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Towards Efficient Virtual Appliance Delivery with
Minimal Manageable Virtual Appliances

Gabor Kecskemeti, Member, IEEE , Gabor Terstyanszky, Peter Kacsuk and Zsolt Nemeth

Abstract—Infrastructure as a Service systems use virtual appliances to initiate virtual machines. As virtual appliances encapsulate
applications and services with their support environment, their delivery is the most expensive task of the virtual machine creation. Virtual
appliance delivery is a well-discussed topic in the field of cloud computing. However, for high efficiency, current techniques require the
modification of the underlying IaaS systems. To target the wider adoptability of these delivery solutions, this article proposes the concept of
minimal manageable virtual appliances (MMVA) that are capable of updating and configuring their virtual machines without the need to modify
IaaS systems. To create MMVAs, we propose to reduce manageable virtual appliances until they become MMVAs. This research also reveals
a methodology for appliance developers to incorporate MMVAs in their own appliances to enable their efficient delivery and wider adoptability.
Finally, the article evaluates the positive effects of MMVAs on an already existing delivery solution: the Automated Virtual appliance creation
Service (AVS). Through experimental evaluation, we present that the application of MMVAs not only increases the adoptability of a delivery
solution but it also significantly improves its performance in highly-dynamic systems.

Index Terms—Cloud Computing, Manageable, Virtualization, Deployment, Virtual Appliance

F

1 INTRODUCTION

Infrastructure as a Service (IaaS) cloud systems [1], [2]
offer interfaces to create, destruct and manage virtual
machines (VMs – [3], [4], [5]). Even early IaaS systems
[6], [7], [8] were marketed as a way to increase elasticity
of their user’s infrastructure. Such elasticity allows dy-
namic infrastructure scaling behind the user’s services to
meet their actual demands. To allow infrastructure scaling,
applications and services are hosted in virtual machines
deployed in IaaS systems. VMs are created by instantiating
virtual appliances (VA – [9], [10]) that encapsulate the
required applications or services (the key functionality) with
their support environment (e.g., an operating system and
several software libraries).

When users start to exploit the elasticity of their in-
frastructure, they frequently create and destruct virtual
machines thus reduce the lifetime of average VMs. Conse-
quently, VM creation time becomes more dominant in IaaS
usage. As the dynamism increases in the infrastructure,
time spent on VM creation becomes comparable to actual
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VM usage times. Thus, VM creation time becomes a serious
obstacle before highly dynamic systems [28]. By analyzing
virtual machine creation, researchers revealed [11], [12] that
VM creation time is mostly dependent on virtual appliance
delivery to the physical machine of the future VM.

Therefore, new methods were proposed to optimize deliv-
ery time by either pre-optimizing VA size or by optimiz-
ing the transfer from the VA storage (called repository)
to the future execution hosts. First, size optimization [13],
[14] removes appliance contents not related to the key
functionality. This action is time consuming, thus appliance
developers only apply size optimization prior publish-
ing the VA if frequent deployments are expected. Sec-
ond, transfer optimization techniques [12], [15], [16] analyze
appliances to allow caching common appliance parts in
multiple repositories (supporting repository hierarchies,
multiple Amazon S3 regions or third party repositories).
Hence, appliances are rebuilt from parts downloaded from
repositories offering the best available network speeds.

Both delivery time optimization approaches require the
alteration of the virtual appliance just before the appliance is
executed. For efficiency reasons, this alteration should be
performed on the future execution host of the appliance.
However, current optimization solutions imply the modi-
fication of the underlying IaaS system so that third parties
could modify the appliance right before execution. Without
evident financial gains, commercial providers (e.g. [6], [17],
[18]) have no incentive for adopting these solutions. To
enable their adoption, this article proposes an approach
that avoids changes in IaaS systems but still allows appliance
alteration operations to be performed on the execution host.

Our research reveals that appliances with management
capabilities could be utilized to alter their contents. Thus,
no changes are required in the IaaS systems because the
necessary alterations are realized in a virtual machine.
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We present that delivery time optimization can be sup-
ported by a few content management operations (e.g.,
addition/removal, configuration of software components).
However, current appliances do not offer these operations.
Therefore, we propose the concept of minimal manageable
virtual appliances (MMVA) that are special appliances to be
embedded in other appliances.

This research focuses on delivery optimization tech-
niques that support virtual machine creation in two phases:
(i) initialize a VM using only the MMVA, and (ii) automat-
ically alter the new VM according to deployment needs.
We also presume that appliances are often instantiated and
decommissioned, thus, the initial investment (e.g., in terms
of time) on delivery optimization and MMVA embedding
can be regained during the lifetime of the VA. Appliance
developers decide on the use of these optimization tech-
niques.

The feasibility of the MMVA concept is revealed by
presenting its effects and the necessary changes on an
existing delivery optimization system: the Automated Vir-
tual appliance creation Service (AVS – detailed in [19]).
We reveal that using the management capabilities could
significantly increase the performance of the operations
of the AVS (e.g., appliance size optimization time can be
reduced by 33%). We also demonstrate significant increase
in deployment efficiency (11% delivery time reduction)
with a prototype implementation of the MMVA concept
on a private cloud infrastructure.

