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Abstract

%e) Infrastructure as a service (1aaS) systems o er on demand virtual infrastructures so reliably and exibly that users expect
«— a high service level. Therefore, even with regards to internal laaS behaviour, production clouds only adopt novel ideas
O that are proven not to hinder established service levels. To analyse their expected behaviour, new ideas are often evaluated
O\l with simulators in production laaS system-like scenarios. For instance, new research could enable collaboration amongst
s several layers of schedulers or could consider new optimisation objectives such as energy consumption. Unfortunately,

current cloud simulators are hard to employ and they often have performance issues when several layers of schedulers
<E interact in them. To target these issues, a new laaS simulation framework (called DISSECT-CF) was designed. The new
\J simulator’s foundation has the following goals: easy extensibility, support energy evaluation of laaSs and to enable fast
O\l evaluation of many scheduling and laaS internal behaviour related scenarios. In response to the requirements of such

scenarios, the new simulator introduces concepts such as: a uni ed model for resource sharing and a new energy metering
I(j'framework with hierarchical and indirect metering options. Then, the comparison of several simulated situations to real-

life 1aaS behaviour is used to validate the simulator’s functionality. Finally, a performance comparison is presented

D_ between DISSECT-CF and some currently available simulators.

N
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~ 1. Introduction internals of laaS systems (e.g., introducing a new exper-

— ) . imental virtual machine placement algorithm) cannot be

00  Infrastructure as a Service (laaS) systems [1, 2] build  gone on such production systems directly. Consequently,

LO) on virtualisation technologies to allow automated infras- ¢ analyse new and novel ideas for internal behaviour, re-

8 tructure provisioning. Virtual machine (VM) based provi-  searchers are either restricted to severely limited laaS de-
- sioning gives users two major bene ts: they do not need  ployments (e.g., rarely utilising more than a few hosts) or

g to be experts in physical infrastructure maintenance, and  shoyld resort to theoretical modelling of expected inter-

(e they can easily follow their demand patterns and scale  na behaviour. However, results based on such research

= eral VMs) with tools built on top of 1aaS systems. These
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two bene ts led to the wide and rapid adoption of such
infrastructure o erings.

Unfortunately, their rapid adoption has led to infras-
tructures that still have plenty of open research issues
(e.g., energy aware VM placement, service level objective
speci cations). However, even laaS systems operated by
academia are used in production nowadays. As produc-
tion level systems are used by a multitude of users on a
daily basis, changing the internal behaviour of such sys-
tems might hinder their user experience (such as reliability
and usability). Thus, research focused on improving the
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because their applicability to large scale systems is often
not proven. Some researchers use simulators to further
evaluate their models [3 4]. These simulators allow re-
searchers the evaluation of new ideas in life-like scenarios
and as a result such simulators could pave the way for the
new research results allowing their wide-spread adoption.

Although a plethora of laaS related simulators exist
even today, these simulators have very di erent focuses.
Some are designed completely from the user’s point of
view and hide the cloud’s internals so users can make
decisions on how and what services should be moved to
the clouds [5, 6]. Because of their user orientation, in
these simulators it is frequently problematic to introduce
changes in laaS behaviour. Some others [7, [8] emphasise
the need for precision for such simulations. Despite their
extensibility, these simulators not only scale very poorly
(making it problematic to evaluate more elaborate laaS
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scenarios where sometimes thousands of physical machines
collaborate), but they also require complex setup proce-
dures to be precise (e.g., one should model every possible
application in the system to receive realistic results). Fi-
nally, there are simulators that introduce some assump-
tions in the system that reduce the precision of the sim-
ulations but reach unprecedented speeds [5, 9 [10]. Un-
fortunately, despite having clear advantages, they are too
speci ¢ to allow investigations on internal laaS changes
(e.g., GroudSim only models external interfaces of clouds,
SimGrid merely focuses on virtualisation, and CloudSim
has con icting extensions { e.g., power modelling is not
available while using networking).

In this article, a new versatile simulation framework is
presented (called DIScrete event baSed Energy Consump-
tion simulaTor for Clouds and Federations { DISSECT-
CF). Compared to the previously mentioned simulators,
DISSECT-CF o ers two major bene ts: a uni ed resource
sharing model, and a more complete laaS stack simula-
tion (including for example virtual machine image reposi-
tories, storage and in-data-centre networking). The bene-

ts of the sharing model are threefold: i it allows a sin-
gle framework to model resource bottlenecks (e.g., CPU,
network), ii generic resource sharing performance opti-
misations immediately improve entire simulations, iii it
provides a uni ed view on resource usage counters (i.e., al-
lows resource type independent, generic monitoring). Fi-
nally, DISSECT-CF also opens up possibilities for more

ne-grained energy consumption modelling by allowing the
user to derive energy consumption from multiple resource
usage counters. As a result of these new advancements,
the new simulator could foster research on schedulers that
could either have better insight into internal l1aaS behaviour
or collaborate with internal schedulers of laaS systems
in order to achieve previously unprecedented exibility,
adaptability and elasticity in future cloud systems.

Unfortunately, DISSECT-CF’s focus on supporting re-
search on infrastructure cloud schedulers introduces sev-
eral limitations to its applicability. First of all, for per-
formance reasons the simulator represents networks with
a simple ow model, which has already been shown by
several studies (e.g., [11]) to be inaccurate for smaller-
sized network transfers. Fortunately, smaller-sized net-
work transfers have a negligible in uence on scheduling
decisions in most cloud related schedulers. Also, because
scheduler focused research usually uses task or virtual ma-
chine instantiation/termination traces for behavioural stud-
ies, DISSECT-CF uses the black box philosophy for ap-
plications. Thus, the simulator will not provide accurate
results on resource utilisation if a particular application’s
behaviour cannot be approximated with simple resource
consumption metrics (e.g., when there is unstable CPU
utilisation for extended periods of time). In fact, these
limitations are present in most simulators (except those
that have packet level network simulations or employ more
complex ow models { see [8,[12]). Finally, as the new sim-
ulator is aimed at providing a framework for researchers to

experiment with the internals of infrastructure clouds, the
included scheduling mechanisms themselves are present
only as examples for future work and they do not extend
the scheduling related state-of-the art themselves.

The behaviour of DISSECT-CF was analysed by rst
validating it against the behaviour of a small-scale in-
frastructure cloud at the University of Innsbruck. Ac-
cording to the ndings of this article, the system’s sim-
ulated behaviour matches real-life experiments with negli-
gible error (in terms of application execution time, larger
scale network transfers and energy consumption). For
larger scale experiments, DISSECT-CF was validated with
proven results from two other simulators that are close to
the new simulator’s functionality (namely CloudSim [9]
and GroudSim [10]). Then, performance of these two sim-
ulators was compared to the newly proposed one. Compar-
isons were executed with both real-world (using the Grid
Workloads Archive [13]) and synthetic traces. The use of
real-world traces also revealed that DISSECT-CF based
simulations allow 1.5-32 faster behavioural analysis of
simple cloud schedulers or VM placement strategies. The
performance di erences were further investigated through
synthetic traces and it is shown that DISSECT-CF scales
signi cantly better in complex resource sharing situations
with the help of its uni ed resource sharing model (one can
observe an improvement of even over 2800 in execution
time in some cases).

The rest of this article is organised as follows. Sec-
tion [2] presents the related research results. Then, Section
[3 reveals the architecture of the newly proposed simula-
tor and discusses its internal behaviour and extensibility
options. Section [4] analyses the properties of DISSECT-
CF by comparing its behaviour to real-life systems and by
comparing its performance to other simulators. Finally,
Section [§ concludes the article with a summary and with
the identi cation of future research directions.

2. Research background

This section rst reviews the scheduling scenarios that
a cloud simulator might support. Then an overview is
presented on the most popular cloud simulation platforms.
Finally, the section concludes with a problem statement for
the new simulator.

2.1. Schedulers related to laaS systems and their require-
ments on simulators

There are seven common kinds of schedulers that could
have an in uence on the behaviour of a virtual infrastruc-
ture created on top of laaS cloud systems. In the following,
a short overview is given of these kinds of schedulers with
special attention on their requirements from a simulated
environment. The list is presented from the schedulers
that have the strongest user-side orientation to the most
hidden schedulers in infrastructure systems.



Task to VM assignment. If a user has large enough re-
source demands, then its virtual infrastructure might
include multiple virtual machines that could host a
particular kind of task. In such cases, whenever a
new task arrives, the user has to decide on which
virtual machine it should actually run the task. The
decision can be automated with a scheduler and a
queuing system (similar to local resource managers
{ e.g., [14]15]). In order to support research on these
kinds of schedulers, simulators should be able to pro-
vide past and present VM level performance metrics
(e.g., temporal performance degradation of the VM’s
computing capabilities).

Virtual infrastructure scaling. When a user’s resource
demands are more dynamic and sometimes unpre-
dictable, then he/she would frequently face heavy
under- or over-utilisation of his/her virtual infras-
tructure. To better meet the demands of the newly
arriving tasks, the virtual infrastructure should be
able to automatically scale. This scaling is often
achieved with a special scheduler (e.g., [16} [17]) that
decides when to instantiate/terminate a particular
kind of VM. Research on such schedulers need sim-
ulators that are capable of providing accurate VM
management metrics (e.g., virtual machine instan-
tiation time).

Cross-cloud VM allocation. Some users have access to
multiple cloud infrastructures. For such users, a new
scheduler is needed (e.g., [18] [19]) which can choose
between various cloud providers and dispatch VMs
to them. The selection procedure is expected to take
into account the availability, reliability and similar
metrics of the various providers and also it should
consider issues like placing processing close to big
data. For such schedulers, simulators are required to
o er infrastructure provider level metrics and data
locality information.

VM placement. Inside laaS systems, user requests are
no longer represented as tasks but they are only seen
as VMs. As laaS systems are highly automated, de-
cisions to place a particular VM on a physical ma-
chine must be also done by a scheduler. This kind of
scheduler (e.g., [20] [21]) could have two main tasks:

i for already existing virtual machines, a new VM
to host mapping could be identi ed which would al-
low a VM arrangement that considers both the VMs
actual load and the providers current needs, and ii
for newly requested virtual machines, the scheduler
should determine the host where the VM could be
run. As these schedulers have diverse tasks, simu-
lators should have the capability to disseminate the
load of currently running virtual machines and also
the utilisation of physical machines.

Physical machine state schedule. Energy conscious laaS

systems aim at reducing their energy consumption in
several ways. A simple way to do so is to consolidate
VM load to the most energy e cient machines and

switch the rest to a more energy e cient state. The
automated decisions on which machines should be
serving VMs and which ones should be waiting in
low power states (e.g., suspend, switch o ) are done
by physical machine schedulers (e.g., [22{24]). These
schedulers should ensure that, because of their oper-
ations, virtual machine creation and quality of ser-
vice do not degrade below certain levels. To support
the development of physical machine (PM) sched-
ulers, simulators must necessarily maintain the cost
of PM power state changes (e.g., cold/suspend to
RAM boot-up procedures).

VM resource share management. Schedulers are also
present in virtual machine monitors (like Xen or kvm)
in order to allocate physical resources to virtual ma-
chines on a time-sharing basis (e.g., [25} [26]). Al-
though, these schedulers are not the main focus of
research in cloud computing, they could have a di-
rect impact on the quality of service if the above-
mentioned VM placement strategies under-provision
some virtual machines. For this reason, simulators
should be able to correctly handle and report under-
provisioning scenarios on physical machines.

Virtual resource assignment to task. The lowest lev-
els of schedulers that may a ect higher-level (e.g.,
task to VM assignment) decisions are the process
schedulers (e.g., [27] 28]) of the operating system
in the user’s VMs. In some cases the user could
have an in uence on the OS scheduler, but in others
users must use OSs and schedulers that are prepared
and accredited by the laaS providers. Since these
schedulers are generic OS level schedulers, they are
out of the scope of cloud computing research. But
since higher-level schedulers might make decisions
on how these process schedulers behave, simulators
should give their users some information on their be-
haviour. For example, simulators should be capable
of reporting if a particular VM is under-provisioned
and tasks have no chance to access resources sched-
uled for them by the OS level scheduler.

2.2. Cloud simulators

CloudSim [29] is amongst the most popular laaS cloud
simulators. It was initially based on GridSim (a widely
used grid simulator developed by the same research insti-
tute { [30]) but, after some performance and reliability
issues, it was completely rewritten so it uses only some
concepts (e.g., Cloudlet { Gridlet analogy) from its pre-
decessor [9]. CloudSim introduced the simulation of vir-
tualised data centres mostly focusing on computational
intensive tasks and data interchanges between data cen-
tres. Later, they extended the simulation to better sup-
port internal network communications of a data centre
with NetworkCloudSim [3I]. There are also extensions
that simulate the energy consumption behaviour of the
physical machines in the data centre based on specpower



benchmarks and on dynamic voltage and frequency scal-
ing [32], [33]. CloudSim also formed an ecosystem. Several
third parties o er extensions on top of CloudSim. Some
signi cantly change CloudSim behaviour (e.g., add per-
formance improvements [34], add better support for inter-
cloud operations [35, [36], implement new energy consump-
tion models [37], or introduce SLA concepts into the sim-
ulation [38]), while others wrap CloudSim and provide
additional functionality (like graphical user interfaces for
teaching [39] or for analytics [40, [41]). Despite its wide
use, CloudSim has several disadvantages: a low perfor-
mance for scheduling research where thousands of schedul-
ing scenarios should be evaluated in a timely fashion, b
networking is simulated for tasks only (e.g., data centre
operations that utilise the same network as user tasks {
like virtual machine image transfers { are not simulated
even though they could have signi cant e ects on the user
perceived network performance) and ¢ using multiple ex-
tensions at once is frequently not possible (e.g., advanced
networking and energy consumption modelling are not us-
able together since one would need to have virtual ma-
chines that inherit behaviour both from PowerVm and from
NetworkVm classes).

