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✶ Abstract: User location is crucial context information for future smart homes where a lot of location 

✷ based services will be proposed.  This location necessarily means that User Location Discovery 

✸ (ULD) will play an important role in future smart homes. Concerns about privacy and the need 

✹ to carry a mobile or a tag device within a smart home currently makes conventional ULD systems 

✺ uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. 

✻ This paper addresses to design such a ULD system for context-aware services in future smart homes 

✼ stressing on the following challenges: (i) users’ privacy, (ii) device/tag-free, and (iii) fault tolerance 

✽ and accuracy. On the other hand, emerging new technologies such as Internet of Things, embedded 

✾ systems, intelligent devices and machine-to-machine communication are penetrating into our daily 

✶✵ life with more and more sensors available for use in our homes.  Considering this opportunity, we 

✶✶ propose a ULD system that is capitalizing on the prevalence of sensors for home while   satisfying 

✶✷ the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system 

✶✸ relies on different types of cheap sensors as well as a context broker with a fuzzy-based decision 

✶✹ maker. The context broker receives context information from different types of sensors and evaluates 

✶✺ that data using the fuzzy set theory. We demonstrate the performance of the proposed system  by 

✶✻ illustrating a use case, utilizing both an analytical model and simulation. 
 

✶✼ Keywords: User location discovery; sensor network; user friendly 

 

 
✶✽          1. Introduction 

✶✾ The   term   smart   home   describes   homes   equipped   with   intelligent   technologies     (i.e., 

✷✵            context-aware  systems  and  services)  that  generate  an  added  value  for the user. Smart homes 

✷✶                              are usually privately-used homes (e.g.,  residential houses and apartments) in which many home 

✷✷     automation  devices,  home  appliances,  consumer  electronics  and  communications  equipment  are 

✷✸            interconnected and oriented toward the needs and demands of the user.  The interconnection allows 

✷✹            the provisioning of new services and assistant functionalities (e.g., monitoring elderly/patient users 

✷✺            [1],[2]) that go beyond the individual value of the home’s appliances [3]. 

✷✻ A main goal of smart homes is to offer a better quality of life for their users in comparison 

✷✼            to  traditional  homes. Everyday  activities  could  become  intuitive,  enjoyable,  convenient,  safer, 

✷✽            easier,  faster,  and  better  in  many  ways  [4]. To  provide  a  variety  of  services  to  users,  as  much 

✷✾            context information (e.g., location, time, user/device profiles, etc.)  as possible should be    available. 

✸✵            Context-aware services are a key in order to offer an improved range of services.       Among context 

✸✶            information, user location is crucial for a context-aware service provision system [5], as many  smart 
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✸✷           home services are based on information about the current location of the user, which is why particular 

✸✸            attention is being focused on User Location Discovery (ULD). 

✸✹ Conventional ULD systems are not user-friendly. They either force a user to carry a device (e.g., 

✸✺      a mobile phone or a tag) or they monitor user’s actions via a camera system. This paper considers the 

✸✻            following multi-objective research question:  how to design a novel ULD system for    context-aware 

✸✼                              services in future smart homes that will (i) respect user’s privacy,  (ii) not force users to carry any 

✸✽            special device, and (iii) be fault tolerant and provide adequate accuracy in localizing users. 

✸✾ The technologies of the Internet of Things (IoT), embedded systems, intelligent devices and 

✹✵            machine-to-machine communication are already extending into our daily life. The IoT will introduce 

✹✶           more and more sensors into smart homes, creating a new ecosystem with new opportunities for smart 

✹✷            home services.       With  the advent of low-cost,  low-power sensors,  designing a ULD platform that 

✹✸                             utilizes sensors already available in smart homes could indeed eliminate the problems associated 

✹✹            with current ULD systems. 

✹✺ We propose a sensor network-based and user-friendly ULD system that utilizes different  types 

✹✻            of  cheap  (mostly  already  installed)  sensing  nodes  combined  with  a  context  broker  that  uses a 

✹✼            fuzzy-based decision maker.         The proposed solution provides a simple but effective method that 

✹✽            meets users’ demands for privacy and comfort. A user does not need to carry a device and our system 

✹✾            does not use sensors (e.g., cameras, microphones) that impose on user’s privacy.  Sensors detect   the 

✺✵            presence of a user and send the context information to a fuzzy-based decision maker.  The   decision 

✺✶            maker processes the context information based on fuzzy set theory and makes a decision about   the 

✺✷                                   user’s location.   We  present a use case of our proposed ULD system to illustrate the continuous 

✺✸            observation of the same content by means of multiple devices with different resolutions and   screen 

✺✹                                 sizes independent of user location.   Based on the use case we define a scenario and evaluate our 

✺✺        proposed ULD system. 

