 6 4.76 600-300(1)+600-400(2-3)+600-450(4-5)+550-450(6-

7)+500-450(8-9)+500-400(10-12)+500-360(13-

14)+500-330(15) 

2.10 0.72 

31 20 3 4.54 600-300(1)+600-400(2-3)+600-450(4-5)+550-450(6-

10)+500-450(11-13)+500-400(14-16)+450-

400(17)+450-360(18-19)+450-330(20) 

2.82 0.97 

32 20 3 5.19 650-300(1)+650-400(2-3)+650-450(4-5)+600-450(6-

10)+550-450(11-13)+550-400(14-16)+500-

400(17)+500-360(18-19)+500-330(20) 

2.76 0.94 

33 20 3 5.90 700-300(1)+700-360(2)+700-400(3)+700-450(4-

5)+650-450(6-10)+600-450(11-13)+600-400(14-

16)+550-400(17)+550-360(18-19)+550-330(20) 

2.73 0.93 

34 20 6 4.54 600-300(1)+600-400(2-3)+600-450(4-5)+550-450(6-

10)+500-450(11-13)+500-400(14-16)+450-

400(17)+450-360(18-19)+450-330(20) 

2.75 0.96 

35 20 6 5.16 650-300(1)+650-400(2-3)+650-450(4-5)+600-450(6-

10)+550-450(11-13)+550-400(14-16)+500-

400(17)+500-360(18-19)+500-330(20) 

2.70 0.93 

36 20 6 5.90 700-300(1)+700-360(2)+700-400(3)+700-450(4-

5)+650-450(6-10)+600-450(11-13)+600-400(14-

16)+550-400(17)+550-360(18-19)+550-330(20) 

2.67 0.92 

       

 

4.2. Ground motions considered 

In this work, a set of 40 physical ground motions, selected from the PEER (2012) ground motion 

database, have been employed for the nonlinear dynamic analyses of this study. The main criterion 

used for this selection is that only far-fault ground motions are contained in this set, i.e., motions 

recorded at a distance more than 15 km from the causative fault. Ground motions which are 

characterized by distinct pulses in their velocity and displacement time histories were excluded 

from this study. In addition, the motions were selected so that their mean spectrum to be as close as 

possible to the response spectrum of EC8 (2008).The date, the record name, the excitation 

component and the peak ground acceleration (PGA) of the motions considered here are shown in 

Table 3. Their elastic response spectra are portrayed in Fig. 4, where the median spectrum is shown 

by a thick line. In order to cover the whole deformation range from elastic behavior up to collapse, 

all the aforementioned ground motions were scaled appropriately, using as intensity measure the 

first-mode spectral acceleration Sa(T1) and performing an incremental dynamic analysis 

(Vamvatsikos and Cornell 2002). 
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Table 3. Characteristics of ground motions used in parametric studies. 

 

No. Date Record Name Comp. Station Name PGA (g) 