The SimGrid framework [42] is another widely used
simulator for analysing the behaviour of distributed sys-
tems (e.g., grids, peer to peer systems). Its resource shar-
ing simulation is one of the most detailed; for example,
it contains one of the most accurate non-packet oriented
network models [11, [12]. This simulator’s focus was not
particularly on clouds for a long time but recently its devel-
opers introduced extensions for virtualisation (e.g., hyper-
visors or live migration { [5,/43]]). Because of its distributed
systems and grid background the simulator is ine cient in
laaS cloud related situations. For example, this simulator
stops at the virtual machine level, thus it would require
signi cant e ort to build a multi data centre/cloud simu-
lation on top of it.

While CloudSim and SimGrid were heavily in uenced
by previous simulators for grids and distributed systems,
for performance reasons they also make compromises on
networking. To resolve such issues there are simulators like
iCanCloud [6] and GreenCloud [8] that are built on net-
work simulators (e.g., OMNeT++ or NS2) to more accu-
rately simulate network communications in cloud systems.
Their e ortsresultin great accuracy if all laaS components
and applications are modelled correctly network-wise; oth-
erwise, they just introduce serious performance penalties
because of the packet level simulations without the ex-
pected accuracy. In addition to networking improvements,
GreenCloud [44] is also 0 ering precise energy estimations
for networking and computing components, while iCan-
Cloud also o ers a user oriented simulation which supports
laaS utilisation decision-making [45] on top of the regular
laaS related simulation functionalities [46].

Next, GroudSim { a simulator developed at the Uni-
versity of Innsbruck [10] { was analysed. This simulator
aims at performance while it encompasses cloud concepts

in a grid simulator environment. The simulator is also in-
tegrated with the ASKALON work ow system [47] so it
can be used to evaluate behavioural changes of real-life sci-
enti ¢ work ows in the case of changes in the computing
environment. Although this simulator supports clouds, it
does not provide implementation on the internals of laaS
systems (i.e., it provides a black box implementation), thus
it is not suitable for research studies that involve the in-
ternals of cloud infrastructures. And although GroudSim
supports both CPU and network resources, the networking
implementation of GroudSim is one of the least developed
ones amongst the reviewed simulators.

The above simulators focus more on the user related
behaviour of data centres, but there is a class of cloud
simulators which is more focused on supporting decisions
related to data centre operations (e.g., [48{50]). So even
though these simulators could be used for examining user
related behaviour, their detailed implementation of data
centre behaviour reduces their usability in this context.
On the other hand, these simulators o er some unique
features that might be useful for research on laaS related
schedulers. For example, SPECI [48] is focused on o ering
a tool to analyse the scalability of laaS toolkits that will
support future data centres. Next, DCSim [51] allows the
analysis of new Virtual Machine management operations
(like relocation). Finally, DCWorms [/] provides a unique
view on data centre energy e ciency, including the heat-
ing, ventilation and air conditioning (HVAC) system’s air-

ow and high granularity resource (e.g., individual CPU,
memory modules, network interfaces) energy modelling.

Problem statement. The analysis of the related work leads
to the conclusion that existing simulators have many draw-
backs for those who would like to investigate scheduling
scenarios in laaS systems. To ful | the needs of such
scheduling scenarios, the rest of the article reveals a new
infrastructure simulator that provides better insights on
infrastructure behaviour for schedulers while maintaining
the scalability of past simulators.

3. Design and internals of the simulator

Figure [I] presents the overall architecture of the newly
proposed simulatmﬂ The gure groups the major compo-
nents with dashed lines into subsystems. Each subsystem
is implemented as independently from the others as pos-
sible. As a result, simulation developers do not need to
understand the complexity of the entire simulator if they
intend to work on one of its subsystems. There are ve
major subsystems; they are listed in an order that follows
their level of abstraction (from the most abstract to the
more speci ¢ to laaS systems):

Event system. These components provide the time ref-
erence for simulations.

11f not stated otherwise, the described algorithms, features and
evaluation apply to DISSECT-CF version 0.9.5



Figure 1: Architectural view of DISSECT-CF

Uni ed resource sharing. This subsystem acts as a
lightweight and extensible foundation to low-level
computing resource sharing (e.g., CPU, 1/0).

Energy modelling. With these components DISSECT-
CF enables simulator developers to monitor and
analyse energy usage patterns of each individually
simulated resource (e.g., network links, disks).

Infrastructure simulation. These components handle
the behaviour of those laaS system parts (e.g., vir-
tual machines) that are the primary target of laaS
related schedulers.

Infrastructure management. This subsystem provides
the user interface (the VM management API) and
represents the high level functionalities (e.g., virtual
machine schedulers) of infrastructure clouds.

In the following sections, these subsystems are individually
discussed.

3.1. Event system

The core of the DISSECT-CF simulator is a simple
but high performance event generator (re ected as Timed
in Figure . It is used to maintain the time within the
simulated system and allow third parties to be noti ed if
a particular time instance has been reached.The simula-
tor is not aware of the applied time granularity (i.e., it
is not known in the simulation if a single increase in the
maintained time is equivalent to a single millisecond or
a full hour). This enables exibility in use, and allows
simulation developers to have precision only when they
assuredly need it; otherwise, they can bene t from faster
simulations. In later sections of the article, the smallest
time granularity for the current simulation is denoted with

> R and is expressed in seconds. Thus any given time
instance in the simulator can be speci ed as: t , Where

>N and t>T. Here, T refers to the set of all possible
time instances throughout a simulation.

The simulator also assumes that noti cations are re-
curring. Thus, subscribing to events means specifying the
frequency with which one would like to be noti ed. The
simulator contains a construct (called DeferredEvent) for

non-recurring events. Creating a subclass of either the
Timed or the DeferredEvent classes allows simulation de-
velopers to receive custom time dependent noti cations.

Finally, the Timed class is also the control point for
the simulation time. Simulations have two distinct ways
to in uence simulated time:

Instantaneous controls directly in uence the timer. First,
one can re the events for the current time instance
then advance the timer by one . Second, it is possi-
ble to ask for a time jump that will progress the time
with a given interval if within the interval there are
no events expected.

Continuous controls let the simulation ow for a given
time interval without any intervention (e.g., one can
simulate until all events from the queue are cleaned
up). These controls also enable the progression of
the timer while dropping irrelevant events that would
occur in a given period of time.

3.2. A uni ed resource sharing model

Directly on top of basic time management lies the re-
source model of the simulator. The model is intended to
capture low-level resource sharing behaviour (e.g., assign-
ing tasks to virtual CPUs { of VMs { or virtual CPUs
to physical ones, or balancing network bandwidth utilisa-
tion). DISSECT-CF applies a provider-consumer scheme
to resources where resource consumptions are intermedi-
aries between consumers and providers. In the case of
simulated CPUs, consumptions represent instructions to
be processed, thus CPU computing cycles of a physical
machine are provided to virtual machines to consume. In a
network analogy, consumptions represent data to be trans-
ferred between two network hosts (where the sender acts
as the provider and the receiver as the consumer).

3.2.1. Foundations

DISSECT-CF allows the de nition of both providers
and consumers with the help of the ResourceSpreader
class (see Figure . The set of all spreaders in a par-
ticular simulation will be referred as S. The simulator
uses the concept of resource consumptions as the interme-
diaries that represent the current processing demands of
the actual consumers. Resource consumptions are denoted
with a triplet: ¢ @ pu;pr;p1 A, Where ¢ represents the
resource consumption, p, represents the processing that
is currently under way, p, represents the remaining pro-
cessing (i.e., processing that has not started yet) and p
represents the limit for this processing in a single (e.g.,
simulation developers can specify that a resource consump-
tion is single-threaded so it can use the processing power
of a single processor of a consumable CPU resource only).
C represents all possible resource consumptions in a sim-
ulation: ¢ > C. At a given time instance, the function
prov. C T S determines which provider o ers the
resources to be consumed. Similarly, cons C T S
de nes the consumer that utilises the o ered resources.



These functions are time dependent to allow the migra-
tion of resource consumptions amongst spreaders.

At a given time, a particular resource consumption is
processed in its provider by determining how much pro-
cessing can be considered possible during a single . The
possible processing has an upper bound of p, (i.e., if more
processing could be possible than there is still remaining
in ¢, then the provider will have some non-utilised process-
ing capabilities). Also, the possible processing is limited
by the provider’s maximum processing capability and the
processing limit p; of the consumption.

p, Gt pu C;t min p, C;t; (D)
;min p c;prov c;t ;t;py c;t
Wherep, C T R,pr C T R andp C T R

represent the processing under way, the remaining process-
ing and the limit, respectively, for resource consumption
c at the time instance t. It must be pointed out that p,,
is 0 ering the provider side under processing value only.
Finally, p C S T R reveals the processing power of
a resource spreader (in this current case the provider for
resource consumption c: prov c;t ) at the time instance t.

DISSECT-CF simulates consumers with similar behaviour,

so they remove utilised resources from py. Of course in
this case the limit of utilisation is dependent on the con-
sumer and the previously evaluated provider side possible
processing value:

pu C;t max 0;p, C;t
min p c;cons c;t ;t ;p; c;t
pr Cit pr it puCt pu Gt (2

Thus, to determine the state of a particular resource con-
sumption, DISSECT-CF rst evaluates the provider side
of resource consumptions, and then it processes the con-
sumer side. After the simulator determined the p, value
for a resource consumption, the remaining consumption
pr C;t can be determined as well by reducing with the
increment of the p, value. This behaviour ensures that
at the end of the consumer side processing both p, and py
will represent the resource consumption’s state in the next
simulated time instance (t ).

In order to determine how much processing can be done
on resource consumptions at a particular time instance
p c;s;t, resource spreaders apply the lowest level sched-
ulers in DISSECT-CF based simulations. These schedulers
share the processing capacities of the resources amongst
those resource consumptions that the spreaders are cur-
rently dealingwith (P S T - C , where the notation
of - is used to depict a power set). As simulation devel-
opers are expected to run simulations with thousands of
resources and millions of resource consumptions, these low-
level schedulers must be highly customisable and e cient.
To enable simple customisability, DISSECT-CF provides
e cient implementations for most common scheduling re-
lated tasks (e.g., resource consumption registration, de-

(a) Generic in uence groups of consumers and
producers

(b) In uence groups formed from the
CPUs of a physical machine

Figure 2: Examples of in uence group formation
Notes: Edges represent resource consumptions and connect resource
spreaders, speci cally they point from providers to consumers. The
identi ed in uence groups are encircled with dashed lines.

registration, event generation for parties interested in re-
source consumption state), allowing providers of new sched-
ulers to just focus on the scheduling logic that calculates
the new p c;s;t values.

3.2.2. In uence groups

The scheduling logic is expected to deliver fair resource
allocation for simultaneously occurring resource consump-
tions { denoted as C T - C . To simplify the be-
haviour and complexity of schedulers, DISSECT-CF also
introduces the concept of in uence groups. These groups
are formed from all resource spreaders that have a chance
to in uence each other’s resource allocation schedules. With
the help of in uence groups even schedules for complex
network structures can be simulated at close-to-real-life
behaviour (e.g., the simulator can apply fair share algo-
rithms over multiple related network links). These sched-
ulers can utilise in uence groups as their domain in which
they have to guarantee a fair resource schedule for the
spreader associated resource consumptions.

To determine the membership of an in uence group,
the simulator uses the resource consumptions that link
consumers and providers (see Figure . As a practi-
cal example, Figure [2b] shows how each simulated physical
machine forms independent in uence groups with the vir-
tual machines it hosts via their respective CPU spreader
implementations. Formally, an in uence group of a re-



source spreader at the particular time instance is de ned
asfollows (G S T - S):

G st s 8

So>S t 8c>P s;t

G so;t

prov c;t sg - cons c;t sg
3)

Where s > S is a resource spreader, and the function S
T - S de nes the spreaders available at a particular
time instance. The equation shows that G s;t includes all
resource spreaders that are directly or transitively referred
by the associated resource consumptions of the spreader
s{ P s;t. Asa result, one could nd as many in uence
groups as the number of resource spreaders existing at a
given time instance in the simulation. On the other hand,
these groups are frequently equivalent because determining
the in uence group of any member of a particular group
will result in the original in uence group:
o >G 55t Gs;t G st xg,G st Gs;t xg
4)
This last equation is derived from the de nition of G s;t
and reveals that after the proper calculation of G s;t
there should not be any members of it (e.g., s;) that would

resultinadi erentin uence group than the original G s;t .

Although the de nition of G is quite straightforward,
its evaluation in all necessary time instances for all rele-
vant resource spreaders would result in signi cant simula-
tion performance deterioration. Therefore, DISSECT-CF
provides an algorithm that signi cantly reduces the use of
G but still ensures that the in uence groups are available
for the scheduling logic in every time instance. To dif-
ferentiate between the original function’s results and the
algorithm calculated values, the notation G is used for the
in uence groups determined by the algorithm (see Algo-
rithm [I).