✺✻ The rest of the paper is organized as follows.  An overview of ULD methods is presented in 

✺✼           Section 2, followed by a description of the proposed ULD method in Section 3. The use case, scenario 

✺✽            and evaluations are presented in Section 4, and we conclude in Section 5. 
 

✺✾          2. Background 

✻✵ Thanks to the emerging trends of IoT and context-aware services, indoor localization has  been 

✻✶            the  subject  of  intense  research  in  recent  years.  Several  systems  that  differ  in  their  technology, 

✻✷            localization technique or range were developed for different types of applications [6]. 
 

✻✸            2.1. Physical and symbolic localization 

✻✹ A ULD system can provide two kinds of information:  physical and symbolic [6].  Symbolic 

✻✺                                location encompasses abstract ideas of where something is,  while the Global Positioning System 

✻✻            (GPS) can detect physical positions.  The resolution of physical positioning systems can have   direct 

✻✼                                     implications on the definitiveness of the symbolic information they can be associated with.   For 

✻✽                              example,  knowing where a user is inside a building,  to within 10 meters,  is not very effective in 

✻✾           placing that user in a specific room because of the position of walls within that 10-meter range. 

✼✵            A symbolic location system can provide only very coarse-grained physical locations.   A symbolic 

✼✶            location  system  often  requires  readings  or  sensors  to  increase  accuracy  such  as  using multiple 

✼✷            overlapping proximity sensors to detect someone’s position within a room.  In this paper we mainly 

✼✸             focus on symbolic location. 
 

✼✹            2.2. Cooperative and non cooperative users 

✼✺ Generally, ULD methods in smart homes can be classified into two groups based on the role  of 

✼✻            the user [7]: cooperative users and non-cooperative users. In cooperative user methods, the end user 

✼✼           actively interacts with the components of the system. Personal wireless devices such as mobile phones 

✼✽        or other dedicated wearable sensors are usually used by a cooperative user for direct communication 
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with the smart home infrastructure.  In such a configuration, the user is most often a mobile node  

of the network, recognized by the system through the identification of the associated devices. The 

localization and the behavior interpretation are based on the processing of data actively exchanged 

with the wireless devices. These methods use a device for ULD, and so we can also consider them as 

Device-Based Localization (DBL) methods. 

Unlike cooperative users, with non-cooperative users, no wearable devices are (usually) present 

and no direct communication with the system is established by the user.    The user is part of         

the environment instead of being part of the wireless network infrastructure. Therefore, the user 

behavior detection depends on the ability of the system to sense the environmental changes and,    

in particular, the perturbation caused by the user’s presence and movements. We can consider non-

cooperative user methods as Device-Free Localization (DFL) methods. DFL is the practice of 

locating people or objects when no tag or device is attached to the entity being tracked [13]. Two 

common examples for DFL are camera-based and wireless-based. Optical camera-based methods  

do not expect the user to carry a device, but their function is usually very dependent on lighting 

conditions. High bandwidth requirements and limited view angles are the other major problems 

with optical camera-based methods. Thermal cameras, a variant of the optical camera, are extremely 

powerful for many applications. They utilize a directional heat sensor similar to those used for optical 

sensing. Wireless-based DFL methods [14] enable the user to proceed with their daily activities 

without having to wear a traceable device.  The main principle is the absorption phenomenon of  

the Received Signal Strength (RSS) of transmitted wireless signals as the human body crosses a 

transmitter-receiver path. By using transmitter-receiver pairs, the absorption characteristics of a 

human body exhibits signal patterns which can be used in locating and tracking within a fixed 

environment. 
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2.3. Related Work 

Based on above discussion, we have studied some important ULD methods and analyzed them 

in the Table I. 

A ULD system based on a probabilistic filtering technique (Bayes filter) to estimate and localize 

a single user in smart homes was proposed by Ballardini et al. [1]. Their proposed ULD method 

divides home environment in some zones and fixed passive motion sensors are installed for user 

detection. The method can localize a user with sub-room accuracy without asking her to carry any 

mobile device. Different from this work which is based on one type of sensor (i.e., motion sensor), we 

propose utilizing different types of sensors which mostly have been already installed in smart homes. 

This idea gives us this opportunity to detect user location not only based on her movement but also 

considering her other situations (e.g., smoking, sitting, sleeping, washing hand/dishes). In condition 

that one type of sensor can not detect the user, using different types of sensors can increase accuracy 

and fault tolerance of ULD systems. 

In [8], the authors combined two approaches to detect human motion and to localize individuals. 

The first method is a common skin detection methodology; the second is a classical gradient-based 

motion detector. The method asks its users to utilize multiple wearable inertia sensors to determine 

the orientation of their body segments and the lower limb joint motions. In addition, based on human 

kinematics and locomotion phase detection, they can determine the spatial position and the trajectory 

of a reference point on the body. Since the sensors can be worn by individuals at any time and in any 

place, this method has no restrictions in indoor and outdoor applications. 

