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Abstract

Reducing energy consumption has become a key issue for data centres, not only

because of economical benefits but also for environmental and marketing rea-

sons. Therefore, assessing their energy consumption requires precise models. In

the past years, many models targeting different hardware components, such as

CPU, storage and network interface cards (NIC) have been proposed. However,

most of them neglect energy consumption related to VM migration. Since VM

migration is a network-intensive process, to accurately model its energy con-

sumption we also need energy models for network transfers, comprising their

complete software stacks with different energy characteristics.

In this work, we present a comparative analysis of the energy consumption

of the software stack of two of today’s most used NICs in data centres, Eth-

ernet and Infiniband. We carefully design for this purpose a set of benchmark

experiments to assess the impact of different traffic patterns and interface set-

tings on energy consumption. Using our benchmark results, we derive an energy

consumption model for network transfers.

IThis work is partially supported by the Indo-Austrian Project funded by the Austrian
Science Fund and the Indian Department of Science and Technology.
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Based on this model, we propose an energy consumption model for VM

migration providing accurate predictions for paravirtualised VMs running on

homogeneous hosts. We present a comprehensive analysis of our model on dif-

ferent machine sets and compare it with other models for energy consumption

of VM migration, showing an improvement of up to 24% in accuracy, according

to the NRMSE error metric.

Keywords: Energy consumption, benchmarking, network interface card,

virtual machine migration

1. Introduction

Recently, Cloud computing has emerged as a new paradigm by which com-

putational power is hosted on data centres by specialised providers and rented

on-demand to the users based on their occasional needs. In doing this, providers

are interested in maximising their profit. Since nowadays energy consumption

has a big impact on their budget [1], they are inclined to maximise energy ef-

ficiency within their data centres. However, physical machines in data centres

are often underutilised [2]. For this reason, one of the ways to increase energy

efficiency is to increase their utilisation by mapping tasks on a subset of the data

centre’s machines and shut down the rest, a technique called workload consoli-

dation. Since in modern data centres computations are running within virtual

machines (VMs), such mappings refer to running VMs on physical machines.

In order to assess whether a new mapping of VMs is beneficial energy-wise,

we need prediction models for their energy consumption. Such models should

take into account all the actors (e.g. VMs, physical hosts, network hardware)

and activities (e.g. VM migration, powering down/off physical hosts) involved

in the consolidation. Among all activities, VM migration is widely used when

performing consolidation, because it provides the capability to move the state

of running VMs between physical machines to dynamically adjust the workload.

Despite having a considerable impact on energy consumption [3], this activity

has usually not been taken into account when building energy models for con-
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solidation. In recent years, several works modelled energy consumption of VM

migration. For example, [3] developed a model considering VM CPU utilisa-

tion, [4] proposed a model based on VM dirtying rate and [5] a model based on

VM size. However, both works either did not consider all the actors involved in

the VM migration (e.g., source, target host, network infrastructure) or do not

consider energy consumption due to network transfers using different software

stacks. Since VM migration moves the state of a VM between two hosts over

the network, we need an accurate energy model for network transfers, on top of

which we will build a model for VM migration.

Many works [6, 7, 8] address specific hardware components such as CPUs,

storage, and memory, but few of them focus on network transfers. In the net-

working area, existing works investigate energy-saving techniques like sleeping

and rate adaptation [9] with focus on routers and switches [10] or on MPI par-

allel scientific applications [11]. Several works like [12] focused on the energy

consumption of network transfers in message passing models, but few investi-

gated it at the software level, comprising their complete stacks with different

power characteristics and their impact on the application. Since data centres

often install multiple Network Interface Cards (NICs) on each node, we believe

that investigating and comparing them at the software level has high potential

to enhance the energy efficiency of applications on Cloud infrastructures.

In this paper, we first investigate the main factors influencing the energy

consumption of the software stack of the two mostly used networks in data cen-

tres: Ethernet and Infiniband. Our goal is to model their energy consumption

at the application software level (not at the hardware level), considering all

components involved in the network transfers (CPU, RAM, I/O, and NIC). For

this purpose, we design a set of network-intensive benchmarks that emulate a

wide spectrum of possible application parameters such as transfer size, number

of simultaneous transfers, payload size, communication time, and traffic pat-

terns. We focus on homogeneous nodes and on data transfers running over the

TCP transfer protocol, because it is the most pervasive one according to [13].

We execute the benchmarks on machines equipped with NICs belonging to the
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two families and compare their energy consumption. We do not consider energy

consumption of routers and switches, because it has been proven to be constant

regardless of the traffic amount [14]. Finally, we derive network transfer’s energy

consumption models for each network software stack.

Based on the developed network energy model, we introduce an energy con-

sumption model for VM migration. We aim to improve the precision of existing

models by (1) employing our model for network transfer and (2) considering a

wider number of actors involved in this activity. We also consider the impact

of different types of workload on energy consumption of VM migration. First

of all, we identify the actors mostly involved in this activity. Then, we analyse

the impact of VM migration on energy consumption of each actor considering

different workloads. We focus on CPU and memory-intensive workloads that

represent the most common and energy-impacting loads in data centres. In do-

ing this, we identify the different phases of VM migration from an energy point

of view and model the consumption of each actor over each phase. We target

the Xen virtualization platform used by many commercial Clouds today such

as Amazon EC21. Therefore, our model is restricted to scenarios with homo-

geneous source and target hosts, as Xen prevents execution of VM migration

between machines with incompatible architectures. We limit our work to CPU

and memory-intensive applications, since our measurements show that network-

intensive workloads do not have a big impact on VM migration. We build our

model on measurements taken on two different sets of machines with differ-

ent architectures from a private Cloud. Then, we experimentally evaluate the

impact of different workloads on energy consumption by measuring the energy

consumption on each actor involved in VM migration while running benchmarks

purposely designed to stress different components (e.g. CPU, memory). Based

on the collected energy measurements for each selected component, we set as ac-

ceptance criterion for our model a normalised root mean square error (NRMSE)

lower than in other other state-of-art models. Finally, we compare our results

1http://www.citrix.com/global-partners/amazon-web-services/overview.html
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with three state-of-art models and perform investigations on a different subset

of machines showing its applicability for diverse configurations.

1.1. Our contribution

The paper is an extension of our work [15], published in the UCC 2014

proceedings. The paper is organised as follows: first, we analyse related work

in Section 2. Then, in Section 4.4 we introduce our network model. First, we

describe the employed network hardware, then we identify the energy impacting

factors for network transfers. Once identified the most energy-impacting factors,

we design network-intensive benchmarks to evaluate the energy efficiency of the

selected network software stacks. Finally, we use the benchmarks results to

develop a model of energy consumption of network transfers.

As an extension of our previous work, we use the previously developed net-

work model to develop a model of energy consumption of VM migration in

Section 5. Since VM migration involves also CPU and memory, we extend the

previously developed network model in order to consider also these other param-

eters. First, we identify the actors involved in VM migration and the migration

energy phases. Then, we develop a model for VM migration by extending the

previously developed network transfer model. Finally, we compare the obtained

model with other existing models, showing that our model can reach an higher

accuracy in different scenarios, and we conclude our paper in Section 6.

2. Related Work

Energy aware networking. Many works exploit network awareness to save en-

ergy, with focus on routing equipment and algorithms: [16, 17, 18]investigate

energy-aware allocation of resources in Clouds considering network topology.

Works like [19, 20] address the problem from the routing point of view. Tech-

niques exploiting rate adaptation are explored for data centre networks in [21,

22]. Complementary to these works, we focus on the energy consumption from

the perspective of software application, including not only the NICs, but also

the other components involved in network transfers.
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Network energy modelling. The first studies on network energy consumption [23,

10] focuses on energy consumption of routers, switches and hubs and do not take

into account energy consumed by the application for data transfer. In [24] a

energy consumption model for network equipment and transfers for large-scale

networks, based on transfer time and bandwidth, is introduced. We propose

here a complementary model for network transfers considering different NICs

and more parameters. Works like [9] consider only transfer time when building

a model for network transfers. In our work, we consider additional factors.

VM migration. One of the first works about VM migration is [25], but it does

not take into account the energy consumption of this process. Other works

such as [26, 27] investigate the advantages of using VM migration to achieve

energy savings in data centers, but do not consider its own energy consump-

tion. However, it focuses on the total energy consumed and does not highlight

which consumption is related just to the network transfer. Moreover, this model

makes a simplistic assumption that two nodes involved in a network operation

consume the same energy, which may not be true for some NICs. Live VM

migration has been proposed by [25] for Xen hypervisor. Since then, it has been

implemented in many popular hypervisors, such as Xen, KVM and VMWare.