In the following few paragraphs, the internal behaviour
of the new algorithm is discussed. It is built on the as-
sumption that fs>S 0 G 0;s s and it is composed
of two distinct phases: in uence group extension { see lines
[214] { and group dissolution { see lines

Let us rst discuss the extension phase. During this
phase, the algorithm rst starts with an empty resource
spreader set (see line [3) that will later on hold the iden-
ti ed extensions of the input in uence group { G s;t .
As a next step, line b determines the resource consump-
tions that arrived to a particular resource spreader at the
time instance t . Afterwards, the following line focuses
on those newly added resource consumptions that intro-
duce new resource spreader members into the input in u-
ence group. These non-member providers or consumers
are added to the extension set in line [/} This iteratively
created extension set is used to actualise the input in u-
ence group in lines [I0JI3] The extension phase completes
only when there are no newly introduced resource spreader
members in the input group. Otherwise, the current phase
is repeated to ensure nding even further group extensions
via the resource consumptions associated with the intro-
duced members (this last step is shown in line [14).

Algorithm 1 In uence group management

Require: G s;t // In uence group in time instance t
1. G s;t G s;t

2: repeat
3:  E g // Future extension
4: forall si>G s;t do
5
6

add sj;t P si;t P si;t
for all ¢ c¢>add si;t , prov c;t 1G s;t
- cons c;t 1G s;t do
7: E E 8 G prov c;t ;t 8 G cons c;t
it G st
8: end for
9: end for
10:. G s;t G s;t 8 E // Actual extension
11: for all si >E do
12: G sit G s;t
13: end for
14 untilE g
15: if 8sx>G s;t P si;t P si;t xg then
16: Gemp G sit
17:  repeat
18: Si 8> Gyemp // random choice

19: Gpew G sijt // use of the original function G
20: Gtemp  Gtemp Gnew 7/ In uence group splitting
21: for all sj > Gpew do

22: G sj;t Ghew

23: end for
24:  until Gemp X g
25: end if

After there are no new extension possibilities found in
the current in uence group, the algorithm proceeds to its
second phase in which it identi es all splits of the cur-
rent in uence group. For example, in uence group #5 in
Figure [2a] will have to be split when the resource con-
sumption between provider sp, and consumer Sc,, n-
ishes. To identify the need for splitting, the algorithm
therefore rst determines if there were some resource con-
sumptions dropped from at least one member of the in u-
ence group (see line . If there is a need for splitting,
then the algorithm will maintain the not yet split parts of
the original in uence group in G- In order to deter-
mine which parts have to be split from the not yet split
parts, lines 18 and (19 use the original G s;t on aran-
domly selected spreader from Gy, { resulting in a new
in uence group called G,,.,,. In the next line, the not yet
split parts are updated so that only those resource spread-
ers will be considered afterwards that are not in G,q,,. Fi-
nally, the algorithm updates its self-maintained in uence
group membership so all members of G, will be exactly
the same (see lines 21}{23).

To conclude, the newly introduced algorithm reduces
the number of direct G s;t function calculations to those
cases where there is a chance to have a group to be split.
And even in that case, it ensures that the number of G s;t
evaluations is limited by the number of in uence groups
created after a split.



Figure 3: The uni ed resource sharing mechanism and its
relation to the scheduling logic provided by the simulation
developer

3.2.3. Integration of low-level scheduling logic

The last remaining part of the uni ed resource model is
the simulation developer customisable low-level scheduling
logic. To understand the customisation options DISSECT-
CF o ers, Figure [3 presents the context of the scheduling
logic. The gure reveals the role of the low-level sched-
uler through the illustration of the life of a single resource
consumption that can be represented in three phases and
denoted with di erent kinds of arrows: preparation { reg-
ular lines; resource consumption { dashed lines; and com-
pletion { dotted lines. The next paragraphs provide a brief
overview of these three phases.

First, the preparation phase is initiated by the entity
who is responsible for creating (see Step 1 in the gure) a
particular resource consumption { cxmp. This entity could
be an automated process (e.g., a workload generator) or
some higher-level entity of the simulator (e.g., the virtual
machine representation). After creation, the registration
can be initiated in any time instance t after both the con-
sumer { cons Cxmp;t { and the provider { prov Cxmp;t
{ spreaders are speci ed. The registration is accomplished
in Step 2 in the gure. The provider nudges the scheduler
base in Step 3 after both the consumer and the provider
have registered the new resource consumption { Cxmp >
P prov cxmp;t ;t and cxmp > P cons Cxmp;t ;t. The
scheduler base is implemented in the base class of all re-
source spreaders and is responsible for interfacing with
the event system, the scheduler and the in uence group
management algorithm. Before contacting the event sys-
tem for subscription, the scheduler base rst updates the
in uence groups with Algorithm [I] in Step 4. After the
identi cation of all distinct in uence groups, the sched-
uler base Iters those groups that would need an updated
schedule. Such groups are identi ed via recently added or

dropped resource consumptions to/from one of their mem-
ber resource spreaders { i.e., fs>S P s;t P s;t x

g - Psit Ps;t X g . In Step 5, the scheduling
logic is invoked for each of the Itered groups. During
this step, it should assign the p c;s;t values for all re-
source consumptions that are currently taking place in a
given in uence group. With these assignments, the simula-
tor calculates the earliest completion time of the currently
managed resource consumptions. Then, in Step 6, it sub-
scribes to a noti cation from the event system in order to
know when the next resource consumption will be removed
from the Itered in uence groups.

In the following phase, the simulator handles the re-
source consumptions. This phase is either done when the
event system delivers the noti cation on a resource con-
sumption completion (see Step 7) or alternatively upon
the registration of a new resource consumption. In the
second case, the resource consumption handling is auto-
matically executed before in uence groups are calculated
(i.e., Steps 8-12 could precede Step 4 of the preparation
phase if a resource consumption is registered at a resource
spreader that has already had some prior resource con-
sumptions). In practice, Steps 8-9 evaluate Eq. and
Steps 10-11 evaluate Eq. [2 for all simultaneously exist-
ing resource consumptions { cx > C t { in the simulator.
Resource consumptions { e.g., ¢ > C t { are automati-
cally marked for removal when they reach their comple-
tion { ie,pucit O0,prc;t 0. Asa nal step for
resource consumption handling, the scheduler base checks
for resource consumptions marked for removal (see Step
12) and on all marked resource consumptions it executes
the completion phase.

In the nal phase, the resource consumption’s comple-
tion is simulated. Consumptions can be considered com-
plete in two cases: either they have no further processing
to be done or they were cancelled by the entity using the re-
source sharing mechanism. The scheduler base noti es this
entity in both cases { see Step 13. Then it checks if it has

nished all the current resource consumptions {C t g.
If there are still further resource consumptions to process,
then the scheduler base resumes operations from Step 4,
otherwise it cancels further noti cations from the event
system.

As can be seen, the simulator expects scheduling logic
implementations to utilise a fairly narrow and well-de ned
interface with the scheduler base. Through this interface
the simulator ensures that whenever a new schedule is
needed (i.e., new p c;s;t values), the simulation developer
provided scheduling logic is always called. DISSECT-CF
also provides two sample implementations for this schedul-
ing logic: a max min fairness algorithm [52] implementa-
tion with progressive lling, and a simple logic that does
not deal with complex bottleneck situations but demon-
strates the interfaces with the scheduler base.



3.3. Energy Modelling

Compared to other recently developed simulators, DISSECT-

CF completely decouples energy modelling from resource
simulation in order to allow accounting for such energy
consumptions that are not in direct relation to the resource
utilisation of data centres. With this approach, a more
comprehensive energy and power modelling is achievable
that enables the analysis of new sophisticated energy aware
algorithms in the areas of virtual machine placement, task
scheduling, etc. These algorithms previously were fre-
quently limited because energy readings from heating, ven-
tilation and air conditioning (HVAC) units or higher-level
laaS components (like VM schedulers or laaS interfaces)
were scarcely available in past simulators. Thus, this sec-
tion presents how energy consumption related information
is collected and accumulated so they can support future
algorithms. Later, Section [3.5.7] discusses the foundations
for physical machine schedulers that are expected to be the
primary users of the models overviewed in this section.

First, in order to enable the decoupling, DISSECT-CF
0 ers resource utilisation counters both for producers and
consumers. These counters allow an aggregated and time
dependent view of the consumption of particular resources.
Counters are updated depending on the power state of a
resource spreader (see Figure . For example, a physical
machine { spm >S t { in suspend to RAM (STR) power
state zeroes its processing power:

P Cspm;t 0 for fc>Ct provc spm )
The power states of the various entities in the simulation
can be de ned as needed; the simulator only expects these
states to de ne the basic power characteristics (e.g., mini-
mum and maximum power draw) and the resource process-
ing behaviour of the given entity at the speci c state. The
simulator also provides a basic set of power states (on, o ,
turning on, turning o ) for which the resource processing
behaviour is already de ned for the resources incorporated
into a physical machine.

Based on this low-level power modelling functionality,
the decoupling of energy models is accomplished through
energy meters. These meters are organised around four
functionalities: i monitoring of energy consumption di-
rectly related to resource utilisation, ii indirect energy
consumption estimation, iii aggregation of metering re-
sults from multiple meters and iv presenting up-to-date
energy readings to their users. The remainder of this sub-
section reveals how these functions accomplish the decou-
pling and shows the ways customised, infrastructure spe-
ci ¢ metering can be achieved in DISSECT-CF.

3.3.1. Energy metering

Direct resource utilisation related energy consumption me-
tering. Based on the previously mentioned resource util-
isation counters, the simulator can be requested to peri-
odically evaluate the instantaneous utilisation percentage.
Then, energy consumption models use these percentages

Figure 4: Hierarchical metering in DISSECT-CF

(see Figure |1) to estimate the instantaneous power draw
of each monitored resource spreader (later the resulting
estimate and the metering period is used to calculate the
direct meter’s energy consumption estimate). Consump-
tion models are dependent on the actual power state a
resource spreader is in, and the simulator developer can
de ne them. As examples, the simulator provides two
simple energy consumption model implementations: i
a linear interpolation between minimum and maximum
power draw depending on current resource utilisation, to
allow basic modelling of dynamic power behaviour { or ii
a constant minimum power draw, to allow the e ortless
modelling of o or STR power states. Figure [4] presents
direct meters for each resource spreader in the shown phys-
ical machines.

Indirect energy consumption estimation. To support more
complex energy consumption estimates, the simulator also
allows energy consumption to be derived from other prop-
erties of the simulated system. For example, these prop-
erties could include the virtual machine request rate of a
particular data centre, or the utilisation of the data cen-
tre level storage subsystem (e.g., to estimate how many
disk drives the currently stored data can occupy). These
meters are expected to periodically evaluate the system
state and accumulate their energy consumption estimates
for those components of the simulated system that are
not directly represented with resource spreaders. Figure [4]
reveals two indirect metering solutions to represent the in-
ternal actions of laaS systems and the energy consumption
behaviour of data centre level HVAC systems.

Meter aggregators. In several cases, the energy consump-
tion values from individual direct or indirect meters are
not su cient for higher-level energy aware decision makers
(e.g., physical machine state schedulers { see Section [2.1)).
For example, a physical machine in DISSECT-CF is rep-
resented with multiple resource spreaders (e.g., CPU, disk
bandwidth), thus to have a complete view of a physical



machine’s energy consumption, one would need to moni-
tor several direct energy meters. Meter aggregators allow
the automated collection and management of several me-
ters in parallel and provide the higher-level view expected
by decision makers. Figure [4] shows a complex scenario
for the use of aggregators. This scenario shows that a sin-
gle aggregated meter can be constructed for a whole data
centre, allowing even the inclusion of indirect metering re-
sults such as HVAC. The gure also shows how a physical
machine’s resource spreader set can be metered as a single
entity.

3.3.2. Energy consumption accounting strategies

As the estimation of energy consumption of the sim-
ulated entities might be time consuming, the simulator
allows simulation developers to fragment and focus their
measurements on those parts of the simulated systems that
they are interested in. For instance, the simulation devel-
opers might be only interested in the energy consumption
of a single virtual machine that is deployed on a simulated
cloud with multiple data centres. In such cases, DISSECT-
CF can limit the number of energy meters that are evalu-
ated with two approaches: independent meters or adjusted
aggregations.

Independent meters. This approach entails that metering
results are only dependent on the metered component and
the rest of the simulated system cannot in uence them.
E.g., the energy consumption reported for a CPU level
resource spreader of a physical machine should not be de-
pendent on the behaviour of the rest of the system.

Adjusted aggregations. If there is a dependency between
two metered components (e.g., a virtual machine that is
hosted on a particular physical machine), then a special
meter aggregator can be created. This meter aggregator
will not just add the aggregated meters’ measurements.
Instead it allows simulation developers to de ne an aggre-
gation function.

DISSECT-CF uses the adjusted aggregation technique
to handle derived energy consumptions such as VM level
energy consumption. For example, when applying the lin-
ear interpolation based energy consumption model, vir-
tual machine level power draw can be calculated using the
power draw of the hosting physical machine, as follows:

P p C;S ot .
P p fc>C t cons ¢t sym v P;ﬂ!e
vm.Tem P P CSpmit G symit$ 1
fc>C t prov ¢t spm
(6)

Where Py, is the derived instantaneous power draw of a
particular VM while it is running. The equation’s rst
part estimates the variable part of the power draw, while
the second part provides an estimate for the idle part. The
variable part is dependent on P, which is the maximum
variability of the physical machine’s power draw. The vari-
able part is proportional to P,,,, depending on the resource
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utilisation of the particular VM compared to the resource
utilisation of all VMs hosted on the same physical ma-
chine. The second part of the estimate is the idle part
that is derived from the idle power draw of the physical
machine { P}31°. This part is proportional to the number
of VMs hosted by the physical machine at the given time
instance (this number is one less than the cardinality of
the VM’s in uence group because the group contains also
the resource spreader of its hosting physical machine).

