
Hajji, W and Tso, FP

 Understanding the Performance of Low Power Raspberry Pi Cloud for Big
Data

http://researchonline.ljmu.ac.uk/id/eprint/3778/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Hajji, W and Tso, FP (2016) Understanding the Performance of Low Power
Raspberry Pi Cloud for Big Data. Electronics, 5 (2). ISSN 2079-9292

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

electronics

Article

Understanding the Performance of Low Power
Raspberry Pi Cloud for Big Data

Wajdi Hajji * and Fung Po Tso *

Department of Computer Science, Liverpool John Moores University, Liverpool L3 3AF, UK
* Correspondence: w.hajji@2015.ljmu.ac.uk (W.H.); p.tso@ljmu.ac.uk (F.P.T.); Tel.: +44-7438-981273 (W.H.)

Academic Editors: Simon Cox and Steven Johnston
Received: 30 April 2016; Accepted: 31 May 2016; Published: 6 June 2016

Abstract: Nowadays, Internet-of-Things (IoT) devices generate data at high speed and large volume.
Often the data require real-time processing to support high system responsiveness which can be
supported by localised Cloud and/or Fog computing paradigms. However, there are considerably
large deployments of IoT such as sensor networks in remote areas where Internet connectivity is
sparse, challenging the localised Cloud and/or Fog computing paradigms. With the advent of the
Raspberry Pi, a credit card-sized single board computer, there is a great opportunity to construct
low-cost, low-power portable cloud to support real-time data processing next to IoT deployments.
In this paper, we extend our previous work on constructing Raspberry Pi Cloud to study its
feasibility for real-time big data analytics under realistic application-level workload in both native
and virtualised environments. We have extensively tested the performance of a single node Raspberry
Pi 2 Model B with httperf and a cluster of 12 nodes with Apache Spark and HDFS (Hadoop Distributed
File System). Our results have demonstrated that our portable cloud is useful for supporting real-time
big data analytics. On the other hand, our results have also unveiled that overhead for CPU-bound
workload in virtualised environment is surprisingly high, at 67.2%. We have found that, for big data
applications, the virtualisation overhead is fractional for small jobs but becomes more significant for
large jobs, up to 28.6%.

Keywords: internet of things; Raspberry Pi; Raspberry Pi Cloud; Micro Data Centre; big data;
virtualisation; Docker; energy consumption

1. Introduction

Low-cost, low-power embedded devices are ubiquitous, part of the Internet-of-Things (IoT).
These devices or things include RFID tags, sensors, actuators, smartphones, etc., which have substantial
impact on our everyday-life and behaviour [1]. Today’s IoT devices generate data at remarkable speed
which requires near real-time processing [2]. Such need has inspired a new computing paradigm
that advocates moving computation to the edge, closer to where data are generated for ensuring
low-latency and responsive data analytics [2]. Examples are localised Cloud Computing [3] and Fog
Computing [2].

Both localised Cloud and Fog Computing paradigms work only in populous environment
embedded with rich and high-speed connectivity. However, in many cases IoT devices are deployed
in inaccessible remote areas which have limited or no Internet connectivity to the outside world [4].
Lacking of connectivity effectively prevents these isolated IoT devices from accessing to either localised
Cloud or Fog Computing. This calls for a radically new computing paradigm which: (1) is capable of
processing data efficiently; (2) has the agility of Cloud Computing; (3) is portable to support on-demand
physical mobility; and (4) is low-cost, low-power for sustainable computing in remote areas.

This new computing paradigm has been made possible by the emergence of low-cost, low-power
credit card-sized single board computer—the Raspberry Pi [5]. As a result, there has been some

Electronics 2016, 5, 29; doi:10.3390/electronics5020029 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/journal/electronics

Electronics 2016, 5, 29 2 of 14

pioneering novel networked systems with the Raspberry Pi. These innovative systems include a high
performance computing (HPC) cluster [6] and a scale model cloud data centre [7].

This style of system offers many advantages. The system is easy to provision at small scale and
requires minimal outlay. We have extended our original project in [7] and constructed a cloud of
200 networked Raspberry Pi 2 boards for US$ 9,000. Such systems are highly portable, running from a
single AC mains socket, and capable of being carried in a luggage.

In this paper, we have carried out an extensive set of experiments with representative real-life
workloads in order to understand the performance of such system in big data analytics. In summary,
the contribution of this paper is as follows:

• We designed and conducted a set of experiments to test the performance of a single node and
a cluster of 12 Raspberry Pi 2 boards with realistic network and CPU bound workload in both
native and virtualised environments.

• We have found that overhead for CPU-bound workload in virtualised environment is significant,
giving up to 67.2% performance impairment.

• We have found that the performance of running big data analytic in virtualised environment
comparable to native counterpart, albeit noticeable but trivial overhead for CPU, memory
and energy.

The rest of this paper is organised as follows: Section 3 gives an overview of background
technologies on Apache Spark and HDFS, the big data analytic tools used for experiments. We present
details of our experiment setups in Section 4, followed by description and analysis of our experiment
results in Section 5. We survey related literature and highlight our contribution in Section 2.
And Section 6 concludes the paper.