Many works like [28, 29] exploit live VM migration to perform energy-aware

VM consolidation. However, energy consumption of VM migration is not taken

into account in these works. Other works like [30, 31] focused on the cost of live

migration for cloud data centres, but they considered only performance and did

not take energy consumption into account. Further works like [32] implement

model for VM migration in Cloud simulator, but they do not provide models

for its energy consumption. First investigations about energy consumption of

VM migration have been done by [33]. One of the first works who modelled at

the same time energy and performance of live migration is [4], that identified

a relationship between network bandwidth and energy consumption of Xen live

migration. This work, however, considers only the load running on the migrat-

ing VM. Moreover, it makes the simplistic assumption that source and target
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host have the same energy consumption for VM migration. A similar work has

been done for KVM live migration by [5]. Another model has been proposed

by [34], but it considers only CPU load. In this work, we consider the workload

of each actor involved in the migration process and extract a more accurate

model for VM migration. In this work we also consider energy consumption for

non-live migration.

3. Preliminaries

In this section we are going to explain the basics concepts regarding network

and VM migration.

3.1. Network hardware

We choose in our work the Ethernet and Infiniband NICs because they are

to the best of our knowledge the most used interconnection technologies used

in data centres. While communications running on Ethernet use the implemen-

tation of TCP/IP provided by the operating system, Infiniband software stack

relies on kernel-bypass mechanisms and on RDMA-based capabilities. Such ca-

pabilities have a different impact on energy consumption. Therefore, comparing

these two software stacks may give interesting insights about energy consump-

tion of network transfers.

3.1.1. Ethernet

Ethernet is the most popular local-area network technology, defining several

protocols which refer to the IEEE 802.3 standard using four data rates: (1)

10 Mbps for 10Base-T Ethernet, in IEEE 802.3, (2) 100 Mbps, also called Fast

Ethernet, in IEEE 802.3u, (3) 1000 Mbps, also called Gigabit Ethernet, in

standard IEEE 802.3z, and (4) 10-Gigabit, also called 10 Gbps Ethernet, in

standard IEEE 802.3ae. We focus on Gigabit Ethernet because, along with

the newer 10-Gigabit, it is the most used interconnection technology in data

centres. The minimum frame size for Gigabit Ethernet (1000Base-T standard)

is 520 bytes, while the Maximum Transmission Unit (MTU) is 1500 bytes.
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3.1.2. Infiniband

Infiniband is a popular switch-based point-to-point interconnection archi-

tecture that defines a layered hardware protocol (physical, link, network, trans-

port), and a software layer to manage the initialisation and the communication

between devices. Each link can support multiple transport services for reliabil-

ity and multiple virtual communication channels. The links are bidirectional

point-to-point communication channels that can be used in parallel to achieve

higher bandwidth. Infiniband offers a bandwidth of 2.5Gbps in its single data

rate version used in our work for comparison with Gigabit Ethernet. TCP/IP

communications are mapped to the Infiniband transport services through IP

over Infiniband (IPoIB) drivers provided by the operating system. An Infini-

band NIC can be configured to work in two operational modes.

Datagram is the default operational mode of IPoIB described in RFC 4391 [35].

It offers an unacknowledged and connectionless service based on the unreliable

datagram service of Infiniband that best matches the needs of IP as a best effort

protocol. The minimum MTU is 2044 bytes, while the maximum is 4096 bytes.

Connected mode described in RFC 4755 [36] offers a connection-oriented

service with a maximum MTU of 2GB. Using the connected mode can lead to

significant benefits by supporting large MTUs, especially for large data transfers.

Setting Infiniband in one of these two modes will result in mapping a TCP

communication on a different transport service. For this reason, we will measure

the energy consumption of an Infiniband network transfer in both modes.

3.1.3. VM migration

Although VM migration can be realised in different ways, we focus here on

the most used approaches: non-live migration and live migration.

Non-live migration (sometimes referred as suspend-resume migration) ap-

proach consists in: (1) suspending the VM to be migrated, (2) transferring its

state to the target host, and (3) resuming the VM on the target host.

Live migration has been proposed to reduce the down time of VMs during

migration in four steps: (1) moving the VM state from source to target host
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while the VM performs its normal operations, (2) updating the state of the tar-

get VM with the modifications made on the source while transferring the state,

(3) repeating step (2) until a termination criteria is reached (e.g. modifications

under a given threshold or maximum number of copies reached), (4) suspending

the VM and transferring the last modifications to the target, and (5) resuming

the VM on the target when its state is consistent with the source.

3.1.4. Actors

In this section we identify the actors involved in the VM migration process,

as highlighted in Figure 1.

• Consolidation manager constantly monitors the load of the data centres,

selects the VM to be migrated and the target host, and finally initiates

the migration. Afterwards, it returns to its previous operation;

• Migrating VM from the source to the target host, which also runs the

services used by the customers of the data centre;

• Source host running the migrating VM, establishes first a connection with

the target to communicate the intention of starting a VM migration;

• Target host designated as destination for the migrating VM. It provides

the resources necessary for running the migrating VM;

• Network refers to the underlying communication infrastructure responsible

for connecting the actors and for supporting the VM state transfers.

In the rest of the paper we focus only on three of these actors: migrating

VM, source host, and target host. We do not consider the consolidation manager

because it does not further interact with the migration after initiating it. Con-

cerning networking, we consider only the energy consumption consumed by the

hosts for transferring the VM state. We do not consider the energy consumption

of routers, switches and the underlying network infrastructure because accord-

ing to our studies they are going to affect VM migration energy only when the
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Figure 1: Overview of the migration process.

network is highly loaded. However, when there is a lot of network traffic between

two hosts, it is unlikely that the consolidation manager will issue a migration

between the two hosts, due to its big drawbacks on VMs performance.

4. Network Energy Modelling

4.1. Benchmarking Methodology

In this section we describe the benchmarking methodology for evaluating the

energy consumption of the NIC software stacks. We first outline the impacting

factors and then present the benchmarks and the evaluation metrics.

4.1.1. Energy-impacting factors

We describe the main factors affecting the energy consumption of network

transfers according to our studies.

Time this parameter must be considered since the longer a network transfer,

the more energy it consumes.

Transport protocol affects energy consumption because it defines the way in

which transfers are performed. It defines how application layer’s effective data

are encapsulated. Such encapsulation inherently affects the NIC’s operational

mode and the amount of transferred data. While there exist many transport

protocols (e.g. TCP, UDP, RSVP, SCTP), we only focus our analysis on TCP

(the most pervasive one) due to space limitations.
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Per-packet payload size is the real data transmitted with a single packet,

juxtaposed to a header that makes the communication possible. The payload

size depends on many factors such as protocol configuration, physical layer

MTU, maximum segment size (MSS, representing the largest amount of data

that can be sent in a single packet) on TCP, and other application characteristics

(e.g. some applications require frequent exchange of small packets). Payload

size has an impact on time, since a smaller payload size implies a higher number

of packets and thus, more headers to process.

Number of connections to the NIC, typically shared among multiple appli-

cations that simultaneously send and receive data. With an increasing number

of connections, one could experience a higher energy consumption due to the

overhead introduced by their arbitration.

Traffic patterns of different types generated by network-centric applications

as showed in [37], characterised by the inter-arrival time of packets.

4.1.2. Benchmarks

We investigate each factor through six benchmarks, all running on TCP.

BASE investigates the impact of network transfers on energy consumption

by transferring a fixed amount of data using sockets without any specific tuning.

PSIZE investigates whether the NIC energy consumption is related to the

payload size under two premises: (1) PSIZE-DATA determines the impact of

payload size on energy efficiency independent of the data size by repeatedly

transferring a fixed amount of data while varying the maximum payload size,

and (2) PSIZE-TIME performs a maximum payload size evaluation with a fixed

transfer time by continuously transferring data until a timeout is reached.

n-UPLEX evaluates the energy consumption of NICs in full duplex (FD)

mode, while handling multiple concurrent connections. We transfer a fixed

amount of data using a varying number of FD connections on each machine.

PATTERN evaluates the effects of traffic patterns on energy consumption.

We configure the data transmissions to be a succession of burst and throttle

intervals, representing fixed time intervals in which the NICs are continuously
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Tool
Transfer Transfer MSS Disable FD/HD Concurrent VariableVariable

data size timeout settingbuffering1connectionsconnections burst throttle

ttcp (v1.12) 3 7 7 3 7 7 7 7

netperf (v2.4) 3 3 7 3 7 7 7 7

iperf (v2.05) 3 3 3 3 3 3 7 7

1 e.g. an option for setting the TCP NODELAY

Table 1: Comparison of networking benchmarking/diagnosis tools.

communicating and idle, as depicted in Figure 2. For PATTERN-B we keep

the throttle size constant and vary the burst size, while PATTERN-T we vary

the throttle size keeping a constant burst size.