Eq. [6] reveals that the energy consumption model (that
estimates the instantaneous power draw) of the virtual
machine is not independent from the physical machine’s
behaviour. Therefore, energy consumption cannot be di-
rectly accounted to virtual machines. When such meters
are requested, the simulator identi es them as dependent
meters and instead of creating independent meters, it cre-
ates an adjusted meter aggregator including those meters
that could provide the necessary information to calculate
the energy consumption to be attributed to the originally
requested meter. It must be noted that dependent meters
consider energy consumptions multiple times (e.g., energy
consumption is accounted to both physical and virtual ma-
chines). Thus when meter aggregations are created they
must only include meters that are not dependent on each
other.

3.4. Infrastructure Simulation

To allow the simpli ed development of new VM place-
ment algorithms and PM state schedulers, DISSECT-CF
provides an implementation of relevant infrastructure com-
ponents in laaS systems. These components are built on
top of the previously discussed resource sharing and en-
ergy modelling techniques and provide abstractions for
networked entities and for physical/virtual machines (see

Figure [1).

3.4.1. Networking

Network activities rarely play a role in scheduling de-
cisions related to tasks or to physical/virtual machines.
Thus, to increase the performance of simulations, by de-
fault, DISSECT-CF o ers a limited network model where
two networked entities must be always directly connected
(therefore connection properties like bandwidth must be
de ned between all networked entities that should be able
to communicate with each other in the simulation). This
rudimentary behaviour could be su cient even for some
network aware schedulers, but to allow better representa-
tion of real networks, the simulator also allows the creation
of intermediary network entities (such as routers). The
implementation of such entities should alter the process-
ing limit (p; c;t ) of all resource consumptions that are
directed through them.

Directly connected networked entities (n > N, where N
is the set of all possible networking entities) are simulated
with the NetworkNode component. This component en-
capsulates an incoming and an outgoing network connec-



tion simulated with the uni ed resource sharing founda-
tion; thus connections are implemented as resource spread-
ers: N @ Sin;Sout A, Where Sin;Sout > S. The processing
power of these spreaders represents the network bandwidth
(either incoming or outgoing) of the given network node.
When a new network communication must take place,
simulation developers are expected to request a resource
consumption between the source network node’s outgo-
ing resource spreader and the target’s incoming resource
spreader. The component also introduces network laten-
cies I N2 T N) that can be de ned between every
networked entity for any given time instance. The latency
values resulting from this function are used as delays pre-
ceding the registration of each resource consumption to the
incoming or outgoing resource spreader of the node. For
example, let us see what happens if a network communi-
cation (represented as a resource consumption Creg > C)
needs to be registered between a source and a target net-
worked entity (Nsource; Ntarget > N) at the time instance
treg>T:

Nsource @ Sine; Souts A )
Ntarget @ Sine» Souty A (8)
Ireg I Nsource; Ntarget; treg )
. Snil if t @ treg Ireg
Prov Creg;t Sout. Otherwise (10)
. Snil if t @ treg Ireg
CONS Creg; t Sin, Otherwise (11

Where lr¢q is the network latency between the source and
target nodes at the time of registration (treg), and spij > S
is the nonperforming spreader that never processes any re-
source consumption: fc>C;ft>T p c;spist 0. Thus
the equation shows, that the consumption is registered to
the nonperforming spreader for the complete period of the
latency, afterwards the simulator switches the consump-
tion’s registration to the originally designated spreaders
(which are the network output port squt, Of the source
node Ngource and the input port sj,, of the target node
Ntarget). This last step allows the simulator to utilise its
uni ed resource sharing mechanism after the latency pe-
riod is over.

3.4.2. The behaviour of physical machines

In laaS systems, physical machines o er most of the
user exploited simulated resources. Thus, DISSECT-CF
physical machines encapsulate a diverse set of resources:
local disks (via Repositories { see Section [3.5.2), network

interfaces (with the help of network nodes { see Section|3.4.1)),

CPUs (using the uni ed resource sharing model of Sec-
tion and memory. Besides the modelling of these re-
sources, DISSECT-CF’s physical machine behaviour also
focuses on two additional functionalities: administering re-
source allocations and VM requests; and modelling phys-
ical machine level power behaviour. As resource sharing
and modelling has already been discussed in detail, this
subsection mainly discusses the latter functionalities.
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Figure 5: Measured power behaviour of a cloud node

Resource allocator and VM request handler. In order to
maintain up-to-date information on the available and utilised
resources of the physical machine, DISSECT-CF applies a
resource allocator. The applied allocator can reserve re-
sources (e.g., a given amount of memory or number of CPU
cores) from the physical machine. These reservations are
represented as resource allocation instances that are
used to maintain the free resource set of the physical ma-
chine. Allocation instances are also passed as a token of
resource availability towards virtual machine schedulers.
Other than the amount of resources associated with them,
resource allocations also have the following properties: ex-
piry time if unused or a link to the VM that uses it. When
a resource allocation is created, the physical machine auto-
matically initiates a DeferredEvent, which automatically
cancels the allocation after the expiry time. To avoid this
mechanism, the entity that requested the allocation must
request a VM to use the reserved resources (i.e., estab-
lishing the link between the VM and the allocation). The
automatic cancellation of the resource allocation is a self-
defence mechanism of physical machines to avoid keeping
resources out of use just because they received an unused
allocation.

For a single VM request, DISSECT-CF allows mul-
tiple resource allocations to be made across multiple
physical machines. The multi-allocation technique can be
used by schedulers to optimise for non-functional proper-
ties (e.g., past availability, expected energy consumption,
environmental impact) of those resources that a VM could
bind to at a given moment. After a decision is made about
the use of a particular allocation for the VM request, the
rest of the allocations (which were non optimal accord-
ing to the non-functional requirements) are expected to
be cancelled by the schedulers. For complex VM instan-
tiation scenarios, schedulers are also allowed to adjust the
expiration time upon allocation request. With this mech-
anism, researchers can evaluate advanced reservation-like
scenarios regarding VM instances.

Power behaviour. As DISSECT-CF aims at supporting
the development of energy aware scheduling strategies in
laaS clouds, the energy model of the physical machine is



Table 1: Simpli ed power state de nition of a physical
machine
Power state Cons. Min Max Dura-
model cons. cons. tion
(0] Constant 36.4W { N/A
Switching on Constant 483.1W { 200 s
Running Linear 368.8W 722.7W N/A
Switchingo  Constant 409.2 W { 12 s

particularly important. In its default con guration, the
simulator supports 4 power states (and the transitions be-
tween them): o , switching on, running and switching o .
Although this power state set is fairly limited, the simu-
lator already o ers constructs that allow the modelling of
more complex operations like: suspend to RAM, suspend
to disk, dynamic voltage & frequency scaling or core/CPU
de- and reactivation. Suspension related states can be
modelled with the introduction of new power states, while
the latter two are available because resource spreaders can
alter their maximum processing capabilities.

The modelling of the 4 supported states was done af-
ter real-life physical machine behaviour in the clouds of
the University of Innsbruck and MTA SZTAKI. The real-
life behaviour of the machines was observed through con-
stantly monitoring their instantaneous power draw while
they went through the following cycle: idling  shutdown

0 switch on  idling  full CPU load. A sample
measurement with a typical cloud node at Innsbruck (with
80 CPU cores, 128GB SSD, 132GB RAM, and redundant
power supplies) can be seen in Figure Bl As physical ma-
chine state schedulers can be highly in uenced by the be-
haviour in non-running states (e.g., their decision on shut-
ting 0 a machine could be dependent on the time it takes
to boot the machine back and the expected power savings
because of the completely o machine), DISSECT-CF of-
fers a simpli ed and a more complex behaviour model.

In the simpli ed model, all states except the running
state are modelled with the constant minimum power draw
technique (see Section . Thus when de ning the power
states for the machine, simulation developers are expected
to provide only the average power draw and state dura-
tion gures. Thus, in the simpli ed model the machine
measured in Figure[5can be de ned with the power states
listed in Table 1

On the other hand, the complex behaviour introduces
a hidden consumer to the physical machine’s resources.
This consumer is able to consume resources in all power
states except the o state, allowing a more ne-grained ap-
proximation of resource utilisation; therefore, it is closer to
real-life energy characteristics of physical machines. The
hidden consumer is also important to model resource con-
sumptions for virtual machine related activities done by
the virtual machine monitor or hypervisor (e.g., creation,
migration). If the simulation developers would like to de-

ne complex physical machine behaviour then they are
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Table 2: Complex power state de nition of a physical ma-
chine

Remark: in the switching on/o states the complex de nition must
also include tasks for the hidden consumer

Power state  Cons. model Min cons. Max cons.
@] Constant 36.4 W {
Switching on Linear 368.8 W 722.1 W
Running Linear 368.8 W 722.1 W
Switching o Linear 368.8 W 722.7T W

expected to provide a set of tasks (in the form of CPU,
network and disk consumptions) for the hidden consumer
in every power state. The simulator will take these tasks
and will execute them in the order and timing speci ed
by the simulation developer. The simulator assumes that
completing all the speci ed tasks marks the end of a partic-
ular power state. Thus, in the complex behaviour model,
simulation developers should de ne the machine from Fig-
ure 5] according to Table[2]and they should also de ne the
hidden consumer’s tasks for the switching on/o states.
For example, for switching o they could de ne the fol-

lowing resource consumptions (assuming that 1s):
C1 ®0;0:275;0:11 A (12)
Co @ 0;0:855;0:19 A (13)
C3 @ 0;0:228;0:15 A (14)

Where c; is registered to the hidden consumer at the start
of the shutdown state, then c, is 2.5 seconds after the com-
pletion of resource consumption ¢;, and cg is registered one
second after ¢, is completed (the registration timings must
be independently speci ed from the resource consumption
de nitions, therefore Equations [I2}{I4] do not contain ref-
erences to these timings). For simplicity, in the example,
each resource consumption’s p; value (e.g., py ¢ 0:11) is
speci ed assuming that the physical machine’s total pro-
cessing capabilities in a second is represented with one
(thus ¢y ’s value of 0.11 means it can maximally utilise 11%
of the processing capabilities of the machine).

3.4.3. Virtual machine model

The DISSECT-CF model of virtual machines focuses
on two main aspects of virtual machine behaviour: i re-
source sharing for tasks executed by laaS users, and ii
state management and transitions to support virtual ma-
chine placement and pm state scheduling techniques. The
following paragraphs discuss these two aspects in detail.

Resource sharing. Virtual machines are the primary re-
source consumers in the DISSECT-CF based simulations.
They receive the user’s tasks and transform them to var-
ious resource consumptions (this functionality is accom-
plished in the virtual machine’s newTask function). The
simulator primarily focuses on CPU based resource con-
sumptions (by creating a resource spreader for CPU
consumptions); however, simulation developers can also



Figure 6: Virtual Machine state diagram

request network consumptions. As memory and disk ac-
tivities for tasks cannot be monitored well, DISSECT-CF
does not expect simulation developers to be able to de-
scribe their application’s behaviour with regards to these
two activities. For memory, the simulator simply ensures
that the allocated memory of a VM will not be accessible
by any other VM on the host. For disk activities, the sim-
ulator only focuses on transferring and accessing the disk
image of the virtual machine. Disk image access is only
simulated when the disk image is stored remotely; thus,
disk access must be transformed to network activities.

Some simulators provide a representation for the net-
work between the physical machine and its hosted virtual
machines. This network, however, behaves very di erently
from regular networking because of the virtual machine
monitor’s (e.g., Xen, kvm) behaviour. The communication
between virtual machines hosted on the same physical ma-
chine is more comparable to local inter-process communi-
cation mechanisms and thus it is practically instantaneous
and has very low latencies. DISSECT-CF therefore does
not o er networks between virtual machines hosted on the
same physical machine, and in fact it does not allow VMs
to act as networked entities. Instead, when a VM needs
to communicate over the network, it has to use the phys-
ical machine’s connections as the source or target of its
communication.

State management. The following list describes the be-
haviour of the virtual machine in the various states repre-
sented in Figure [6}

Destroyed. This is the initial state of every VM in DISSECT-

CF. During this state, the VM is not consuming any
kind of resources but it already allows monitoring of
its state.

Initial transfer. This state shows that the image for the
virtual machine is being transferred to its hosting lo-
cation. This process creates a unique copy of a vir-
tual machine image that represents the VM’s func-
tionality. Depending on the internal organisation of
the cloud infrastructure, the hosting location of the
image could be either the local disk of the physi-
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cal machine that will host the VM or alternatively a
central highly accessible storage system.

Shutdown. When the image of the VM is at its hosting
location and it is not occupying any other resources,
then it is in this state. Allowing for a separate shut-
down state enables two techniques: i image pre-
staging { when a VM placement algorithm prepares
an image in advance to an actual VM request {, and

ii disk state preservation { when an laaS user does
not intend to use its VM for a while but he/she would
like to be able to continue his/her work from the
same disk state as before the shutdown.