Wu et al. [9] present a Wireless Indoor Logical Localization (WILL) approach. By exploiting user 

motions from mobile phones, they could successfully remove the site survey process of traditional 

methods, while still achieving competitive localization accuracy. The rationale behind WILL is that 

human motions can be applied to connect previously independent radio signatures under certain 

semantics. 
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Table 1. Different ULD methods 
 

 

Source Type Detection 
Level 

Application  Equipment(s)  Technique(s) Algorithm(s) 

[1] DFL Symbolic Localization 
and 
tracking 

ZigBee 
devices 
equipped 
with PIRs 

Probabilistic 
filtering, motion 
detection 

Bayes-based 
algorithm 

[8] DBL Physical Localization Wearable 3-D localization Camera-based 

   and tags and (Localization and motion   analysis 

   tracking camera Capturing) method 

[9] DBL Symbolic Localization Mobile Logical localization Skeleton 

    phone and (WiFi    Fingerprints mapping and 

    Access and user branchknot 

    Point(s) movement)  
[10] DFL Physical Localization Multiple Measuring the Distance 

    antennas propagation estimator 

    (MIMO-UWB channels between (time   difference 

    system) the    antennas   and between sending 

     the human body the pulse and 

      reception  of  the 

      echo) 

[11] DFL Physical Localization Wireless Motion detection Distributed 

   and pyroelectric  localization 

   tracking infrared   
    sensors   

[12] DFL Physical Localization PIR sensors Map-based Data   fusion   by 

     localization, particle filters 

     Bayesian and  
     particle filtering  
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A ULD method that does not need any wireless integrated circuit (IC) tags or target nodes        

is investigated in [10],  which considers the case where the user is walking in a room.   The ULD      

is achieved using a Multiple-Input Multiple-Output Ultra-Wide Band (MIMO-UWB) radar system 

that measures the propagation channels between the antennas and the human body. The waves 

reflected by the human body are extracted by using the differences between consecutive snapshots 

of the impulse response, eliminating the need for any pre-measured room response characteristics. 

In addition, by using this MIMO radar system, many pairs of propagation channels between the 

antennas can be measured, leading to a reduction in the effects of clutter, a major cause of errors in 

radar systems. 

Shen et al. present a new idea based on radial distance modulation to detect  and  locate 

moving objects from a top view angle [11].  This method has the advantage of directly extracting  

the information from the moving object’s characteristics and spatial position. Their experiments 

demonstrate that although the output of Passive InfraRed (PIR) detectors only has two values, 0  

and 1, they can locate a moving object with simple information after modulating and encoding the 

sensors’ perception area. 

Yang et al. [12] proposed a ULD method using PIR sensors. They also utilize an accessibility 

map to reduce the uncertainty of localization discovery, where the typical PIR-based ULD solutions 

suffer. The accessibility map represents user habits in smart homes, which also includes geometric 

and furniture layout information. Particle filtering is used to improve the location accuracy. Their 

method needs a fine map based on long-term monitoring. 

In a nutshell, existing work mostly relay on user location prediction techniques. These 

techniques are usually time-processing consuming and need rather complex algorithms,   large-size 
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databases and creating accessibility maps. In this paper, we propose a simple fuzzy set-based 

technique which makes real time decisions to detect user location. To the best of our knowledge,  

this work is the first effort of using fuzzy set technique for ULD. Combining variety of sensor types 

with a decision-making fuzzy set-based algorithm supports accuracy of our proposed ULD system in 

existence of sensors failure. 

In addition, existing work propose ULD systems which their equipment should be installed in 

smart homes independently. Emerging new technologies such as IoT and intelligent appliances are 

increasing the number of sensors and complexity of smart homes. Considering this point, different 

from existing related work, we think about possibility of using already-installed equipment (e.g., 

sensors) by emerging technologies (e.g., IoT) to reduce cost of the proposed ULD system as well as 

complexity of smart homes. 
 
 
 

✶✻✵ 

 

 

 

 

✶✻✶ 

 

 
✶✻✷ 

 

 
✶✻✸ 

 

 
✶✻✹ 

 

 
✶✻✺ 

 

 
✶✻✻ 

 

 
✶✻✼ 

 

 
✶✻✽ 

 

 
✶✻✾ 

 

 
✶✼✵ 

 

 
✶✼✶ 

 

 
✶✼✷ 

 

 
✶✼✸ 

 

 
✶✼✹ 

 

 
✶✼✺ 

 

 
✶✼✻ 

 

 
✶✼✼ 

 

 
✶✼✽ 

 

 
✶✼✾ 

 

 
✶✽✵ 

 

 
✶✽✶ 

 

 
✶✽✷ 

 

 
✶✽✸ 

 

 
✶✽✹ 

 

 
✶✽✺ 

 

 
✶✽✻ 

 

 
✶✽✼ 

 

 
✶✽✽ 

 

 
✶✽✾ 

 

 
✶✾✵ 

 

 
✶✾✶ 

 

 
✶✾✷ 

 

 
✶✾✸ 

2.4. Research Challenges 

Future smart homes will need to address some challenges. The most important challenges for 

ULD systems in future smart homes are: 

User comfort (ease of use) and simplicity: One of the most important aspects that will definitely 

encourage their adoption is simplicity, ease of use and level of comfort. A user-comfortable system 

should not force a user to carry a device for localization inside a home. 