The rest of the article is organized as follows. Sec-
tion 2 presents the related research results. Then, Section 3
overviews the foundations of appliance delivery through
a basic scenario. Later, Section 4 defines the concept of
MMVAs and introduces new ways to create or extend
virtual appliances based on this concept. Afterwards, Sec-
tion 5 analyzes the effects of MMVAs on appliance delivery
methods of the AVS service. Finally, Section 6 discusses our
implementation and its evaluation.

2 RELATED WORKS
Nishimura et al. [12] identify scalability issues in appliance
delivery systems during on-demand cluster deployment.
They propose a technique combining pipelined virtual
appliance delivery and fine-grained virtual machine cus-
tomization. To decrease future appliance instantiation la-
tency, this technique automatically caches frequently re-
quested packages in a generic virtual appliance. The ef-
ficiency of their solution is demonstrated by installing a
virtual cluster of over 100 nodes. However, their system
is not applicable to commercial IaaS systems because their
components alter IaaS behavior.

Similarly to Nishimura’s results, Zhang et al. [11] in-
troduces special virtual appliances that store the most
commonly used software components in the deployment
requests of the users. They refer to these special appliances
as Typical Virtual Appliances (or TVAs). They identify
possible TVAs in the system by clustering the available
software components with the k-means algorithm. How-
ever, their article remains at the conceptual level and does

not consider constraints required for adoptability in non-
simulated environments.

Bradshaw et al. [15] build on two existing tools (the
bcfg2 [20] and the workspace service [7]) to deliver
contextualized virtual appliances promptly before their
deployment. Their work discusses a technique to define
and construct virtual appliances before delivery and also
discusses simple contextualization tasks (e.g., security cer-
tificate and IP address propagation) that can be done after
appliance instantiation. However, the proposed technique
is not widely applicable because it is tailored to the previ-
ously mentioned tools.

Jin et al. [21] presents the concept of virtualization
integrator that allows rapid provisioning, aggregated self-
monitoring, simplified service management and automated
consolidation of virtual appliance ensembles. These en-
sembles allow multiple appliances to be deployed and
managed as a single system. In contrary to our research,
their approach handles virtual appliances as the smallest
building blocks of service-based systems.

In [22], Lutterkort and McLoughlin introduce the concept
of manageable virtual appliances. These special virtual
appliances allow enterprise system administrators to au-
tomatically manage virtual machines based on them. They
enable enterprise level automation through accompanying
the appliance with its (automatically created) recipe that
defines the way (and optionally the history) the appliance
was constructed and allows its future configuration. Unfor-
tunately, their technique is strongly dependent on several
tools (e.g., libvirt, rpm, puppet, cft) undermining its
universal applicability.

In [23], Wilson discusses the Conary virtual appliance
constructor tool that provides a versioned appliance repos-
itory supporting image creation and update. Conary re-
quires the entire source code of the virtual appliance to
be version controlled to allow custom configuration, cre-
ation (using rBuilder [13]) and update of virtual appliances.
To manage already deployed appliances Conary must be
co-located with appliances conforming to the WBEM or
CIM standards [24], [25]. However, this last requirement
increases the deployment cost of these new manageable
VAs on commercial IaaS systems.

Articles [26], [27] investigate the appliance delivery
method called copy-on-read/write. This method defers deliv-
ery by dispatching only those appliance parts that are used
by VMs. Thus, a virtual machine starts as if a complete
appliance is at hand. Attempting to use not-yet-delivered
VA parts blocks the virtual machine while the needed parts
arrive. Hence, this approach trades the initial processing
power of new virtual machines to significantly reduce their
apparent startup time. Unfortunately, this method is not
applicable in highly-dynamic systems (our main focus)
where VMs have short lifetime.

3 CONCEPTUAL BACKROUND

The following section conceptualizes the behavior of cur-
rent delivery optimization techniques. First, Section 3.1



IEEE TRANSACTIONS ON SERVICES COMPUTING 3

presents a generic usage scenario of delivery optimization
systems from both the viewpoint of the developer and
the user. Next, Section 3.2 introduces an abstract model
and notation for delivery optimization systems and their
interactions. This model is restricted to focus on the aspects
relevant to the main contribution of the article: the use of
minimal manageable virtual appliances.

3.1 Deployment with delivery optimization
The perspective of the appliance developer. Appliance
developers create an initial virtual appliance if they expect
repeated need for a special purpose virtual machine (e.g. a
VM with certain external interfaces). With this appliance,
special purpose VMs could be instantiated with minimal
effort. In highly-dynamic systems [28], this requires ap-
pliances that result in VMs with minimal customization
tasks after instantiation. This requirement necessitates an
initial virtual appliance that encapsulates the required
applications, services and their configurations – the key
functionality – for the VM’s special purpose. In summary,
the created appliance should demand less expertise from
appliance users while they operate the key functionality.