For the PSIZE benchmarks, we need to successively set the transferred data

size and a transmission timeout, and to strictly control the packet size. This

can be achieved by altering the MSS and by disabling any buffering algorithms.

For the n-UPLEX benchmark, we need to configure the type of (FD/HD)

connections and the number of simultaneous connections. Finally, the PAT-

TERN benchmark requires the possibility to shape the communication patterns

through variable burst and throttle intervals. In the next section, we are going

to see how we implemented our benchmarks.

4.1.3. Nimble NEtwork Traffic Shaper

To configure the metrics of our study based on transfer data size and time-

out, payload size, FD/half-duplex (HD) connections, connection concurrency,

and transmission patterns, we analysed three of the most popular open-source

network diagnosis and benchmarking tools: ttcp2, netperf3 and iperf4. Ta-

ble 1 presents a comparison of the flexibility of these tools focused on the pro-

vided configuration options for the metrics relevant to our study. Since none of

the analysed tools covers all configuration parameters needed, we designed the

Nimble NEtwork Traffic Shaper (NNETS), a versatile network traffic shaping

2http://www.pcausa.com/Utilities/pcattcp.htm
3http://www.netperf.org/netperf/
4http://iperf.sourceforge.net/
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tool implemented in Python 2.7 using the standard socket API, publicly avail-

able under GNU GPL v3 license5. In addition to the custom design required for

accommodating all studied configurations, the tool allows a proper instrumenta-

tion of network and energy metrics. We implemented it with a clear separation

between data processing and networking operations in order to instrument only

the relevant regions of code, excluding data staging and pre-/post- processing

operations and ensuring that the measured energy consumption is strictly re-

lated to the network transfer.

4.1.4. Metrics

To evaluate software stacks’ energy efficiency we employ five metrics:

• Machine energy consumption in Kilojoules (kJ) for each experiment;

• Network energy consumption in Kilojoules (kJ), computed as the differ-

ence between the machine’s energy consumption during benchmarks’ exe-

cution and its idle consumption. This metric includes the energy consumed

by all the components of the network stacks involved in the network trans-

fer, that we purposely include to have a more realistic metric related to

the software application;

• Average power in Watts (W), defined as the ratio between network energy

consumption and its execution time;

• Energy per byte in Nanojoules (nJ), defined as the ratio between the net-

work energy consumption and the number of bytes transferred, which

indicates how energy varies in relation to the size of data transfer;

• Energy per packet in Millijoules (mJ), defined as the ratio between the

network energy consumption and the amount of packets transferred.
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IDLE IDLE IDLE

time

SND/RCV

burst throttle throttle throttle

SND/RCV

burst

SND/RCV

burst

Figure 2: PATTERN benchmark (burst/throttle intervals).

Host CPU Kernel Gigabit NIC Infiniband NIC Gigabit switch Infiniband switch dom0 kernelXen version

k12 4× Linux Broadcom SDR Mellanox Cisco Mellanox MT47396 3.0.4 4.2

k13 Opteron 8802.6.9-67 BCM5704 MT23108 Catalyst 3750 Infiniscale-III

Table 2: Experimental hardware.

4.2. Experimental Setup

We employ two machines, both equipped with Infiniband and Gigabit Eth-

ernet NICs, as specified in Table 7c. We set the MTU on all machines to 16382

bytes for the Infiniband NICs in connected mode, to 2044 bytes in datagram

mode, and to 1500 bytes for the Gigabit Ethernet NICs. The machines are

connected through two dedicated server-grade network switches to exclude the

impact of external network traffic. For each NIC and connectivity mode, we run

the benchmarks in three configurations (send, receive and n-uplex), namely: (1)

ETH-SND/RCV, ETH for Gigabit Ethernet in send, receive and n-uplex; (2)

IBC-SND/RCV, IBC for Infiniband connected in send, receive and n-uplex; and

(3) IBD-SND/RCV, IBD for Infiniband datagram in send, receive and n-uplex.

For the energy measurements, we use Voltech PM1000+ power analysers (with

0.2% accuracy) connected to the machines’ AC side and capable of reading the

power twice per second. For each benchmark, we select the input parameters

to produce an execution time of at least 50 seconds, which allows us to have

at least 100 readings in each execution. Table 3 summarises the experimental

parameters. The data and time columns denote the termination condition of

each benchmark experiment. When the data size is set, the experiment ter-

minates after transferring the indicated amount of data (i.e. the session and

transport overheads), while when the timeout is set, the experiment is termi-

5To be published at: http://code.google.com/p/nnets/
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Benchmark Size [GB]Time [min]Payload [% MTU]ConnectionsBurst [ms]Throttle [ms]

PSIZE-DATA 75 – 30 – 100 1 HD – –

PSIZE-TIME – 5 30 – 100 1 HD – –

n-UPLEX 150 – 100 1 – 8 FD – –

PATTERN-B 11 – 100 1 HD 1 – 10 10

PATTERN-T 11 – 100 1 HD 10 1 – 10

Table 3: Benchmark summary with focus metric in bold.

nated after the indicated time. The payload indicates the size of the useful

data in each packet, computed as a percentage of MTU minus 40 bytes (the

size of IP and TCP headers), but for simplicity we denote it as “a percentage of

MTU”. The connections column indicates the number of concurrent connections

through which the transfer is made. Finally, the burst and throttle represent

the concrete time intervals of continuous activity and inactivity of the NICs.

For the PSIZE benchmarks, we vary the maximum payload between 30% and

100% of the NICs’ MTU. We also set the TCP NODELAY flag to prevent pack-

ets smaller than MTU from being buffered. For PSIZE-DATA we set the data

size to 75GB, while for PSIZE-TIME we set a timeout of 5 minutes. For the

n-UPLEX benchmark, we transmit a fixed amount of data of 150GB (send-

ing 75GB and receiving 75GB) over n FD connections. For both PATTERN

benchmarks, we set the data size to only 11GB, as the studied traffic patterns

considerably increase the transfer times. In the PATTERN-B benchmark, we

keep the throttle size constant to 10 msand vary the burst size to 2, 4, 6, 8, and

10 ms. Conversely, for the PATTERN-T benchmark, we vary the throttle to 2,

4, 6, 8, and 10 ms with a constant burst size of 10 ms. We run each experiment

for ten times, which ensures an average coefficient of variation of 0.053, and

present the average of the results.

4.3. Experimental Results

In this section we present the results of our experiments.
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Figure 3: Base benchmarks result

4.3.1. BASE

We observe in Figure 3 a considerable difference in energy consumption

for running the BASE benchmark. The immediate finding is that transferring

the same quantity of data over Infiniband in connected mode is more efficient

in terms of energy and time. We can also observe that Infiniband’s energy

consumption significantly differs between sending and receiving operations: 30%
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less energy for sending than receiving in connected mode, and 10% less energy

for receiving compared to sending. It is also noteworthy that, even in this simple

benchmark, the network energy consumption is between 1.58 and 6.33 kJ, that

can be a significant percentage of energy consumption in a node with lower

idle power consumption. The other metrics provide supplementary insight into

these NICs’ energy efficiency. Although it might appear that the Infiniband

in connected mode is more energy efficient with the lowest average power in

operation, this only holds true when the two communicating parties require

large amounts of on-hand data to be transferred. When the communication

is message centric and the volume of effective data is low, resulting in a high

number of packets being transmitted, the Gigabit Ethernet NIC is the more

energy-efficient choice, closely followed by Infiniband in datagram mode.

These preliminary findings hint that an energy efficient network communica-

tion depends on the nature of the traffic generated by the application. For data

intensive traffic in applications such as data warehousing and content streaming

or delivery, the more energy-efficient network is Infiniband configured in con-

nected mode. On the other hand, for finer-grained traffic and real-time message

exchanges such as low traffic databases and online games, Gigabit Ethernet is

more efficient. The following experiments give further assessment of the energy

consumption of the two networks with respect to traffic characteristics.

4.3.2. PSIZE

We begin with the PSIZE benchmark, focused on the influence of the payload

size on networks’ energy efficiency.

PSIZE-DATA. The results in Figure 4a show that the energy consumption of

the software stacks of the studied NICs is inversely proportional to payload,

the most efficient operational point being reached for the maximum payload.