Startup. This state represents the boot-up procedure of
the VM. When this state is reached, the VM is bound
to a physical machine’s resource allocation, and
thus the VM is already capable of consuming some
resources from the physical machine. When a vir-
tual machine image is de ned, simulation developers
must specify the resource requirements for the boot-
up procedure of a particular VM functionality. Dur-
ing start-up, these resource requirements are trans-
formed into resource consumptions from the physi-
cal machine’s resources. When all the transformed
resource consumptions are complete, the VM is con-
sidered booted up and ready for executing user tasks.

Running. In this state, the VM is awaiting user requests
for new tasks, as described in the resource sharing
related paragraphs above.

Suspend transfer. Through this state, DISSECT-CF sim-
ulates the serialisation of the VM’s memory state.
At the current implementation this is done when
the VM has stopped its resource consumptions. To
allow serialisation while the VM is still processing
resource consumptions, the simulator would need a
more comprehensive memory model where one can-
not only see the memory utilisation in terms of band-
width and page hits but also in terms of page level
access patterns. As this model would require very
speci ¢ application descriptions and would result in
longer runtimes, it is not considered in the current
simulator.

Migrating. This state shows when the VM’s serialised
state is transferred between two physical machines.
After the transfer, the VM can be resumed on a dif-
ferent physical machine than the one that it was
originally hosted on. Thus, migration plays a key
role in server consolidation techniques applied by
PM state schedulers. Also, through the simulated
migration solution of DISSECT-CF, VM schedulers
will be able to rearrange server load, allowing pri-
oritisation of highly utilised VMs while still ensuring
some resources for under-utilised ones.

Suspended. This state is similar to the shutdown state,
except that alongside the VM'’s image the VM’s mem-
ory state is also stored.

Resume transfer. During this state, the reloading of the
VM’s memory state is simulated. At the end of the



state the VM will again become ready for executing
tasks. Those tasks that were already in the process of
execution when the suspend or migration operation
was requested are also restored and their resource
consumptions continue from the state before their
suspension.

3.5. Infrastructure Management

As seen in Figure [I} the top-level components of the
simulator are the VM scheduler, the PM scheduler, the
Repository, and the laasS service. Although these compo-
nents are sitting on top of the rest of DISSECT-CF, only
the Repository and the laaS service components are di-
rectly accessible to users. Thus, rst the section discusses
how the PM and VM schedulers organise the internals of
a single infrastructure cloud, then the section concludes
with the expected use cases of the remaining components.

3.5.1. The high level schedulers

Similarly to the uni ed resource-sharing model, the two
high level schedulers in DISSECT-CF also contain just
a high performance foundation of custom schedulers pro-

vided by the simulation developers. In case of VM schedulers

this foundation is responsible for i receiving VM re-
quests; ii analysing their feasibility { i.e., if they could
ever be hosted on the underlying physical machines of the
cloud; iii managing request queues, iv keeping in con-
tact with PM schedulers so they know the state of the
request queue; and nally v dispatching scheduling re-
quests to the custom schedulers when there is a chance for
a VM to be placed on the infrastructure. Custom sched-
ulers therefore are expected only to contact physical ma-
chines for resource allocations, associating VMs with the
allocations and removing served requests from the queue.
DISSECT-CF provides three custom scheduler imple-
mentations that are delivered with the simulator and show
how a VM scheduler can be implemented. These sched-
ulers implement the rst t algorithm in three di erent
approaches: i basic { the earliest not yet served virtual
machine request is attempted to be placed on any available
physical machine; if no machine can host the request, then
no further requests are processed; ii non-queuing { al-
ways ensures the rejection of those requests that cannot t
into the infrastructure currently; and iii minimal request
rst { orders the queue so it contains the smaller-sized re-
quests rst, but otherwise runs like the basic approach.
In the case of PM schedulers, the foundation is re-
sponsible for detecting VM request queuing and infras-
tructure size changes (i.e., the removal or addition of a
physical machine). The actual scheduling code is expected
to handle the queuing and infrastructure size changes in
order to maintain a physical machine set that is capable of
promptly serving upcoming VM requests but utilises as lit-
tle energy as possible. PM schedulers are expected to opti-
mise the load of physical machines by methods such as au-
tomatically consolidating servers through the migration of
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dormant virtual machines. Finally, PM Schedulers could
also utilise the energy readings of the controlled physical
machines in order to optimise the overall energy behaviour
of a particular data centre.

The simulator is delivered with two PM state sched-
ulers: one that keeps all physical machines in running state
and one that schedules PMs depending on the VM sched-
ule. The latter only turns on new machines when there is
a growing queue of VM requests that cannot be served by
currently running machines. This scheduler is also able to
turn o machines if the VM queue is empty and there are
some physical machines without any load.

3.5.2. External laaS APIs

So far only the internals of the simulator have been
discussed. Now let us turn our attention to the external
APIs that enable the investigation of user-side schedulers
(i.e., Task to VM assignment, Virtual Infrastructure scal-
ing or Cross-cloud VM allocation { see Section for de-
tails). These external APIs have three functionalities: i
serve as the primary information source about a particular
cloud infrastructure; ii allow the management of virtual
infrastructure components; and iii o er infrastructure
alteration capabilities.

APIs for information retrieval. These APIs o er informa-
tion for the decision-making process of the user-side sched-
ulers. Through the laaSService component, one can col-
lect information about:

the ratio of running and total number of physical
machines (e.g., % of the infrastructure is still not
turned on);

the number of hosted virtual machines (allows the
user-side scheduler to easily grasp the current load
of the system without going into details);

the total and running capacity (in terms of o ered
resources by physical machines { e.g., 500 CPUs to-
tal, 200 are already running);

the list of physical machines (e.g., to access more
ne-grained system utilisation details such as the
load of each running machine);

the currently applied PM and VM schedulers (e.g.,
this allows user-side schedulers to send speci ¢ re-
quirements with their VM requests according to the
applied VM schedulers).

One should bear in mind that this kind of information
is at best available only partially in current commercial
and academic cloud(ware) o erings { e.g., Amazon EC2EL
OpenNebula [53]. Therefore, nowadays, user-side sched-
ulers must predict the necessary information based on what

2http://aws.amazon.com/ec2



cloud providers o er (e.g., turning the spot pricing infor-
mation of Amazon to a similar measure as the ratio of
running and total number of PMs). However, the newly
available information in DISSECT-CF allows the analysis
of user-side schedulers from new perspectives (i.e., what
di erence does it make if a scheduler utilises some of the
new information). Based on the results of this analysis,
laaS providers will be able to o er the most useful infor-
mation for such schedulers in the future.

The Repository component of the simulator provides
additional support for user-side schedulers regarding data
and virtual machine image storage: i the set of reposito-
ries of an infrastructure can be queried; ii it is possible
to search for contents (e.g., to choose a VM hosting infras-
tructure that has relevant data stored locally); iii one
can determine the size of unused storage capacities (e.g.,
to allow checking if cross-cloud migration of data would
be suitable); and nally iv the available bandwidth of
the disk and network interfaces of each repository can be
queried to determine how fast it can send/receive the re-
quired contents for a particular virtual infrastructure.

APIls for virtual infrastructure management. Once a de-
cision is made about VVMs, user-side schedulers can con-
tact the laaSService for the following activities: VM re-
quest, VM termination, VM resource reallocation (allow-
ing down or up-scaling VMs while they are running) and
cross-cloud VM migration (enables users to leave a particu-
lar cloud but continue their activities in their current VMs
in some other cloud). Concerning the Repository compo-
nent, user-side schedulers can request data to be trans-
ferred between repositories within or even across-cloud
providers.

APIs for infrastructure alteration. In the initial phases of
the simulation, one needs to construct the clouds that the
simulation will use as its infrastructure. This API allows
the registration and de-registration of physical machines
and repositories. Inside repositories it also allows instanta-
neous registration or de-registration of stored data or vir-
tual machine images (e.g., as if the data was already there
on the repository without the need for its actual transfer).
Naturally, user-side schedulers do not interact with these
APIs directly. However, in some cases, they should react to
the evolution of the infrastructure utilised during their op-
eration. Infrastructure alteration capabilities thus enable
the evaluation of these schedulers in a dynamic context
(e.g., checking for error resilience or autonomous opera-
tions). For example, when a physical machine is violently
deregistered (its VMs are terminated abruptly without mi-
grating them to another machine), then it is expected that
user-side schedulers will recover the lost work and make
infrastructure faults transparent to their users.

3.6. Output analysis techniques

As the simulator is designed to be used with not-yet-
known use cases, it was unknown what kind of output and
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state monitoring would be required for a particular use
case. Therefore, the simulator o ers state monitoring fa-
cilities throughout its components. But these monitoring
facilities are not used by the simulator itself. This design
decision allows the simulator to run with high performance
when there are no direct observations needed by simulation
developers. On the other hand, the simulation developers
can create just about any kind of monitoring mechanism
(mimicking their real life counterparts) on top of the of-
fered facilities. Thus these custom monitoring mechanisms
allow the collection of simulation outputs best tailored for
the particular use case scenario of the simulation devel-
oper.

3.6.1. Output collection methods

The simulator provides three techniques for monitor-
ing the state of the simulated systems: i direct one-time
query, ii periodic data collection with polling, and iii
noti cations about important state changes. The rst two
techniques are expected to be utilised when the general
state of the simulated system is required for decision mak-
ing (e.g., setting up stop conditions for the developed sim-
ulations). In contrast, the last technique is more relevant
for micro-management situations where immediate actions
are needed in reaction for some temporal situations in the
simulated system (e.g., creating triggers that increase the
switched on physical machine count of a saturated infras-
tructure).

The following list provides an overview on some of the
most relevant infrastructure state related one-time query
facilities of DISSECT-CF:

Total consumption recorded by a particular energy
meter;

Total and available storage capacity of a cloud, repos-
itory or a physical machine;

Number of bytes sent/received by a network node;

Number of processed instructions by a physical/virtual
machine;

Number of currently ongoing network transfers or
processing tasks { P s;t {inagiven resource spreader;

Total, freely available and currently allocated amount
of computing resources in a cloud, physical machine;

Number of repositories, physical machines, virtual
machines and queued VM requests in a particular
cloud.

With the help of the periodic collection technique these
metrics can reveal the progression of the simulated sys-
tem’s state. This periodic collection technique was one of
the major design factors behind the recurring event mech-
anism (embodied in the Timed class) in the event subsys-
tem of the simulator. This event mechanism allows the
creation of simple but performant monitoring mechanisms



over all direct one-time query facilities in DISSECT-CF.
Basically, the simulator developer is expected to create a
subclass of Timed, implement the desired polling mech-
anism in its tick function and subscribe to recurring
noti cations at the event subsystem. Within this newly
created polling mechanism the simulator developer can de-
vise several statistical analysis tools and triggers (e.g., re-
vise multi-layered scheduling strategies if the average num-
ber of allocated computing resources stay below a certain
limit) as well as some aggregates for overall representation
of the system state.

Complementing polling based mechanisms that mostly
0 er an overview on the simulated system’s behaviour,
DISSECT-CF also o ers noti cations for particular sys-
tem states (i.e., for those states that would require alarm-
ingly high polling frequencies). The following list provides
an overview on the most relevant noti cations o ered by
the simulator:

State changes of an observed physical or virtual ma-
chine (the possible state transitions of virtual ma-
chines are shown in Figure [6).

For laaS systems and physical machines, one can re-
quest noti cations about the changes in the avail-
able processing capacities (e.g., the number of CPU
cores). Additionally, for physical machines, one can
even ask for noti cations about released resource
allocations { i.e., terminating/migrating VMs of a
physical machine.

Also, changes in the VM request queue can be kept
under surveillance. Allowing simulation developers
to adopt their user-side scheduling techniques to the
state of the laaS side VM queue.

3.6.2. Evaluating the collected output

The simulation developer will have a chance to use the
collected outputs for two main purposes: de ning the ter-
mination condition and analysing system behaviour. As
the system behaviour analysis is expected to be done af-
ter the simulation was executed, these techniques are out
of scope of this paper. The highly customisable periodic
collection technique of the simulator allows storing the col-
lected data in just the right format for the analysis soft-
ware used by the simulation developer after data collection
(the output and its format is expected to be de ned by the
developer). Therefore, the next paragraph solely focuses
on the way the termination condition could be evaluated.

Simulations can be terminated with two approaches.
With the rst approach, the simulation developer is ex-
pected to ask the simulator to run the simulation until
there are no further events in its queue { this can be
achieved by calling Timed.simulateUntilLastEvent().
Thus, in this approach the event queue must be cleared
by the simulation developer once the desired condition in
the simulated system state is reached. The queue’s cleanup
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will most likely be initiated by one of the periodic data col-
lectors implemented by the simulator developer. In con-
trast to this approach, DISSECT-CF also allows the sim-
ulation developer to create complex termination condition
analysis techniques which could be executed during the
developer inserted gaps in the simulation. These gaps are
created by simulating for a certain time period (by utilis-
ing the Timed.simulateUntil () function), then stopping
for evaluation of the system state. The time period can be
automatically adjusted based on the likelihood of reaching
the simulation’s completion condition within a given time
frame. This approach allows less invasive state monitoring,
or allows more complex termination condition evaluation
techniques that would signi cantly reduce the simulation’s
performance if executed via periodic polling techniques.