Privacy and trust: The preservation of user privacy is crucial for any ULD system. Location 

information is very sensitive, and the identity of users should only be accessed under special 

authorization and within the purposes described in the application agreement that should have been 

agreed by the users. Privacy becomes an even more complicated problem for ULD systems that use 

devices like cameras or microphones for user localization. 

Accuracy: Localization accuracy is always a basic consideration for smart home applications. It has a 

direct effect on the performance of a ULD system. Depending on the type of application, the level of 

the required localization accuracy will vary. For example, for a heating/cooling application, it would 

be sufficient to know if the users are present, and in which room they are located. On the contrary, for 

senior care and monitoring applications it is desirable to know the precise location (and sometimes 

the situation in terms of activity and health) of users at all times, which requires much more accurate 

mechanisms and more complicated methods. 

Fault tolerance: It is essential for a system to continue operating properly in the event of the failure 

of some of its components to assure a reliable operation. 

Multiple-user localization: It is required to support more than one user. Most of the current DBL 

and DFL systems cannot support multiple users. 

Latency: Aligned with the accuracy issue, latency or speed is another major challenge that can be 

very critical for some applications 

Security: The development of a secure and trustworthy ULD system that respects privacy concerns 

is a challenging task, one that is decisive for the adoption of these systems by the public. Security 

requirements are somewhat aligned with privacy and trust issues. Apart from privacy and trust 

preservation, the use of secure ULD approaches will avoid undesirable situations such as theft. 

Encrypted communications are one of the techniques for providing secure ULD. 

Cost: Another important metric for users is the cost of ULD systems. Many users do not have the 

means and/or are not willing to invest a large amount in a ULD system. 

This paper mainly focuses on improving user privacy and comfort while meeting fault tolerance 

challenges. Acceptable accuracy and cost are also considered as important metrics. Some practical 

points that we will consider in designing our ULD system follow: 
 
 

 
✶✾✹ 
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✶✾✻ 

• For user comfort and ease of use, we design a ULD system without forcing users to carry a device. 
• Devices that directly affect user privacy, such as cameras and microphones, will not be used in our ULD 

method so that user privacy can be assured. 
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Figure 1. A high-level architecture for supporting context-aware services in future smart homes 
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• To keep costs low, we will consider using some pre-installed devices (e.g., sensors already being used by 

other applications). 
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3. Sensor Network-based and User-friendly User Location Discovery 

To improve user privacy and comfort, our ULD system is designed to be more user friendly than 

conventional systems. 

Figure 1 shows a high-level architecture for supporting context-aware services in future smart 

homes, and clearly presents the role of our ULD system in the architecture. Different types of sensors 

monitor the home environment to detect the user(s). Each sensor that detects a user sends a witness 

signal (as context information) through a sensor network via heterogeneous interfaces (e.g., ZigBee, 

Bluetooth, WLAN) to a Home Gateway (HGW). 

A ULD Context Broker (UCB) in the HGW processes all the received context information to 

detect the current user location. After detecting the location and processing the context information, 

the user location information is stored in the Context Information Repository (CIR) of the HGW as 

one part of the context information for a Main Context Broker (MCB). Normally there are other types 

of context information in addition to location information. This paper focuses on the ULD system 

and user location. 

Other types of context information and the methods of assembling them are out of the scope   

of this paper.  The MCB takes all the necessary context information from the CIR and processes it  to 
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offer a service (e.g., content delivery, child protection) to the user. Finally, the MCB makes a decision 

about how it can provide the requested service to the user.  The MCB serves the requested service  

to the appropriate devices for the user through a home communication network. Before designing 

the user-friendly ULD system, we first conducted a comprehensive study to find some appropriate 

sensors. 

Next, we consider the model to use with the selected sensors and finally we propose a UCB with 

fuzzy-based decision making to process the context information and perform ULD. 
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3.1. Selecting appropriate sensors 

Figure 2 (partly derived from [15]) shows a comprehensive collection of the different types of 

sensors that may be found in future smart homes for different applications. We used a five-step 

elimination process to select the most appropriate sensors. First, we found and categorized all the 

possible sensors (list.1), and then we selected those sensors that could potentially be used for ULD 

systems (list.2). In the third step we evaluated the sensors in list.2 in terms of user privacy. We then 

assessed those possible sensors for their accuracy and finally selected some sensors that could be 

useful for our ULD system. 
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3.2. Deployment of selected sensors in a smart home 

Our proposed future smart homes could consist of an HGW, a sink node and a number of 

wireless sensor nodes, as well as some partitions (seven partitions from Part.1 to Part.7), as shown in 

Figure 3. 