As an example, let us suppose that general purpose
VMs repeatedly need manual customization with a content
management system (CMS) that uses an external database.
To avoid the repeated need for customization, an appliance
developer creates a VA that offers the CMS with the
proper configuration. Therefore, the key functionality of
this appliance will be the newly offered CMS. Concerning
customization, the new appliance should be prepared to
accept the contact details of the database on startup – thus
allow its contextualization [29].

The just created initial appliance is stored in a self-
contained package (pΩ) that is suitable for instantiating a
virtual machine in an IaaS system. E.g., these packages are
Amazon Machine Images if the developer uses Amazon
EC2. For the rest of the article the term self-contained
package and virtual appliance is used interchangeably.
After the initial appliance is ready, developers estimate its
future usage and deployment frequency. Thus, they can de-
termine if the cost of applying delivery time optimization
techniques would be regained during future deployments.

When opting for optimization, developers pass the initial
appliance as an input for the chosen delivery time opti-
mization technique. In return, they receive one or more
packages ready for public use. The received packages
still represent the key functionality of the initial virtual
appliance, however, they are now constructed to better
suit appliance delivery. Finally, developers publish the
received packages in repositories or marketplaces (e.g.,
Amazon S3 [30], VMware marketplace [31] for commercial
or Cumulus [32] for private clouds).
The perspective of the user. Now that appliances are
ready, users select one with the key functionality that
fits their purpose. Instead of directly contacting an IaaS
system to instantiate the selected appliance, users use a
deployment client that arranges the delivery of the appliance.

This deployment client first determines if the appliance is
available in multiple packages. If so, then the packages are
first composed (or rebuilt) to form an appliance ready for
execution. Because of otherwise unavoidable performance
issues, the rebuilding process should take place on the
deployment host (the physical machine that will host the
future virtual machine). The deployment client proceeds
with the rebuilding in three phases. First, it downloads the
packages necessary for the appliance to the deployment
host. Then, it rebuilds the contents of the downloaded
packages so they form a self-contained package again.
Finally, the IaaS is instructed to create a VM based on the
rebuilt appliance.

Hence, the issue of current delivery time optimization
techniques is revealed: deployment clients need direct
access to the deployment host. This prevents widespread
adoption of these optimization techniques because most
IaaS systems do not allow access to physical machines. This
article proposes that by adding management capabilities
to initial virtual appliances, developers can apply delivery
time optimization techniques without intruding IaaS sys-
tems. These new capabilities change the way deployment
clients should behave in case rebuilding is needed. Instead
of the rebuilding procedure, they should start with the
creation of the VM. Then proceed to rebuilding within the
virtual machine itself by using its management capabilities.

The rest of the article presents the challenges and solu-
tions on how these management capabilities can be added
with modest efforts for developers and with minor effects
on initial appliances.

3.2 Basic system definitions

Delivery time optimization is applicable to numerous in-
frastructures. This article represents a particular infrastruc-
ture (ϕ) with its interacting hosts (ϕ ∶= {h1, h2, . . . }). Hosts
are networked entities and their connections are quantita-
tively described with network latency and bandwidth. We
have identified the following five host types participating
in the appliance delivery scenario of Section 3.1: (i) IaaS
services, (ii) service users, (iii) deployment clients, (iv)
repositories, and (v) deployment hosts.

First, IaaS services (C ∶= {c1, c2, . . . } where cx ∈ ϕ is an
individual IaaS service – e.g. the cloud controller service
of Eucalyptus [8]) supervise a set of virtualization-enabled
hosts. Over the supervised hosts, these services offer vir-
tual machine or even virtual infrastructure management
capabilities for their users.

Users host their services in the IaaS provided virtual
machines. If the hosted services exhibit under or over pro-
visioning, then users initiate the deployment or decommis-
sion of service instances with the deployment client. While
arranging the delivery of the service, deployment clients
look for virtual appliances – encapsulating the service’s key
functionality – in repositories (R ∶= {r1, r2, . . . } where R ⊂ ϕ
is the set of repositories).

Repositories store virtual appliances in one or more
packages (p ∈ P ), where P represents all available packages
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Fig. 1. Hypothetical dependency graph of 6 services

in the system. The set of packages stored in a repository
is described with the function contents ∶ R → ℘(P ). After
identifying the package with the key functionality (pσ), the
deployment client instantiates it in a virtual machine. This
is represented with the initVM ∶ P → (ϕ∪h∗) function that
returns either a vm ∈ ϕ or the non-existent host (h∗) if the
VM could not be initiated.

Packages that represent key functionalities are accom-
panied with validator algorithms. These algorithms can
semantically and functionally evaluate if a particular host
offers the key functionality. This article models these al-
gorithms by the function valid ∶ P × ϕ → {true, false}. As
appliance developers precisely know the key functionality,
we assume that they accompany new appliances with
appropriate validator algorithms.

Package content is derived from items (i ∈ I where I

symbolizes all possible items in the system). Items are the
smallest individually handled entities (e.g., packages are
built from files, or even from software packages – like rpm
or dpkg) in an appliance. The algorithms introduced later
are independent from the actual types of the items. The
function it ∶ P → ℘(I) defines the set of items that form
a particular package. This article depicts items by their
hashes and their storage size (itsize ∶ I → N).