4. Evaluation

This section provides an analysis of the currently avail-
able version of DISSECT-CF. The section rst starts with
comparing small-scale real-life measurements to results re-
ceived from simulations. During the comparisons, the ac-
curacy of the simulation is analysed and several approaches
are discussed that could increase the accuracy even fur-
ther. In the later parts of the section, the article fo-
cuses on a comparative performance and accuracy study
of DISSECT-CF with two existing simulators. During this
study the most e cient simulation conditions for DISSECT-
CF are shown through the analysis of its reactions to large-
scale (over one million tasks) synthetic and real-life work-
loads. Finally, the section closes with the analysis of the
performance impacts introduced by energy meters.

In the rest of the section, when results from any of the
simulators are discussed, they were always obtained using
a machine with the following components: i an eight
core Intel(R) Xeon(R) X5570 CPU running at 2.93 GHz,

ii 32 GB of memory, iii 128 GB SSD and iv 10 Gb
In niband network.

4.1. Validation with real-life measurements

4.1.1. CPU sharing with parallel tasks
The rst experiments were targeted at the CPU sharing
mechanisms inside DISSECT-CF. For these experiments,
two simple applications were developed with signi cantly
di erent workload characteristics: i CPU intensive and
il memory intensive.

Behaviour of the CPU intensive workload. For the pur-
pose of the evaluation, a simple workload function (W
N R) was de ned that can be evaluated iteratively:

i Wi 1
Wi 1-i

if 1 is even

Wi otherwise

(15)
Where the assumption of W 0 1 was made. As can be

seen, to determine W 4 one rst needs to evaluate the
workload function with values 1-2-3. Thus the function



scales linearly { i.e., it takes twice as much computing
power to evaluate W 2i than W i .

Using this linearity the CPU intensive experiment is
executed as follows: i as its input it receives the number
of parallel threads to create (T C) and a starting imin; ii
for each created thread it assigns a task number identi er
(T Nig > N) ranging between zero and TC; 1iii afterwards
the threads will be asked to calculate W imin T Nig
1 ; iv all threads are started after all of them have
received their tasks; and nally v each thread prints out
the time it takes to evaluate its assigned calculation. In
the following experiments, the imin value was selected so
a single-threaded workload function evaluation (TC 1)
took around two-seconds to execute.

The experiment’s construction allows the observation
of three distinct scenarios: i owver-provisioning (if TC
TNijq @ cores CPU ), ii resource utilisation balance (if
TC TNiqg cores CPU ), and iii under-provisioning
(when TC TNiq Acores CPU ), where the cores func-
tion evaluates the number of processing cores of the system
(CPU) on which the experiments ran. Through these sce-
narios the simulator’s default resource scheduling mecha-
nism (see Section can be comprehensively evaluated.

The behaviour of the memory intensive workload. Instead
of de ning a new function, this workload only alters the
way past-evaluated W i values are stored. While in the
CPU intensive approach only the last calculated value is
kept (in order to allow its storage in a register), the mem-
ory intensive workload stores all past values in the memory.
Thus, when a memory intensive thread receives its task
(see the 37 step in the CPU intensive workload’s descrip-
tion), it immediately allocates memory that could store
all imin TNig 1 future values of the workload function
(see Eqg. [15). In the experiments, the applied imin value
is also di erent from CPU intensive workloads: it was the
maximum possible that still did not cause swapping on the
system used for evaluation.

Experiments. For the CPU sharing experiments two ma-
chines were used with the following speci cations: i an
AMD Opteron based, dual socket, eight-core machine with
32 GB memory and 512GB hard drive, and ii a machine
equipped with an Intel Core i7 processor (two cores run-
ning at 1.8GHz, hyper threading enabled), 4 GB memory
and 256 GB SSD. The second machine was added to the
experiments to show how the simulation can be adjusted
to support hyper threading enabled processors. On both
machines a single virtual machine was created and it oc-
cupied all CPU cores (in the case of the hyper threading
enabled machine the VM was using four virtual CPUs),
75% of the physical memory and 1 GB disk space. Both
of the workloads were executed with a single thread rst
on the newly created virtual machines. With this execu-
tion, the baseline measurement was obtained for the single
task length that was used in the simulator to set the re-
maining consumption (p,) for each resource consumption
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Figure 7: Parallel execution of eight CPU intensive tasks

sent to the simulated virtual machine.

In case of the CPU intensive workload, the simulator
was able to predict with a relative error of less than 0.1%
(with a standard deviation of 0.2%) the completion time
of each thread running on the virtual machine hosted in
the Opteron based machine. On the other hand, as ex-
pected, the 4 virtual cores in the VM hosted by the Intel
processor did not perform like 4 individual cores. Thus,
a di erent set-up was needed for resource consumptions
simulated on the non-independent cores of the Intel pro-
cessor based virtual machine. Figure [7] shows three sub-
experiments to analyse the e ects of resource consumption
set-up on the precision of the simulated results. In the

rst sub-experiment, the simulated VM was set-up as if
the 4 cores would be just like the AMD based individual
cores (the gure represents this simulation with \Max HT
e ciency"). In the next sub-experiment, the 4 cores of
the simulated VM performed just like a 2-individual-core
based system (the gure represents this simulation with
\Min HT e ciency"). Finally in the last sub-experiment,
the processing limit p; for each de ned resource consump-
tion was customisable. Using this customisation facility,
the processing limit was adjusted to a level that minimised
the relative error of the simulated computing task run-
times. With the experimental workload, the applied limit
was 89.6% of the originally expected processing power of
a single core. After applying such processing limit, the
achieved task runtimes are shown with the label \HT app
corrected™ in the gure.

The gure reveals that simulation developers of DISSECT-

CF should not assume maximum or minimum hyper thread-
ing e ciency. Instead, if possible, they should evaluate
their application workloads and when sending these work-
loads to the simulator, they should adjust the processing
limit of the resource consumptions related to their appli-
cation. As the gure shows, the adjusted workloads match
the real-life measurements the most closely (i.e., the rela-
tive error is 0.29%, and its standard deviation of is 1.49%).
Unfortunately, in cases of over-provisioning (see Tasks 5-
8), the simulator’s prediction performance decreases and



in situations when signi cant over-provisioning is happen-
ing (e.g., with Task 8) the adjustment of the processing
limit is not recommended (i.e., assuming 4 cores with max-
imum hyper threading e ciency produces better results).
The accuracy has dropped because the less utilised a hy-
per threading based processor is, the more performance is
achievable by a single thread. Despite this processor be-
haviour, the simulator still applies the previously set up
processing limit in over-provisioning situations. To avoid
this static behaviour in the current version of DISSECT-
CF, simulation developers should dynamically change the
processing capabilities of the PMs depending on the level
of over-provisioning they observe.

The case of the memory intensive workloads is com-
pletely di erent. As DISSECT-CF in its current form does
not simulate memory behaviour, the best one can do to get
a close-to-real-life prediction from the simulator is to anal-
yse the CPU load of the memory intensive application and
adjust processing limits accordingly. Unfortunately, even
slight changes to the memory access patterns of a workload
could signi cantly alter prediction performance. Figure
shows an example of how volatile the predictions could be.
To present the volatility, rst, a slightly di erent imple-
mentation of the memory intensive workload was created
(this version did not allocate memory in advance but did
the allocation as its memory needs increased). Then, the
processing limits were optimised for this kind of workload
similarly as it was done for the CPU intensive workloads.
Next, the above-discussed memory intensive workload was
executed. The runtimes of its four threads are represented
with the \Measured™ columns. Afterwards, a simulation
was executed with the previously identi ed processing lim-
its (for the slightly di erent workload). The gure shows
the simulator’s runtime predictions for the four threads
with the \Uncorrected” column. These predictions were
not useful (their relative error was over 22%). On the other
hand, if the processing limits were readjusted to match the
memory intensive workload introduced a few paragraphs
before, then the relative error can be brought within a
more acceptable 4.75%. These predictions of the simula-
tor can be seen in the column labelled \CPU consumption
corrected™.

4.1.2. Networking

Just like CPU sharing, network resource sharing is
also based on the uni ed resource sharing mechanism of
the simulator. But unlike CPU sharing, in network shar-
ing situations there could be multiple resource providers
that complicate the low-level resource scheduling mech-
anisms. In single provider scenarios, the ndings of the
previous subsection also apply to networking. Thus, this
sub-section’s focus is exclusively on the evaluation of a
multi-provider situation when resource utilisation bottle-
necks could occur because of the topology between the
various providers and consumers.

Instead of a large-scale network setup, a simple and
inexpensive network set up was chosen that can experi-
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Figure 8: Parallel execution of four memory intensive tasks

Figure 9: Network interactions during the multi-provider
evaluation scenario

ence bottleneck situations. The network was composed of
4 nodes with 1 Gb Ethernet connections to a managed
gigabit switch. Their incoming and outgoing connections
were shaped as shown in Figure @] (where the nodes are
represented with circles and their maximum allowed in-
coming/outgoing bandwidth is shown inside the circle).
Each node generated a 768 MB long completely random
sequence of data that it stored in its local memory (this
technique avoids any possible compression). The size of
the generated data was selected to imitate a typical vir-
tual machine image size in today’s cloud infrastructures.
The nodes then were instructed to transfer the generated
data between them in a speci ¢ pattern. The requested
transfers are depicted as arrows (starting from providers
and aiming at consumers) in Figure [9l All transfers start
at the same time and are accomplished using the HTTP
protocol (widely used in the context of cloud storage).
The simulation was set up with two approaches: i

incoming and outgoing network connections were set up
as resource spreaders with the maximum processing capa-
bilities depicted in the gure; and ii all network connec-
tions were set up as gigabit connections and the shaping
mechanism was represented in the processing limits of the
created resource consumptions (i.e., transfers) on the net-
work. As expected, in both cases, the simulation results in
the same transfer times for all transfers shown in the gure
(t1 takes 15 seconds, t2 and t3 takes 60 seconds and t4
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Figure 10: Power estimation accuracy of the simulator

takes 30 seconds). Then the predicted timing results were
compared to real-life measurements. The above-mentioned
transfers were executed ten times and calculated the me-
dian completion time of each transfer in the real network.
The relative error was within 0.5% of the predicted timing
results of the simulator.

4.1.3. Energy modelling

As energy modelling depends on the resource sharing
mechanisms of the simulation, its most accurate readings
are bound to the accuracy of the sharing mechanisms.
Previously, the most accurate predictions of the simula-
tor were produced for CPU sharing on the Opteron based
machine (see Section[4.1.1). Therefore, to present the best
achievable accuracy for the linear power model of the sim-
ulator, the following measurement scenario was executed
on the Opteron based machine.

A new virtual machine image was created to host the
application for the CPU intensive workload function (see
Eq. [15). This image was transferred to the Opteron based
machine and it was used to initiate eight virtual machines
(all using a single core). After the VMs started up and
the machines reached their idle state, the power measure-
ment was started. Next, in every 30 seconds one of the
idle VMs started to evaluate the workload function for a
su ciently large n value to utilise all the CPU resources
of the selected VM for a period of over 10 minutes (i.e.,
this step ensured the overlapped utilisation of the physi-
cal machine’s processor). The instantaneous power draw
of the machine was collected during the entire experiment
with a frequency of 2 Hz. The resulting power readings
are presented in Figure [I0] In parallel, the same scenario
was also constructed in DISSECT-CF. The simulator was
instructed to collect the instantaneous power draw val-
ues available from the linear Consumption Model (for de-
tails see Section 3.3.1). As the energy consumption model
interpolates load between the idle and maximum energy
consumptions, the best power draw prediction accuracy is
expected in these two extreme cases. The collected power
draw values are presented in the gure as a light grey line.
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Con rming the initial assumptions, the relative error
of the instantaneous power draw values are higher than in
the case of CPU resource sharing. The observed relative
error was 0.21% with a sample standard deviation of 0.4%.
This means that the relative error was increased by a fac-
tor of over two. Consequently, the relative error in power
readings could be signi cant in cases when the resource
sharing mechanism is already experiencing larger errors.
To avoid the loss of precision in such cases, it is expected
that the factor of the relative error can be further reduced
with energy consumption models that utilise better power
interpolation techniques or exploit additional information
about the system setup { e.g., the number of CPU sockets.

4.2. Performance comparison with other simulators

In order to compare the performance of DISSECT-CF
to its competition, several currently available simulators
were investigated for similarity to the external interfaces
of DISSECT-CF (see Section [3.5.2). Because of the simi-
lar interfaces the development time of performance evalua-
tion can be reduced signi cantly. Fortunately, these inter-
faces not only reduce development time, but also avoid the
need to implement similarly behaving components to other
simulators. Several simulators were ruled out primarily
because these additional components would signi cantly
add to their functionality and therefore ruin their com-
parability with DISSECT-CF. According to these criteria,
the following two simulators were selected: i CloudSim
3.0.3 { which is amongst the most widely used simulators
for cloud systems [29] {, and ii GroudSim 2.0 { a high
performance simulator for grids and clouds developed at
the University of Innsbruck [I0]. Furthermore, these sim-
ulators were chosen because of their accessibility at the
time of the performance evaluations.

The prepared simulation environments. All simulations were
run on the machine mentioned in the introductory para-
graph of this section. As Java garbage collection could
introduce performance di erences because of the various
simulators’ memory usage patterns, the physical machine’s
entire memory (32GB) was allocated to the Java Virtual
Machine (JVM). With this technique the garbage collector
was practically never run and therefore allowed disruption-
less evaluation of the various simulators.