The HGW can be located in any convenient place in the smart home. The sink node is a specially 

designed sensor node that has more memory than other sensor nodes and is connected to the sink 

through a wired or wireless link. The sensor nodes are distributed in the smart home so that the radio 

coverage of any sensor node covers at least one other node. Whenever each sensor node witnesses 

an event it sends a signal to the sink. The sink node collects data from the sender nodes and delivers 

them to the HGW. All the sensor nodes can be battery-powered except the sink node, because the 

sink node is the most frequently used node in the network. When deployed, the transmission power 

of each sensor node is regulated so that its radio coverage is fixed. 

Every sensor node is required to monitor its own battery power level and has its own 

identification (ID) number and location information (i.e., it is located in Part.1). The sensors we 

selected and how we used them in our smart home model are described here: 

Contact sensors (1): These are electric contacts on doors (including closets, drawers, pantries, etc.), 

installed on all doors and drawers. When a door (or a drawer) is opened or closed an event is 

triggered. 

Tactile carpets (2): The sensor carpet (mat) design is based on capacitive sensors using low-cost 

conducting papers which have sufficient conductivity for most disposable product applications [16]. 

We place them near each entrance door in order to easily detect a user. 

Pressure sensors (3): We use pressure sensors for two goals and in two different types of places: 

- Near doors for detecting user location and direction: We use pressure sensors to detect a user’s 

movement direction. Consider a door between two partitions (e.g., Part.3 and Part.7in Figure 3) of a 

smart home. We put two pressure sensors on two sides of the door (one sensor near the door inside 

each partition). If the sensor in Part.3 detects the user and then the sensor in Part.7, a user is going 

from Part.3 to Part.7. However, if the sensor in Part.7 detects the user first, followed by the sensor in 

Part.3, then that user is going from Part.7 to Part.3. 

- Under the mattress or chairs to detect if a user is lying in a bed or sitting in a chair: When a user 

sits or lays on a bed or a chair, the pressure sensor sends signal to the sink. For more accuracy some 

other sensors such as those for vibration and temperature are used under chairs and beds. 

Smart light switches (4): Installed in each partition of the smart home, these are useful especially at 

night. When the user turns the lights on or off, this sensor can send an event or a signal to the sink. 
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Tap sensor Tap sensor No Good Selected 

Electricity grid     
Vibration Vibration No Medium Selected 

Corrosion     
Water 

contamination 
    

 
 
 
 

Mobile 

 
 

Vehicular Sensors 

Location     
Acceleration     
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NOTE – 1: Selected sensors and their applications in our ULD will be introduced in Section 3.2. 

NOTE – 2: UAV: Unmanned Aerial Vehicle 

 

Figure 2. Selecting appropriate sensors for ULD from different types of sensors 
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Vibration sensors (5): These are fitted to doors and will activate if they receive any kind of bang or 

severe vibration. We also use them in chairs and beds to detect a user. 

Badge key (6): Some homes are equipped with a badge key. When a user uses it to come inside their 

home, it sends a signal to the HGW to announce that the user is coming inside their home. 

Temperature (7): Installed in beds and in some chairs to detect user location based on body 

temperature. 

Humidity sensor (8): We use a humidity sensor inside the bathroom. When a user takes a shower, 

the humidity sensor senses a rapid increase in humidity levels and sends a signal to the HGW. It can 

be installed over a bath or a shower. The humidity level is user-definable. 

Smoke (9): This sensor is installed the ceiling of each partition. If a user is smoking we can easily 

detect user location based on a signal sent by this sensor. 

Passive motion (10): Transforms a detection of motion into an electric signal. One passive motion 

sensor is installed in each partition. It can detect user movement and send a signal to the sink. 
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Figure 3. A high-level architecture for the sensor network-based and user-friendly ULD system in 

future smart homes 
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Tap sensor (11): When this sensor senses the presence of an object (e.g., a user’s hands) in front of the 

tap it sends a signal to the solenoid valve to initiate the flow of water. When the object is no longer 

present, the infrared unit sends an electronic signal to the solenoid valve to terminate the flow of 

water, usually after a few seconds. Although the main goal of the tap sensor may be hand detection 

to start and stop the water flow (and avoid wasteful water flow), it also serves as a good user location 

indicator. When the tap sensor detects a user’s hand it sends a signal to the sink. 