Also noteworthy is the significantly better scalability in terms of energy when

employing Infiniband NIC in connected mode: 36% energy consumption increase

for a 50% decrease in payload, versus 84% for Gigabit Ethernet and 79% increase
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for Infiniband in datagram mode. Analysing the other metrics presented in

Figure 4, we can identify in detail the energy-to-payload relation. Figure 4b

suggests that, while for Infiniband in connected mode the energy consumption

per transferred packet is proportional to its payload, it is relatively constant

in the case of Infiniband in datagram mode and Gigabit Ethernet. Conversely,

Figure 4c reveals a stronger inverse correlation between the payload and the

energy consumption per transferred effective byte. The Infiniband in datagram

mode and the Gigabit Ethernet NICs are affected in terms of energy efficiency by

a payload decrease, the energy consumption per effective byte nearly tripling at

a 30% of MTU payload. This behaviour is less severe for Infiniband in connected

mode, the energy per byte doubling for a payload of 30% of MTU.

PSIZE-TIME. We present the resulting average power consumption in Fig-

ure 4d, each point representing the cumulated power for send and receive oper-

ations. The main finding of this experiment is that the energy consumption of

both Infiniband and Gigabit Ethernet NICs is not exclusively correlated with

running time. We observe that while Infiniband (regardless of its operational

mode) consumes in average less power with lower payloads, Gigabit Ethernet

is more power efficient at higher payloads. Further investigation revealed that

Gigabit Ethernet’s high power efficiency for larger payloads is likely due to

driver optimisations, as we noticed a 32% decrease in CPU utilisation between

the transfers with payloads set at 30%, respectively 100% of MTU. The CPU

utilisation was constant for all Infiniband transfers in both modes.

To conclude, energy consumption of the networks is inversely proportional

to the maximum payload size. Second, Gigabit Ethernet and Infiniband in

datagram mode are better suited for lightweight, mixed traffic (with varying

payload sizes), while Infiniband connected is by far the most energy efficient for

non-fragmented traffic. Finally, network energy consumption is not exclusively

time-related, thus one cannot optimise for time and expect proportional savings.
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(b) PSIZE-DATA: energy per packet.
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(c) PSIZE-DATA: energy per byte.
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Figure 4: PSIZE benchmark results.

4.3.3. n-UPLEX

We observe in Figure 5a a considerable increase in the energy consumption

of Gigabit Ethernet and Infiniband in datagram mode with more concurrent

connections. The trend has a piecewise linear shape and is relatively similar

for the power traces shown in Figure 5b. In contrast, Infiniband in connected

mode shows a decreasing energy consumption with the increase in concurrent

connections. Moreover, although Infiniband in connected mode consumes the

least energy for transferring the fixed data amount for multiple connections,

19



0 2 4 6 8

0
5

1
0

1
5

2
0

2
5

3
0

Number of connections

N
e

tw
o

rk
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 [

k
J
]

ETH
IBC
IBD

(a) Network energy.

0 2 4 6 8

0
2

0
4

0
6

0
8

0

Number of connections

A
ve

ra
g

e
 p

o
w

e
r 

[W
]

ETH
IBC
IBD

(b) Average power.

Figure 5: n-UPLEX benchmark results.

it is clearly exhibiting the highest average power consumption. This raises a

question regarding the NICs’ performance in terms of transfer bandwidth in this

contention scenario. We present in Table 4 a comparison between the variation

of the achieved bandwidth, consumed energy, and CPU utilisation between the

two extreme cases studied: (1) the network contention case with eight concurrent

FD connections and (2) the single FD connection. The results reveal a significant

increase of 72% in bandwidth for the Infiniband connected, with a 19.1% average

power increase. This variation of its power state with performance (in terms

of bandwidth), is the reason of its energy efficiency. At the other end, Gigabit

Ethernet exhibits the highest increase in energy consumption of almost 50%

with only a marginal 2.5% increase in bandwidth. The considerable average

power consumption increase in all cases stems from both (1) NICs requiring

more power to handle the increased load and (2) increasing CPU overheads for

managing multiple simultaneous connections. This observation is supported by

the non-proportional energy consumption versus the CPU utilisation increase

shown in Table 4. Finally, the increase of CPU utilisation for Infiniband in

connected mode is 130.15% higher than the other two configurations due to the

increased bandwidth requiring faster data preprocessing.

In summary, in a connection concurrency environment significant power con-
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Metric
Variation [%] (8 vs 1 connections)

ETH IBD IBC

Bandwidth +2.49 +4.39 +72.03

Energy +45.80 +37.33 −31.03

Power +49.43 +43.37 +19.11

CPU +38.62 +38.23 +130.15

Table 4: Variation of relevant metrics with number of concurrent connections.
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Figure 6: PATTERN benchmark results.

sumption penalties occur, the Infiniband in connected mode being the best

choice in terms of energy efficiency. The increased power consumption is due to

a higher NICs’ power state and to processing overheads.

4.3.4. PATTERN

These two experiments study the energy consumption of the NIC software

stacks for different communication patterns.

PATTERN-B. Figure 6a shows that Gigabit Ethernet is the least energy effi-

cient for all studied burst intervals. For short burst intervals (2− 4ms), Infini-

band datagram is surprisingly more efficient consuming up to 44% less energy

than in connected mode. For longer burst intervals, connected mode becomes

better consuming 17% less energy.
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PATTERN-T. Figure 6b shows a stable, monotonously increasing energy con-

sumption with increasing throttle intervals. It is noteworthy that the energy

consumption increases at different rates for the different NICs and operational

modes: Gigabit Ethernet’s consumption increases by 110J per ms of throttle,

while Infiniband by 49J in datagram mode, and by 55J in connected mode. Al-

though Infiniband connected is more energy efficient for the studied configura-

tions, a basic extrapolation shows that for traffic patterns with throttle intervals

higher than 50ms the datagram mode becomes the more energy efficient choice.

In conclusion, Infiniband in datagram mode shows the least variation in

energy consumption with different (mixed or undetermined) transmission pat-

terns, while Infiniband in connected mode exhibits a very good energy efficiency

in a few particular cases (for long transmission bursts).

4.4. Network Energy Consumption Model

We model in this section the factors analysed in Section 4.1.1 that affect the

network energy consumption. We believe that such a model would help scien-

tists in more accurately predicting the energy consumption of network-intensive

applications, as required for example by resource managers and schedulers. We

decided to use regression analysis, that has been successfully used in previous

energy prediction and modelling works [38]. We employ the NLLS regression

algorithm. For extracting model parameters, we employ the data gathered from

ten experimental runs. We assess the accuracy of our models using two metrics:

(1) mean absolute error (MAE) and (2) root mean squared error (RMSE) that

is also an absolute deviation metric, but more sensitive to large deviations. The

difference between the two metrics is a measure of the variance in the individual

deviations for all samples. We will also present a normalised value of RMSE

(NRMSE) for metric-independent comparisons.

We model the energy consumption of a network transfer as:

E =
∑

x∈{send,receive}

(Ex(DATAx, px, bx, tx) +O (cx)) , (1)
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αsend[µJ]αreceive[µJ] βsend βreceiveγsendγreceiveKsend[kJ]Kreceive[kJ] ε ζ MAE [kJ]RMSE NRMSE

ETH 73.5 71.3 19.71 21.57 0.59 0.58 0.35 0.35 733.14-685.56 0.44 0.9 0.03

IBC 137.1 181.4 13.93 14.23 0.23 0.19 0.58 0.80 12.59 -0.21 0.82 2.62 0.09

IBD 97.9 69.0 4.13 3.96 0.22 0.16 2.37 2.16 99.52 -82.13 0.83 0.98 0.05

Table 5: Model parameters and error.

where DATAx is the number of bytes transferred, px the payload per packet, cx

the number of additional connections (for FD transfers), and bx and tx the size

of burst and throttle intervals in ms. We calculate Ex as:

Ex = αx ·
DATAx

px
+
βx
bx

+ γx · tx +Kx, (2)

where x ∈ {send, receive}, ax can be interpreted as the cost for sending,

respectively receiving a packet, βx and γx are the model parameters, and Kx
is a hardware and driver-related constant for setting up a sending, respectively

receiving connection. Regarding the overhead of multiple connections, since

Gigabit and Infiniband datagram use the NICs in a different way compared to

Infiniband connected, their arbitration of multiple connections will be different

too. For this reason, we employ Equation 3 for both Gigabit and Infiniband

datagram and Equation 4 for Infiniband connected:

Odatagram(cx) = log(ε · cx + ζ); (3)

Oconnected(cx) = ε · cζx, (4)

where ε and ζ are the model parameters and x ∈ {send, receive}. Table 5

shows the model parameters along with the error, calculated over all the samples.

The error is always below 9.4% which demonstrates a good accuracy.