1.  1992/04/25 Cape Mendocino NS 89509 Eureka 0.154 

2.  1992/04/25 Cape Mendocino EW 89509 Eureka 0.178 

3.  1980/06/09 Victoria, Mexico  N045 6604 Cerro Prieto 0.621 

4.  1980/06/09 Victoria, Mexico  N135 6604 Cerro Prieto 0.587 

5.  1992/04/25 Cape Mendocino EW 89324 Rio Dell Overpass 0.385 

6.  1992/04/25 Cape Mendocino NS 89324 Rio Dell Overpass 0.549 

7.  1978/08/13 Santa Barbara  N048 283 Santa Barbara Courthouse 0.203 

8.  1978/08/13 Santa Barbara  N138 283 Santa Barbara Courthouse 0.102 

9.  1992/06/28 Landers  NS 12149 Desert Hot Springs 0.171 

10.  1992/06/28 Landers  NS 12149 Desert Hot Springs 0.154 

11.  1979/08/06 Coyote Lake  N213 1377 San Juan Bautista 0.108 

12.  1979/08/06 Coyote Lake  N303 1377 San Juan Bautista 0.107 

13.  1994/01/17 Northridge  NS 90021 LA - N Westmoreland 0.361 

14.  1994/01/17 Northridge  EW 90021 LA - N Westmoreland 0.401 

15.  1986/07/08 N. Palm Springs  NS 12204 San Jacinto - Soboba 0.239 

16.  1986/07/08 N. Palm Springs  EW 12204 San Jacinto - Soboba 0.250 

17.  1970/09/12 Lytle Creek  N115 290 Wrightwood 0.162 

18.  1970/09/12 Lytle Creek  N205 290 Wrightwood 0.200 

19.  1989/10/18 Loma Prieta  NS 58065 Saratoga - Aloha Ave 0.324 

20.  1989/10/18 Loma Prieta  EW 58065 Saratoga - Aloha Ave 0.512 

21.  1992/06/28 Landers  NS 22170 Joshua Tree 0.284 

22.  1992/06/28 Landers  EW 22170 Joshua Tree 0.274 

23.  1976/09/15 Friuli, Italy  NS 8014 Forgaria Cornino 0.212 

24.  1976/09/15 Friuli, Italy  EW 8014 Forgaria Cornino 0.260 

25.  1992/06/28 Landers  N045 24577 Fort Irwin 0.114 

26.  1989/10/22 Loma Prieta EW 678 Golden Gate Bridge 0.233 

27.  1994/01/17 Northridge EW 24389 LA - Century City CC North 0.256 

28.  1994/01/17 Northridge EW 24538 Santa Monica City Hall 0.883 

29.  1994/01/17 Northridge N279 90013 Beverly Hills- 14145 Mulhol 0.516 

30.  1994/01/17 Northridge EW 24278 Castaic - Old Ridge Route 0.568 

31.  1994/01/17 Northridge NS 90018 Hollywood - Willoughby Ave 0.245 

32.  1994/01/17 Northridge EW 24303 LA - Hollywood Stor FF 0.231 

33.  1994/01/17 Northridge N070 17-90015 LA - Chalon Rd 0.225 

34.  1994/01/17 Northridge EW 24400 LA - Obregon Park 0.355 

35.  1994/01/17 Northridge NS 24157 LA - Baldwin Hills 0.168 

36.  1994/01/17 Northridge EW 127 Lake Hughes #9 0.165 

37.  1994/01/17 Northridge N177 90063 Glendale - Las Palmas 0.357 

38.  1994/01/17 Northridge N035 90014 Beverly Hills- 12520 Mulhol 0.617 

39.  1994/01/17 Northridge NS 90047 Playa Del Rey - Saran 0.136 

40.  1994/01/17 Northridge EW 24401 San Marino, SW Academy 0.116 
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Figure 4. Response spectra of the ground motions considered in parametric studies. 

 

4.3. Methodology for the damage scales determination 

In the present work, an extensive parametric study was conducted for the 36 plane steel moment-

resisting frames of Table 2, which were subjected to the 40 ground motions of Table 3 for the 

evaluation of the damage scales. The frames were analyzed with the program Ruaumoko 2D (Carr 

2006) using the nonlinear dynamic analysis method. Thus, 23040 analyses (= 36 frames x 40 

ground motions x 16 analyses on average for every frame) were conducted in this work. The 

mathematical models of the frames were based on centerline representations with inelastic material 

behavior modelled by means of bilinear (hysteretic) point plastic hinges with 3% hardening 

including cyclic strength and stiffness degradation. These models do not incorporate the strength 

and stiffness of the panel zone in connections, which were assumed to be rigid. Finally, diaphragm 

action was assumed at every floor due to the presence of the slab. 

Maximum seismic response values, such as IDR’s, plastic rotations, number of cycles and 

damage indices (computed on the basis of Eqs. (2) and (7)) for all the members of the frames and 

the whole range of seismic intensity for every motion (in a discrete manner) were carefully recorded 

to form a large response databank. 

The Levenberg-Marquardt algorithm (MATLAB 1997) was adopted for the non-linear 

regression analysis of the results of the parametric studies, leading to two expressions, one for the 

columns and one for the beams, that give the maximum damage that is observed at a member, as a 

function of IDR (%) and the number of cycles n: 

 

 
3

3
1 0.162 1.887 1.0

132.903 4.695
c

IDR
D n n

IDR
   


 (9) 

 

 
3

3
1 0.104 1.281 1.0

27.692 3.947
b

IDR
D n n

IDR
   


 (10) 

 

where Dc and Db are the maximum column and beam damage, respectively, and n the number of 

cycles. Ignoring the effect of the number of cycles in the expressions for damage, the following 

relations can be adopted 

 
3

3
1.0

27.463 0.788
c

IDR
D

IDR
 


 (11) 
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3

3
1.0

8.126 0.838
b

IDR
D

IDR
 


 (12) 

 

Table 4 shows the basic statistical parameters for the proposed expressions. 

 
Table 4. Statistical parameters for the proposed expressions. 