Because of the way DISSECT-CF is constructed, it
completely avoids any kind of logging mechanisms. If
a simulation developer needs some logging mechanism,
DISSECT-CF expects that he/she will attach to the nec-
essary event handlers of the simulator and focus logging
on his/her purposes. Unfortunately, the two other chosen
simulators do not apply this technique. To ensure a fair
comparison, before running any of the simulations all of
their logging mechanisms were disabled (in some rare cases
this needed non-functional changes to the GroudSim’s code).

Several techniques (like internal investigation of the
various simulators and additional event handling techniques)
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Figure 11: Characterisation possibilities of the synthetic
load generator

were applied to reduce the e ects of the developed perfor-
mance evaluation code on the various simulations. Before
taking measurements, all simulations were evaluated with
Java’s embedded CPU sampler. The CPU share of the
performance evaluation code varied from 0.5% to 1.3% in
the worst case. In practice, this means that all evaluations
and measurements reported in this section spent 99% of
their time inside the particular simulator (thus measure-
ment di erences can be rooted in the internal behaviour
of the variuos simulators mainly).

4.2.1. Evaluation with synthetic loads

Synthetic loads were used to evaluate the uni ed re-
source sharing model of DISSECT-CF. As the selected
simulators mostly focus on CPU sharing, the following
evaluations were focused on CPU sharing as well. In addi-
tion, DISSECT-CF applies the same uni ed sharing model
to network and disk resources. Thus, the performance
evaluations presented below are expected to be applicable
to such resources, too.

Evaluation setup. In all simulators, a single core virtual
machine was started up and ready to accept tasks. In
GroudSim and CloudSim this requires the de nition of
a cloud/data centre and requesting a VM from it. In
DISSECT-CF this step requires the de nition of a physi-
cal machine booting it, placing a runnable virtual machine
image into its local disk and starting that image as a VM.

After the VM was set up, an arti cial trace was gen-
erated with the following properties: i number of tasks
to be executed, ii number of parallel tasks possible at
once, iii spread of the parallel tasks (within how much
time all parallel tasks must start) and iv the length vari-
ety of each possible task (randomly picked from a range).
These properties are visualised in Figure [II] The num-
ber of tasks was selected for each simulation to be high
enough that a single simulation run took more than 10
seconds. This technique Iters out the temporal e ects
of Java start-up on the performance of the simulation. If
the number of tasks is more than the number of parallel
tasks possible, then the trace generator will insert a gap
long enough for all the previously generated tasks to n-
ish, and add a new set of parallel tasks to the trace. The
trace generator ensures that each task added will exhaust
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Figure 12: Pure resource sharing performance in the stud-
ied simulators

all the CPU resources of the virtual machine for its entire
duration. The rest of the trace properties will be discussed
in detail during the evaluation.

Finally, after the trace is generated, the measurement
starts by executing the trace on the virtual machine. The
measurement stops when the complete generated trace
has run. Each measurement records the time passed in
nanoseconds between the submission of the trace’s rst
task and the completion of the trace’s last task.

Resource sharing performance. During the performance
evaluation, all parallel tasks of the trace started up in the
rst 10 seconds (task spread) and had a length variety be-
tween 10-90 seconds. The necessary amount of tasks for
the 10-second-long simulation runtime is shown in Table[3]
Each evaluation was ran with di erent parallel task num-
bers between (1-100,000) to allow the investigation on how
the increasing parallelism changed the performance of the
simulators. The ndings are shown in Figure [12]

As the gure shows, in the case of CloudSim, both
its time-shared and space-shared VM scheduler was ex-
perimented on. The time-shared scheduler of CloudSim
simulates parallelism, while the space-shared scheduler se-
rialises the arrived tasks so at any given time there is only
one task that can utilise the CPU, and the rest are queued
until this task is nished. Unfortunately, the time-shared
scheduling mechanism of CloudSim is broken; it lengthens
task execution times signi cantly even in the case of a two-
parallel-task setup (e.g., a simple setup like the one pre-
sented in Figure[7]leads to completely di erent results than
one would see in real-life) On the other hand, the space-
shared scheduler provides completely di erent task com-
pletion times (because of its serialising behaviour). Thus
the CloudSim related details of the gure are only valid
when considering their simulation runtime; the simulated
tasks do not nish at the expected times in either case.

As depicted in the gure, CloudSim-time-shared and
GroudSim measurements abruptly nish at 1,000 and 50,000
tasks. For higher levels of parallelism, the runtime of the
simulation took more than 8 hours and therefore was can-
celled. In the case of CloudSim, the performance penalties
mainly originate from its centralised design of data cen-



Table 3: Number of tasks to run for at least 10s long simulation time

Simulator Parallel task number
1 10 100 1,000 10,000 100,000
DISSECT-CF | 15,000,000 6,000,000 5,000,000 1,000,000 200,000 100,000
GroudSim 5,000,000 2,000,000 200,000 25,000 N/A N/A
CloudSim 5,000,000 5,000,000 200,000 1,000 N/A N/A

tres (i.e., most of the logic and event processing reside in
the Datacenter class, and the rest of CloudSim’s classes
are used for state representation only). GroudSim, on the
other hand, has a di erent design issue: it pre calculates
all task completion times, puts them into the event queue
and thus if a change is needed to them, the whole event
gueue has to be updated.

Finally, for all simulators, the task processing perfor-
mance shown in the gure is expected to be faster than
what one usually would see, because of the large amount
of tasks that were executed for gathering data for the g¢-
ure. The amount of repeated evaluations allowed the JVM
to optimise the runtime behaviour of each simulator for the
particular performance evaluation scenario. Later on this
e ect is excluded from the evaluations.

Performance in uence of load characteristics. The rest of
this sub-section analyses of how the performance of the
resource sharing varies depending on changes in task ar-
rival and length characteristics. For this analysis, a base-
line measurement was collected with no parallel tasks but
varying task lengths. Than the assumption was made that
from this baseline, the simulators would linearly degrade in
performance (i.e., two times the parallelism would increase
the simulation run time of a single task by two times). To
compare how linearly a particular simulator behaves under
particular load characteristics, the following scaling ratio
function was designed:

k; ;n;d

n k; ;1;d

s k; ;n;d (16)
Where s is the scaling ratio, k is the kind of simulator,

is the chosen range of task length variety (in the below
detailed experiments it was either 10-90 s or 200-3600 s),
n is the number of parallel tasks, d is the task spread (in
particular, 10 s or 200 s were used), and is the measure-
ment function that evaluates the particular simulator with
the given load characteristics.

Figure compares DISSECT-CF with the two se-
lected simulators via the scaling ratio function. The labels
of the gure are presented in the following format: k d~
(see Eq. [16), where k is one of DS/GS/CS, which translate
to DISSECT-CF/GroudSim/CloudSim, respectively. The
x-axis of the gure shows the increase in n.

Based on the distribution of the measured scaling val-
ues for the di erent load characteristics, the most tolerant
to the change in workload is GroudSim, while the least tol-
erant is CloudSim. Degrading performance in scaling can
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Figure 13: The dependence of relative resource sharing
performance on load characteristics in the investigated
cloud simulators

be also observed for both CloudSim and GroudSim. In the
case of CloudSim, the degradation starts around 10 paral-
lel tasks, and by the time the simulation reaches 50 paral-
lel tasks the simulator becomes worse than linear (s A 1).
In the case of GroudSim, the degradation starts around
100 parallel tasks, and becomes worse than linear around
20,000 parallel tasks. In both cases the early degradation is
caused by the data structures and the indirect call struc-
tures used (i.e. often these simulators experience rather
deep call stacks during parallel event handling). Finally,
although it is not visible in this chart, the degradation
starts for DISSECT-CF at around 10,000 parallel tasks,
and based on estimates, its scaling becomes worse than
linear around 1.5 million parallel tasks. Fortunately, this
huge amount of parallelism is unlikely for most simula-
tions. But simulations of some highly under-provisioned
systems might need levels of parallelism that could lead to
degraded performance even in GroudSim.

The gure also reveals that the performance of DISSECT-
CF is more dependent on the task spread, while CloudSim’s
scaling is limited more by the task length variety. In case
of DISSECT-CF, the task spread dependency manifests
because the simulator executes its resource sharing mech-
anism only once per , on new resource consumption ar-
rivals and departures (see Figure [3] for details). However,
the increased task spread decreases the likelihood that the
resource sharing mechanism can be executed on multi-
ple resource consumptions at once. Therefore, the wider
the spread the closer one gets to the worst possible re-
source sharing performance in DISSECT-CF. In fact, the
200 s long spread was used because this spread is already



high enough to reveal close-to-worst-case performance. In-
creasing the spread further did not introduce signi cant
resource sharing performance drops, but its impact on
CloudSim based simulations rendered the evaluation of the
1,000 parallel task experiment too time consuming.

4.2.2. Evaluation with loads similar to real-life

As synthetic loads often criticised because of their pos-
sible bias, DISSECT-CF was evaluated and compared us-
ing workloads that were collected from real-life computing
infrastructures. Thus, the evaluation required workload
traces with the following characteristics: i collected for
extensive periods of time (i.e., at least a few months long)
to ensure the widest variety of observable load character-
istics for the particular infrastructure; ii tasks should be
described in detail including their resource utilisation and
submission, start and completion times (so even if just task
de nitions are available, one can still translate them to the
kinds of virtual machines the tasks would need for their
execution in a cloud environment); and iii if the traces
contain virtual machine management logs, then task allo-
cation details are also necessary to enable the analysis of
new scheduling techniques that might aim at reallocating
tasks or that would change VM management operations.

Based on these requirements, most of the traces (e.g.,
PlanetLab) containing virtual machine management logs
were not found suitable for the planned comparative study;
the rest of these log based traces are not collected for
enough time to be used in large scale experiments. Thus,
although these virtual machine management log based traces
would be the best candidates for analysing cloud char-
acteristics, their immaturity necessitates to also search
amongst traces collected from other large-scale infrastruc-
tures like grids. Two appropriate sources were identi-

ed: the Grid Workloads Archive (GWA [13]) and the

Parallel Workloads Archive®l Because both at the Uni-
versity of Innsbruck and in MTA SZTAKI, there are ear-
lier good experiences with the processing of GWA traces,
this article presents a comparative study of the three se-
lected simulators through the traces downloadable from
GWA (namely: DAS2, Grid5000, NorduGrid, AuverGrid,
SHARCNet, LCG).

Trace processing. A trace loader was prepared for all three
simulators so events were red every time a task arrives.
Every time a new task arrival event is red, the simula-
tors are programmed to create a virtual machine that will
host the task. Once the VM was created the task was in-
stantiated in it according to its de nition in the trace le.
When the task was completed according to the particular
simulator, its hosting VM was also terminated. Because of
the known problems with the time-sharing mechanism in
CloudSim, single VMs did not receive parallel tasks (e.g.,
by requesting a VM that is sized to host multiple tasks

Shttp://www.cs.huji.ac.il/labs/parallel/workload/swf.html
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rst). Instead, when parallel tasks were needed, multiple
VMs were created in the simulated cloud infrastructure.

Unfortunately, because of a few conceptual di erences
between DISSECT-CF and the other analysed simulators,
the above-mentioned trace processing technique has sev-
eral minor di erences in their adaptations to the various
simulators. First of all, DISSECT-CF has a queuing rst-

t VM scheduler (see Section that allows users to
send VM requests right upon task arrival and wait for the
VM scheduler’s queuing mechanism to notify them about
the VM’s running state (and readiness to receive the task).
Unfortunately, the rest of the simulators do not o er VM
request queuing: they reject VM requests that cannot be
hosted according to the actual state of the simulated in-
frastructure. To have a similar behaviour to DISSECT-
CF, either the VM request needs to be resent until it can
be ful lled (which would introduce an unwanted busy wait-
ing loop), or alternatively one must rely on user-side infor-
mation. If the VM request is repeatedly resent, then the
other simulators are signi cantly disadvantaged. Thus, the
second approach was used: previously non-servable VMs
were only re-requested once one of the previous VMs have
terminated (i.e., it was assumed that one can determine
the state of all the running VMs at a given time instance).
With this technique the CPU share of the performance
evaluation code (as measured by Java’s embedded CPU
sampler) was kept around the same levels as it was for
DISSECT-CF.

Tasks, which are utilising several CPU cores in paral-
lel, are modelled in two ways. First, the simulation tries
to request a VM with as many CPU cores as the task
needs. Unfortunately, this cannot be achieved in cases
when even the biggest possible VM is too small for the
task’s needs. For these huge tasks, the simulation requests
multiple VMs, enough to ful | the parallelism in the task.
In GroudSim and DISSECT-CF it is possible to request
multiple VM instances at once (e.g., similarly to how Ama-
zon EC2 behaves) and they will be ensured to be available
in parallel. On the other hand, CloudSim does not have
such functionality; therefore it was extended with a tech-
nique that only submits the tasks to their virtual machines
once all necessary VMs are available for the level of paral-
lelism needed for the task.

As GroudSim is more focused on the user-side behaviour
of cloud infrastructures, it has several de ciencies com-
pared to the other two evaluated simulators: i it can
only handle tasks that occupy a single CPU core, ii its
network sharing mechanism could result in network under
utilisation if the communicating parties are using connec-
tions with di erent bandwidths and iii it does not pro-
vide data centre level simulation details { e.g., no VM/PM
scheduling and PM level resource sharing is simulated. To
overcome the rst de ciency, multi-core tasks are simu-
lated as several single core tasks in the same GroudSim vir-
tual machine. To avoid the problem with network sharing,
the simulated data centres in all three simulators were con-
structed on such a way that every node was connected with



the same bandwidth to the others. Unfortunately, without
signi cantly changing GroudSim’s code it was not possi-
ble to add the missing data centre level simulation details.
Thus, during the performance analysis one should keep in
mind that these details are not simulated in GroudSim.