5. Energy Modelling of VM Migration

In this section we build a model of VM migration based on the network

transfer model.
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5.1. Power Characteristics of VM Migration

In this section we provide an overview of the power characteristics of VM

migration. We already described the VM migration process and depicted the

actors involved in this process in Section 3. Now, we investigate the workloads

impacting VM migration energy consumption. Finally, we identify the phases

that occur during a migration.

5.1.1. Workloads

The three selected actors can influence the energy consumption of VM migra-

tion in different ways, especially depending on the application and the workloads

they are running. We analyse this aspect in this section.

Although there may be different kind of workloads running in a data center

(e.g. CPU-intensive, memory-intensive, network-intensive, or mixed), we focus

in the following on the CPU and memory-intensive ones because they mostly

impact the VM migration process. Table 6 summarises the workloads’ impact on

VM migration. When the migrating VM is running a CPU-intensive workload,

a performance drop may be experienced if the source and/or target host are

fully loaded because of the CPU shared between the workload running on the

machines and on the migrating VM. If the migrating VM is running a memory-

intensive workload that continuously updates RAM locations, this will highly

impact performance of a live migration since several transfers are needed to

achieve a consistent state between the source and the target. For these reasons,

we only consider in this work (1) CPU intensive workloads running on source,

target and migrating VM, and (2) memory-intensive workloads running on the

migrating VM. We consider as memory-intensive workloads: (1) workloads using

at least 90% of the memory allocated to the VM and (2) workloads with an high

memory dirtying ratio (i.e. a high percentage of memory pages marked dirty

over a given amount of time).
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Workload Migration type Migrating VM Source host Target host

CPU LIVE Source/target Slowdown Slowdown for VM

intensive NON-LIVE load-dependant for state transfer start/state transfer

MEMORY LIVE Multiple transfers ofSlight performanceSlight performance

VM state degradation degradation

intensive NON-LIVE No influence

Table 6: Workload impact on VM migration according to the hosting actor.

(a) Non-live migration. (b) Live migration.

Figure 7: Energy consumption phases of non-live and live migration.

5.1.2. Migration energy phases

As we discussed in the previous sections, both live and non-live migration

go through different phases with different energy-wise behaviour for each actor,

and highly influenced by their hosted workloads. In this section, we identify

the migration phases from an energy point of view by collecting and analysing

power traces of a VM migration as shown in Figure 7 and described next.

Normal execution. During this phase, the VM and the other actors are perform-

ing their normal operation before a migration decision is taken. We assume that

the power consumption over this phase is constant, since it has no influence on

VM migration. We describe it here anyway, for clarity reasons.

Initiation. This phase starts when a migration is issued and ends when the

target host is ready to receive the VM state. Regarding the source host, we

will experience a strong decrease in power consumption because of the VM

suspension in case of non-live migration, while for live migration there will be a

peak for saving the VM state and sending it to the target. On the target host,
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the peaks in power consumption are due to checking of resource availability and

sending of acknowledgement to the source that a migration can start.

Transfer. During this phase, all the data needed by the VM is transferred over

the network from the source to the target host. For non-live migration, VM

suspension has limited influence on the power consumption which is only influ-

enced by the exchanged VM state data. For live migration, we experience an

additional consumption in the source that has to keep track of the modifications

to the VM state.

Service activation. This phase starts after the VM state is transferred and ends

when the VM is running on the target host. In this phase, the source host frees

the resources owned by the VM in the case of non-live migration, while for live

migration the VM needs to be first shut down. Finally, each actor returns to

the normal execution phase.

5.2. Model

In this section, we model the energy consumption of each migration phase

described in the previous section. The energy consumption of the complete VM

migration process will be the sum of the energy consumption of each phase.

5.2.1. Migration model

In this section we formally define a VM migration transferring the state

of a migrating VM v from a source host S to a target host T. As we saw in

Section 5.1.2, VM migration goes through different energy phases. Therefore, we

define for each migration ms as the instant when the migration starts, ts and te

the time instances when the transfer phase of the migration starts, respectively

ends, and me as the instant when the migration ends. The time interval between

ms and ts is the initiation and the one between te and me is the activation phase.

5.2.2. Resource utilisation model

According to our analysis in Section 5.1, the most impacting actors for VM

migration are the source and target hosts S and T and the migrating VM v. In
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this section, we present a model for resource utilisation of the selected actors to

which energy consumption is directly correlated. Both hosts and the VM have

different types of resource use (e.g. CPU, memory, network), but according to

our analysis in Table 6, the most impacting parameters on migration are: (1)

CPU utilisation of the source CPU(S, t) and target CPU(T, t) hosts at the instant

t and CPU utilisation CPU(v, t) of the migrating VM v at instant t, (2) memory

dirtying ratio DR(v, t) of the VM v at instant t, (3) the memory MEM(v) allocated

to the migrating VM v, and (4) the network bandwidth BW(S, T, t) between the

source and target hosts for transferring the state of the migrating VM.

If the VM is idle or suspended, then CPU(v, t) = 0 and DR(v, t) = 0. The

parameters CPU(S, t) and CPU(T, t) mainly depend on three terms: (1) CPU

utilisation CPUVMM for arbitrating the hardware resources shared among the VMs,

(2) CPU utilisation CPU(v, t) for each VM v executed on the host h at the instant

t and (3) CPU load CPUmigr added by migration on both source and target:

CPU(h, t) = CPUVMM(V(h, t)) +
∑

v∈V(h,t)

CPU(v, t) + CPUmigr(h, t), (5)

where V(h, t) is the complete set of VMs running on the host h ∈ {S, T} at

instant t other than the migrating VM v.

5.2.3. Energy model

In this section we describe the model for energy consumption of VM migra-

tion. For each physical host h ∈ {S, T}, this energy consumption is the integral

of the migration power Pmigr over the migration time [ms,me]:

Emigr(h, v) =

∫ me

ms

Pmigr(h, v, t) dt, (6)

where Pmigr(h, v, t) is the sum of the power consumed over the three energy

phases (P(i)(h, v, t) for initiation, P(t)(h, v, t) for transfer and P(a)(h, v, t) acti-

vation) identified in Section 5.1.2. Integrating each one of this values over the

migration time we obtain the energy consumption over each phase, respectively

E(i)(h, v), E(t)(h, v) and E(a)(h, v). Summing these values we obtain energy
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consumption of VM migration Emigr:

Emigr(h, v) = E(i)(h, v) + E(t)(h, v) + E(a)(h, v). (7)

Depending on whether the host is acting as source or target, some parameters

can be ignored. For example, we do not need to consider the resource utilisation

of the migrating VM on the target during the initiation phase, as the VM is

still running on the source host. Finally, the energy consumption during each

phase also changes according to the migration approach and the VM workload,

as we analyse in the next sections.

5.2.4. Non-live migration

In this section, we model the energy consumption of the three phases of a

non-live migration.

Initiation phase. In this phase, we expect the power consumption on both hosts

to depend on (1) the increase in CPU usage for initiating VM migration and

(2) the additional CPU usage for suspending the VM on the source host. On

the source host we also need to consider the resource usage of the VM, because

the VM will still be running over this phase:

P
(i)
nonlive(h, v, t) = α(i)(h) · CPU(h, t) + β(i)(h) · CPUvm(v, t) + C(i)(h), (8)

where α(i)(h), β(i)(h) model the relationship between the CPU usage of the two

hosts and of the migrating VM to the power consumption. We approximate the

power consumption with a linear function, as done by [39]. C(i)(h) include the

power consumption for establishing a connection between the two hosts. On the

source host, it also includes the power consumption for suspending the VM.

Transfer phase. In the transfer phase, the state of the VM is transferred from

source to the target host. Therefore, we will use a simplified version of the

network transfer model developed in Section 4.4 assuming a linear relationship

between the network bandwidth and the energy consumption. Since the trans-

fer is contiguous and uses the maximum packet size, we consider neither the
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throttle/burst sizes nor the packet size. We also ignore the number of concur-

rent connections, since the data transfer is not performed in parallel. In this

phase, we also consider the CPU usage on both hosts proportional to the power

consumption, but ignore the resource utilisation of the suspended VM:

P
(t)
nonlive(h, t) = α(t)(h) · CPU(h, t) + β(t)(h) · BW(S, T, t) + Ct(h), (9)

α(t)(h) models the linear relationship between power and CPU usage, β(t)(h) the

relationship between bandwidth and power, and Ct(h) the power consumption

for moving the state of the migrating VM to the target host. We expect the

latter to be higher in the target host than in the source because it also needs to

write the VM state in the RAM.

