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Creating Human Digital Memories with the Aid of 

Pervasive Mobile Devices 

 

Abstract 

The abundance of mobile and sensing devices, within our environment, has led to a society in which any 

object, embedded with sensors, is capable of providing us with information. A human digital memory, 

created with the data from these pervasive devices, produces a more dynamic and data rich memory. 

Information such as how you felt, where you were and the context of the environment can be established. 

This paper presents the DigMem system, which utilizes distributed mobile services, linked data and 

machine learning to create such memories. Along with the design of the system, a prototype has also been 

developed, and two case studies have been undertaken, which successfully creates memories. As well as 

demonstrating how memories are created; a key concern in human digital memory research relates to the 

amount of data that is generated, and stored. In particular, searching this set of big data is a key challenge. 

In response to this, the paper evaluates the use of machine learning algorithms, as an alternative to 

SPARQL, and treats searching as a classification problem. In particular, supervised machine learning 

algorithms are used to find information in semantic annotations, based on probabilistic reasoning. Our 

approach produces good results with 100% sensitivity, 93% specificity, 93% positive predicted value, 100% 

negative predicted value, and an overall accuracy of 97%. 

 

Keywords: Human Digital Memory, Lifelogging, Sensor Networks, Ubiquitous Computing, Linked Data, 

Supervised Machine Learning 
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1. Introduction 

Memories influence every aspect of our lives. It is considered to be the most basic and important 

operation of the brain, with very few cognitive processes (recognition, language, planning, etc.) being able 

to operate effectively without a contribution from it [1]. They are a significant part of our existence that can 

be shared anywhere and at any time. Reminiscing, over past experiences, is a substantial part of our lives. 

It is a practice that has been performed over thousands of years and is what makes us who we are. However, 

losing the ability to recollect memories is not only disadvantageous, but can prove quite detrimental, 

particularly to many older people [2]. Nevertheless, recent advances in technology can alleviate this 

problem, to a certain extent. As technology advances, computing devices have now taken a more central 

role in our lives. They have shifted in reliance from just being seen as “glorified calculators” [3], to devices 

that are capable of capturing and storing our entire lives. As such, this shift has resulted in the area of 

creating and managing human digital memories, being declared a grand challenge in computing research 

[4]. 

In today’s society, the proliferation of “smart” mobile devices is becoming more abundant. 

Currently, 81.6 million mobile subscriptions are held in the UK [5]. By 2016, Cisco predicts that there will 

be more than 10 billion mobile Internet-connected devices, which exceeds the worlds projected population, 

at that time, of 7.3 billion [6]. Devices are now smarter, smaller, easier to transport and able to capture a 

variety of data, such as photos, location and videos. Body sensors are also becoming more widespread, as 

people develop an interest in monitoring their health. These devices are capable of capturing physiological 

data, such as sweat rates, body temperature and heart rate, whilst environmental sensors can gather 

temperature, humidity and atmospheric readings. As these devices become more prevalent, within our 

environment, a vast array of information about us and our surroundings can be captured and utilised. 

Storage capacities are also increasing, and a lifetime of data can be saved; resulting in an increasing amount 

of content being captured, stored and shared. The explosion of mobile computing and ubiquitous content 

sharing has enabled users to create and distribute data instantly. 

As mobile devices become more widespread, and sophisticated, this has led to a generation of users 

who capture more content, ubiquitously, than previously seen. For example, in relation to YouTube, traffic 

from mobile devices tripled in 2011 and over 4 billion hours of video are watched each month, with more 

than 20% of global views coming from such devices [7]. This shift in ubiquitously capturing and sharing 
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content has led to people creating extensive digital collections and reflection of those items has become an 

active part of people’s lives [8]. Taking the concept of capturing personal content one step further, the 

practise of ‘lifelogging’ refers to the process of automatically recording aspects of one’s life in digital form 

[9]. As described by Dodge and Kitchin [10], “A life-log is conceived as a form of pervasive computing 

consisting of a unified digital record of the totality of an individual’s experiences, captured multimodally 

through digital sensors and stored permanently as a personal multimedia archive”. Whilst the process of 

recording this information is known as lifelogging, the outcome is often referred to as a human digital 

memory (HDM). As defined by Kelly [11], “A HDM is typically a combination of many types of media, 

audio, video, images, and many texts of textual content”. These personal archives are constructed from a 

wide range of data sources, across various media types [12]. As technology advances and sensors become 

more prevalent within our environment, the range of data that we have access to is increasing. Therefore, a 

greater level of detail can be incorporated into the creation of a HDM. New possibilities will allow content 

about us, and family and friends to be clustered and linked together, based upon a multitude of factors. This 

will include information from mobile and physiological computing. This data provides a richer 

understanding about aspects of our health, level of activity and physical wellbeing. Even, providing 

information on how we made others feel at that time. However, whilst we have access to many data sources, 

capturing and collating all of this information is a challenge. The vision, and one of the challenges, of 

Memories for Life is to help people manage and use their digital memories across their entire lifetime [4]. 

This work illustrates how data, from pervasive devices, can be used to create a more vivid HDM and how 

this data can be captured and utilised for an extensive amount of time. 

This paper explores how HDMs can be created, using pervasive devices, and is an extension of 

previous work [13]. In this work, the DigMem system is presented, which creates rich and interactive 

HDMs, utilizing devices in the user’s present environment. In order to create these dynamic memories, a 

new method is being proposed. The approach creates an ad-hoc peer-to-peer (P2P) network and obtains 

data, from ubiquitous devices. Utilizing linked data, and machine learning, these various pieces of 

information are brought together, to form a HDM. Whilst each device generates many specific pieces of 

data, these individual data sets are not suitable, on their own, for representing a HDM, as the level of detail 

is very low. In order to overcome this, memory boxes are created by semantically linking all the related 

data and turning it into visual items of events. Previous work [13] focused on creating the P2P network that 
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is used to obtain information, from a number of device-specific services. In this paper, the idea is extended 

into a fully functional system that takes the gathered information and constructs it into a HDM. This is 

achieved using machine learning and semantic web technologies. In this sense, the system is capable of 

creating HDMs that take advantage of the user’s current environment. This is beneficial as DigMem 

provides a standardized method that enables the user to create an ad-hoc P2P network and obtain 

information, from devices prevalent within their environment. This approach eliminates the need to 

purchase specialist equipment and allows a more dynamic memory to be created, as a number of different 

services can be brought together to produce a richer HDM. The approach also benefits from being flexible 

enough to collect and use HDM data over an extensive period. 

In order to demonstrate the applicability of the design, a prototype has been developed. To validate 

the implementation, two case studies have also been undertaken. A key concern in human digital memory 

research relates to the amount of data that is generated, and stored. In particular, searching this set of big 

data is a key challenge. In response to this, the paper evaluates the use of machine learning algorithms, as 

an alternative to SPARQL, and treats searching as a classification problem. Based on probabilistic 

reasoning, supervised machine learning algorithms are evaluated to find information, in semantic 

annotations. 

2. Related Works 

Capturing memories is an activity that all of us do regularly. From taking photos and videos to 

inadvertently saving emails and texts, our lives can be reconstructed from our digital artefacts. Nowadays, 

these moments are less likely to be captured on “traditional” cameras and camcorders but increasingly on 

mobile devices and sensor equipment. This increasing trend of capturing content, ubiquitously, is one that 

will only strengthen over time, thus presenting us with new and novel ways in which data can be obtained. 

This shift has resulted in the effortful selective capturing of moments being replaced with digital 

lifelogging, which seeks to be effortless and all-encompassing, in terms of data capture [14]. Content is 

being captured constantly and with minimal user involvement (i.e. with the use of automatic, wearable, 

devices). Mobile devices and sensor equipment are now able to capture a more comprehensive record of 

everyday life, more or less as and when it happens [14]. These devices, offer an innovative, and less 

obtrusive, method for capturing content ubiquitously and are able to document our entire lives. A vast 

collection of information can be recorded about ourselves, at any time. Automatically recording this data, 
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and quantifying how a given aspect of our body changes over time, provides an insight into our underlying 

behaviours [9], [15]. This increasing trend is one that will only strengthen over time; presenting us with 

new and novel ways in which the data that can be obtained. 