Finally, we estimate the storage size (size ∶ ℘(P )→ N) of
a package set as the cumulative storage size of all items in
the set members:

size(Ps) ∶= ∑
p∈Ps

∑
i∈it(p)

itsize(i) (1)

Where Ps is an arbitrary subset of all packages (Ps ⊂ P ).
This equation is used to estimate virtual appliance storage
size by populating set Ps with packages embodying the
complete appliance.

Self-contained packages are optimally sized if no items
are removable without the loss of the key functionality:

optisize(p) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true if ∄i ∈ it(p) ∶ (it(px) = it(p)/i ∧∧valid(p, initV M(px) = true)
false otherwise

(2)

3.2.1 Definitions for transfer optimization techniques
Transfer optimization techniques aim to arrange the con-
tents of the repositories so packages can be served with

shorter delivery times. However, self-contained packages,
which encapsulate complete virtual appliances, do not
allow fine grained repository content arrangement. Conse-
quently, these techniques must split virtual appliances into
smaller parts (e.g. items or arbitrary groups of items). The
items of each part are put into a package and are marked to
which particular appliance they belong to. Splitting enables
the arrangement operation to focus on the most commonly
used packages [11], [19]. E.g., these techniques are likely to
form smaller packages using items found in multiple VAs.
Consequently, after transfer optimization, the widely used
packages are offered by the most repositories. In contrast,
rarely used or unique packages usually found in a single
repository.

However, split appliances are unusable for VM instanti-
ation because they are stored in multiple packages. Before
instantiation, these packages should be rebuilt to form an
appliance again. This article proposes the set of direct
package dependencies – dep ∶ P → ℘(P ) – as a way to
identify packages for an appliance. Through these sets, the
package composition rule identifies the packages that can
be composed together. Thus, we define the rule as:

p3 ∶= p1 + p2 where p2 ∈ dep(p1)
therefore

it(p3) ∶= it(p1)⋃ it(p2)
dep(p3) ∶= dep(p2)

(3)

In this equation, p1 is the dependent package and p2 is
an arbitrary choice from the direct package dependency
set dep(p1). The equation reveals that we can define the
composed package (p3) through its items (it(p3)) and direct
package dependencies (dep(p3)).

The composition rule can be applied repeatedly with the
composed packages and their direct package dependencies
until the last composed package (p′3) has no further direct
dependencies: dep(p′3) = ∅. Later, we refer to this process of
repeated composition as rebuilding. Using the example of
Fig. 1, we observe that repeating composition of package
σ5 will have the following effect:

dep(σ5) = {∆7,∆8,∆10} → σ′5 = σ5 +∆10

dep(σ′5) = {∆1} → σ′′5 = σ′5 +∆1

dep(σ′′5 ) = {Ω1} → Ω5 = σ′′5 +Ω1

Therefore, rebuilding σ5 (through packages ∆10,∆1,Ω1)
will result in the self-contained package of Ω5.

It can be observed that σ′5 could have been rebuilt
differently because the direct package dependency set of
σ5 contains multiple packages. This article uses the term
construction path to denote the set of packages that were
chosen during the rebuilding process. Thus, a particular
construction path of package px is denoted with the func-
tion (θ ∶ P ×N → ℘(P )). This function returns with a set of
packages needed to rebuild an appliance based on px. The
behavior of transfer optimization techniques ensures that
rebuilding two arbitrary construction paths of the same
package will result in the exact same VA. We define the
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Fig. 2. Basic management interfaces

set of all possible construction paths (Θ ∶ P → ℘(℘(P )))
for a given package so later operations can select a specific
construction path.

Fig. 1 exemplifies the three possible construction paths
of package σ5 that can be formulated as follows:

Θ(σ5) = {
θ(σ5,0)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

{σ5,∆8,∆3,∆1,Ω1},
θ(σ5,1)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

{σ5,∆7,∆3,∆1,Ω1},
{σ5,∆10,∆1,Ω1}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

θ(σ5,2)

}

4 THE MINIMAL MANAGEABLE VA
Section 3.1 has shown that current practices in delivery
time optimization need direct access to the deployment
host to alter appliances before their instantiation. In con-
trast, we propose appliances capable to alter themselves
at runtime. This approach delivers new appliance contents
right to the VM (which also resides on the deployment
host). To take advantage of this new approach, delivery
time optimization techniques need to change.

To reduce the necessary changes in past solutions, we
have analyzed their behavior. A minimal set of operations
was isolated to support their operation: (i) installing a
package from a repository – enables package composi-
tion –, (ii) configuring the virtual machine – required
after adding a new package –, and (iii) erasing items
from instantiated virtual machines – allows VM reuse or
repurposing. Consequently, we define manageable virtual
appliances (MVA) as special appliances encapsulating both
the key functionality and at least the three management
operations listed above.

Appliance instantiation time mostly depends on VA
size, therefore, manageable virtual appliances imply longer
instantiation times compared to appliances containing the
key functionality only. To avoid unnecessary delivery time
increase, the introduced management operations should
have minimal impact on MVA size. I.e., more complex
management interfaces, which support advanced deploy-
ment scenarios, can be tolerated on larger appliances (e.g.,
over a few gigabytes in size). However, smaller appliances
would experience significant size (and thus, deployment
time) impact. In this article, we pursue a more widely ap-
plicable solution: more complex functionalities were given
up in exchange for smaller sizes.