Activation phase. After the transfer phase is completed, there are two remaining

actions to be performed: starting the VM on the target host and freing the

resources occupied on the source host. Afterwards, we only consider on the

source host the CPU load and a constant power consumption C(a)(S) due to the

release of the resources previously owned by the migrating VM. Concerning the

target host, we need to consider the power consumed by migrating VM to start

its execution, as well as the constant power consumed by the hypervisor to start

the VM plus the idle power consumption C(a)(T):

P
(a)
nonlive(h, v, t) = α(a)(h) · CPU(h, t) + β(a)(h) · CPUvm(v, t) + C(a)(h) (10)

where α(a)(h) models the linear relationship between CPU usage and power

consumption, and β(a)(h) models the relationship between the CPU usage of

the starting VM.

Live migration. For the live migration, we do not expect any difference in the

initiation and activation phases compared to the non-live case. We therefore

focus in the following on the transfer phase.

Transfer phase. The main difference to non-live migration is that during a live

migration, the migrating VM is still running on the source host and, therefore,
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we need to consider the power consumption on the host due to its workload:

P
(t)
live(h, v, t) = α(t)(h) · CPU(h, t) + β(t)(h) · BW(S, T, t)+

+ γ(t)(h) · DR(v, t) + δ(t)(h) · CPUvm(v, t) + C(t)(h),
(11)

where h ∈ {S, T}, α(t)(h) models the linear relationship between power and CPU

usage, β(t)(h) the relationship between power and bandwidth, DR(v, t) the per-

centage of pages marked as dirty at the instant t, γ(t)(h) the linear relationship

between the dirtying ratio and power consumption, δ(t)(h) the linear relation-

ship between the migrating VM’s CPU usage and its power consumption, and

Ct(h) the power consumption for moving the state of the migrating VM to the

target host. Finally, we define the term DR(v, t) as:

DR(v, t) =
DIRTYPAGES(v, t)

MEM(v)
, (12)

where DIRTYPAGES(v, t) is the number of pages marked as dirty at the instant t

in the memory of VM v and MEM(v) is the VM memory size in pages. We expect

a linear relationship between dirtying ratio and power consumption due to the

increased contention on memory.

5.3. Experimental methodology

After describing our model, we introduce the methodology to evaluate its ac-

curacy. We describe first our experimental design, then introduce the hardware

and software configuration for conducting the measurements.

5.3.1. Experimental design

Our experimental settings are summarised in Table 7a, and the VM and

hardware configurations in Tables 7b and 7c. We use Xen version 4.2.5, in-

cluding both xm and xl toolstacks configured to perform the live and non-live

migrations between two hosts and deploy two machines and a networking switch,

as specified in Table 7c. We perform the experiments on two sets of machines

(m01-m02 and o1-o2) with different CPU and Gigabit NIC architectures. We

do not include experiments using Infiniband NICs delivering similar results for

brevity reasons. For each experiment, we employ paravirtualized VMs mostly
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encountered in modern data centres as they ensure a nearly-native performance.

For the migrating VMs, we chose a 4 GB VM size for the RAM memory which

gives us a long enough migration time to clearly identify energy consumption

phases.

According to our analysis in Table 6, the highest impact on VM migration

have the CPU-intensive workloads running on source or target hosts and the

memory-intensive workloads running on the migrating VM. Therefore, we design

two families of experiments: CPULOAD and MEMLOAD.

CPULOAD. We investigate the impact of VM workload on live and non-live

migration using two types of experiments.

1. CPULOAD-SOURCE investigates the impact of CPU-intensive workloads

running on the source host by migrating a VM to an idle target host.

The load of the source is progressively increased from idle to 100% CPU

utilisation to quantify its impact on VM migration. We also consider the

case in which the VMs require more CPUs than the host can offer, to

ensure that there is some multiplexing of them.

2. CPULOAD-TARGET investigates the impact of CPU-intensive workloads

running on the target host by migrating a VM from a source host running

the migrating VM only. The load of the target is progressively increased

from idle to 100% CPU utilisation to quantify its impact. Also in this

experiment we consider the effects of multiplexing on hardware resources.

For the CPU-intensive workload, we use an OpenMP C implementation of

a matrix multiplication algorithm for two reasons: it is used by many scientific

workloads running on data centres, and it can be easily parallelised allowing

us to load all virtual CPUs of the VMs with small communication and syn-

chronisation overheads. Concerning the VM configuration, among the instances

described in Table 7b we select the load-cpu and the migrating-cpu type. We

employ the load-cpu VM instance to load the physical host while migrating an

instance of migrating-cpu type. We assign as many CPUs we need to these

instances to increase the load by 25% in every step.
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MEMLOAD. We study the effect of the dirtying ratio (see Equation 12) of the

VM workload on migration, according to our analysis in Table 6. To compare

the impact of the memory-intensive workloads with the CPU-intensive ones, we

design experiments involving CPU-intensive workloads running on both source

and target, as follows:

1. MEMLOAD-VM studies the impact of memory-intensive workloads by

increasing the percentage of memory pages dirtied in the migrating VM.

The source host is only running the migrating VM and the target is idle.

2. MEMLOAD-SOURCE investigates how live migration is impacted by (1)

CPU-intensive workloads on the source host and (2) memory-intensive

workloads running on the migrating VM. We perform a live migration of

a VM running a memory-intensive workload from a source host running a

CPU-intensive workload with increasing utilisation to an idle target.

3. MEMLOAD-TARGET investigates how live migration is differently im-

pacted by: (1) CPU-intensive workloads running on the target host and

(2) memory-intensive workloads running on the migrating VM. We per-

form a live migration of a VM running a memory-intensive workload to a

target host running a CPU-intensive workload with increasing utilisation.

The source host is running the migrating VM only.

These experiments employ live migrations only, since non-live migrations

have DR(v, t) = 0. We chose a memory-intensive workload called pagedirtier

implemented in ANSI C that continuously writes in memory pages in random

order. We fixed the memory allocated to this application to 3.8 GB to avoid

swapping effects incurring additional VM migration overheads, due to the con-

tinuous writing to the NFS storage and a consequent reduction of the available

bandwidth. We employ again the load-cpu VM instances for generating load

on the hosts and migrating-mem as migrating VM (see Table 7b).
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.

Experiment Configuration of Configuration of Configuration of

source host target host migrating VM

CPU Memory CPU Memory Instance CPU Memory

CPULOAD-SOURCE [0− 100]% 5% idle 5% migrating-cpu100% 5%

CPULOAD-TARGET1×migrating-cpu 5% [0− 100]% 5% migrating-cpu100% 5%

MEMLOAD-VM idle 5% idle 5% migrating-mem100%[5− 95]%

MEMLOAD-SOURCE [0− 100]% 5% idle 5% migrating-mem100% 95%

MEMLOAD-TARGET1×migrating-mem 5% [0− 100]% 5% migrating-mem100% 95%

(a) Experimental design.

ID Number of Linux RAM Workload Storage

virtual CPUs kernel size

load-cpu 4 2.6.32 512MB matrixmult 1GB

migrating-cpu 4 2.6.32 4GB matrixmult 6GB

migrating-mem 1 2.6.32 4GB pagedirtier 6GB

dom-0 1 3.11.4 512MB VMM 115GB

(b) VM configurations.

Machine Available Available Gigabit Gigabit Xen

virtual cpus RAM NIC switch version

m01 32 (16×Opteron 8356, 32GB Broadcom Cisco Catalyst 4.2.5

m02 dual threaded) BCM5704 3750

o1 40 (20×Xeon E5-2690v2, 128GB Intel HP 4.2.5

o2 dual threaded) 82574L 1810-8G

(c) Hardware configuration.

Table 7: Experimental setup.

5.3.2. Energy measurement methodology

We employ two Voltech PM1000+6 power measurement devices to the con-

nected to the AC side of the source and target hosts, measuring the power at

a frequency of 2 Hz in order to capture the power consumption of a complete

VM migration, including the pre- and post-migration execution phases. For

each experimental run, we start measuring the hosts’ power consumption and

issue a VM migration only after the measured values stabilise. Similarly, we

stop the measurements after the power consumption of the hosts stabilises too.

6http://www.voltech.com/products/poweranalyzers/PM1000.aspx
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We say that the power consumption of the host stabilizes when we have twenty

consecutive power values with a difference lower than 0.3%, that is below our

measurement device’s accuracy. Moreover, each experiment is repeated until

the difference in variance between one run and the previous runs becomes less

than 10%, resulting in at least ten runs for each experiment. From the power

readings and the time intervals, we compute four energy metrics: initiation,

transfer and activation energy of the corresponding VM migration phases (see

Sections 5.1.2 and 5.2.3), and the total migration energy as the sum of the three

metrics. In addition, also measure the CPU and memory consumption during

each migration using the dstat tool and average the values of all executions.