2.1 Wearable Lifelogging Systems 

A revolutionary lifelogging tool is Microsoft’s SenseCam [16], a small wearable device that triggers, 

automatically, to capture photos. It contains a digital camera and multiple sensors, including sensors to 

detect changes in light levels, an accelerometer to detect motion, a thermometer to detect ambient 

temperature, and a passive infrared sensor to detect the presence of people [17]. The SenseCam has been 

used in various studies [9], [17–24] to monitor behaviour and capture memories. For example, Lee et al. 

[17] use the technology as a memory aid to capture the user’s daily routine. The images recorded are then 

presented in a timeline format, similar to the approach used in Microsoft’s MyLifeBits [25] project. In 

contrast, the SenseCam has also been used within the area of travel research. One such approach is Kelly 

et al.’s [22] study that uses the device to measure its effectiveness of tracking sedentary behaviour. Their 

initial results indicate that the over–reporting of self–reported journeys was common. In order to track this 

type of behaviour the SenseCam was a useful tool. 

The SenseCam is seen as the leading technology in capturing memories. However, other projects 

have also been undertaken for the purposes of lifelogging and monitoring behaviour. Blum et al.’s [26] 

inSense is one such system. It uses acceleration, audio and visual sensing equipment, to perform real–time 

context recognition. While Belimpasakis et al. [27] have implemented a “client–server platform that 

enables life logging, via mobile context collection, and processes the data so that meaningful higher-level 

context can be derived”. Meanwhile, MemoryLane [8], [28], “allows people to capture, actively organize 

and reflect on digital representations of mementos relating to people, places and objects”. This work 

centred on distributing a Sony visual IC recorder/camera, which took photos and recorded audio, to 31 

participants. For 3 days, the users then captured any pictures and audio narratives about significant people, 

places and objects in their lives [8]. This study illustrated that HDMs are important for reflection and that 

people are interested in reflecting upon their digital artefacts. However, the system relies on the user 

actively taking pictures and recording audio data. In order to construct a truly reflective digital memory this 

data, along with other pieces of information, needs to be collected with as little user interaction as possible. 
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As well as recording audio data, researchers have also been focusing on collecting physiological 

information, via the use of sensing technologies. The activPAL system uses a single–axis accelerometer 

[29] that can identify sitting or lying, standing, and walking transitions. The activPAL accelerometer has 

also been used to determine habitual behaviour, whilst also determining the interplay between sedentary 

behaviour and periods of physical activity [30]. However, the limitation of this system is its inability to 

recognise slow steps, due to the small amount of amplitudes that are produced. In terms of creating 

memories, this system can be used to illustrate the movements of a user throughout the day. Nevertheless, 

the context in which those movements occurred is unknown, without the use of a visual aid. 

Armbands have also been developed that house several sensors within the device so that a variety 

of physiological data can be collected. The SenseWear Armband (SWA) collects data from a bi-axial 

accelerometer, galvanic skin resistance (sweat rates), heat flux (heat dissipated from the body), and skin 

and near body temperature, to estimate energy expenditure (EE) and step count [31]. The device has been 

used within Dwyer et al.’s [31] work to determine its accuracy for estimating energy expenditure (EE) and 

step count during treadmill walking in cystic fibrosis (CF) patients, compared to healthy adults. In this 

instance, the SWA provided a reasonably accurate measure of step count compared to manual counting 

during tread mill walking and diagnosis of CF didn’t affect its accuracy [31]. The SWA has also been used 

to monitor adherence in women with rheumatoid arthritis in a similar way to measuring decreases in 

sedentary behaviour [32]. The results from this study concluded with an 89% adherence rate and that the 

SWA is a viable method of quantifying physical activity and may be useful to monitor effectiveness of 

interventions to increase activity in people with rheumatoid arthritis [32]. In relation to creating memories, 

this system can also be used to illustrate the movements of a user throughout the day. However, like the 

activPAL system [29], the context in which those movements occurred is unknown, without the use of a 

visual aid. 

Whilst the technologies and methods discussed are a useful starting point, within the area of 

lifelogging, novel solutions are needed that include much richer data capturing capabilities and require a 

less obtrusive and expensive, approach. Although the SenseCam has been hailed as a “revolutionary 

pervasive device” [2] it has its limitations. One drawback is that the data that is captured is limited, as only 

photos and a very small amount of sensor data are recorded. Whilst photos are a good place to start, 

memories are made up of so much more than that. Emotions and environmental factors also contribute to 
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the composition of memories. These important issues need to be factored into creating an accurate HDM. 

Another drawback is in relation to accessing the data. SenseCam images have to be manually uploaded 

periodically, which can be very time-consuming and mundane for the user. The device is also very 

expensive. Exploiting the services of devices, already present within our environment, is a far less-costly 

approach. These are important points to consider, and ones that will be propelling the research forward. 

Mobile and peer-to-peer (P2P) technologies can be seen as a way to alleviate these problems. The explosion 

of mobile computing and the sharing of content ubiquitously have enabled users to create and share 

memories instantly. Access to different data sources, such as location, movement, and physiology, has 

helped to create a data rich society where new and enhanced memories will form part of everyday life. P2P 

systems have also increased in popularity, over the years, due to their ad hoc and decentralized nature. As 

mobile devices become increasingly part of P2P systems, a completely new dimension for capturing, 

sharing and interacting with enhanced human digital memories is forming. 

2.2 The Use of Mobile Devices in Creating HDMs 

Memories are often impulsive events and are better suited to being captured and shared on a portable 

device. These devices are compact and easy to carry, making them ideal for sharing content amongst users. 

Olsson et al. [33] state that “Mobile phones offer natural opportunities for collecting instant digital pictures 

and videos because of their immediate availability to users”. Mobile computing, along with P2P 

networking, and the notion of collecting digital life memories, has begun to generate a great deal of interest.  

One such approach is JMobiPeer, a P2P middleware for mobile ad hoc networks (MANETs). It has 

been designed to work on the Java 2 Mobile Platform Micro Edition (J2ME) and is compatible with the 

JXTA (Juxtapose) P2P protocols [34]. The JMobiPeer system has obtained good results, in relation to the 

discovery time and bytes exchanged. However, as Wang and Motzfeldt [35] observe, it “has only been 

tested on emulators on standard PCs. This is likely due to high requirements on CPU and memory from 

running the framework”. Therefore, real world testing on actual mobile devices would be required to 

determine whether the application could be executed on devices that are far less capable. 

Taking an opposing view, Tsai et al. [36] created a Mobile Social Software (MoSoSo) application 

that runs on mobile devices. The application “allows users to discover, communicate and share resources 

with each other”. It is a P2P social networking application in which users can view friends, share files, 

message each other and edit their own profiles. Taking a similar approach, Park and Cho [37] discuss how 
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a mobile social network can be constructed by obtaining the life–logs of users and how this network can be 

used to share information. In this work, lifelogs were collected using a Samsung smart phone and a mobile 

social network was built with semantic relations using a Bayesian network model [37]. 

Meanwhile, Palazzi et al. [38] created the P2PBluetooth platform, a “proof–of–concept file sharing 

application for mobile phones that works through Bluetooth connectivity” [38]. In particular, their work 

focuses on creating a P2P network using J2ME. An interesting aspect to their work is file sharing and the 

idea of proximity. However, this work is limited to very short distances, since Bluetooth has a limited range. 

Our work aims to be less restrictive, by creating connections using JXTA to support different proximity 

requirements. In other works, Ismail et al. [39] have designed a framework to identify personal memories, 

through photo image analysis and a reporting system. Their system uses the JXTA P2P networking 

architecture to create a virtual network of peers who share their serendipitous moments among themselves 

[40]. This work is particularly interesting as JXTA is a platform that is currently being explored for the 

system. 