Therefore, we first investigate the Basic management inter-
faces that offer the simplest implementation of the minimal
operations. As depicted in Fig. 2, these interfaces allow the

!"#$%&'"()*
+$,"()

-'#.%/"0*
12(23"24$"*

5,.)62$*7##$,2(8"

!"#$%&#
'()*+

,#-(.#
/01#

2)3&411
54$64+#

.-7

Fig. 3. Improved management interfaces

following operations: (i) downloading a single file from a
URL to a designated location in the virtual machine, (ii) ex-
ecuting a configuration script in the VM and (iii) removing
a file from the VM.

Unfortunately, the “Download File” operation requires
files as its inputs although repositories store packages.
Thus, repository packages should be converted to a form
acceptable by basic management interfaces. We refer to
those deployment clients that support this conversion as
“advanced deployment clients”. Although, these clients still
receive appliance instantiation tasks, they transform the re-
ceived tasks for basic interfaces. They download and item-
ize the necessary packages on their host. Then, they upload
the individual items to the target VM with its“Download
File” operation. Hence, advanced deployment clients need
to transfer the necessary packages twice – first between
the repository and the host of the deployment client, then
between the client and the execution host of the man-
ageable appliance. Thus, even though basic management
interfaces could be implemented with relatively small size,
they require changes in existing deployment clients and
cause unnecessary network traffic.

To avoid these disadvantages, we introduce the Im-
proved management interfaces that are designed to allow the
simplest implementation of manageable virtual appliances
while still enable using regular deployment clients (see
Fig. 3). To avoid the bottleneck of basic management
interfaces, the improved ones replace the previously iden-
tified “Download File” operation with the “InstallPackage”
operation. This operation can be called on the VM of an
instantiated MVA. As a result, the VM contacts a repository
and downloads the requested package. After itemizing the
received package, the VM places the items of the package
on their intended locations.

Comparing the two interfaces, it is observable that im-
proved management interfaces download appliances only
once. Also, improved interfaces do not need advanced
clients. However, because of their “InstallPackage” opera-
tion, they notably impact manageable appliance size. In
the next section, we propose an approach to overcome this
consequence. This approach will let this article to consider
only the use of improved management interfaces.

4.1 Definition and use
To enable the exploitation of MVAs, appliance developers
should prepare their appliances with embedded manage-
ment interfaces. This article suggests that delivery opti-
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Algorithm 1 Validator for the management capabilities
Require: pσ ∈ P // package to be tested for manageability

1: vme ← initV M(pσ)
2: Prefs ← {p ∈ P ∶ (∃n,m ∶ (θ(p,n)/{p}) ⊂ θ(pσ,m))

∧(valid(p, initV M(p)) = true)
∧(valid(p, vme) = false)}

3: pref ← p ∈ Prefs ∶ (size(θ(p,0)) = min
px∈Prefs

size(θ(px,0)))
4: for all p ∈ θ(pref ,0) do
5: installPackage(vme, p)
6: executeConfig(vme, p)
7: end for
8: before← valid(pref , vme) = true
9: for all i ∈ it(pref) ∶ (type(i) = “file′′) do

10: removeF ile(vme, i)
11: end for
12: after ← valid(pref , vme) = true
13: return manageable(pσ)← before ∧ ¬after

mization systems could support developers by providing
appliance template packages. These templates should in-
clude management interfaces only so they could form the
base of developer created MVAs. Also, these templates
should be minimally sized so appliances based on them
will have negligible size increase. Templates that fulfill
these requirements will allow MVAs to mainly contain their
key functionality. Consequently, we call these templates as
“Minimal Manageable Virtual Appliances” (or MMVAs – pµ).

We define MMVAs as optimally sized self-contained
packages (see (2)) with the management interfaces as their
key functionality. Formally:

mmva(p) ∶= (manageable(p) = true)
∧ (optisize(p) = true) (4)

Where the function manageable ∶ P → {true, false} eval-
uates to true if the given package represents an MVA
and to false otherwise. This function allows delivery time
optimization techniques to determine if they can exploit
management capabilities. Next, we present an approach to
algorithmically assess this function.

This algorithm tries to use the improved management
interfaces on the appliance under evaluation. If the inter-
faces operate according to our previous definitions then the
algorithm qualifies the appliance as an MVA. Algorithm 1
presents our approach to test manageability and offers
an example resolution for the function manageable. The
following paragraphs detail the behavior of the algorithm.

First, our algorithm receives a virtual appliance to be
evaluated as an input in the form of a package with a
key functionality (pσ). Afterwards, in line 1, the algorithm
creates an evaluator VM (vme) for the received appliance.
Next, line 2 selects those packages that can be added in
the appliance of pσ . These packages mostly share their con-
struction path with pσ . The selected packages are restricted
to those that offer a key functionality not present in the
evaluator VM (ensured by two validity checks in line 2).
Adding one of the packages of Pref to the evaluator virtual
machine will result in a multi functional VM. Afterwards,
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Fig. 4. MMVA interfacing with delivery systems

in line 3, the algorithm picks a reference package (pref ) that
is the smallest among the selected packages. By doing so, it
minimizes the execution time of the rest of the algorithm.