2. Related Work

Since its launch in 2012, the Raspberry Pi has quickly become one of the best-selling computers
and has stimulated various interesting projects across both industry and academia that fully exploit
the low cost low power full feature computer [6–11]. As of 29 February 2016, the total number of units
sold worldwide has passed 8 million [12].

Iridis-pi [6] and Glasgow Raspberry Pi Cloud [7] are among the first to use a large collection of
Raspberry Pi boards to construct clusters. Despite their similarity in hardware construction, their
nature is distinctively different. Iridis-pi is an educational platform that can be used to inspire and
enable students to understand and apply high-performance computing and data handling to tackle
complex engineering and scientific challenges. On the contrary, the Glasgow Raspberry Pi cloud is an
educational and research platform which emphasises development and understanding virtualisation
and Cloud Computing technologies. Other similar Raspberry Pi clusters include [8,13,14].

In spite of their popularity, there is surprisingly limited study on the performance of ab individual
node and a whole cluster under realistic workload. The author of [15], has run experiments to test
container-based technology on a single node Raspberry Pi. They evaluate the virtualisation impact on
CPU, Memory I/O, Disk I/O, and Network I/O and conclude that overhead is negligible compared
with native execution. However, the experiments focus mainly on the system level benchmarking and
do not represent realistic workload. The author of [8], studies energy consumption out of a 300-node
cluster but without a more representative workload. The author of [16], has studied the feasibility
of Raspberry Pi 2 based cluster built out of seven nodes for big data applications with more realistic
workloads using Apache Hadoop framework. The TeraSort is used to evaluate the cluster performance
and energy consumption that is reported.

In contrast to [8,15,16], our work concentrates on evaluation of system performance under realistic
application layer workload, featuring various workloads in httperf and Apache Spark. In addition, we
study and report the performance with and without virtualisation layer, which offers improved insight
into the suitability of virtualisation for a low-power, low-cost computer cluster. Our methodology is

Electronics 2016, 5, 29 3 of 14

also partly inspired by [17], which evaluated the performance of Spark and MapReduce through a set of
diverse experiments for an x86 cluster.

3. Background

3.1. Spark

Apache Spark (https://spark.apache.org/docs/latest) is a general-purpose cluster computing
system. Spark can play the role of traditional ETL (extract, transform, and load) for data processing
and feeding data warehouses, and it can also perform other operations such as on-line pattern spotting
or interactive analysis.

Figure 1a illustrates the ways in which Spark can be built and deployed upon Hadoop components.
There are: (1) Standalone mode: where Spark interacts with HDFS directly but MapReduce could
collaborate with it in the same level to run jobs in cluster; (2) Hadoop Yarn: Spark just runs over Yarn
which is a Hadoop distributed container manager; (3) Spark in MapReduce (SIMR): in this case Spark
can run Spark jobs in addition to the standalone deployment.

Spark

Spark

MapReduceYarn / Mesos

HDFS

Spark

HDFSHDFS

Standalone Hadoop 2.x (YARN) Hadoop V1 (SIMR)

(a)

Namenode (Pi1)

Client

Client

Datanode

(Pi2)

Datanode

 (Pi3)

Datanode

(Pi12)

Write

Replication

...

(b)

Figure 1. Spark and HDFS (Hadoop Distributed File System) overview. (a) Spark deployment;
(b) HDFS architecture.

Spark generally processes data through the following stages: (1) the input data are distributed
on worker nodes; (2) then data are processed by the mapper functions; (3) following that, shuffling
process performs aggregation of similar patterns; and finally (4) reducers combine them all to get a
consolidated output.

In our experiments we have adopted Spark Standalone deployment. Both Spark and HDFS are
in cluster mode. In total there are 12 nodes, one Raspberry Pi represents the master and the others
represent workers.

3.2. HDFS

HDFS (https://wiki.apache.org/hadoop/HDFS/) is a distributed file system designed to run on
commodity hardware. It is designed to handle large datasets. HDFS distributes and replicates data on
the cluster members to protect system against failure that could happen due to nodes unavailability.

HDFS follows the master-slave paradigm. A HDFS cluster is composed of a namenode which is
the master (Pi1), it manages the file system name-space and regulates clients’ access to files, and it also
distributes blocks/data on the datanodes. Datanode can be present in each node of the cluster. It is
responsible for serving read and write requests from the file system’s clients, it also manages blocks
creation, deletion, and replication according to the instructions coming from the namenode. Figure 1b
depicts the HDFS architecture.

Electronics 2016, 5, 29 4 of 14

3.3. Docker

Docker (https://www.docker.com/what-docker) allows applications packaging with all their
dependencies into software containers. Different from the Virtual Machine design which requires an
entire operating system to run the applications on, Docker enables sharing the system kernel between
containers by using the resource isolation features available on Linux environment such as cgroups
and kernel namespaces. Figure 2 illustrates Docker’s approach.