Water Sensors (12): These will wirelessly activate if water passes over them. We installed them in a 

bathtub, a kitchen sink and a water closet (under taps). When a user consumes water this sensor can 

detect user action and position. 
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3.3. ULD Context Broker (UCB) 

For future smart homes, we consider a very simple and effective method for evaluating the 

context information received from sensors. We divide the smart home into different partitions. Each 

room can be considered as a partition and we consider the following four detector layers inside each 

partition (see Figure 3): 

Entrance gate detectors (Layer 1): This layer is the most important layer of our ULD architecture, as 

it is designed to detect if a user is coming or leaving a partition. It is equipped with five different 

types of sensors at the entrance port(s) of each partition to detect a user. Using a variety of sensors 

offers a very high level of user detection. 
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Environment detectors (Layer 2): These monitor the changes in the environment of each partition 

such as sensing smoke to detect user location. 

Infrastructure detectors (Layer 3): Monitoring infrastructures such as taps produces good indications 

of a user’s location. 

Device detectors (Layer 4): We do not use this layer here, but we believe electronic devices such as 

PCs, and laptops and phones can help us to detect user location. We reserve this layer for our future 

work. 

Each layer is divided into clusters. Each cluster includes a group of sensors that are located near 

each other and can detect a user at the same time. 

Our proposed UCB is based on fuzzy set theory. We combine the concept of context awareness 

with fuzzy set theory. The proposed ULD receives context information from different types of sensors 

and evaluates that data using the fuzzy set theory. 

The theory of fuzzy set, introduced by Zadeh [17], is a tool to model uncertainty and for 

processing vague or subjective information in mathematical models. The notion central to fuzzy 

systems is that membership values are indicated by a value on the range [0, 1], with 0 and 1 

representing absolute Falseness and absolute Truth respectively. 

Consider a situation that some sensors in different locations simultaneously detect the user. 

Obviously the user can not present in different locations (e.g., different rooms) at the same time. The 

fuzzy set theory can help us in these uncertain situations to make appropriate decisions. We consider 

a fuzzy set set A that includes all the possible parts of the smart home, A=(p1,p2,..,pn). Our goal is to 

find the part where the user is currently located. Based on the concept of fuzzy sets, a membership 

function mA() should be considered for each part of the home. For each partition i, the membership 

function mA(pi) consists of four factors (i.e., L1, L2, L3 and L4) on a range of [0, 1] that relate to Layer 
1, Layer 2, Layer 3 and Layer 4 of our layering detector concept. As mentioned above, we reserve  

L4 for our future work and so here we simply define it to offer a comprehensive architecture. A fair 

cooperation to compute the membership value (function) of smart home partitions can be achieved 

by adding these factors together. This means that all four layers of each partition (i.e., those in Part.i) 

will cooperate together to compute a membership value mA(pi). When a sensor detects an event its 

situation is changed from passive to active and it sends a signal to the sink. 

The following equation describes the computation of membership value for the i-th Part of a 

smart home in more detail: 
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  where the denominator (ωilc) is equal to the total number of sensors in cluster  c of layer l of Part 
i. αilc is the number of sensors in cluster c of layer l of part i that detects a user. Nil is the number of 

available clusters in layer l of Part i and Nil ACT is the number of active clusters in layer l of Part i in 

which currently at least one of their sensors is active. We consider a priority (i.e., φ) for each layer. L1 

has an important role and so has the highest priority (e.g., φ=0.4) and, in this version, L4 is considered 

to have lowest priority (e.g., φ=0.1). We consider a δ factor for mapping membership value to [0,  1]. 

When ω = α for all layers, we will have a maximum value of the membership function (mA(pi)=1). 

The Part with the highest membership value or mA() will be selected as the most likely current user 
position. 

Figure 4 shows the general mechanism of finding user location using the UCB. Sensors in each 

partition send their context information (if they have any) to the UCB. The UCB then computes 

membership values for each partition and finally compares all the membership values and selects 

the highest one as the user location. 
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Figure 4. The mechanism for fuzzy-based decision making in the ULD context broker 
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4. Performance Evaluation 

In this section, we first introduce a use case and define a scenario for evaluating the proposed 

ULD method. Next, we manually run the scenario to demonstrate the performance of the proposed 

method. Finally, we simulate the scenario and evaluate the proposed idea based on a series of 

comprehensive tests. 
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4.1. Use case and scenario example 

Continuously Watching the Same Content on a Three-Screen TV [19] has been considered as one 

of the most representative context-aware services in future smart homes. In order to watch the same 

content on several devices continuously, this service should support content mobility among multiple 

types of screens with different resolutions based on user location in a smart home. It automatically 

selects the best available device for watching content. Here, we illustrate our ULD system supporting 

this service in the future smart home environment shown in Figure 5, considering the following 

scenario. 