After the preparation phase, between lines 4 and 7,
the algorithm installs and configures pref in the evaluator
VM (vme) using the assumed management interfaces of pσ .
If the management interfaces are available, then the vme

passes the validation in line 8. Next, the items of pref are
removed from vme to test its removeF ile operation (see
line 10). Consequently, vme should not pass the validation
in line 12. Finally, the algorithm accepts the management
capabilities of pσ, if the first validation of vme succeeds
and the last fails.

We have identified two major uses for this algorithm:
(i) to create MMVAs and (ii) to guarantee manageability.
First, to create MMVAs one can use a virtual appliance size
optimization technique [13], [14], [33]. These techniques
can minimize an MVA until it solely offers management
operations. The techniques should use Algorithm 1 to
ensure management functionalities remain intact during
the optimization process.

Second, future delivery time optimization techniques
could depend on MVAs. However, delivery time optimiza-
tion might imply the modification of the MVA. But, these
modifications should not cause the loss of management
capabilities. To guarantee manageability, these techniques
should evaluate their intended changes with our algorithm.

4.1.1 MMVAs in practice
The beginning of Section 4 has shown the possibility to
define multiple management interfaces. Similarly, multi-
ple kinds of minimal manageable virtual appliances are
also possible. E.g., a new MMVA is introduced for every
new package format to be supported by the “InstallPack-
age” function. For faster adoption, delivery optimization
systems should offer a common interface with the VMs
instantiated from the plethora of MMVAs.

Fig. 4 shows an example for this common interface
with the “ManageableVM”. This interface represents the
necessary management capabilities and behaves as the
intermediary between the delivery system and the various
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MMVAs. Consequently, the provider of a new MMVA must
implement this common interface exemplified by the “Con-
crete ManageableVM”. This implementation should translate
the requests of the delivery optimization system to a form
understood by the particular MMVA. In the particular
example of Fig. 4, calls to the “RemoveItem” operation result
in “RemoveFile” calls of the “Improved ManageableVM”. This
translation is especially important if the particular delivery
optimization system uses different kinds of items than files.

4.2 Creating Virtual Appliances Based on MMVAs
Before creating a MMVA based virtual appliance, devel-
opers design a self-contained package (p∗) for their hypo-
thetical initial appliance. This package should represent all
the items for the intended key functionality and its sup-
port environment without management interfaces. If the
package design is ready then developers can start creating
the MMVA based virtual appliance. We have identified
two basic scenarios for appliance creation. First, appliance
developers could extend an MMVA by utilizing it as the
foundation for the key functionality. Alternatively, they
could append the items of the MMVA to their hypothetical
appliance.

When several MMVAs are available, developers should
select the most suitable MMVA before appliance creation.
To determine their suitability, available MMVAs must be
investigated based on their functionality and contents.
Developers should collect the MMVAs that best support the
delivery optimization tasks to be applied. These MMVAs
are equivalent from the developer point of view. We refer
to the set of these MMVAs as PM . This set can be automat-
ically filtered by analyzing their items with the function:
suits ∶ ℘(I) → PM . To reduce the impact on the size of the
future appliance, developers should choose the MMVA that
shares the most items with the hypothetical appliance:

suits(I∗) ∶= pµ ∈ PM ∶ (∣it(pµ)⋂I∗∣ = max
px∈PM

∣it(px)⋂I∗∣)
(5)

Where I∗ depicts the items of the hypothetical initial VA.
Using the suits function the developers can now proceed
to appliance creation.

First, we analyze the MMVA extension scenario. Initially,
developers instantiate a virtual machine with the most
suitable MMVA (pµ). During instantiation, they ensure that
the new virtual machine can host both the key functionality
and the MMVA. E.g., they request a disk for the new VM
with a size bigger than size({p∗, pµ}). Afterwards, they
install the key functionality inside the newly created virtual
machine just as they would regularly do. Finally, they shut
down the VM and export its disk image as the initial virtual
appliance (pΩ).

In the second scenario (referred as “append”), developers
prepare their system – with the key functionality – as they
prefer. As a first step towards appliance creation, they
download and itemize the most suitable MMVA. Hence,
they receive the MMVA’s items (it(pµ)) that they append
to their prepared system and proceed with the initial
appliance creation: it(pΩ) ∶= it(p∗) ∪ it(pµ).
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Fig. 5. The Automated Virtual appliance creation Service

In both scenarios, appliance developers have to choose
an MMVA that remains functional alongside the key func-
tionality. To avoid unexpected behavior, the system should
not allow publishing appliances with broken management
capabilities (where manageable(pΩ) evaluates as false). In
such cases the developer must repeat the MMVA embed-
ding procedure.