5.4. Experimental Results

In this section, we show the results of our experiments described in Sec-

tion 5.3. For each experiment we report the instantaneous power consumption

traced every 500 milliseconds (according to the resolution of our power mea-

surement devices) which allows us to easily identify the migration phases. We

extract the energy consumption for each phase by integrating the power over

its length. We average each result over ten experimental runs.

5.4.1. CPULOAD-SOURCE

The results for this experiment displayed in Figures 8a and 8b show that

the instantaneous power consumption of a non-live migration follows the same

trend for each CPU workload except the case with eight VMs, when we have

multiplexing on the machine’s CPUs. We clearly see that on the source host

(Figure 8a) the power consumption trend follows a constant function, since it

is proportional to the CPU usage that will never exceed its hardware-imposed

limit beyond which the resources are shared between the VMs. In this case, the

migrating VM is suspended when the migration starts and the load on the host

drops when there is no multiplexing without affecting the power consumption.

Concerning the target (Figure 8b), we notice a slightly lower power con-

sumption from the beginning of the transfer phase when the source host has full
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CPU utilisation because of the reduced bandwidth to the target host (due to

the 100% CPU load on the source host). A reduced bandwidth implies a lower

power consumption and a longer transfer phase.

For live migration (Figures 8c and 8d), we observe an increased power con-

sumption over the transfer phase due to the running VM because of: (1) the

additional power consumption for network transfers and (2) the increased CPU

usage of the virtualization software to handle the live migration. Concerning

the source host, we notice a constant power consumption in case of CPU mul-

tiplexing, for the same reason as in Figure 8a.

For power consumption on the target host (Figure 8d), we observe no sig-

nificant differences compared to the non-live migration, except for a reduced

consumption for the full CPU load with and without multiplexing. This is be-

cause the migrating VM is not suspended over the transfer phase and thus, still

uses CPU resources on the source host. Therefore, the source host is not able to

exploit the full bandwidth available between the two hosts, leading to a scenario

similar to the one observed in Figure 8b. We also notice a strong difference in

power consumption before and after migration in the 25% load scenario because

the power draw of the source host returns back to idle after the migration.

We conclude that CPU-intensive workloads impact VM migration when run-

ning on the source, as bandwidth decreases when the CPU is fully loaded causing

a longer transfer phase and a consequently, a higher energy consumption.

5.4.2. CPULOAD-TARGET

For this experiment, we observe fist in Figure 9a that the impact on the

power consumption of source host is minimal when changing the load on the

target. Concerning the target measurements in Figure 9b, we can notice (1) a

small increase in power draw due to the network transfer of the VM state and

(2) a big increase in the power consumption when the migration is finished and

the VM is up and running on the target. The impact of external load in this case

is visible only when the target host is fully loaded, where the power resembles

a constant trend since the host reached its CPU limit (see Equation 5).
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(a) Non-live source.
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(b) Non-live target.
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(c) Live source.
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(d) Live target.

Figure 8: CPULOAD-SOURCE results.

For the live migration (Figure 9c), we notice for the source host a small

increase in power consumption over the transfer phase due to: (1) the network

transfer of the VM state and (2) the CPU increase for handling the migration.

We do not notice any impact of the target load on this host except for the

slight difference in case of multiplexing due to the additional load on the target

host that prevents the VMM to use the full bandwidth. For the target host in

Figure 9d, we see similar trends to the non-live migration except that: (1) the

power draw is slightly lower in the transfer phase and (2) the live migration

takes at least 60 seconds longer. Since this tendency is present also in the idle

target case, it seems mostly related to hardware configuration than host load.

5.4.3. MEMLOAD-VM

For the MEMLOAD-VM experiment, we observe in Figures 10a and 10b

that the power consumption considerably changes with the dirtying ratio, with

the difference that for the target host it does not go back to the idle level but
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Host Initiation Transfer Activation

α(i) β(i) C1(i) C
2
(i)α(t) β(t) C1(t) C

2
(t)α(a) β(a) C1(a) C

2
(a)

Source1.711.41 708.3 165 2.4 1.08 · 10−6 421.74 2002.37 0 662.5 150

Target3.18 0 596.061622.565.49 · 10−7520.2142101.8817.01499.56100

Table 8: Coefficients for non-live migration.
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(a) Non-live source.
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(b) Non-live target.
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(c) Live source.

 400

 500

 600

 700

 800

 900

 0  20  40  60  80  100  120

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(d) Live target.

Figure 9: CPULOAD-TARGET results.

slightly increases (since the VM is running on the target afterwards). On both

hosts, the drop in power consumption during the transfer phase grows with the

dirtying ratio because the VM experiences a longer suspension time to complete

the migration by sending the more dirty memory pages from source to target.

5.4.4. MEMLOAD-SOURCE

For the MEMLOAD-SOURCE experiment, we observe in Figure 11a that the

transfer phase increases with the CPU load on the source host and the memory-

intensive workload running on the VM. This slight increase is proportional to

the decrease in bandwidth utilisation due to the increased CPU usage of the
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(a) Source.
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Figure 10: MEMLOAD-VM results.
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(a) MEMLOAD-SOURCE source.
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(b) MEMLOAD-SOURCE target.

Figure 11: MEMLOAD-SOURCE results.

source. This tendency is better seen for high amount of loads for the target

host (Figure 11b), when we notice a considerable increase in the transfer phase

due to the reduced bandwidth. We also observe that the CPU load on the

source host has an impact on the energy consumption of migration even in case

of memory-intensive workloads, for which reason we included it in Equation 11.

Finally, we also notice on both hosts a considerable drop in power consumption

towards the end of the transfer phase because of the VM suspension on the

source due to the high dirtying ratio that transforms the live migration in a

non-live one (i.e. the VMs are not accessible from the network during this

time). The similarity with non-live migration is clear by looking at Figures 8a

and 8b.
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Host Initiation Transfer Activation

α(i) β(i) C1(i) C
2
(i)α(t) β(t) γ(t) δ(t) C1(t) C

2
(t)α(a) β(a) C1(a) C

2
(a)

Source1.711.41 708.3 165 2.4 1.52 · 10−61.41 0.4 421.74 2002.37 0 662.5 150

Target3.18 0 596.061622.567.32 · 10−7 0 0.4 520.2142001.8817.01499.56100

Table 9: Coefficients for live migration.

Model Host NRMSE NRMSE NRMSE NRMSE MAPE MAPE MAPE MAPE

(non-live) (live) (non-live) (live) (non-live) (live) (non-live) (live)

(m01 – m02)(m01 – m02) (o1 – o2) (o1 – o2)(m01 – m02)(m01 – m02) (o1 – o2) (o1 – o2)

WAVM3 Source 11.8% 11.8% 12.5% 12.7% 4% 11% 4% 10.3%

Target 12% 5% 16.3% 17.2% 4.1% 6.8% 4.1% 11.4%

Table 10: Normalised root mean square error (NRMSE) and mean absolute percentage error

(MAPE) of our model on the two datasets.
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(a) MEMLOAD-TARGET source.
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(b) MEMLOAD-TARGET target.

Figure 12: MEMLOAD-TARGET results.

5.4.5. MEMLOAD-TARGET

For the MEMLOAD-TARGET experiment, we see in Figure 12a that the

transfer phase has a similar length on the source host, except for the slight

difference in case of multiplexing due to bandwidth limitations on the target.

The trends of the activation phase assume a different shape according to the

amount of load. On the target host (Figure 12b), we observe a constant trend in

power consumption except the idle case, when live migration becomes a non-live

one as we can see by comparing the highlighted areas in Figures 9a and 9b.
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5.5. Regression analysis

In this section we use the results obtained with our experiments (Section 5.4)

to compute the coefficients α, β, γ, δ of the model we developed in Section 5.2.

The coefficients are determined for each one of the energy phases previously

identified. We use regression analysis based on the Non Linear Least Square

Marquardt-Levenberg algorithm, implemented in gnuplot 5.0. We select a

training subset of the power readings from each phase to extract the model

coefficients and use them afterwards as a model to predict the energy consump-

tion. The training set used for this purpose is a subset of the readings obtained

by running our experiments on the machines m01 – m02. The coefficients for

non-live migration are summarised in Table 8, while the coefficients for live mi-

gration are summarised in Table 9. To validate our model, we also used the

same coefficients to predict the energy consumption of non-live and live migra-

tion on a different set of machines (o1 – o2). When checking the results of our

prediction on this new set, we observed that it was overestimating the measured

values by a constant factor because the bias obtained from the training phase

includes the idle power consumption of the physical machines. Therefore, we

changed the bias by subtracting the difference in idle power between the two

sets of machine. We will then use C1 as bias for the prediction on (m01 – m02)

and C2 for the prediction on (o1 – o2). The error for our model in both datasets

is shown in Table 10.