Finally, for both GroudSim and CloudSim, the instan-
tiation time of a virtual machine is instantaneous, which is
not realistic. As the transfer of the VM image is often the
most time consuming operation in the VM instantiation
procedure [54], this transfer was simulated with a down-
load operation to the VM with both of the simulators. In
GroudSim, a network transfer was initiated right after the
VM was created and this transfer delayed the creation of
the task on the VM until the transfer’s completion. In
CloudSim, Cloudlets (computing tasks in CloudSim ter-
minology) could have input les de ned for them. Thus,
tasks in CloudSim were speci ed so they must transfer an
input le with the size of the VM image before they can
start their processing. Unfortunately, even with input les
speci ed, the VMs in CloudSim start immediately and ex-
ecute their tasks right after the VM is created. This means
that CloudSim based simulations cannot be as accurate as
the other two simulator’s results. In order to reduce the
impact of VM image transfer on task execution times {
and to allow all three simulations to have a similar sim-
ulation completion time {, the size of the VM image was
set to 100MB (which is the size of a rather small image
nowadays).

The simulated virtual infrastructure. In all three simula-
tors, a single kind of physical machine acted as the founda-
tion of the simulated infrastructure. This physical machine
was modelled after a single node in MTA SZTAKI’s cloud]
and had the following properties: i 64 CPU cores, ii
256 GB RAM, iii 5 TB local disk, and iv two 1 Gb/s
Ethernet connection. In the experiments detailed below, it
was possible to de ne how many of these machines should
be in the data centre. The set up of the machines includes
the creation of a network interconnecting all of them with
a central switch.

The runtime comparison experiment. For the rst exper-
iment the simulated infrastructure was set up so it was
su cient to host even the largest parallelism a single task
of the traces could request (i.e., no task has had to be
dropped because there were not enough physical machines
to host its level of parallelism). In particular, this experi-
ment required the simulation of 20 physical machines with
the above-mentioned properties. On this infrastructure,
the rst n> N tasks from a particular trace were submit-
ted. Then, a measurement was initiated for the real time
passed between the submission of the rst task and the
completion of the last one. The infrastructure prepara-
tion, task submission and time measurement operations
were repeated 10 times, each time starting with a new

4http://cloud.sztaki.hu/en/home

23

Figure 14: Comparison of average runtimes of grid work-
load archive traces based simulations

JVM. Then, the trace speci ¢ average simulation dura-
tion for the measurement of n tasks was calculated. Af-
terwards, the whole measurement procedure was repeated
for the remaining traces. Finally, the aggregated simu-
lation duration was calculated for n tasks by averaging
the trace speci ¢ averages from all traces. Later, the ag-
gregated simulation duration is referred as M k;n;mc
(where k is the measured simulator, n is the number of
tasks, mc is the number of physical machines to simulate
andM K N2 R).

Figure presents these aggregated simulation dura-
tions while the number of tasks { n { were changed from
a hundred to a million. As the measurements ran with a
cold JVM, for the rst 10,000 tasks one can see that the
JVM’s e ects on the start-up dominate the runtimes. The

rst workload related di erences of the simulators can be
seen after the JVM’s behaviour is no longer a signi cant
contributor to the measurement. Also, despite DISSECT-
CF’s focus on the internals of the infrastructure, its per-
formance is always better than that of the other two sim-
ulators. This is especially apparent after around 200,000
tasks. In spite of GroudSim doing the lightest-weight sim-
ulation (see the de ciencies listed in the previous para-
graphs), it is still signi cantly and consistently slower (al-
beit in some cases { like the LCG trace { GroudSim per-
forms consistently better). The gure also shows that
GroudSim’s network simulation code gives around 21%
overhead for lower task counts, and for higher task counts
the overhead could grow as high as 109%. This di er-
ence experienced during the network simulation is caused
by GroudSim’s sub-par network modelling (i.e., for a sin-
gle transfer to occur there are several events that needs
to be handled in the event system, and in case of paral-
lel transfers these events must be refreshed in the future
event queue).

The scalability experiment. To determine the scalability
of the compared simulators, the previous experiment was



Figure 15: Scaling comparison of DISSECT-CF

repeated with varying sizes of infrastructure under them.
Thus, these experiments will not only be able to pinpoint
how the various simulators deal with the increasing amounts
of tasks and virtual machines, but also how the simulators
cope with increasing size of infrastructures. Infrastruc-
tures as small as a single physical machine were used but
the experiments were reaching to the size of 500 machines.
As even smaller infrastructures were evaluated than 20
machines (which was the minimum for the level of paral-
lelism found in some of the traces), there were tasks that
could not t to the infrastructures. These tasks were au-
tomatically Itered out by the trace processor and never
reached the simulation. Interestingly, even with the sim-
ulation with a single machine the Itered out tasks were
never more than 6% of the total number of tasks in any
of the traces. Of course, the single machine still caused a
signi cant serialising e ect that lengthened the total exe-
cution time of the rest of the tasks.

Similarly to Eq. [16] the scalability of the simulators

was calculated compared to linear scaling. Figure[I5presents

how the various simulators scale under a particular num-
ber of physical machines. The gure is composed of twelve
sub-charts, each delimited with a black line. Between the
black lines a large bidirectional arrow contains the title of
a sub-chart. The title shows the number of tasks for which
the nal runtime measurement values were compared. For
example: the title \100-200 tasks" means the sub-chart
shows how the nal runtime measurement value of 200
tasks compares to the value of 100 tasks. The comparison
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is made according to the following equation:

n, M k;ni;;mc
ng M k;ny;mc

s k;nq;ny;mc ()]
Where ny, ny is the number of tasks for which the ag-
gregated simulation duration is evaluated, k is one of the
evaluated simulators and mc is the physical machine count.
Thus, s k;ny;n2;mc will become one if the particular sim-
ulator scales linearly in the task number range of n; and
ny. If the scaling function above is lower than one then
the particular simulator is worse than linear.

According to the sub-charts in Figure all simula-
tors scale signi cantly better than linear with fewer than
10,000 tasks (again, this is mostly due to the JVM'’s class
loading and start-up mechanism, since practically all mea-
surements under this task count result in sub-second run-
times). Afterwards, one can see that CloudSim is already
scaling signi cantly worse than the other two investigated
simulators, and by 50,000 tasks CloudSim already drops
below linear scaling. It can be also observed that simu-
lators handle the number of parallel machines completely
di erently. In the case of CloudSim, the bigger the ma-
chine number, the more likely that the scaling factor will
become lower. In the case of GroudSim, the opposite be-
haviour is observed; while for DISSECT-CF, one can see
a rather balanced case. In conclusion, GroudSim behaves
as expected: the missing simulation of physical machine
behaviour and VM/PM scheduling techniques allows it to
behave practically independently from infrastructure size.
In this sense, CloudSim and DISSECT-CF should behave



Figure 16: Performance degradation in relation to energy
metering frequency

more closely to each other. Unfortunately, the problematic
implementation of CloudSim’s time-shared VM scheduler
(see Section changes its apparent behaviour and re-
duces the similarities in the trends between DISSECT-CF
and CloudSim. To conclude, DISSECT-CF scales compa-
rably to other state-of-the-art simulators (in fact it never
drops below linear scaling, in contrast to the others) while
it o erssigni cantly more detailed infrastructure level be-
haviour.

This experiment was also used to validate the results
of DISSECT-CF through a comparison with the other
simulators. As the rst step of validation, the simulator
reported completion time of the last task in every trace
speci ¢ measurement was collected (from M k;n;mc {
where n was set between one and a million, and mc be-
tween one and ve hundred). Then, these task completion
times were compared with each other. The median of the
di erence between the simulators was less than 0.001%
(the average di erence from the median was 2.15%). The
biggest di erences occurred with simulated infrastructures
containing the lowest number of physical machines: in
such cases the median of di erence between the simula-
tors jumped to a little more than 0.29% (with a sample
standard deviation of 7.21%). The reason behind such a
great deviation is the magni ed e ect of virtual machine
instantiation simulation (i.e., as VMs can only be instanti-
ated on a single PM, they are mostly created and destroyed
in a serial fashion).

The impact of energy metering. So far, all presented mea-
surements were executed without energy meters attached
to the resource spreaders of DISSECT-CF. As energy me-
tering is not available in GroudSim, the other two simu-
lators would have su ered a disadvantage because of their
ongoing metering simulation. As DISSECT-CF was conse-
quently a better performer than the other two simulators,
its further evaluation was focused on how one could set up
energy metering in order to get comparable performance
to the other simulators’ meter-less operation.
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Figure 17: Performance equivalence of energy metered
DISSECT-CF simulations

Figure [16] analyses the performance drop of DISSECT-
CF observed when energy metering was requested for the
complete simulated infrastructure with 20 physical ma-
chines. Just as before, the function M DS;1000000; 20
was evaluated, but now instead of comparing DISSECT-
CF to other simulators, the comparison was made between
the newly received values to values from the previously
presented simulations without energy metering. Adding
energy metering leads to signi cant performance di er-
ences between the various GWA traces. To show what is
the possible performance degradation range in the various
traces, the two extreme cases (the best and worst perform-
ing ones) are revealed in the gure. The presented cases
show that selecting the energy measurement interval is cru-
cial for well performing simulations. In general it is not
recommended to use energy measurement intervals below
one minute for long running simulations { i.e., where the
trace’s length is over a few thousand tasks. If higher pre-
cision is needed, then selective metering techniques should
be used that evaluate energy meters for only the necessary
parts of the infrastructure; otherwise, one could experi-
ence a slowdown of over 50 times compared to meter-less
runtimes.

Finally, in Figure[17, a comparison is shown about the
performance drop caused by the metering to the meter-less
setups of other simulators. The gure shows what the me-
tering interval is { despite the resulting performance drop
{ that still provides equivalent performance to other simu-
lators. As the gure shows, the performance drop also de-
pends on the number of physical machines in the simulated
infrastructure. Overall, if energy metering is desired on the
entire simulated infrastructure, the metering interval must
be set to at least ve-seconds to receive comparable perfor-
mance to CloudSim. In contrast, GroudSim’s performance
can be matched with a metering interval around 25-30 sec-
onds. Anything above these values will give a performance
advantage to DISSECT-CF. On the other hand, metering
intervals below these values could still cause a better per-
forming DISSECT-CF but this is highly dependent on the



particular trace or virtual machine request pattern used
during simulations.

5. Conclusion

This article outlined several laaS related schedulers
that could be further improved with the use of cloud sim-
ulators. Then, it has shown that current simulators barely
meet the demands of the scheduling oriented researchers:

i they often limit the accessibility of information, ii
they often hide the internal details of laaS systems, iii
they frequently perform poorly in large-scale simulations,
and iv they provide scarcely any options for introducing
new energy management techniques inside laaS clouds. To
overcome these issues, the article has proposed a new sim-
ulator called DISSECT-CF.

The proposed simulator targets information accessi-
bility issues with open APIs and monitoring and perfor-
mance related customisable events. The internal details of
the cloud systems are also accessible, allowing simulation
developers: i to construct clouds in novel ways (e.g.,
introduction of new physical machine - virtual machine
interaction techniques or cloud organisation topologies),
and ii to experiment with new cloud side behaviour
(e.g., new VM schedulers, power states). DISSECT-CF
utilises a new uni ed resource sharing mechanism that
allows centralised performance optimisations and ensures
scaling independently of the size of the infrastructure and
the amount of tasks processed by the simulated system.
Finally, the new simulator deeply integrates energy meter-
ing techniques (ranging from resource usage counters and
energy consumption models to meter aggregators). These
techniques not only allow further extensions but they allow
selective and composite power metering to ensure minimal
performance drops during the metering sessions.

The new simulator was evaluated by comparing it to
small-scale but real-life environments. During this eval-
uation, it was presented how one should model CPU and
memory intensive tasks, and it was also shown that the ac-
curacy of the simulator’s energy metering technique is also
dependent on the new uni ed resource sharing mechanism.
Experiments shown that the relative error of the new re-
source sharing technique is around 1% in most cases. After
the small-scale evaluation, DISSECT-CF was compared
with two state-of-the-art simulators (namely CloudSim and
GroudSim). The comparisons were focused on the scaling
and performance characteristics of the simulators. The
results revealed that these simulators often produce inac-
curate results, while the new simulator not only provided
more accurate outputs but also o ered better performance.

Future research will consider several areas. First, there
are plans to look how the simulator’s resource sharing ac-
curacy could be improved with stochastic sharing mod-
els and new low-level scheduling techniques. Next, sup-
port for more complex network topologies and additional
node types (e.g., routers and switches) will also be pre-
pared. As the current simulator merely provides raw data
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for user-side schedulers, an investigation of the necessary
constructs and optimisations to better support the devel-
opment and analysis of these schedulers also needs to be
done. Finally, memory behaviour is practically neglected
in the current simulator, because applications and openly
available traces do not o er any details on this. In the
future, a task level complex memory model is expected to
be delivered that not only considers memory bandwidth
utilisation but also access patterns. With this model the
simulator’s target could include accurate live migration
support.

Software availability

This article described the behaviour and features of
DISSECT-CF version 0.9.5. The source code of the sim-
ulator is open and available (under the licensing terms of
the GNU Lesser General Public License 3) at the following
website:

https://github.com/kecskemeti/dissect-cf.
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