Infrastructure

Operating System

Docker Engine

App 1

Bins/Libs

App 2

Bins/Libs

App 3

Bins/Libs

Figure 2. Docker containers.

4. Experiment Setup

We describe in detail our testbed, methodology and performance metrics used to evaluate different
combinations of tests in this section.

In an edge cloud we anticipate two distinctive environments—either a native environment for high
performance or a virtualised environment for high elasticity. Therefore, we have tested the performance
of single nodes and clusters in both environments. In all experiments we either use a single node
Raspberry Pi 2 Model B, which has a 900 MHz quad-core ARM Cortex-A7 CPU, 1 G RAM, and a
100 Mbps Ethernet connection, or a cluster of 12 nodes. For their virtualised counterparts, we have
configured the node(s) with Docker, a lightweight Linux Container virtualisation, on each Raspberry
Pi with Spark and HDFS running atop. We have chosen Spark because it has become one of the most
popular big data analytics tools. We selected Docker not only because it is low-overhead OS level
virtualisation but also the full virtualisation has not been fully supported by Raspberry Pi 2’s hardware.
The operating system (OS) installed on the Raspberry Pis is Raspbian (https://www.raspbian.org/).

4.1. Single Node Experiments

In this set of experiments, we attempt to find the baseline performance with and without
virtualisation for a single Raspberry Pi 2 Model B board. The experiments include using a client,
which has an Intel i7-3770 3.4 GHz quad-core CPU, 16 GB RAM and 1 Gbp/s Ethernet, sending
various workload to server, a Raspberry Pi node, using httperf [18]. The client used is remarkably more
powerful than the server for ensuring that performance will only be limited by server’s bottleneck.
The server runs Apache web server to process web requests from client. The client is instructed to
generate a large number of Web (HTTP) requests for pulling web documents of size 1 KB, 4 KB, 10 KB,
50 KB, 70 KB and 100 KB respectively from servers using httperf. These workload sizes are chosen
because traffic in cloud data centre is comprised of 99% small mice flows and 1% large flows [19].
For each specific workload size, the client starts from sending a very small number of requests per
second to the server initially, and gradually increases the number of requests per second by 100 until

Electronics 2016, 5, 29 5 of 14

the server cannot accommodate any additional requests. This means that the server has reached its
full capacity.

4.2. Cluster Experiments

We have conducted all experiments on a low-power compute cluster consist of 12 Raspberry
Pi 2 Model B. All Raspberry Pis are interconnected with a 16-Port Gbp/s switch. Alongside with
system performance metrics, we are equally interested in energy consumption of the whole cluster
when experiment is underway. We used MAGEEC (http://mageec.org/wiki/Workshop) ARM Cortex
M4-based STM32F4DISCOVERY board to measure energy consumption of individual Raspberry Pi
throughout experiments. This board was designed by the University of Bristol for high frequency
measurement of energy usage.

Also on each node, we installed Spark 1.4.0 and Hadoop 2.6.4 for its HDFS. We configured node 1,
i.e., Pi 1, as a master for Hadoop and Spark, and others, i.e., Pi 2–12, as workers.

For Spark, each worker was allocating 768 MB RAM and all 4 CPU cores. For HDFS, we set the
number of replica to 11 so that data are replicated on each worker node. This set-up was not only
considered for high availability but also to avoid high network traffic between nodes as we predict
that Raspberry Pi has a hardware limitation on the network interface speed. Figure 3a shows the
cluster design.

Switch

Pi1 - Master Pi7 - Worker

Pi2 - Worker Pi8 - Worker

Pi3 - Worker

Pi4 - Worker

Pi9 - Worker

Pi10 - Worker

Pi5 - Worker Pi11 - Worker

Pi6 - Worker Pi12 - Worker

(a)

Switch

Worker 1

container

Worker 2

container

Worker 3

container

Worker 4

container

Master

container

Worker 5

container

Worker 7

container

Worker 8

container

Worker 9

container

Worker 10

container

Worker 6

container

Worker 11

container

(b)

Figure 3. Cluster Layout. (a) Native set-up; (b) Virtualised set-up.

In the second phase of the experiment, we installed Docker and created a Docker container on
each node of the cluster. Docker container hosts both Spark 1.4.0 and Hadoop 2.6.4 with the same
setup as in the native environment. So the container is considered as a Virtual Machine running on the
Raspberry Pi. We have established a network connection between the 12 containers and have made
them able to communicate between each other. Figure 3b illustrates this set-up.

In both native and virtualised environments, we have run both Wordcount and Sort jobs on our
low-power cluster with job sizes varying from 1 GB to 4 GB and to 6 GB, representing small, medium
and large job sizes respectively. The large job size was set to 6 GB because we have found that
job size greater than this will cause Docker daemon forcibly killed by the OS because the CPU is

Electronics 2016, 5, 29 6 of 14

significantly overloaded with the process. Also in all experiments we left the system idle for 20 s and
the experiments started at the 21-st s.