In other works, Hamm et al. [41] have implemented “a system for automatic annotation of daily 

experience from multisensory streams on smartphones”. At regular time intervals, an Android-based 

smartphone collects images, audio, location and accelerometer data. Using multiple annotations tags, daily 

logs can be reviewed and segmented into meaningful events. After this, the bag-of-words representation, 

along with state-of-the-art classifiers, can be used to predict the tags. The model is trained, using 41 days 

of data, and finally used to predict the remaining one day. This process is repeated 42 times, with a different 

day being held out each time [41]. This work is interesting; however, a considerable time is spent on 

manually annotating the information. Whilst the information was eventually learnt, the time it takes to 

physically segment and tag the data is a major drawback of the system. 

In terms of capturing data, mobile devices fit well with our natural ability to move within our 

environment. These tools and standards provide mechanisms for interconnecting device functionality as 

independent network discoverable services. However, this alone does not support the memory structures 

required. There is a need to build additional middleware services to achieve this. Memories are not isolated 

static events, but rather a continuous sequence of experiences contextually linked and created within and 

across different geographical areas within the environments, we occupy. This is a key requirement in our 

work. Once data has been captured, it needs to be effectively searched, so that information can be brought 
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together, to form a HDM. However, due to the phenomenal amount of material that is generated, and stored, 

searching this set of big data is a key challenge, within this area.  

2.3 Machine Learning Algorithms For Searching HDM Data 

Computer algorithms, and visualization techniques, are fundamental in supporting the analysis of 

datasets, commonly referred to as Big Data [42]. More recently, the medical domain has been using such 

techniques, extensively. One example of this is the Common Spatial Patterns (CSP) algorithm. This was 

proposed by Woon et al. and has been successfully used to study Alzheimer’s [43]. In other studies, 

Latchoumane et al., analyse electroencephalogram (EEG) signals, using Multi-way Array Decomposition 

(MAD). This is a supervised learning process for evaluating multidimensional and multivariate data [44].  

Multi-Layer Perceptrons (MLP) [45] and Probabilistic Neural Networks (PNNs) [46] have featured 

widely in research to process and analyse medical datasets. MLPs are feed-forward networks that work with 

back-propagation learning rules. PNNs are similar to MLPs, in this way, and consist of three layers; an 

input layer, radial basis layer, and a competitive layer. This type of feed-forward network operates using 

the Parzen’s Probabilistic Density Function (PDF) [47]. In terms of overall performance, PNN networks 

perform slightly better than PML networks [48]. 

The primary goal of such algorithms is to extract meaning from potentially huge amounts of data. 

Their association with particular data characterizes these features, such as datasets that contain data about 

neurodegenerative diseases. This has led to a great deal of work in feature extraction, within datasets. One 

example of this is the Discrete Cosine Transform (DCT) [49] algorithm that decreases the number of 

features and the computation time when processing signals. DCT is used to calculate the trapped zone, 

under the curve, in special bands [50].  

Using Decision Trees [51], Naïve Bayes [52] and Neural Networks [46], similar algorithms have 

been used to predict heart disease. In Palaniappan and Awang’s study [53], the results indicate that, using 

the lift chart for prediction and non-prediction, the Naïve Bayes algorithm predicted more heart disease 

patients than both the Neural Network and Decision Tree approaches. Using data, collected from patients 

suffering with Alzheimer’s, Joshi et al., were able to identify the various stages of Alzheimer’s. This was 

achieved using neural networks, multilayer perceptrons, including the coactive neuro-fuzzy inference 

system (CANFIS) and Genetic Algorithms [54]. The results showed that CANFIS produced the best 

classification accuracy result (99.55%), as compared to C4.5 (a decision tree algorithm). 
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Other algorithms, such as dissimilarity based classification techniques, have proven to be very useful 

for analysing datasets. For example, the classification of seismic signals has been extensively explored 

using algorithms such as the k-nearest neighbour classifier (k-NN), and Linear and Quadratic normal 

density based classifiers [55]. Nonetheless, when there are a large number of prototypes, the results have 

shown that Bayesian (normal density based) classifiers outperform the k-NN classifier. 

Within the medical domain, dealing with big datasets is common. For example, in pharmocogentics 

5Tb files are often used. In terms of creating HDMs, very little work exists that brings these two areas 

together, and is one aspect of this work that makes it unique. As big data becomes part of everyday life, 

dealing with it will become a significant challenge.  

This paper expands on the technologies and ideas, described above, in order to create varied and 

dynamic HDMs, which emerge through the analysis of features. The limitation of current systems is that 

they are restricted in relation to the amount of data that is captured and how searching is performed. Human 

memories are not made up of a finite set of criteria. There are many dimensions to a memory. Creating 

HDMs should take the same approach. This is a very important aspect to consider and one that is directly 

comparable to our current work. The services that can be accessed are not limited, and the user is not 

“locked-down” to only capturing a restricted set of data items. To form a better snapshot of our lives various 

technologies need to work together, so that we can visually recap our experiences and the feelings and 

changes our bodies were going through when these events were occurring. Current work aims to address 

these limitations by automatically gathering a variety of data, from distributed data sources. This data is 

then semantically linked and, using supervised machine learning algorithms, it is searched. Information is 

found based on probabilistic reasoning, and not by defining specific keywords or complicated queries. This 

information is then used to form a memory box, of a particular time. In this perspective, a memory box 

contains a number of items, including photos and location information, as well as physiological sensor 

readings. Over an extensive period, an endless stream of memories can be searched.  

3. The DigMem System 

As we have seen, several technologies can be used to capture a variety of data. These include, 

SenseCam for automatically capturing photos [16], the SWA for calculating physiological signals [31], and 

activPAL for detecting body positions [29]. These technologies are used to capture data about a user’s 

activities and to access information about the physical characteristics of people. In addition, mobile devices 
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are also an important vehicle for capturing data and for disseminating information, with several applications 

being developed in this area. These include the Mobile Social Software (MoSoSo) application for resource 

sharing [36] and the JMobiPeer middleware for creating a mobile P2P platform; that's interoperable with 

JXTA [34]. However, whilst such systems have been successful, each platform is proprietary in nature. 

Nevertheless, it is appropriate to build on these advances. Using P2P networks, pervasive devices, cloud 

computing, semantic web technologies and machine learning, the DigMem system is presented that details 

how HDMs can be created, using a variety of devices and technologies. The system developed in Dobbins 

et al. [13] is extended in this paper and demonstrates how previously obtained information is transformed 

into memory boxes of events. 

The system is composed of three components – Mobile DigMem (MoDM), the DigMem Server and 

DigMem web application. In order to create a memory box, the Mobile DigMem (MoDM) middleware [13] 

first seeks out and discovers various services that pervasive devices, within the P2P network, have to offer. 

For example, these can include camera services that obtain photographs, location services that relay location 

information or heat sensors that transmit temperature readings. The data that is obtained is semantically 

linked, searched, using the DigMem Server aspect of the system, and then visually depicted, as a memory 

box, within the DigMem web application. In this way, a variety of information can be queried and brought 

together, to form a snapshot of a particular time. For example, in the case of a smart home, various sensors 

are embedded in devices, to record a range of information. Figure 1, below, illustrates an example of such 

a layout.  
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Fig. 1 Example of How DigMem Collects Information in a Smart Home Environment 

In this example, sensors in the bed can monitor sleeping patterns; smart TVs can store viewing 

information; smart fridges can determine food consumption and sensors in sofas and chairs can determine 

sedentary behaviour and even measure and report on your weight. In addition, room temperature can be 

recorded and the indoor location, of the user, determined. As well as sensors in the environment, body 

sensors are also capable of recording a range of physiological data. Each of these devices would need to be 

DigMem compatible. When the user enters the environment, their mobile device, which is also DigMem 

compatible, sends out a broadcast, looking for information. An ad-hoc P2P network is then created, between 

the devices in the user’s current environment and their mobile device. Once this has been created, another 

message is sent, from the mobile device, to the sensor devices, to request information. Each device then 

responds to this request and sends their data back to the mobile device. Once the information is received, it 

is automatically transferred to cloud storage. At this point, further processing can turn the information into 

a memory box. 