5 INSIDE A DELIVERY OPTIMIZATION SYSTEM

In the following Sections, we demonstrate the effects of
Minimal Manageable Virtual appliances on delivery time
optimization systems. For the demonstration, we have se-
lected the Automated Virtual appliance creation Service (AVS –
[19]) that we adopted to utilize the MMVA concept. The
AVS service (see Fig. 5) offers basic virtual appliance
creation and management capabilities including virtual
appliance creation, virtual machine image transformation
and initial virtual appliance upload. In [19], the AVS ser-
vice was introduced with two major components: active
repositories and the optimization facility. Active repositories
modify their contents according to the demand patterns of
the stored packages to optimize their future delivery. These
repositories use the following operations on packages:
(i) decompose, (ii)merge, (iii) replicate and (iv) destruct.
The size optimization facility [33] uses active fault injec-
tion to remove virtual appliance contents until only the
key functionality and its minimal support environment
remains.

The following sections demonstrate, analyze and eval-
uate how the AVS service exploits minimal manageable
virtual appliances. Before utilizing the MMVA concept,
the AVS service has had two major bottlenecks: (i) the
extensive rebuilding time preceding the deployment of
decomposed appliances and (ii) the often lengthy virtual
appliance optimization time. With the help of MVAs the
AVS optimizes the use of active repositories by moving
the rebuilding of decomposed virtual appliances to the
execution host. Also, the AVS uses the management capa-
bilities of MVAs to significantly decrease virtual appliance
optimization time.
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Fig. 6. Deployment client using an MMVA for rebuilding

5.1 Effects on the rebuilding algorithms

As a consequence of package decomposition (p→ {p1, pΩ})
in active repositories, the AVS service incorporates tech-
niques for virtual appliance rebuilding to apply the pack-
age composition rule on the requested package (preq) until
the resulting package becomes self-contained (it is ready
to be instantiated as a virtual machine). These techniques
can be embedded in three different components of the
system: (a) in the active repository, (b) in the IaaS system and
(c) in the deployment client. These techniques are generally
composed of the following four basic stages: (i) identi-
fication of the possible construction paths – Θ(preq) –,
(ii) selection of the optimal construction path identifier –
optp ∶ P × ϕ → N –, (iii) downloading the required
packages and (iv) rebuilding of the virtual appliance on
the deployment host.

This article considers only deployment client based solu-
tions because others would require significant changes in
IaaS systems. When the client embeds the rebuilding algo-
rithm, first, it downloads all required packages to its host to
rebuild them. Then, it publishes the rebuilt appliance (preb)
in the repository with the highest bandwidth connection
towards the deployment host (hdpl). Afterwards, it requests
the deployment system to initiate a VM with the rebuilt
appliance. Finally, the IaaS system downloads the rebuilt
VA and instantiates the VM. The overhead of several extra
transfers would make this rebuilding algorithm ineffec-
tive. However, virtual appliances based on MMVAs (∃n <
∣Θ(preq)∣ ∶ (∃px ∈ θ(preq, n) ∶ (mmva(px) = true))) allow de-
ployment clients to instantiate them with a new approach.

5.1.1 The new rebuilding technique
As shown in Fig. 6, the deployment client requests the IaaS
system to initiate the MMVA in a virtual machine suitable
for the virtual appliance of preq (see step 1). In step 2,
the IaaS system downloads the MMVA from repository r2
and creates a virtual machine using the MMVA (vmµ ←
initVM(pµ)). In step 3, the deployment client uses the man-
agement interfaces on the vmµ to download the packages
according to the optimal construction path of the requested
package. In step 4, the MMVA installs and configures the re-
quested package as commanded by the deployment client.
Finally, the deployment client restarts the VM to activate
the rebuilt service. The final step ensures the application

of the newly added packages and configuration.

5.1.2 Identifying the optimal construction path
Steps 3-4 construct virtual appliances by selecting and com-
posing the construction path with the lowest rebuilding
time. To identify this construction path, first, we define
the individual localized package rebuilding time (treb ∶
P × R × ϕ → R) based on two basic components: (i) the
transfer time – ttr ∶ P × R × ϕ → R – of the package to
the location of rebuilding, and (ii) the package composition
time – tcomp ∶ P × ϕ → R – of the transferred package and
its dependencies. Formally:

ttr(p, r, h) ∶= {l(r, h) + size({p})/BW (r, h) if r ≠ h
0 otherwise

tcomp(p,h) ∶= size({p})/BW (h,h)
treb(p, r, h) ∶= ttr(p, r, h) + tcomp(p,h) (6)

Thus, we model transfer time so it mainly depends on the
network latency (l ∶ ϕ2 → R) and bandwidth (BW ∶ ϕ2 → R)
between the repository and the transfer target host. Also,
we model the composition time as making a local copy
of a package on the target host. The measure BW (h,h)
represents the local storage bandwidth measurement for
in-host bandwidth estimation.