A user (i.e., Alice) enters her living Room at time T0, turns on the light at time T1 and seats on  

a chair at time T2 to watch content on her TV. At time T3 she leaves the Living Room (e.g., forgets  

to turn off the Living Room’s light and the TV) and at time T4 she goes to the kitchen and wants to 

continue watching that content on her mobile device. After that, she leaves the kitchen attimeT5 and 

goes to bedroom1 at time T6, turns on the light at time T7 and lies on the bed at time T8; watching 

what remains of the content on her laptop. Figure 5 shows the scenario. 
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Figure 5. The scenario: Alice locations in a smart home 
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4.2. Analytical model 

Here we manually run the same scenario described above along with our proposed ULD 

method. 

In our ULD system, at time T0, a cluster of L1 layer sensors located around the living room 

entrance door (Part.3) detect Alice’s presence and send signals to the sink. At time T1, an L2 sensor 

(light switch) in the living room detects Alice and, then, a cluster of L3 layer (chair) sensors in the 

living room detects Alice at time T2. At time T3, a door cluster (L1 layer) of sensors in the living room 

detects that Alice is leaving the living room (she has forgotten to turn off the living room light). At 

time T4, she goes to the kitchen (Part.2) and is detected by the kitchen’s door entrance sensors. 

In this situation, the fuzzy-based UCB has two possibilities to select: (i) the living room (that its 

light is still on) and (ii) the kitchen where a cluster of L1 layer sensors detects Alice. The UCB easily 

selects Alice’s correct location because, on one hand, the priority (coefficient) of the L1 layer sensors 

is higher than that of the L2 layer sensors, and on the other hand, there is just one active sensor (light 

switch) in the living room while all (or at least most) of the door cluster of the kitchen’s L1 layer are 

active. At time T5, the door sensors detect she is leaving Part.2 and enteringPart.7. 
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Figure 6. The scenario: detection mechanism 
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At time T6, the sensors located around the bedroom1 entrance (the L1 layer door cluster sensors 

of bedroom1) detect she is coming into the bedroom1 (Part.1). Then, at time T7, some L2 layer sensors 

in Part.1 detect Alice and she is detected by L3 layer sensors at time T8 (see Figures 5 and 6). 

The benefit of our ULD system is that it has the ability to find a user’s correct location even under 

conditions of abnormal user action, sensor failure or sensor inaccuracy. As Figure 6 shows, after T3, 

there were two possible candidates for Alice location (because she forgot to turn off the Part.3 lamp). 

However, the UCB can find right location of her based on the fuzzy set theory. After just time T3, 

there was only one active sensor in Part.3 (light switch of layer 2). 
Nil    α32c ∑C=1 ω32c  α321 

 
✸✽✵ Therefore,  the value for Part.3 will be  (0.3  × 

N31 
) = (0.3 × ω321 

) which is less than  the 
 
✸✽✶ membership value of the Parts that all (or most) of the L1 sensors that detect Alice (see Figure 6). 
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4.3. Simulation 

To evaluate the performance of our proposed method, we basically simulate the use case scenario 

in Section 4.1 in the smart home environment shown in Figure 3. We used DPWsim simulator [18] 

and conducted four different tests as described below. 

To make the simulations more accurate, we consider different rates of sensor error. The sensor 

error in this simulation occurs when a sensor cannot correctly detect a user’s presence. This error 

covers sensor inaccuracy, human faults (e.g., forgetting to turn off a light switch) and even some 

environmental negative effects on sensors (e.g., darkness at night). We also consider sensor failure as 

another important factor in evaluating the performance of ULD systems. Sensor failure occurs when 

a sensor is completely out of service (e.g., its battery is dead). 

To evaluate the performance of the proposed ULD method, we consider four different tests, as 

listed below: 

Test.1-Detection accuracy: localization accuracy is one of the most important characteristics of each 

ULD system.      Test.1 evaluates the accuracy of our system by considering different levels of sensor 
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detection error rates. This test is considered as a main step to evaluate the performance of our 

proposed method. The accuracy is indicated as the percentage of times the ULD system detected  

the correct location (Part.) of the user in the presence of different rates of sensor errors. 

We considered different types of sensor error rates from a low (5%) to a high rate (30%). Based 

on the scenario in Section 4.1, we verified the user location at eight time slots. As Figure 7 shows, the 

system works perfectly in the presence of low sensor error rates. The system even shows an accuracy 

level of 70% or higher when faced with very high rates of sensor error. In general, for sensor error 

rates under 20%, the ULD system has a quite acceptable performance, proving both its accuracy and 

robustness. 

Test.2-Fault tolerance: it is an important issue if a system can work correctly even in presence of 

fault. As mentioned earlier, sensor failure means a sensor becomes completely out of service. Test.2 

considers different rates of node (sensor) failure and shows performance of the proposed system in 

the presence of different sensor error rates. 

We simulated six different rates of node failure ranging from 0% (no fault) to 5%.We also showed 

detection rate of a single sensor in different sensor error rates (normal situation). The normal situation 

can be used as a reference to better understand effectiveness of our ULD method. 