When the user queries this particular time, all of these pieces of separate information are brought 

together to form a memory box. This memory can be used to determine a number of behaviours. For 

instance, body sensor, couch and TV information can be used to establish how long the user has been sitting 
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down watching TV. When the user leaves this environment and, for example, goes into the city centre to 

have coffee with friends, a different number of services will be utilized for this memory. Their mobile 

device can be used to capture photo and location data, whilst also seeking out devices that are prevalent 

within this setting, such as other cameras, their friend’s devices and building information. The two 

memories, which have been created, are different and reflective of the user’s surroundings, at that time. In 

this sense, we are able to create memories in a range of environments. The system is adaptive enough to 

seek out devices and their services and to incorporate this data into our memories, resulting in a more 

detailed memory of an event. By not being “tied-down” to what information can be obtained, the system is 

able to create individual and specific memories; a feature that has not been seen before in this area. HDMs 

evolve with the individual. As smart environments slowly become a reality, and with all of this data 

available, harnessing it into a HDM presents us with a unique opportunity. 

3.1 Design Specification 

Creating human digital memories, using pervasive devices, within the user’s environment, has the 

potential to revolutionise how lifelogging is performed. Specialist equipment would no longer be needed, 

and a more personalized HDM can be created. Current work aims to create memory boxes that are 

composed of a variety of data, from distributed sources. These HDMs contain vivid structures, and varied 

information sources emerge, through the semantic clustering of content and other memories. By combining, 

and linking, information, from various devices together, a memory, composed of a “mash up” of 

information, is created and a greater level of detail achieved. These reasons are propelling the research 

forward, so that an open, extensible and fully functional solution can be achieved. The principal 

requirements of the DigMem system are as follows. 

1. To use an open, cost-effective and extensible platform, capable of obtaining a wide range of data. 

2. Develop a framework that is flexible and extensible so that any number of data sources can be used 

in the creation of memory boxes. 

3. Build additional middleware services, to achieve the memory structures required. Thus, enabling a 

plug-and-play platform for memory data sources that can be exploited by any digital life memory 

middleware service. 

4. Enable this large amount of data to be efficiently searched so that it can be concisely represented as 

a memory box. 
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5. Provide a method that is as unobtrusive as possible and that is capable of obtaining and using data 

over an extensive period of time. 

The system requirements have been formulated to address some of the limitations of current methods 

and to address one of the goals of the Memories for Life Grand Challenge [4], which is to ensure that, “Data 

is still accessible in 50 years time, despite inevitable changes in software, hardware and formats”. As we 

have seen, specialist equipment (e.g. SenseCam) is needed in order capture continuous information about 

the user. However, this approach is costly, proprietary and requires the user to upload their captured 

images/data each day. In addition, only photos and a small amount of sensor readings are recorded. HDMs 

are composed of much more information than this. The DigMem system aims to address these issues by 

building on the nomadic nature of people so that HDMs are reflective of the user’s current environment. 

These memories are unique and are not “tied-down” to only featuring a limited amount of information. 

Nevertheless, it is still appropriate to build on these existing technologies to address these limitations.  

3.2 System Architecture 

As previously stated, the DigMem system is composed of three components, Mobile DigMem 

(MoDM), the DigMem Server and DigMem web application (see Fig. 2). A full description of the system 

is presented below. 

In order to start collecting data, all MoDM [13] compliant devices advertise, to the P2P network, the 

services that they can offer to other devices. They then wait for connection requests. As the user enters the 

device’s environment, they launch MoDM, on their mobile device. The MoDM interface then displays all 

the services that DigMem supports. Currently this is limited to photographic, location and physiological 

information. However, as the system matures more data types will be added. Upon selection of a service(s), 

the user’s device (UD) sends out a request to all peers, within the network, in order to obtain the use of 

their service(s). The device(s) respond to this request, connect to the UD and send their data, via 

bidirectional pipes. After the user has selected the service(s) that they want, the application continues to 

collect data, without any more user intervention. 
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Fig. 2 DigMem System Design 

On the UD, a local, cloud-connected, directory stores all information that is collected. This data is 

then transferred, periodically, from the cloud, to the Raw Data Store. From this point, the DigMem Server 

side of the system is utilised. Each user is assigned a unique ID to which their raw data is indexed with. 

The assignment of this ID enables each user to keep track of their data. Using the cloud bridges the gap 

between MoDM and the DigMem Server. The benefit of using this service is that information can be 

accessed anywhere and at any time. It also eliminates the need for the user to upload their data onto the 

system. By periodically transferring the collected data, free space is created on the mobile device. This is 

very important, since the storage capacities of these devices are limited. This automated approach to data 

collection is also far less intrusive, than previous lifelogging methods, and is unique. Once the MoDM 

application is started, it collects raw data from the previously mentioned services that DigMem supports, 

saves this in the cloud, transfers this information into the Raw Data Store and frees up space on the UD, all 

without user intervention. 

Once raw data has been transferred to the Raw Data Store, extraction and transformation of the raw 

information, into a metadata model, occurs. These metadata models enable the raw information to be 

structured into a formal representation of the data. These models are then saved, in the Sematic Triple Store. 

Periodically, these models are converted, using the Matrix of Features (MoF) algorithm [56]. The 

development of this algorithm converts the metadata tuples into a matrix representation. Memory boxes 
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themselves are temporal and transitory. This matrix contains every data item that has been collected. When 

new information is obtained, this data follows the same path and is transformed from its raw form into the 

metadata model then, using the MoF algorithm, is added to the matrix. This matrix is stored within the 

Matrix Data Store. As time passes this element grows with the user. When memory boxes are created, this 

HDM space is the element this is searched. 

When the user wants to retrieve a memory, they first log into the DigMem web application. After 

logging in, the searching of these documents is treated as a classification problem, based on features, for 

example, time, locations or heartbeat, which are defined in the vector object. The retrieval of information 

occurs by using a supervised machine learning algorithm to explore the dataset. This process is beneficial 

as explicit queries do not have to be defined, as is the approach for other searching methods (e.g. SPARQL 

[57]). A wider range of information can be included in the memory; the user is not limited to specifically 

setting out what information they require. A much richer and more-detailed memory is created, than 

previously seen.  

Once the data has been retrieved, it is converted back into the metadata model. The reason behind 

converting the data back into this model is for flexibility. This model enables the manipulation, and 

transformation, of the data, into any other format, for further analysis. The metadata model is then 

transformed into a visualisation model. This model enables the data to be transferred from the DigMem 

Server to the DigMem web application, and displayed within the web browser. The model is then loaded 

into the DigMem web application, and a memory box is created and displays all of the information, as 

graphical items. This is opposed to just listing the raw information, for example; location coordinates, file 

locations of photos or physiological readings, which do not hold as much meaning, perhaps as photographs 

or a map would. Figure 3, below, illustrates an overview of the process of capturing data and creating a 

memory box, and is based on the system design from Figure 2. 
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Fig. 3 Overview of Creating a Memory Box. 

Using this configuration, more dynamic and detailed human digital memories can be created. The 

use of pervasive devices, linked data and machine learning are central to the system, and are what make it 

unique. By incorporating data from outside sources, as well as from body sensors, a better understanding 

of ourselves can be retrieved and reasoned over. DigMem is flexible enough to grow with the user and 

allows an entire lifetime to be digitally captured.  

4. Implementation 

So far, the ways in which memory data can be captured and how this information can be searched 

and connected, have been discussed. Additionally, the design of the DigMem system has been presented. 

Currently, systems, such as SenseCam and the SWA, have been used to capture an explicit set of results. 

SenseCam captures photos and limited sensor data, whilst the SWA captures physiological data, such as 

sweat rates and energy expenditure. Whilst these systems are useful, within their specific areas, they are 

not a practical solution in creating human digital memories, over a lifetime. Buying expensive, specialist, 

equipment and using such closed systems are not a viable option. A new system is required, which can be 

deployed on everyday devices, and can be adapted to the surrounding environment. In the next section, the 
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DigMem implementation is presented, which moves towards the goal of creating rich human digital 

memories, using pervasive devices, linked data and machine learning. 

4.1 Technical Description 

The prototype that has been developed, in this work, is used to demonstrate the DigMem Server and 

Web Application aspect of the system, to create a new memory box. For further information on the Mobile 

DigMem (MoDM) middleware platform, please refer to [13].  