In all experiments, we have measured and collected the following metrics to examine
the performance:

• Execution time: the time taken by each job running different workloads.
• Network throughput: the transmission and reception rates in each node of the cluster.
• CPU utilisation: the CPU usage in each cluster node.
• Energy consumption: energy consumed by a Raspberry Pi worker node (chosen randomly).

5. Experiment Results

5.1. Single Node Performance

Our test results for single node performance are shown in Figure 4. We first examine the results
for native environment. Obviously, Figure 4a shows that the average number of network requests
served by the server decreases from 2809 req/s to 98 req/s for 1 KB and 100 KB workloads respectively.
In the meantime, their corresponding network throughput, as shown in Figure 4b and CPU utilisation,
as shown in Figure 4c exhibit monotonically increasing and decreasing patterns respectively, but with
flatter tails. The average network throughput for 1 KB and 100 KB workloads are 22.5 Mbp/s and
78.4 Mbp/s respectively, whereas CPU utilisation for 1 KB and 100 KB workloads are 67.2% and 22.3%
respectively. These observations demonstrate that small-sized workloads such as 1 KB and large-sized
workloads such as 100 KB are CPU and network bounded respectively.

1KB 4KB 10KB 30KB 50KB 70KB 100KB

Workload

S
er

ve
r

T
hr

ou
gh

pu
t (

re

q/
se

c)

0
50

0
15

00
25

00

Native
Virtualised

(a)

1KB 4KB 10KB 30KB 50KB 70KB 100KB

Workload

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
p/

s)

0
20

40
60

Native
Virtualised

(b)

1KB 4KB 10KB 30KB 50KB 70KB 100KB

Workload

C
P

U
 U

til
is

at
io

n
(%

)

0
10

30
50

Native
Virtualised

(c)

Figure 4. Single server performance. (a) Server throughput; (b) Network throughput;
(c) CPU utilisation.

Next we examine the results for virtualised environment. At first glance we can clearly
observe that all results for virtualised environment exhibit identical patterns as native environment.
However, our performance has pinpointed significant virtualisation overhead, particularly for small
workloads. Figure 4a shows that server throughput for 1 KB workload is profoundly impaired by 65.9%,
dropping from 2, 809 req/s to 957.5 req/s, leading to significant degradation in network throughput
(Figure 4b) while the CPU utilisation remains equally high as native counterpart. Similarly the
impairment for 4 KB and 10 KB workloads are 59.6% and 36.4% respectively. Nevertheless, the
performance for large workloads including 30 KB, 50 KB, 70 KB and 100 KB, in terms of server and
network throughput, are on par with their native counterparts. In comparison the CPU utilisation for
these workloads are only 12%–23%, representing fractional but significant overhead.

The remarkable overhead observed for the small-sized workloads has inspired us to investigate
this issue further. When Docker is installed, a software-based bridged network, by which the Docker
daemon connects containers to this network by default, is automatically created. Therefore, when
workload is small not only the hardware network interface frequently interrupts CPU for packet
delivery but also the software bridge triggers similar amount of interrupts for container under test.
On the contrary, when workload is large, fewer hardware and software interruptions arise from both
physical and virtual network interface.

Electronics 2016, 5, 29 7 of 14

5.2. Spark and HDFS in the Native Environment

We first present Spark’s performance in the native environment. Table 1 shows the total execution
time for 1 GB, 4 GB and 6 GB jobs. We observed that job completion time varies with actual job sizes.
For instance, for WordCount, it increases slightly from 60.2 s for 1 GB job by 9.3% to 65.8 s for 4 GB job
but increases substantially by 82.4% to 109.8 s for 6 GB job. Similar trend is observed in Sort, it takes
122.4 s to complete 1 GB job, then 129.7 s and 224.8 s, or 5.96% and 83.7% longer, for 4 GB and 6 GB files
respectively. Comparing job completion time between WordCount and Sort, it is apparent that Sort is
more CPU demanding because time taken by Sort job is almost usually double of what is consumed by
WordCount. This is because in Sort, words need to be counted and then sorted, whereas in WordCount
words need only to be counted.

Table 1. Execution times for WordCount and Sort jobs in the Native Environment.

File Size “Native” WordCount “Native” Sort

1 GB 60.2 s 122.4 s
4 GB 65.8 s 129.7 s
6 GB 109.8 s 224.8 s

To explain this non-linear increase in completion time between 4 GB and 6 GB jobs, we have
investigated further and found that Sort for 4 GB job requires 32 tasks whilst 6 GB file needs 46.
Given that there are 44 cores available in the cluster, there is sufficient computation capacity for
accommodating 32 task concurrently. However, in the case when 45 or more tasks are spawn,
all available cores are used, as demonstrated in Figure 5c, and the remaining tasks will have to
wait for CPU time. Worse still, if they depend on some specific tasks, they will have to wait until their
completion although free CPU time will arise when some non-dependent tasks finish early. On the
other hand, Spark is memory hungry whilst Raspberry Pi’s RAM is sparse. As evidenced by Figure 5c,
memory has been fully utilised at most of the time throughout experiments. This implies that there
may be constant memory swapping that could further lengthen the completion time. In WordCount,
there are 15 tasks for 4 GB file versus 44 for 6 GB file, in the former case there are enough CPU resources
to run all tasks whereas in the latter all CPU cores are dedicated to run the job, this can be observed in
Figure 5c where CPU usage is at 100% over data processing time whilst it is at nearly 80% for 4 GB file
in Figure 5b.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