In Figure 8, we can understand how our system is completely fault tolerant given low rates of 

node failure.  In fact, we cannot see any notable challenges to the system as the number of node 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Test.1: detection accuracy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Test.2: fault tolerance 
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Figure 9. Test.3: relation between the number of sensors and accuracy 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Test.4: membership function value monitoring 
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failures is increased. This robustness is partly because the system is based on the functioning of 

multiple sensors. 

Test.3-Relation between the number of sensors and accuracy: this test shows the relation between 

the number of sensors and the system’s accuracy. Test.3 also allows us to determine the appropriate 

number of sensors for the system. In this test, we increase the number of sensors in each Part of the 

smart home. First, we consider only one sensor for each layer in each Part (a total of 3 sensors). Then 

we gradually increased the number of the sensors, up to 30 in each Part. 

The results of Test.3,  shown in Figure 9,  show that the number of sensors has a direct effect   

on system accuracy. Figure 9 shows that increasing the number of sensors increases the system’s 

accuracy. However, there appears to be a threshold for the ideal number of sensors. Using many 

sensors above this threshold can increase the complexity of the system, and do so with minimal (or 

no) gain in accuracy. 

Test.4: membership function value monitoring: goal of this test is to discover more details about the 

mechanism of detecting user location using the proposed ULD system. Test.4 was conducted when 

the user was in Part.3. By evaluating the amount of the membership function values of different Parts 

of the smart home, we can better understand the system’s accuracy in determining user location. 

We ran the proposed algorithm to detect the user’s location when the user was in Part.3. We 

assumed a sensor error rate of 10%. We repeated the simulation 100 times and took an average. 

Figure 10 shows the results. We can see that for all times 100 simulations, the algorithm could detect 
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the user location correctly, as the membership function amount in Part.3 is sharply higher than for 

other Parts. This test demonstrates the accuracy of the proposed ULD method in correctly detecting 

a user’s location. 
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5. Conclusion and Future Work 

User location information will play an important role in many context-aware systems designed 

for future smart homes. We have first discussed the limitations/challenges of current ULD systems. 

We then mainly focused on improving user privacy and comfort while meeting fault tolerance 

challenges. Two other important challenges of detection accuracy (i.e., finding the correct location 

(Part.) of the user) and cost were also considered in this paper. 

To address above mentioned challenges, this paper proposed a ULD system without forcing 

users to carry a device to support user comfort and ease of use. The proposed ULD system also 

has not used any device (e.g., camera and microphone) that directly affects user privacy. Using some 

pre-installed devices (e.g., sensors already being used by other applications) kept cost of the proposed 

system low. Regarding fault tolerance, the proposed ULD system uses different types of sensors 

which give ability of detecting the user in presence of sensor failure. For detection accuracy, we 

have proposed a simple but effective context broker based on the fuzzy set theory. We claimed that 

our proposed ULD system, combining different types of sensors along with the fuzzy-based broker, 

can detect user location even in presence of sensor/user faults. To prove the claim and show the 

feasibility of our proposed system, a use case scenario has been presented. The defined scenario, first, 

has been manually analyzed and, then, simulated. Both analytic and simulation evaluations showed 

effectiveness of the proposed ULD method in aspects such as detection accuracy and fault tolerance. 

The proposed system will definitely involve some important points as future work such as (i)  

way of cooperating the ULD system with other smart home systems. In other words, how ULD 

system could share a very same infrastructure (e.g., sensors) with other applications (systems) in 

smart homes (e.g., sensor network virtualization is a technology that can potentially enable this 

sharing), (ii) in our fuzzy-based decision maker, the method of clustering sensors and also computing 

optimal amount of priority (i.e., φ) for each layer plays a critical role in performance of the ULD 

systems. Selecting large or very small difference between priority amounts of layers can decrease 

accuracy of the ULD system, (iii) supporting location discovery for more than one user. In current 

time, the DFL approaches (i.e., do not force users to carry/wear any device) can only be used for 

applications where a single user is present in the environment (e.g., a single elderly who lives alone 

in his home). Until now, there is not any appropriate solution to support multiple users for DFL 

methods.   Finding solutions to extend this type of ULD systems to support multiple users is an 

important future work objective. 

In addition to typical limitation of DFL methods (i.e., can not ask users to carry/wear any 

device), our ULD method should not use any device/technique which may violate users privacy 

(e.g., using camera). For future work, we plan to find a solution for our ULD method to detect and 

identify multiple users based on finding varies user’s contexts (e.g., users height, weight and even 

foot size). In first step, we will study on easily available and cheap PIR sensors. The analog output 

signal of PIR sensors may include more contexts beyond only user presence, such as the distance of 

the user from the PIR sensor, the velocity and direction of the user movement and even body shape 

and gait. These contexts may help us to find an appropriate way to identify and support multiple 

users. 
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