The prototype uses a Samsung Galaxy Tablet to collect a variety of data. For the purpose of this 

demonstration, the development of two android services collects photos, every 30 seconds, and GPS data, 

when a new location has been sensed. NeXus-10 body sensors [58] are also used to collect physiological 

information. In order to gather this data, a C-sharp application was developed. This application connects a 

laptop to the body sensors, via Bluetooth, and collects Electrocardiography (ECG) data. It should be noted 

that these services have been used purely as a demonstration tool to illustrate how memory boxes are 

created. As stated previously, as the system matures many more data types will be added. However, these 

specific services were chosen because, when combined, they are capable of illustrating the user’s 

movements, interactions and biological changes. 

Once the data has been collected it is stored locally, on the user’s mobile devices, in the users 

Dropbox Cloud [59] folder. When the devices are connected to Wi-Fi, the data is automatically synced with 

their cloud directory. This information is available on any other device that the user is registered, via 

Dropbox, to receive data on. The development of a number of python scripts then enables the information 

to be transferred from the Dropbox directory to a MySQL database (Raw Data Store). This data store is 

located on a secure server. Dropbox has a limited amount of storage space. Therefore, by moving the data 

space is automatically created, for incoming information. This is a very simple and effective way of using 

Cloud Computing technology to send data, via the Internet, to different locations [60]. 

Once the data has been transferred, into the Raw Data Store, the DigMem Server aspect of the system 

is used. This part of the system is able to transform these fragmented pieces of collected information into a 

memory box. In order to do this, another application service was developed that extracts the information, 

from the Raw Data Store, and transforms it into Resource Description Framework (RDF) models (metadata 

model). This RDF information is saved in the Semantic Data Store. Then, using the Matrix of Features 

(MoF) [56] algorithm, the RDF data is transformed into a universal matrix of features. This algorithm is 
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able to transform any number of RDF files into its own vector of features, which describes that file. Once 

the RDF files have been processed, they are all merged into a single file. This file is used to form a single 

dataset. This dataset is then saved, in the Matrix Data Store. 

The matrix representations, of all the digital memories, are combined to create a single search space. 

The searching of HDMs is treated as a classification problem. Following an analysis of the literature, 

simple, yet powerful algorithms, which give good results, have been selected. The classifiers considered in 

this study include the linear discriminant classifier (LDC), quadratic discriminant classifier (QDC), 

uncorrelated normal density based classifier (UDC), polynomial classifier (POLYC), logistic classifier 

(LOGLC), k-nearest neighbour, (k-NNC), decision tree (TREEC), parzen classifier (PARZENC), support 

vector classifier (SVC) and Naive Bayes classifier (NAIVEBC) [61]. The linear, quadratic and uncorrelated 

normal density-based classifiers are all density-based classifiers. The LDC is particularly useful when two 

classes are not normally distributed, and where monotonic transformations, of posterior probabilities, helps 

to generate discriminant functions. The QDC assumes that the classes are normally distributed with class 

specific covariance matrices, thus allowing a set of optimal discriminant functions to be obtained. The UDC 

works in a similar way to the QDC classifier but computation of a quadratic classifier between the classes 

by assume normal densities with uncorrelated features. The QDC takes decisions by assuming different 

normal distribution of data that leads to quadratic decision boundaries. The NAIVEBC classifier greatly 

simplifies learning by assuming that features are independent given class [62]. 

The polynomial and logistic classifiers are linear-based classifiers, which predict class labels based 

on weighted, linear combination of features or the variables of the objects. The LOGLC computes the 

classification of a dataset by maximizing the likelihood criterion, using the logistic (sigmoid) function. The 

POLYC adds polynomial features to the datasets in order to run the untrained classifier. It is possible to 

construct second order terms, using this classifier. The parzen, decision tree, support vector, and k-nearest 

neighbour classifiers are nonlinear classifiers. Nonlinear classifiers compute the optimum smoothing 

parameter between classes in the datasets. Using smoothing parameters without any learning process, 

produces discrimination. Smoothing parameters may be a scalar, a vector or a matrix with objects and their 

features. The TREEC classifier uses binary splitting and classes are decided upon the basis of a sequence 

of decision rules. Quadratic programming optimises the SVC, and non-linearity is determined by the kernel. 

If an SVM model, uses the sigmoid kernel then it behaves more or less like a two-layer, perceptron neural 
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network. There are four basic kernels, linear, polynomial, radial basis function and sigmoid. In this type of 

classification, functions map training sets into a higher dimensional space in this type of classifier. It finds 

a linear separating hyperplane, with the maximum margin in the higher dimensional space. The KNNC and 

PARZENC are similar in the sense that their build-up classifiers still use the training dataset and their 

parameters, while KNNC classifies the object in a feature space with the nearest training parameters. 

The PRTools pattern recognition toolbox has then been used to implement the classification 

algorithms. Each classifier is evaluated to determine its overall performance, and accuracy, in finding 

information in HDM datasets. Sensitivity, (true positives), specificity (true negatives), positive predicted 

values and negative predicted values are used as the performance evaluation techniques. A Receiver 

Operator Curve (ROC) is then used to summarise the classifier’s performances. This standard technique is 

based on trade-offs between true positive and true negative error rates [63]. 

Once the related information has been found, the data is converted back into RDF. As stated 

previously, converting the data into RDF enables greater flexibility in the ways it can be processed. In order 

to display the collected information, the data is transformed, again, into the JavaScript Object Notation 

(JSON) format (visualisation model). Once the information is in this format, a web interface was 

constructed. This interface displays the memory boxes. Using the newly created JSON file, the information 

is exhibited, as a memory box. In order to demonstrate the system, the query “What was I doing on 17th 

July 2012 at 8:35pm?” has been executed. Based on the results from the classification algorithm, the 

memory box, from that time, has been constructed and is displayed in Figure 4. Each input (Location, 

Photos and Heartbeat), and examples of potential other input devices that can provide information, are 

displayed in the memory box (see Fig. 4a)). It should be noted that these inputs are just examples of the 

type of information that can be gathered. When an input is clicked a separate window opens, and a more 

in-depth illustration of the data is seen. Figure 4 b) illustrates the photos that were collected on 17th July 

2012 at 8:35pm. Figure 4 c), illustrates the user’s location, at that time, whilst Figure 4 d) illustrates the 

ECG data that was obtained. It should also be noted that the graph in Figure 4 d) is not intended to be a 

representation of an ECG signal, but rather it is illustrating an average reading every 30 seconds. 

As it can be seen, the results from the various input devices are now visually displayed. The memory 

box illustrates that on the 17th July 2012 at 8:35pm the user was walking around Liverpool. The results also 
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indicate that they may have slowed down or taken a break, as their heart rate had dropped slightly during 

their walk. 

    

(a)                 (b) 

      

(c)      (d) 

Fig. 4 DigMem Memory Box (a), DigMem Photo Data (b), DigMem GPS Data (c) and DigMem ECG Data (d) 

Compared to other systems, this method offers a much broader range of information that can be 

retrieved. Other systems, such as Microsoft’s MyLifeBits [25], are considered to be one-dimensional. 

Searching is done based on keywords. The DigMem system enables users to explore their data without 

defining specific keywords or needing a pre-existing knowledge of the data, to create queries (SPARQL). 
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By clustering the data by a timestamp all of the related information can be extracted from the dataset. The 

user doesn’t have to know what they are looking for, just the date of an event. Various pieces of information 

can be brought together so that a greater level of detail can be achieved. The system also does not rely on 

particular pieces of hardware to create a memory. Any pervasive device that can provide information, and 

running the MoDM middleware, can contribute to the memory. This plug-and-play platform enables the 

system to maintain flexibility and allows memories to be created across many different environments. 