 

Empirical expression Correlation R
2
 Standard deviation  

Eq. (9) 0.74 0.304 

Eq. (10) 0.91 0.226 

Eq. (11) 0.72 0.339 

Eq. (12) 0.87 0.272 

 

Figure 5 shows the maximum damage of columns using the above empirical expressions (Eqs (9) 

and (11)), where for comparison reasons the ‘exact’ values from dynamic inelastic analyses are also 

provided. Although damage is evaluated herein deterministically, given the uncertainties associated 

with real seismic records, there is a scatter in the estimated seismic demands of a structure and, 

therefore, a statistical investigation is required. For this reason, the 16% and 84% confidence levels, 

corresponding to the median plus/minus one standard deviation, are also shown by heavy dashed 

lines (Vamvatsikos and Cornell 2002). 

 

           

 

Figure 5. Maximum damage of columns: proposed method versus ‘exact’ values. 

 

Similarly, Fig. 6 depicts the maximum damage of beams using the above empirical expressions, 

where for comparison reasons the ‘exact’ values from dynamic inelastic analyses are also given. 
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Figure 6. Maximum damage of beams: proposed method versus ‘exact’ values. 

 

Additionally, Figure 7 shows the response databank ‘exact’ values and Eqs (9-12) for column and 

beam damage versus IDR. 

Examining Figs 5 and 6, it is found that the dispersion is lower for the case of beam damage in 

comparison with the case of column damage. This scatter is probably due to the fact that the sample 

of data corresponding to columns is much smaller than that of beams. The formation of plastic 

hinges at columns is concentrated in column bases and thus the available data are less. In contrary, 

damage at beams is more uniformly distributed in the frames giving a better sample with less 

scatter. However, in both cases the accuracy is found to be satisfactory. Furthermore, it should be 

noted that examining the seismic analysis of structures, the scatter behavior of results is 

unavoidable; this has to do with the uncertainties associated with ground motions (Lam et al. 1998, 

Hatzigeorgiou 2010). 

Examining Fig. 7, it is found that the number of cycles affects the structural damage and this 

influence can be considered using Eqs (9) and (10). The number of cycles can be directly related to 

the duration of a strong earthquake, where both the duration and the number of cycles of loading are 

positively correlated to structural damage. For example, the damage of steel moment resisting 

frames in the Northridge and Kobe earthquakes was attributed to low cycle fatigue (Raghunandan 

and Liel 2013). Additionally, the number of cycles should be taken into account examining multiple 

earthquakes (Hatzigeorgiou and Beskos 2009; Hatzigeorgiou 2010; Loulelis et al. 2012). This is 

also clearly shown in Fig. 8, which depicts the proposed method for medium to moderate damage 

(SP2 Performance Level according to SEAOC (1999), i.e., IDR=1.8%) and for moderate to major 

damage (SP3 Performance Level according to SEAOC (1999), i.e., IDR=3.2%). 
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Figure 7. Damage of columns and beams versus IDR. 

 

 
 

Figure 8. Damage of columns and beams versus number of cycles. 

 

In case that, for simplicity reasons, the influence of number of cycles on damage is not considered, 

Eqs (11) and (12) can be used. Finally, considering or not the number of cycles, the aforementioned 

empirical expressions follow the general trend of ‘exact’ values from dynamic inelastic analyses 

and have the distinct sigmoid form (Fig. 7), of fragility curves which are used to estimate the 

damage probabilities of structures in earthquake-prone areas. 

Using Eqs (11) and (12) as well as the values of the maximum IDR provided in FEMA-273 

(1997), a damage scale for beams and columns for the performance levels of these guidelines, can 

be constructed. This damage scale is shown in Table 5. It is obvious that damage is very high in the 

CP performance level, especially for columns. This results from the fact that the corresponding 

value of IDR at the CP level, equal to 5%, seems to be extremely large and not conservative. For 

reasons of comparison, two additional damage scales are constructed using the mean values of IDR 

provided by Leelataviwat et al. (1999) and SEAOC (1995) and are given in Tables 6 and 7. It is 

observed now that because of lower values of IDR associated with these two scales, the 

corresponding damage values for columns for the CP level are also lower. 
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Table 5. Damage scale proposed here for the performance levels of FEMA-273 (1997). 

 
Table 6. Damage scale proposed here for the performance levels of Leelataviwat et al. (1999). 

 
Table 7. Damage scale proposed here for the performance levels of SEAOC (1995). 