%

Time (s)

CPU-WordCount
Mem-WordCount

CPU-Sort
Mem-Sort

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

%

Time (s)

CPU-WordCount
Mem-WordCount

CPU-Sort
Mem-Sort

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

%

Time (s)

CPU-WordCount
Mem-WordCount

CPU-Sort
Mem-Sort

(c)

Figure 5. CPU and memory usage. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

Next, we describe the CPU, memory and network usage performance results. In WordCount of
1 GB job, in Figure 5a memory consumption increases to about 75% and remains steady till the end of
the operation. For CPU utilisation, we can see that it rises from nearly 1% (idle) to nearly 20% (busy)

Electronics 2016, 5, 29 8 of 14

and remains unchanged all over the computation process. For network throughput, Figure 6a shows
that there is no significant traffic activity, at the beginning of the job, data are received by workers at
the rate of 40 kb/s, and this is the client (namenode) request message for workers to start computing.
For files of 4 GB and 6 GB, we noted the same behaviour but the increase in CPU and memory usage is
more prominent. For instance, in Figure 5b for 4 GB file, memory usage increases gradually from 50%
to 100% in about 70 s and CPU goes up from nearly 1% to 30% in the tasks submission stage and then
sharply reaches 80% at the second 40 for the count stage as indicated in the log files.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

 0 20 40 60 80 100 120 140

kb
/s

Time (s)

TX-WordCount
RX-WordCount

TX-Sort
RX-Sort

(a)

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

 0 20 40 60 80 100 120 140 160

kb
/s

Time (s)

TX-WordCount
RX-WordCount

TX-Sort
RX-Sort

(b)

0

2,000

4,000

6,000

8,000

10,000

12,000

 0 50 100 150 200 250 300

kb
/s

Time (s)

TX-WordCount
RX-WordCount

TX-Sort
RX-Sort

(c)

Figure 6. Network transmission (TX) and reception (RX) rates. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

As reflected by Figure 5c the increase is sharper for the 6 GB file where both memory and CPU
reach 100%. In the 6 GB file, as explained above, since there are more tasks (46 tasks) than available
CPU cores (44 cores), the CPU and memory are exhaustively used for an extended period of time.
Moreover, we observe the same two stages as in the 4 GB file.

In Sort, CPU and network usage patterns are different from those observed in WordCount job.
For example, in Figure 5a for the 1 GB job, CPU usage increases to the same level as WordCount job
for the same file size, and it remains steady throughout the experiment, but at the end of the job CPU
decreases dramatically to a very low level and then suddenly reaches a peak. When analysing log files,
we have found an explanation for these changes. In the beginning, tasks submission stage takes a few
seconds to complete, this is happening also in WordCount, it explains both CPU and memory increase
to 30% and 60% respectively. Afterwards, map stage starts and consumes most of the time taken by the
job, lastly the shuffling process causes the peak witnessed by CPU usage.

In addition, Sort is accompanied with a peak in the network transmission and reception rates
where they reach nearly 3.2 Mbps as shown in Figure 6a. Same changes have been witnessed for 4 GB
and 6 GB files but with quantitative differences. For instance, as illustrated in Figure 6b,c network
transmission and reception rates reach at the end of the Sort job 9.6 Mbps and nearly 11.2 Mbps for
4 GB and 6 GB files respectively. CPU and memory usages increase as well to nearly 80% and 100% for
4 GB file and to 100% and 100% for 6 GB file respectively as reflected in Figure 5b,c. These changes
are explained above by the fact that Sort job witnesses three phases; task submission, map, and shuffling.
In the shuffling stage, a high network activity is noticed at the end of Sort job (e.g., Figure 5a at 130 s,
Figure 5b at 140 s, and Figure 5c at 235 s). Furthermore, outputs coming from workers need to be
consolidated to have the final result, this is achieved in the reduce stage (combining results of workers)
and it causes the high CPU and memory usage.

Regarding the energy consumption, through Figures 7a and 8a we can obviously observe that
actual energy consumption depends on the job sizes. It is slightly higher for 6 GB files than for 1 GB
and 4 GB files in both WordCount and Sort jobs. To confirm this observation, we run WordCount and
Sort on file of 8 GB, even with some task failures on some Raspberry Pis, we noticed the behaviour
more clearly as shown in Figures 7b and 8b. Therefore, workload affects the energy consumption,
the more intensive the workload is, the more important is the energy consumption by the Raspberry
Pi device.