4.2 Case Studies 

In order to demonstrate the system, two short case studies have been undertaken that have used the 

DigMem system to record the movements of a user and build a memory of a particular time. The first study 

lasted for five days and involved the user carrying around the tablet device. During this time, whenever the 

user was outside, photo and GPS services were deployed to collect data. The reason behind only 

documenting these journeys was due to the limitations of GPS. Location data was recorded whenever a new 

position was sensed, and photos were collected every 5 minutes. During the deployment phase, 181 photos 

and 4,221 pieces of GPS data were collected. 

In order to create a memory box, of a particular time, during that week, the query, “What was I doing 

on 21st March 2012?” has been successfully executed (see Fig. 5). The location data from that time is 

displayed in Figure 5 a), whilst Figure 5 b) displays the photos that were collected. The results from the 

query indicate that the user was by lake Lugano, Switzerland, walking around. 

 

(a) 
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(b) 

Fig. 5 DigMem Memory Box Data from 21st March 2012 – GPS (a) and Photo Data (b) 

The second use of the system involved the user carrying around the Samsung Galaxy tablet, whilst 

the ECG (NeXus) body sensors were attached to their body. Photos were collected every 30 seconds and 

GPS coordinates were saved every time a new location was received. 

During the deployment phase of this study, the body sensors collected an extraordinary amount of 

information. Within 5 minutes, 613,301 pieces of ECG data (approximately 2044 samples per second) were 

gathered. In order to process this information the ECG data had to be normalised, and an average value for 

each minute was calculated. These values were then transformed into RDF and used to plot the users ECG 

information, within the memory box. Again, the plotted graph is not intended to be a representation of an 

ECG signal, but rather an illustration of the normalised values. 

The query, “Where was I, what was I doing and how did I feel on 6th August 2012, between 11:30am 

and 12:00pm?” was then successfully executed (see Fig. 6). The location data, from that time, is presented 

in Figure 6 a), whilst Figure 6 b) displays the photos that were collected from that time. Figure 6 c) also 

illustrates the ECG data that was obtained. By searching the RDF data, of a variety of pervasive devices, 

and linking these various pieces of information together, it has been established that the user was walking 

around Liverpool John Moores University. The photos give a visual illustration of their journey, whilst the 

plotted GPS coordinates give an indication of their location. The ECG data also illustrates that the user was 
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walking around (as their heart rate was not particularly high) before it suddenly increased, at the end of the 

journey. From the photographs, we know that this was due to them climbing the stairs. 

  

(a)      (b) 

 
(c) 

Fig. 6 DigMem Memory Box Data from 6th August 2012 – GPS (a), (b) Photo Data and (c) ECG 

As it can be seen, the results, from these studies, are encouraging and do validate the design, and 

idea, that human digital memories can be created using every day, pervasive, devices and linked data. 

Memories created in this way offer a new insight into the composition of a memory and how data can be 

reasoned over. The use of linked data enables any item, embedded with a sensor, to be capable of being 

included in the memory. Memories can be created from data that has been accumulated over a lifetime and 

as our human memories develop and grow so will their digital counterpart. Interaction with our memories 
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is also fundamental and is what makes the work unique. By enabling users to be able to “go into” their 

memories and to see various information, such as temperature, location and emotions, could lead to the 

augmentation of group memories and has the advantage of benefiting numerous aspects of people’s lives. 

Although the system has only been used to track journeys, this is just one aspect of how it can be used. 

Whether it enhances social groups and interactions, aids in the health and recovery of memory–related 

illness or used to reduce sedentary behaviour, the possibilities are endless. 

5. Evaluation 

This section presents the results for searching human digital memories using, the previously 

discussed, supervised machine-learning algorithms. The HDM dataset (containing time, gps, ecg and 

photograph locations) is considered, using a 50% holdout technique and k-fold cross-validation. The 

primary focus is to find an alternative way of searching big data (the continuous collection of data we 

accumulate throughout our life), based on probability. Rather than using very specific query languages, like 

SPARQL, we treat the searching of human digital memory data as a classification problem. In this way, we 

describe the features of a memory and use probabilistic reasoning to filter data (memory boxes) that contain 

similar features to those described.  

5.1 Searching Human Digital Memory Data 

The HDM memory blocks consist of the features time, gps, ecg and photograph location. These 

features have been chosen because, when combined, they provide enough information to illustrate the user’s 

movements, interactions and heartbeat. Using the previously described classifiers, their performances have 

been evaluated, against the memory blocks, to determine the sensitivity, specificity, and positive and 

negative predicted values they produce, when separating different memory blocks. The 57 record HDM 

dataset is split using a holdout cross-validation method (50% for training and 50% for testing). In order to 

estimate the sensitivities, specificities, positive and negative predicted values and error rate the classifiers 

are repeated 30 times. This number is considered, by statisticians, to be an adequate number of iterations to 

obtain an average [64]. This method provides a mean error rate and standard deviation, for each of the 

classifiers used. It also ensures that randomly generated records, while maintaining the same proportion of 

records in the training and test sets, provides a combined mean error, using different record configurations. 

In other words, it allows for generalised classification, rather than specific instances. 

5.1.1 Classifier Performance 
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To evaluate the performance, of each classifier, the classperf function is used. Table 1, below, 

illustrates the averages obtained for the sensitivity, specificity, and the positive and negative predicted 

values. 

 Sensitivity Specificity 
Positive 

Predicted Value 

Negative Predicted 

Value 

Classifier HDM HDM HDM HDM 

LDC 0.9230 0.8571 0.8571 0.9230 

QDC 0.6923 0.9287 0.9000 0.7647 

UDC 1.0000 0.9285 0.9285 1.0000 

POLYC 0.9230 0.8571 0.8571 0.9230 

LOGLC 0.6923 0.9285 0.9000 0.7647 

KNNC 1.0000 0.0000 0.4814 NaN 

TREEC 0.9230 1.0000 1.0000 0.9333 

PARZENC 0.7690 1.0000 1.0000 0.5384 

SVC 1.0000 0.8571 0.8666 1.0000 

NAIVEBC 0.8461 0.7857 0.7857 0.8461 

 

Table 1: Classifier Performance 

In order to determine the accuracy of the classifiers, the k-fold cross-validation technique has also 

been used. This was performed using the crossval function, in PRTools, to determine whether the results, 

obtained from the 50% holdout method, could be improved. The results, using the crossval function with 1 

and 6 repetitions, obtained better results, as shown in Table 2. 

 
50% Holdout: 30 

Repetitions 

Cross Val, 5 Folds, 1 

Repetitions 

Cross Val, 5 Folds, 6 

Repetitions 

Classifiers Mean Err SD Mean Err Mean Err SD 

LDC 0.1950 0.0062 0.1824 0.1634 0.0288 

QDC 0.0914 0.0430 0.0679 0.0693 0.0247 

UDC 0.0568 0.0281 0.0380 0.0445 0.0257 

POLYC 0.1950 0.0000 0.1824 0.1634 0.0288 

LOGLC 0.0864 0.0041 0.0333 0.0701 0.0292 

KNNC 0.5179 0.0468 0.4440 0.4639 0.0362 

TREEC 0.0284 0.0541 0.0161 0.0206 0.0080 

PARZENC 0.4795 0.0000 0.4887 0.4962 0.0419 
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SVC 0.0716 0.0000 0.0161 0.0473 0.0323 

NAIVEBC 0.2568 0.0345 0.1818 0.2029 0.0475 

 

Table 2: Classifier Performance 

Overall, the results show that several of the classifiers performed particularly well. In particular, the 

UDC and TREEC classifiers performed remarkably well. The UDC classifier provided the best results with 

100% sensitivity, 93% for specificity, 93% for positive predictive value, and 100% for negative predictive 

value and an overall accuracy of 97%. The TREEC classifier provided 92% for sensitivity, 100% for 

specificity, 100% for positive predicted value, and 93% for negative predicted value and an overall accuracy 

of 96%, were achieved. Several other classifiers also produced good results. The SVC classifier had an 

overall accuracy of 93%, while the LDC classifier had an overall accuracy of 89%.  

5.1.2 Model Selection 

Figure 7, below, shows the ROC curve and the cut-off values for the false negative and false positive 

rates, for each of the classifiers used. Utilizing the HDM dataset, Figure 7 illustrates that several of the 

classifiers used performed very well. This dataset contained 57 records and two classes (1 for one memory 

box and 2 for a second memory box). 