5.6. Comparison

We compare in this section the accuracy of our model with three other models

available in the literature that take into account different parameters to model

energy consumption of VM migration: HUANG [3], LIU [4] and STRUNK [5].

We describe each one of these models in detail next.

HUANG [3]. This model is based on the assumption that the instantaneous

power consumption P of each host is linear with the CPU utilisation CPU [39]:

P = α · CPU + C, (13)
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where P is linear by a factor of α and C is a hardware-related constant. We ob-

tain the energy consumption by integrating P over the migration time [ms,me].

This model perfectly suits scenarios when CPU utilisation has an impact on

VM migration, but does not suit scenarios that involve other parameters (e.g.

memory dirtying ratio, CPU load on migrating VM).

LIU [4]. This model is based on the assumption that energy consumption of

VM migration Emigr depends only on the amount of data DATA exchanged by

the two hosts during the VM migration:

Emigr = α · DATA + C, (14)

In their work, the authors calculate the amount of data exchanged during migra-

tion as a function of VM memory size, memory transmission rate and memory

dirtying ratio. We use the amount of data transferred measured with our net-

work instrumentation as the DATA value. In this model, α models the linear

relationship between the transferred data and energy consumption and C is an

hardware-related constant. For this reason, the model is perfectly suitable for

predicting the energy consumption of VMs workloads with high dirtying ratio.

This model, however, does not consider the CPU load which generates modelling

errors in case this has a high impact on the energy consumption. Moreover, it

assumes that homogeneous hosts have the same consumption during migration.

However, as stated by [40], this assumption may lead to inaccurate results.

STRUNK [5]. This model considers VM memory size MEM(v) and network band-

width between source and target BW(S, T) as parameters in a linear model:

Emigr = α · MEM(v) + β · BW(S, T) + C, (15)

where α and β model, the linear relationship between VM size and network

bandwidth and C is a hardware-related constant. This model perfectly suits

scenarios in which both hosts and the migrating VM are idle and does not take

their load into account. Even though such conditions are very likely to happen in

data centres [41], many works show the benefits of consolidating VMs executing
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Model Host α β C

HUANG Source 2.27 − 671.92

Target 2.56 − 645.776

LIU Source 2.43 − 494.2

Target 2.19 − 508.2

STRUNK Source 3.35 −3.47 201.1

Target 5.04 −0.5 201.1

Table 11: Training phase coefficients for LIU, HUANG and STRUNK models.

tasks to/from hosts that are not idle [42]. Therefore, having a model able to

predict the energy consumption of VM migration in different conditions can be

helpful to decide whether this is beneficial energy-wise.

We train these models using the same training set used to train our model

and the coefficients obtained for each model are summarised in Table 11. After-

wards, we compute four error metrics on the test set, summarised in Table 12.

We also show the error distribution in Figure 13 for the non-live migration and in

Figure 14 for live migration. The error metrics we choose are the Mean Absolute

Error (MAE), the Mean Absolute Percentage Error (MAPE), the Root Mean

Square Error (RMSE) and the Normalised Root Mean Square Error (NRMSE).

Unless differently specified, we compare the models by using the NRMSE met-

ric, because it is more sensitive to large deviations in the predictions. We add

the other metrics for completeness of information. In the next subsections,

we compare the results of our model named Workload-Aware Virtual Machine

Migration Model (WAVM3) with the other three.

5.6.1. Non-live migration

By looking at Table 12, we observe that, among the models we chose for

comparison, the one of Huang et al. provides the most accurate estimation for

non-live migration. This is because non-live migration is mostly influenced by

CPU usage which is the only parameter that this model takes into consideration.

Since our model also takes CPU into account, we do not expect high variations

in most of the scenarios. However, it can happen that one host is not able to use

the full bandwidth if there is some multiplexing on the CPU. In such situations,
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Figure 13: Error distribution for non live migration

network utilisation drops because CPU is not able to exploit all the network

resources available and, therefore, network bandwidth cannot be ignored. Since

our model also takes into account network bandwidth, it manages to have better
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Figure 14: Error distribution for live migration

estimations (−0.2% NRMSE for source host, −0.8% NRMSE for target host)

when there is less network bandwidth available. Moreover, even though the

MAE for the two models is very similar, we observe that the difference between
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Model Host MAE RMSE NRMSE MAPE MAE RMSE NRMSE MAPE

(non-live) [kJ](non-live)(non-live)(non-live)(live) [kJ] (live) (live) (live)

WAVM3 Source 1.8 2558 11.8% 4% 6.3 8432 11.8% 11%

Target 1.7 1789 12% 4.1% 3.6 4056 5% 6.8%

HUANG Source 1.8 2587 12% 3.2% 5.5 9234 15.7% 10.4%

Target 1.8 2067 12.8% 4.2% 7.1 9102 12.9% 11.6%

LIU Source 4.8 5812 26.9% 10.7% 9.8 12117 36.3% 39.7%

Target 3.4 4121 25.3% 7.2% 7 9622 29.4% 31.9%

STRUNKSource 0.026 3824 17.7% 24.9% 0.028 4547 35.4% 24.9%

Target 0.058 5187 30% 27% 0.019 4382 36.2% 27%

Table 12: Comparison of WAVM3 with other models on dataset m01-m02.

RMSE and MAE is slightly higher for the model of Huang et al., showing that

our model’s estimation error has a lower variance too.

5.6.2. Live migration

The errors for the live migration are summarised in Table 12. Also in this

case, the model of Huang et al. performs considerably better because it con-

siders the CPU of source and target hosts, ignored by the other two, that has

a considerable impact on energy consumption during VM migration. However,

we notice an 18% increase in NRMSE versus the non-live migration error for

the source host and a 16.2% increase in NRMSE for target host. This is because

live migration should taken into account the CPU utilisation and the dirtying

ratio of the migrating VM that is still running during the migration. Our model

performs better because these parameters are instead considered, increasing the

accuracy of prediction of Huang et al. by 3.9% (11.8% vs 15.7% NRMSE) for the

source host and by 6.1% (6.8% vs 12.9% NRMSE) for the target host. Compar-

ing with the other models, the increase we obtain is up to 24.5% (vs Liu et al.)

for source and 23.5% (vs Strunk et al.) for target, showing that our modeling

approach increaseS the accuracy of the current state of the art.
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6. Conclusion

We performed in this paper a comparative analysis of the energy efficiency

of today’s mostly used NIC families in data centres, Gigabit Ethernet and In-

finiband. First, we introduced NNETS, a versatile network benchmarking tool

offering eight configuration parameters, some not covered by existing tools (e.g.

variable traffic patterns, full duplex connections). Second, we designed a set

of benchmarks and evaluated the energy efficiency of the NICs’ software stacks

in different configurations covering a wide spectrum of possible application be-

haviours. Third, we introduced energy models capable of providing accurate

estimations based on the NIC type of adapter and transfer characteristics includ-

ing payload size, connection concurrency and traffic patterns with an average

error of 6.1%.

Afterwards, we used these results to develop WAVM3, an energy model for

VM migration. We considered both the network transfer energy and the impact

of workloads running on different actors and identified how much their load

impacts the energy consumption of VM migration. Then, we evaluated the

accuracy of the model on a different set of machines than the one we used for

training our model. Finally, we compared the accuracy of our model versus

other state-of-art models that do not consider it. We quantify how much each

actor’s workload influences the VM migration energy-wise. Compared to other

state-of-art models, WAVM3 shows an improvement of up to 24% in prediction

accuracy of the VM migration energy consumption, proving that: (1) using our

network transfer model does not affect the accuracy of the energy consumption

of our VM migration prediction, and (2) the workload impact on VM migration

cannot be ignored when predicting its energy consumption.

Our results show that employing our model can be helpful for taking more

energy-efficient VM consolidation decisions. For example, one may think not

to consolidate VMs with a high dirtying rate to a host that is running CPU

intensive workloads since, as shown in Figure 12, this is going to increase the

energy consumption of VM migration. The other models considered in this
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work do not take into account impact of the workload running on the target

host and may not be able to provide the same accuracy in predictions. We

intend to integrate our models in the GroudSim Cloud simulators to provide

a more accurate estimation of the energy consumption in data centres. We

further plan to extend this work by also considering the impact of network-

intensive workloads and to integrate it into existing consolidation managers and

show the improvements in automatic consolidation decisions.
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