Electronics 2016, 5, 29 9 of 14

3.62e-005

3.64e-005

3.66e-005

3.68e-005

3.70e-005

3.72e-005

 0 20 40 60 80 100 120

Jo
ul

e

Time (s)

WordCount 6GB
WordCount 4GB
WordCount 1GB

(a)

3.68e-005

3.70e-005

3.72e-005

3.74e-005

3.76e-005

3.78e-005

3.80e-005

3.82e-005

 0 20 40 60 80 100 120

Jo
ul

e

Time (s)

WordCount 8GB
WordCount 4GB
WordCount 1GB

(b)

Figure 7. Energy measurement in a Raspberry Pi Worker node in WordCount job. (a) WordCount Job
(1-4-6 GB files); (b) WordCount Job (1-4-8 GB files).

3.62e-005

3.64e-005

3.66e-005

3.68e-005

3.70e-005

3.72e-005

 0 20 40 60 80 100 120 140 160 180

Jo
ul
e

Time (s)

Sort 6GB
Sort 4GB
Sort 1GB

(a)

3.68e-005

3.70e-005

3.72e-005

3.74e-005

3.76e-005

3.78e-005

3.80e-005

3.82e-005

 0 20 40 60 80 100 120 140 160

Jo
ul
e

Time (s)

Sort 8GB
Sort 4GB
Sort 1GB

(b)

Figure 8. Energy measurement in a Raspberry Pi Worker node in Sort job. (a) Sort job (1-4-6 GB files);
(b) Sort job (1-4-8 GB files).

5.3. Spark and HDFS in Docker-Based Virtualised Environment

In the second phase of our experiments, we present results from virtualised environment, followed
by comparing and contrasting the results with that of native ones.

We first have a look at the job completion time as shown in Table 2. At the first glance, we can
clearly see that job completion times for 1 GB and 4 GB exhibit fractional difference, smaller than 3%,
between native and virtualised platforms for both WordCount and Sort.

Table 2. Execution times for WordCount and Sort jobs in Virtualised Environment.

File Size WordCount in Docker Sort in Docker

1 GB 58.2 s 121.1 s
4 GB 64.7 s 132.2 s
6 GB 116.5 s 236.5 s

However, in WordCount of 6 GB file, execution with Docker clearly takes more time than the case
without it, at 109.8 s and 116.5 s respectively, an increase of nearly 6.1%. Similarly, Sort on the 6 GB
file takes more time in Docker than in the native environment, an increase from 224.8 s to 236.5 s,
representing 5.2% longer completion time.

Electronics 2016, 5, 29 10 of 14

5.3.1. Virtualisation Impact on CPU and Memory Usage

Figure 9a shows that CPU usage, in 1 GB file WordCount job, has same behaviour in both native and
virtualised environments but with a few irregularities where Docker is running (at 20-th and 50-th s).
Memory consumption is higher in virtualised platform as Docker daemon requires already memory
resources to run its processes. In WordCount of 4 GB file, CPU and memory usages have the same
patterns in both environments (Figure 9b). Whereas, in WordCount of 6 GB file, we have noticed
remarkable difference in the CPU usage, Figure 9c shows that it is more important and extended in the
virtualised set-up.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(c)

Figure 9. CPU and memory usage in WordCount job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

In Sort job of 1 GB file, the difference only resides in the memory usage. With Docker, memory
consumption is higher than is the case in the native environment as unveiled in Figure 10a. We have
also noticed a few irregularities in CPU usage in virtualised environment. As for the 4 GB Sort job,
Figure 10b demonstrates nearly identical patterns in both environments. Figure 10c demonstrates a
more obvious difference in CPU utilisation between two environments in which virtualised platform
exhausts CPU resource earlier and for longer periods of time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

 14
0

 16
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 10
0

 12
0

 14
0

 16
0

 18
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 10
0

 15
0

 20
0

 25
0

 30
0

%

Time (s)

CPU Virtualised
CPU Native

Mem Virtualised
Mem Native

(c)

Figure 10. CPU and memory usage in Sort job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

These set of experiments have demonstrated that virtualisation incurs a more prominent overhead
when the jobs are more demanding.

5.3.2. Virtualisation Impact on Network Usage

Figure 11a shows that WordCount does not produce significant network traffic with two spikes at
the rate of 140 kb/s. Similarly, Figure 11b shows very small difference in network throughput for 4 GB
job in WordCount. However, the network behaviour becomes different for 6 GB job. Network reception

Electronics 2016, 5, 29 11 of 14

rate becomes more intensive in the native environment than it is in the virtualised counterpart as
shown in Figure 11b. For example, at 28-th s reception rate in virtualised environment reaches nearly
600 kb/s while in the native environment it is nearly at 900 kb/s.

0

20

40

60

80

100

120

140

 0 10 20 30 40 50 60 70 80

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(a)

0

100

200

300

400

500

600

 0 10 20 30 40 50 60 70 80
kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(b)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70 80

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(c)

Figure 11. Transmission (TX) and reception (RX) rates in WordCount job. (a) 1 GB file; (b) 4 GB file;
(c) 6 GB file.