 

Fig. 7 Receiver Operator Curve for the HDM dataset 
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As it can be seen from the ROC curve, the results are very good for several of the classifiers, such 

as the UDC. However, for others, such as the KNNC, the results are poor. The results indicate that the use 

of machine learning techniques is encouraging. Memory-related data is composed of such a vast array of 

items. Simply searching this data with specific queries, or keyword searches, does not produce the level of 

detail that is required. As demonstrated, machine learning algorithms are able to treat the challenge of 

searching this data as a classification problem and to retrieve information based on features. 

6. Discussion 

This paper successfully demonstrates the implemented DigMem system and builds on previous work 

in [13]. It provides a flexible solution that embraces the use of pervasive mobile devices, cloud computing, 

P2P networking, linked data and machine learning. The system provides a method of creating HDMs in 

any environment, using any DigMem compliant devices. This has many advantages over other systems. 

Systems, such as [9], [17–19], use Microsoft’s SenseCam to create memory browsers or within lifelogging 

research, whilst [29–32] use the activPAL and SWA devices to monitor behaviour. The disadvantage of 

these systems is that specialist, and expensive equipment are often needed and the data is quite limited. 

However, the DigMem system overcomes these shortcomings by using any DigMem compliant device, for 

data collection. The system is not limited to collecting photos; any number of services can be included in a 

memory. Table 3 provides a comparison between the state-of-the-art lifelogging devices and DigMem. 

Data Collected
Automatic Upload 

of Data
Searching Expensive Extendable Adaptive Storage

Open Source 

Platform

DigMem
Unlimited from ad-

hoc services*
Yes Probabilistic No Yes Yes Cloud (unlimited) Yes

SenseCam Photos No Keyword Yes No No

8GB Flash Memory - 

20,000 images (8 days 

of data approx.)

No

SenseWear 

Armband (SWA)

Motion, Step Count, 

Sweat Rates, Skin 

Temperature, Body 

Heat

No Time-Based Yes No No

28 days worth of data 

(data rate is 32 

times/second)

No

ActivPAL

Activity Data (Sitting, 

Standing, Walking), 

Step Count, 

Transitions, Energy 

Expenditure

No Time-Based Yes No No 4MB No

*Any device that supports DigMem can be used for data collection, thus not limiting the data that is collected

Table 3: Comparison of DigMem against the state-of-the-art lifelogging devices 

As it can be seen, DigMem offers a number of advantages over current systems. The data collected 

is not limited, it is automatically uploaded to the cloud and searching is probabilistic, based on the 
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description of features. Memory boxes, resembling those features, are extracted with a probabilistic 

confidence value that the search features, and the features in the memory block, are similar. It is also able 

to run on any Android (open source) device, thus expensive equipment is not needed. Its plug-and-play 

middleware is also extendable and when services aren’t available, replacement devices are found. The use 

of cloud storage also provides an unlimited amount of space, depending on which service is used. Memories 

are created in an unobtrusive manner and are formed from environment specific devices, instead of being 

device specific (e.g. only using a SenseCam to collect photos), which is a novel aspect of the work. Data, 

collected over a lifetime, is semantically linked and any instance of our lives can be re-constructed. This 

has profound implications in the use of such a system and, currently, it is being used to investigate its 

effectiveness in monitoring and measuring sedentary behaviour [65]. 

In terms of capturing data, there are several notable features that make this system a viable 

alternative. Most notably, the data-gathering platform, on the tablet device, as well as the previously 

implemented MoDM middleware [13], are built using the open-source Android operating system. This 

allows the hardware features of devices to be freely accessed, whilst the data is not encoded in a proprietary 

format. Regarding the physiological platform, this has been developed in C-sharp and enables a connection, 

to the NeXus-10 body sensors, to be established, via Bluetooth. As well as providing this connection, the 

programme collects various physiological signals and stores the data as a time-stamped .csv file. This is 

beneficial as the data, again, is not encoded in a proprietary format. Data from both platforms are freely 

accessible. This is very important as the information can be manipulated at a later time. 

In terms of the architecture of MoDM, P2P was chosen, in contrast to a client-server model, for a 

variety of reasons. Most notably because it is a scalable solution, as more peers join the network, its 

capability increases and strengthens [66]. Furthermore, as peers exit the network this also does not affect a 

peer’s ability to exchange information. If one peer is unavailable, then another one, with similar capabilities, 

can provide the same information, or service. This fits in well with creating HDMs, as memories constructed 

in various environments will require the use of different services. Being “tied-down” to a set number of 

services does not fit in with the diverse composition of memories. HDMs are not composed of a fixed 

number of items, as we move through different environments; the requirements of a HDM will change. As 

Parameswaran et al. states, “A client-server scenario like the Web depends on a single server storing 

information and distributing it to clients in response to their requests. The information repository remains 
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essentially static, centralized at the server, and subject only to updates by the provider. Users assume a 

passive role in that they receive, but do not contribute, information. A P2P network, on the other hand, 

considers all nodes equal in their capacity for sharing information with other network members” [67]. The 

idea of HDMS does not fit in well with a client-server situation. Users need to be able to gather and share 

information equally. 

In addition, the DigMem system is able to provide adequate flexibility, in a number of environments, 

and allows for any number of ad-hoc services (AHS1, AHS2, AHS3….AHSn) to be used, for gathering 

information for the HDM. The devices that are accessed shape the memories. Devices present in one 

environment will differ to those of another, thus altering the information that is available. A P2P network 

can handle this dynamically changing set of peers. This P2P architecture is used to gain access to the 

services that devices have to offer. The system is also adaptive to accommodate the fall-out of peers. For 

example, if a camera suddenly becomes unavailable, e.g. if it is placed inside a bag or pocket or runs out of 

battery, then another camera service is chosen. For instance, a CCTV camera in the city centre would be 

recording images continually. If the original camera service has become unavailable, then the CCTV 

camera, if it was DigMem compliant, could be used instead. With recent advances within the field of facial 

recognition [68–70], this idea could soon be a possibility. In the future, this technology could be used, 

within DigMem, so that the system knows what its users look like. If CCTV images were being used, then 

DigMem would be able to gather these images, identify the user, match the captured images to their profile 

and add the images to their record. The original service, which is now rendered useless, is replaced with 

another that is available. By retrieving data from these pervasive devices, memories are richer in detail. 

Information is incorporated into the memory that necessarily would not have been available otherwise. For 

example, a mobile phone would not be able to take the temperature reading of the room; however, by 

connecting to the thermostat this information could be retrieved and sent back, to enhance the memory.  

In terms of storing the information that the devices collect, the Dropbox Cloud software [59] was 

chosen as it is a free (for a certain amount of space) service that is compatible with most mobile devices 

and operating systems. It is also a very effective and unobtrusive way to transfer data to many devices and 

locations. This method of data transfer eliminates the need for the user to manually upload their content, 

which is the current method used in other systems. Regarding the storage of the raw data, the decision to 
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store this information in a MySQL database allows developers the freedom to choose the data processing 

tools that they require, i.e. Excel, SPSS, or Matlab. 

In order to create memory boxes the raw data needs to be transformed into RDF. By transforming 

the data, into this model, information from different schemas can be merged and, more importantly; RDF 

also supports the evolution of schemas over time, without requiring all the data to be changed [71]. This 

feature is very important, and one of the main reasons to transform the data into RDF. Any HDM system 

needs to be flexible enough to withstand the evolution of technology and to enable people to use and create 

memories “across their entire lifetime” [4]. Through the use of RDF, as new standards and devices become 

available their data, as well as data collected 10 years ago, for instance, can all still be used in the creation 

of HDMs. This is another unique aspect of the system. 

Once the information is transformed into RDF it is converted into a matrix, using the MoF [56] 

algorithm. The reasoning behind using this newly developed algorithm is so that the data can be classified, 

based on the features of the dataset, instead of being searched with explicit queries. This algorithm is able 

to take any number of RDF documents and turn them into a universal dataset of features. This is beneficial 

and overcomes the limitations of searching RDF data with SPARQL, the query language for RDF [72]. 