 

5. DAMAGE CONTROLLED STEEL DESIGN 

 

The application of the proposed Direct Damage Controlled Design (DDCD) method to the seismic 

design of plane moment-resisting framed steel structures is done with the aid of the Ruaumoko 2D 

(Carr 2006) program working in the time domain. In this program, material nonlinearities are taken 

into account by a stress-strain bilinear model including cyclic strength and stiffness degradation in 

the framework of concentrated plasticity (plastic hinge model), while geometrical nonlinearities are 

modeled by including large deflection effects. 

The user has three design options at his disposal in connection with damage controlled steel 

design: 

1. determine damage in any member or the whole of a designed structure under given seismic 

load 

2. dimension a structure for given seismic load and desired level of damage 

3. determine the maximum seismic load a designed structure can sustain in order to exhibit a 

desired level of damage. 

The first option is the one usually done in current practice. The other two options are the ones 

which actually make the proposed design method a direct damage controlled one, with the second 

option providing the ability of easily applying capacity design (‘‘weak beams–strong columns’’). In 

all these options damage is evaluated by computing the proposed damage index, with the aid of 

Ruaumoko 2D (Carr 2006) program, by performing a non-linear dynamic analysis and using the 

Eqs (2) and (7) as described in Sec.3. 

Sometimes, it is useful to provide an overall damage index that is representative of the damage 

Performance Levels Maximum column damage Maximum beam damage 

IO ≤1% ≤4% 

LS ≤39% ≤74% 

CP ≤99% 100% 

Performance Levels Maximum column damage Maximum beam damage 

IO ≤11% ≤31% 

LS ≤39% ≤74% 

CP ≤70% 97% 

Performance Levels Maximum column damage Maximum beam damage 

IO ≤1% ≤2% 

LS ≤11% ≤31% 

CP ≤39% ≤74% 
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state of a part of a structure or the whole structure. The member damage indices must be combined 

in a rational manner to reflect both the severity of the member damage and the geometric 

distribution of damage within the overall structure. Various types of weighted-average procedures 

have been proposed for combining the member damage indices into an overall damage index. One 

well accepted such procedure computes the overall damage index Do of a structure composed of m-

members as in Powell and Allahabadi (1988) 

 

2

1 1

m m

o i i
i i

D D D
   
   
   
   
    

    (13) 

 

where Di is the local damage index defined at the section of a member. 

 

6. EXAMPLES OF APPLICATION 
 

In this section, a number of numerical examples concerning various frames are presented in order to 

illustrate the use of the proposed design method and demonstrate its advantages. 

 

6.1. First design option for a three storey – three bay moment resisting steel frame 

A plane three storey - three bay steel frame is examined in this example. The bay width is assumed 

equal to 5 m and the story height equal to 3 m, as shown in Fig. 9. Columns consist of standard 

HEB240 sections and beams of standard IPE330 sections, while the material properties correspond 

to structural steel grade S235. The frame is subjected to the vertical uniform load 27.5kN/m (dead 

and live loads of floors) plus seismic load. The frame has been designed in accordance with the 

provisions of EC3 (2010) and EC8 (2008) and its fundamental natural period is equal to 0.73 sec. The 

expected ground motion is defined by the elastic acceleration design spectrum of the EC8 (2008) 

seismic code, with peak ground acceleration equal to 0.35 g and a soil class B. The SAP2000 (2005) 

software package has been used for elastic analysis and steel design. 

The above frame is subjected now to ground motion 3 of Table 3. The damage of all the 

members of the frame is determined and is depicted in Fig. 10(a). It is observed that, for this 

specific seismic motion, damage values are low everywhere. However, the damage pattern consists 

of concentrated damages only at the beam ends and the column bases to the ground indicating that 

for a higher enough seismic intensity the resulting plastic hinge mechanism will be of global 

collapse type, a result of satisfaction of the ‘‘weak beams–strong columns’’ requirement of capacity 

design. This is achieved by scaling up the above ground motion by a large scale factor (2.25) and 

the results are shown in Fig. 10(b). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 9. Geometry of the three storey frame of the example of sec. 6.1. 
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Figure 10. Damage indices in members of the frame of the example of Sec. 6.1: (a) for ground 

motion 3; (b) for scaled up ground motion 3. 