In Sort job, we have noticed a different network behaviour from the case in WordCount.
In Figure 12a there is a high network traffic at the end of the experiment, this is a consequence of the
shuffling process where workers are sharing results for consolidation. Reception and transmission rates
are more intensive in the native environment than where Docker is running. In Figure 12b we have
found identical behaviour in network usage in both environments, however the rate is higher than it is
in 1 GB file for the same job; transmission and reception rates reach nearly 9.600 Mbps.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

 0 20 40 60 80 100 120 140

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(a)

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

 0 20 40 60 80 100 120 140 160

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(b)

0

2,000

4,000

6,000

8,000

10,000

12,000

 0 50 100 150 200 250 300

kb
/s

Time (s)

TX Virtualised
TX Native

RX Virtualised
RX Native

(c)

Figure 12. Transmission (TX) and reception (RX) rates in Sort job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

Lastly, we can see from Figure 12c that network usage is remarkably more intensive in the native
environment. For instance reception and transmission rates reach 11.2 Mbps in the native environment
while they are at nearly only 8 Mbps in virtualised one. The difference is about 3.2 Mbps or 28.6%.

5.3.3. Virtualisation Impact on Energy Consumption

In this section, we will investigate how much overhead, if any, virtualisation has in terms of
energy consumption.

Figure 13a depicts the energy consumed by a Raspberry Pi cluster worker member when it is
involved in WordCount job on 1 GB file, energy levels are very similar. However for WordCount on 4 GB
file, energy is more important in the native environment than in virtualised one as shown in Figure 13b.
However, in WordCount for 6 GB job, as revealed in Figure 13c energy level becomes clearly higher
when jobs are running inside Docker containers. It arises from 3.66×10−5 Joule to 3.71×10−5 Joule, so
an increase of 1.3%. For Sort job, same patterns have been observed for the case of 4 GB and 6 GB jobs
as shown in Figure 14b,c.

Electronics 2016, 5, 29 12 of 14

3.61e-005

3.62e-005

3.63e-005

3.64e-005

3.65e-005

3.66e-005

3.67e-005

3.68e-005

3.69e-005

3.70e-005

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

Jo
ul

e

Time (s)

Virtualised
Native

(a)

3.55e-005

3.60e-005

3.65e-005

3.70e-005

3.75e-005

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

Jo
ul

e

Time (s)

Virtualised
Native

(b)

3.65e-005

3.70e-005

3.75e-005

3.80e-005

3.85e-005

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

Jo
ul

e

Time (s)

Virtualised
Native

(c)

Figure 13. Energy measurement in WordCount job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

3.55e-005

3.60e-005

3.65e-005

3.70e-005

3.75e-005

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

Jo
ul

e

Time (s)

Virtualised
Native

(a)

3.55e-005

3.60e-005

3.65e-005

3.70e-005

3.75e-005

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

Jo
ul

e

Time (s)

Virtualised
Native

(b)

3.65e-005

3.70e-005

3.75e-005

3.80e-005

3.85e-005

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

Jo
ul

e

Time (s)

Virtualised
Native

(c)

Figure 14. Energy measurement in Sort job. (a) 1 GB file; (b) 4 GB file; (c) 6 GB file.

6. Conclusions

In this paper, we have designed and presented a set of extensive experiments on a Raspberry
Pi cloud using Apache Spark and HDFS. We have evaluated their performance through CPU and
memory usage, Network I/O, and energy consumption. In addition, we have investigated the
virtualisation impact introduced by Docker, a container-based solution that relies on resources isolation
features available on Linux kernel. Unfortunately, it has not been possible to use Virtual Machines as a
virtualisation layer because this technology is not yet supported in the current releases on Raspberry Pi.

Our results have shown that the virtualisation effect becomes more clear and distinguishable
with high workloads, e.g., when operating on a big amount of data. In a virtualised environment,
CPU and memory consumption becomes higher, network throughput decreases, and burstiness occurs
less often and less intensively. Furthermore, it has been proven that energy level consumed by the
Raspberry Pi arises with the high workload and it is additionally affected by the virtualisation layer
where it becomes more important. As a future work, we are interested in attenuating the virtualisation
overhead by investigating a novel traffic management scheme that will take into consideration both
network latency and throughput metrics. This scheme will mitigate network queues and congestion at
the levels of virtual appliances deployed in the virtualised environment. More precisely, it will rely on
three keystones; (1) controlling end-hosts packets rate; (2) virtual machines and network functions
placement; and (3) fine-grained load-balancing mechanism. We believe this will improve the network
and applications performance but it will not have a significant impact on the energy consumption.

Electronics 2016, 5, 29 13 of 14

References

1. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805.
2. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things.

In Proceedings of the 1st Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
13–17 August 2012; pp. 13–16.

3. Choy, S.; Wong, B.; Simon, G.; Rosenberg, C. A hybrid edge-cloud architecture for reducing on-demand
gaming latency. Multimed. Syst. 2014, 20, 503–519.

4. Yoneki, E. RasPiNET: Decentralised Communication and Sensing Platform with Satellite Connectivity.
In Proceedings of the 9th ACM MobiCom Workshop on Challenged Networks, CHANTS’14, New York,
NY, USA, 7 September 2014; pp. 81–84.