SPARQL is a complex language that relies on the user understanding the domain before queries can be 

constructed. However, if the user is unfamiliar with the underlying RDF, then finding information can 

almost be impossible. Furthermore, navigating SPARQL’s complex labyrinth of syntax is a difficult task 

entirely. In order to overcome this challenge the MoF algorithm is able to facilitate information extraction 

from semantic metadata. Instead of creating complex queries, to search the RDF, the information is instead 

transformed into a matrix of object instances, with associated features. This approach enables probabilistic 

searches to be performed. The metadata serializations provide rich semantic data structures that describe 

information. 

This dataset is then explored using several well-known, yet simple, classification algorithms. This 

is in contrast to other approaches, where data is searched using keyword searches or complex queries. As 

it can be seen, from the results obtained in the previous section, using machine-learning algorithms for 

searching large data sets (the memories that we accumulate over a lifetime) yields some positive and 

interesting results. By transforming the obtained information back into RDF, enables the data to be 

manipulated and serialised in a number of different ways. This is a very important, and useful, feature as 
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the same results can be easily be transformed into a variety of formats, without too much trouble. In this 

case, the data has been converted into JSON. This format was chosen, to display the data on the web, 

because it is compatible with AJAX, is faster and easier as opposed to XML and is self-describing [73]. 

These semantic web principles and machine learning algorithms were chosen because they are able to 

support the evolution of data over an extensive period of time and are able to extract information from large 

datasets. 

The purpose of this research is to illustrate how pervasive mobile devices, linked data and machine 

learning can be used to search HDM data and create human digital memories. Arguably, the time that the 

system was run for was limited. Nonetheless, the results do support the use of these devices, and these 

various technologies, in creating HDMs. Memories are composed of much more information than merely 

photos and location. As the amount of data increases so does the difficulty in searching it. This is reiterated 

by Fuller et al. [74], who states, “HDM data is highly heterogeneous and unstructured, therefore, it is 

difficult to form search queries”. However, the use of RDF and machine learning can alleviate this problem. 

The MoF and machine learning algorithms are capable of transforming and analysing large sets of data. 

Instead of focusing on producing queries to search this enormous set of “heterogeneous and unstructured” 

[74] data this method focuses on treating the searches as a classification problem. Therefore, using the 

DigMem system, this mass amount of varied data can be easily explored. This method enables much richer 

and more-detailed memories to be created, than previously seen. Memories can be created as the user moves 

through their environment, a novel feature of the system. 

A great deal can be learnt from this development. Firstly, the implementation illustrates that the 

MoDM middleware platform, and the use of pervasive mobile devices, can support the memory structures 

required. This is achieved by enabling a plug-and-play platform, for memory data sources, which can be 

exploited by the DigMem application. Secondly, the use of RDF enables data to be incorporated into a 

memory, irrespective of its format. This feature is especially useful because, as Fitzgibbon and Reiter [4] 

question, in their report on the Memories for Life Grand Challenge, “How can we ensure that data is still 

accessible in 50 years time, despite inevitable changes in software, hardware and formats?”. As 

demonstrated in this work, the use of RDF is seen as a way to address this question. As time goes on and 

new devices and formats emerge; they can still be incorporated into the memory box. This is reiterated by 

the W3C [71], who comment that, “RDF has features that facilitate data merging even if the underlying 
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schemas differ, and it specifically supports the evolution of schemas over time without requiring all the 

data consumers to be changed”. Thirdly, the use of machine learning algorithms illustrates a new way to 

explore HDM data. Collecting data over an extensive period of time (e.g. over a lifetime) yields an 

unprecedented amount of information. This increase in both the volume and the variety of data requires 

advances in methodology to automatically understand, process, and summarize the data [75]. Keyword 

searching is no longer a viable option for rich information The MoF algorithm converts RDF data into a 

matrix of features and, using machine-learning algorithms, the queries are treated as a classification 

problem. Therefore, the user does not have to explicitly define what information they require. Given any 

timestamp, data from around that period can be extracted. This is a unique aspect of the system that re-

defines how HDM data is searched. 

The memory boxes that are created from this data can also be used to reason over behaviour. The 

DigMem system illustrates that by incorporating data from any pervasive device a greater level of detail is 

achieved. For example, the data from smart fridges can be used to quantify dietary habits, whilst the human 

body provides us with physiological data. Any object can become a data source and their information used 

in a memory. This is particularly important because a richer level of detail is achieved and can be used to 

reason over behaviour and help us to understand aspects about our health, level of activity and physical 

wellbeing. Questions about ourselves will begin to emerge, such as “How was I feeling at x point in my 

life?” “What factors made me feel like this?” and “How were others around me feeling at the same time?” 

RDF, linked data and machine learning makes these queries possible to execute. Any time, throughout our 

lives, can be reconstructed and our feelings, from those times, reasoned over. This is a very powerful feature 

of the system as any point in our lives can be reconstructed and reasoned over. 

7. Summary and Future Work 

Memories link past experiences with the future and are a very powerful tool that people have at their 

disposal. Digitizing this process enables a whole new way in which interaction with technology can occur. 

Currently, a wide variety of data is accessible; however, there has been very little development in bringing 

these items together, for the purpose of building HDMs. The DigMem system addresses this issue by 

seeking out and using any device’s specific service, for the task of creating a memory, and exploring this 

data, using RDF and machine learning algorithms. Therefore, memories created in this manner are not 

“locked-down” to a particular device. Any device can be used, thus providing a flexible and low-cost 
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solution. The use of RDF also enables data, collected over a long period of time, to still be usable in a 

memory box. This aspect allows the system’s longevity to be increased and sustained over a very long time. 

This work paves the way for creating fully interactive HDMs, which can be reasoned over and 

augmented with group memories. Our digital memories will grow alongside their human counterparts. This 

paper is an extension of [13], with current work building on the initial prototype and idea of creating HDMs, 

with data obtained from ubiquitous mobile devices. In previous work, only photos were captured. The 

system has progressed with the addition of the GPS and NeXus body sensor services, as well as the 

incorporation of cloud services and data-storage areas. The main progression has been in relation to how 

memory-related data is able to be effectively searched and brought together to create memory boxes. 

Fragmented pieces of data are now semantically linked and transformed into visual items. This work 

provides exciting results in terms of how fully interactive HDMs can be created and how such a system can 

be used to influence various aspects of our lives. 

While the results, from the machine learning algorithms, were encouraging, the dataset used was 

small. One two-memory boxes were used, which were consecutive, in terms of time periods. Future work 

would consider a far larger dataset. This would need to contain many human digital memories, over a much 

bigger time span, for example, a months’ worth of data, rather than days or hours. Furthermore, given that 

only two classes were utilized, it was sufficient to use supervised learning, to make classifications between 

the two. However, searching human digital memories is perhaps more of a clustering problem, i.e. finding 

clusters based on a set of features. The reason being that the targets of memories are likely to be incremental 

values, as a person traverses through time (this could be time and data or an ID representing a memory box 

ID). This means that we do not have sensible target values or if we do, the range of possibilities continually 

grows, as we progress through time. Therefore, instead of asking the algorithms to predict Y based on our 

data X, we are rather asking it what can you tell us about the data. In our future work, algorithms such as k-

means will be explored. 

Furthermore, collecting a lifetime’s worth of information undoubtedly produces a vast amount of 

data. Securing this collection becomes harder as it grows in size. In any system that records personal 

information, privacy becomes an issue. In comparison to how much data can be captured, over a lifetime, 

the demonstrated system collects a small amount of information, which is retained in secure data stores. 

However, the issue of privacy will need to be addressed as the amount of data, and users, increases. Private 
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areas will need to be established for each user, where they can store their information and choose what 

memories to share with others. Another issue, regarding privacy, relates to identity theft. If devices are 

stolen, and false memories created, then this affects the user’s entire HDM store. Whilst this is a problem, 

it is out of the scope of this research. Future work aims to look further into the issues regarding security so 

that memory data can be collected, and stored, safely. These key questions will be propelling the research, 

into this, area forward.  
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