 

6.2. Second design option for a three storey – three bay moment resisting steel frame 

A plane three storey - three bay steel frame with geometry shown in Fig. 9 is examined in this 

example. Columns consist of standard HEB sections, while beams of standard IPE sections. Gravity 

load on the beams of the frame is assumed equal to 27.5 kN/m (dead and live loads of floors), while 

the yield strength of the material is set equal to 235 MPa. This frame should be dimensioned so as 

to satisfy the damage requirements of the second performance level (LS). Thus, a level of damage 

of 74% and 39% for the beams and the columns, respectively, is selected in agreement with the 

limits of Table 5 or based on Eqs (11) and (12) using the values of the maximum IDR provided in 

FEMA-273 (1997). It is also accepted that the columns of the first floor could develop plastic 

hinges at their bases. For the dynamic analysis of the frame, 8 semi-artificial accelerograms 

compatible with the EC8 (2008) spectrum were generated via a deterministic approach (Karabalis 

1992) from 8 real ground motions of Table 3 to represent the design basis earthquakes (DBE). The 

response spectra of these motions, in comparison with the design spectrum of EC8 (2008), are 

depicted in Fig. 11. Thus, the performance objective of the design is LS under the DBE. 

 

 
 

Figure 11. Response spectra of the ground motions used in the example of sec. 6.2. 
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The most appropriate sections were found to be IPE300 for the beams and HEB200 for the 

columns giving maximum damage values of 62.3% and 36.1% for the beams and the columns, 

respectively, for the case of the fourth accelerogram, as shown in Fig. 12. The values of damage 

computed are smaller than but close to the desired level of damage, thus the design is successful. 

The proposed method yielded in a structure of total weight of 4.1 tones and is more economical than 

the one by using the EC3 (2010) and EC8.(2008) codes, resulting in HEB240 and IPE330 sections for 

the columns and beams, respectively and total weight of 5.2 tones. The proposed design gives 

median values for IDR 2.2%, 2.0% and 1.1% for the first, second and third floor, respectively, 

which are in accordance with the LS performance level of FEMA-273 (1997), used for this design 

example and the construction of the damage scale. For the design based on the EC3 (2010) and 

EC8.(2008) codes the corresponding IDR values are 1.5%, 1.4% and 1.0% for the first, second and 

third floor, which are again within the limits of the LS performance level of FEMA-273 (1997). 

Furthermore, the proposed method is more exact because an inelastic dynamic analysis has been 

used. It is also apparent that the capacity design has been successfully implemented, because 

concentrated damage is formed only at the beams and at the base of the columns of the first floor, 

having weak-beam-strong-column ratios in the range of 1.1-2.0. It is observed that there is not 

plastic hinging in the columns of the frames, because an iterative procedure was followed, 

increasing the columns’ sections in order that plastic hinges to be formed only at the column bases. 

Probably, if the finite dimensions of the panel zone have not been neglected, the results would have 

been different (SAC 2000, NIST 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Distribution of damage in the frame of the example of Sec. 6.2 for the first excitation. 

 

6.3. Second design option for a six storey – three bay moment resisting steel frame 

In the following, a plane six storey - three bay steel frame with geometry as shown in Fig. 3 is 

examined here. Columns consist of standard HEB sections, while beams of standard IPE sections. 

Gravity load on the beams of the frame is assumed equal to 27.5 kN/m, while the yield strength of 

the material is set equal to 235 MPa. This frame should be dimensioned so as to satisfy the damage 

requirements of three performance levels. It is assumed that immediate occupancy (IO) under the 

frequently occurred earthquake (FOE), Life Safety (LS) under the Design Basis Earthquake (DBE) 

and Collapse Prevention (CP) under the Maximum Considered Earthquake (MCE) are the 

appropriate performance objectives for seismic design. The FOE, DBE and MCE are expressed 

through pseudo-acceleration design spectra of EC8 (2008) which have peak ground acceleration 

under DBE (PGADBE) equal to 0.35g. The peak ground accelerations under the FOE and the MCE, 

are expressed as functions of PGADBE and they are equal to 0.3 x PGADBE and 1.5 x PGADBE, 

respectively. In order to perform the dynamic analyses of the frame, 8 semi-artificial accelerograms 

compatible with the spectrum corresponding to each performance level were generated as before to 

represent the three different earthquakes. Thus, a level of damage that is in agreement with the 

limits of Table 5 is selected for the beams and the columns. The same limits can be computed by the 

Eqs (11) and (12) using the values of the maximum IDR provided in FEMA-273 (1997). 
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Figure 13. Distribution of damage in the frame of the example of Sec. 6.3: 

a) First performance objective; b) Second performance objective; c) Third performance objective. 

 

For the first performance objective, the most appropriate sections were found to be (HEB260-

IPE330) for the first storey and (HEB240-IPE330) for the next five higher ones, giving maximum 

damage values of 3.0% and 0.0% for the beams and the columns, respectively, for the case of the 

eighth accelerogram, as shown in Fig. 13(a). 