5. Raspberry Pi Foundation. Raspberry Pi 2, 2012. https://www.raspberrypi.org/products/raspberry-pi-2
-model-b/ (accessed on 25 April 2016).

6. Cox, S.J.; Cox, J.T.; Boardman, R.P.; Johnston, S.J.; Scott, M.; O’brien, N.S. Iridis-pi: A low-cost, compact
demonstration cluster. Clust. Comput. 2014, 17, 349–358.

7. Tso, F.P.; White, D.R.; Jouet, S.; Singer, J.; Pezaros, D.P. The Glasgow Raspberry Pi Cloud: A Scale Model
for Cloud Computing Infrastructures. In Proceedings of the 2013 IEEE 33rd International Conference on
Distributed Computing Systems Workshops (ICDCSW), Philadelphia, PA, USA, 8–11 July 2013; pp. 108–112.

8. Abrahamsson, P.; Helmer, S.; Phaphoom, N.; Nicolodi, L.; Preda, N.; Miori, L.; Angriman, M.; Rikkila, J.;
Wang, X.; Hamily, K.; et al. Affordable and Energy-Efficient Cloud Computing Clusters: The Bolzano
Raspberry Pi Cloud Cluster Experiment. In Proceedings of the 2013 IEEE 5th International Conference
on Cloud Computing Technology and Science (CloudCom), Bristol, UK, 2–5 December 2013; Volume 2,
pp. 170–175.

9. Fernandes, S.L.; Bala, J.G. Low Power Affordable and Efficient Face Detection in the Presence of Various
Noises and Blurring Effects on a Single-Board Computer. In Emerging ICT for Bridging the Future, Proceedings
of the 49th Annual Convention of the Computer Society of India (CSI) Volume 1, Hyderabad, India,
12–14 December 2014; Springer: CH-6330 Cham (ZG), Switzerland, 2015; pp. 119–127.

10. Jain, S.; Vaibhav, A.; Goyal, L. Raspberry Pi Based Interactive Home Automation System Through E-mail.
In Proceedings of the 2014 International Conference on Optimization, Reliabilty, and Information Technology
(ICROIT), Faridabad, India, 6–8 February 2014; pp. 277–280.

11. Vujović, V.; Maksimović, M. Raspberry Pi as a Wireless Sensor node: Performances and Constraints.
In Proceedings of the 2014 37th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26–30 May 2014; pp. 1013–1018.

12. Raspberry Pi Foundation. Raspberry PI 3 On Sale Now, 2016. https://www.raspberrypi.org/blog/
raspberry-pi-3-on-sale/ (accessed on 25 April 2016).

13. Anwar, A.; Krish, K.R.; Butt, A.R. On the Use of Microservers in Supporting Hadoop Applications.
In Proceedings of the 2014 IEEE International Conference on Cluster Computing (CLUSTER), Madrid,
Spain, 22–26 September 2014; pp. 66–74.

14. Cloutier, M.F.; Paradis, C.; Weaver, V.M. Design and Analysis of a 32-Bit Embedded High-Performance
Cluster Optimized for Energy and Performance. In Proceedings of the 2014 Hardware- Software Co-Design
for High Performance Computing (Co-HPC), New Orleans, LA, USA, 17 November 2014; pp. 1–8.

15. Morabito, R. A performance evaluation of container technologies on internet of things devices. 2016,
arXiv:1603.02955. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1603.02955 (accessed on
20 April 2016).

16. Schot, N. Feasibility of Raspberry Pi 2 based Micro Data Centers in Big Data Applications. In Proceedings of
the 23th University of Twente Student Conference on IT, Enschede, The Netherlands, 22 June 2015.

17. Shi, J.; Qiu, Y.; Minhas, U.F.; Jiao, L.; Wang, C.; Reinwald, B.; Özcan, F. Clash of the Titans: MapReduce vs.
Spark for Large Scale Data Analytics. In Proceedings of the VLDB Endowment, Kohala Coast, HI, USA,
September 2015; Volume 8, pp. 2110–2121.

Electronics 2016, 5, 29 14 of 14

18. Mosberger, D.; Jin, T. Httperf—A tool for measuring web server performance. ACM SIGMETRICS Perform.
Eval. Rev. 1998, 26, 31–37.

19. Greenberg, A.; Hamilton, J.R.; Jain, N.; Kandula, S.; Kim, C.; Lahiri, P.; Maltz, D.A.; Patel, P.; Sengupta, S.
VL2: A Scalable and Flexible Data Center Network. In ACM SIGCOMM Computer Communication Review;
ACM: New York, NY, USA, 2009; Volume 39, pp. 51–62.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Background
	Spark
	HDFS
	Docker

	Experiment Setup
	Single Node Experiments
	Cluster Experiments

	Experiment Results
	Single Node Performance
	Spark and HDFS in the Native Environment
	Spark and HDFS in Docker-Based Virtualised Environment
	Virtualisation Impact on CPU and Memory Usage
	Virtualisation Impact on Network Usage
	Virtualisation Impact on Energy Consumption

	Conclusions