The sections IPE330 for the beams and HEB240 for the columns are selected for the second 

performance objective giving maximum damage values of 55.0% and 29.2% for the beams and the 

columns, respectively, for the case of the second accelerogram, as shown in Fig. 13(b). 

Finally, the design for the third performance objective  yields (HEB260-IPE360) for the first 

storey and (HEB260-IPE330) for the rest of the frame. This leads to maximum damage values of 

91.7% and 44.2% for the beams and the columns, respectively, for the case of the third 

accelerogram, as shown in Fig. 13(c).  

Thus, the most appropriate sections for this frame are those found for the last performance 

objective, yielding in a frame with total weight of 11.2 tones . This design is again more economical 

than the one by using the EC3 (2010) and EC8 (2008) codes and resulting in a frame with (HEB280-

IPE360) for the first four stories and (HEB260-IPE330) for the next two higher ones and total 

weight of 12.1 tones. It also satisfies the capacity design as plastic hinges are formed only at the 
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beams and at the base of the columns of the first floor, giving weak-beam-strong-column ratios in 

the range of 1.25-3.0. 

 

6.4. Third design option for a three storey – three bay moment resisting steel frame 

The frame of the example of section 6.1 consisting of standard HEB240 sections for columns and 

standard IPE330 sections for beams is again considered here. This frame is subjected to the 

excitation of Cape Mendocino-1992 of Table 3 with PGA=0.154 g. For a desired level of damage 

defined by a maximum damage at columns and beams equal to 30% and 55%, respectively, one can 

determine the necessary value of PGA of the abovementioned accelerogram for the frame to reach 

this desired level of damage. The frame is analyzed with the aid of the program Ruaumoko 2D 

(Carr 2006) and a non-linear dynamic analysis is performed with increasing PGA values until 

values of damage less or equal to the desired ones are developed. It is found that for a value of 

PGA=0.8 g, the maximum values of damage at columns and beams are equal to 29.8% and 54.8%, 

respectively, indicating that this is the required seismic intensity to create the desired level of 

damage. For this seismic intensity, the maximum values of the number of inelastic cycles are found 

to be equal 14 for the columns and 17 for the beams, while the maximum IDR is 2%. Applying Eqs 

(11) and (12) the maximum values of damage at columns and beams, Dc and Db respectively, are 

found to be 23.7% and 53.9% respectively. These values are very close to those computed by the 

nonlinear analysis. Application of the more accurate Eqs (9) and (10), which take into account the 

number of cycles, gives the values 27.2% and 60.9% for Dc and Db, respectively, which are also 

very close to the computed ones. In addition, the estimation of the maximum damage at columns 

calculated by Eq (9) is much more accurate than the one given by Eq (11). Finally, the distribution 

of damage in this frame is shown in Fig. 14. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Distribution of damage in the frame of the example of Sec. 6.4. 

 

7. CONCLUSIONS 

 

On the basis of the preceding developments, the following conclusions can be stated: 

1. A new method of seismic design of plane steel moment resisting frames subjected to ground 

motions, the Direct Damage Controlled Design (DDCD), has been developed, which can 

directly control damage in a structure locally or globally. 

2. The method works with the aid of the finite element method incorporating material and 

geometric nonlinearities and working in the time domain. Programs like Ruaumoko or more 

commercial ones such as SAP2000, ETABS or Perform 3D can be successfully 

implemented for this type of analysis. 

3. It uses a new damage index that accounts for the interaction between the axial force and the 

bending moment at a member section, incorporates cyclic strength and stiffness 

deterioration and accounts for the phenomenon of low-cycle fatigue. 

4. It incorporates damage scales derived on the basis of extensive parametric studies, which are 

associated with three damage levels in a performance-based design framework. 
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5. This method allows the designer to either determine the damage level for a given structure 

under any given seismic load, or dimension a structure for given seismic load and desired 

level of damage, or determine the maximum seismic load a designed structure can sustain in 

order to exhibit a desired level of damage. 

6. The method controls damage in a structure in a more direct and accurate manner than other 

methods and, at least for the examples considered here, leads to lighter sections than the 

ones obtained by using the seismic code provisions of EC3 and EC8. 

7. Performance based design can be conducted as part of the second design option and the 

proposed damage scale. This is highlighted in the example of section 6.3 where a six storey - 

three bay steel frame was designed for three performance levels. 
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