The repository with the highest bandwidth is picked to
calculate the optimal rebuilding time (toir ∶ P ×ϕ → R):

toir(p,hdpl) ∶= min
r∈R

treb(p, r, hdpl) (7)

The optimal rebuilding time is considered from the view-
point of the deployment host (hdpl). Using the values
of the toir(p,hdpl) function, the total rebuilding time on
the deployment host is calculated with the following
method (Ttotreb ∶ P ×N ×R → R):

Ttotreb(p,n,hdpl) ∶= ∑
px∈θ(p,n)

toir(p,hdpl) (8)

Finally, on a given host, we define the optimal construction
path identifier of a package as follows:

optp(p,h) ∶= ν < ∣Θ(p)∣ ∶ (∀m < ∣Θ(p)∣ ∶

(Ttotreb(p, ν, h) ≤ Ttotreb(p,m,h))) (9)

Therefore optp(p,h) will point towards the construction
path with the smallest total rebuilding time: θ(p, ν).

5.1.3 Estimating connectivity for new virtual machines
The active repository and IaaS system based rebuilding
techniques store the connectivity history (previous latency
and bandwidth values between repositories, IaaS systems
and various hosts in the system). Those techniques exploit
historical values to determine the optimal construction
path. However, in case of deployment clients, this approach
cannot be followed, because the connectivity history is
unknown for new VMs.

Therefore, the deployment client estimates the connec-
tivity data using the management interfaces of the new
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Algorithm 2 Estimating connectivity details between the
repositories and the virtual machine of an MMVA
Require: timeout,0 < τ < 1, awaitedbw,mxtsize
Require: vm ∈ ϕ
Require: preq ∈ P
Require: pµ ∈ P ∶ (mmva(pµ) = true ∧ (∃n < ∣Θ(preq)∣ ∶ (pµ ∈

θ(preq, n)))) // An MMVA on which preq depends

1: for all r ∈ R ∶ (∃θ(preq, x) ∈ Θ(preq) ∶ (contents(r) ∩
θ(preq, x) ≠ ∅)) do

2: l(r, vm)←measure(l(r, vm), timeout)
3: BW (r, vm)← 0

4: end for
5: transfersize← size(θ(preq,0)) − size({pµ})
6: uptimeout← transfersize/awaitedbw
7: R′ ← R
8: bwmeasures← τ transfersize

mxtsize
9: for i = 0 to bwmeasures do

10: rml ← r ∈ R′ ∶ (l(r, vm) = min
ry∈R′

l(ry, vm))
11: R′ ← R′/rml

12: Pm ← {∀p ∈ contents(rml) ∶ (size({p}) <mxtsize)}
13: pdummy ← p ∈ Pm ∶ (size({p}) = max

px∈Pm

size({px}))
14: BW (rml, vm) ←

measure(BW (pdummy, rml), uptimeout)
15: end for

VM (see Algorithm 2). The behavior of the client is cus-
tomizable in the algorithm with the following predefined
constants: (i) the maximum acceptable latency (timeout),
(ii) the maximum amount of data used for bandwidth
measurements (expressed in the ratio of total appliance
size, later referred as pre-transfer measurement threshold – τ ),
(iii) the minimal bandwidth between the repository and
the virtual machine (awaitedbw) and finally, (iv) the max-
imum size of the package used for bandwidth estimation
(mxtsize).

In its first line, this algorithm identifies those repositories
that contain a package from one of the construction paths
of package preq . Then, the deployment client measures the
latencies of the repositories – l(r, vm), see line 2. After-
wards, in line 8, it estimates the number of bandwidth mea-
surements (bwmeasures) the algorithm can make before
reaching the pre-transfer measurement threshold. Then, in
lines 10-14, selects the repositories (rml ∈ (R/R′)) with the
lowest latencies to measure their bandwidth towards the
host of the MMVA. By taking these measurements, the
deployment client can estimate the optimal construction
path.

5.1.4 Comparison of the rebuilding techniques
Table 1 compares the previously detailed rebuilding sce-
narios from five points of view: (i) “Measurements” denote
if the system takes the measurements independently from
the rebuilding process; (ii) “No IaaS change” depicts the
approaches that do not require changes in the available
IaaS systems for their operation; similarly (iii) “No repos-
itory change” describes the solutions independent of the
repository implementation; (iv) “Arbitrary VAs” present

IaaS Active Deployment client
System Repository no MMVA MMVA

Measurements prior prior during during
No IaaS change –

√ √ √
No repo. change

√
–

√ √
Arbitrary VAs

√ √ √
–

Transfer size
(⋅size(θ(preq, n)) 1 1 +E 3 + τ 1 + τ +M

TABLE 1
Comparison of the introduced rebuilding scenarios

if an algorithm is not dependent on a specific type of
virtual appliance – e.g., they are not dependent on the
management capabilities; finally, (v) “Transfer size” repre-
sent the amount of data (expressed relative to appliance
size: reltsize ∶= tsize/size(θ(preq,0))) required to recon-
struct the VA on the execution host.

Analyzing the table reveals that the IaaS and active
repository based solutions can take measurements prior to
the actual rebuilding process and do not require extra
transfers to determine the latency and bandwidth values.
These systems can measure and monitor the connection
properties of previous transfers between the different hosts
of the system. As an opposite, deployment client based
solutions use extra transfers to estimate the connection
properties just before the rebuilding takes place. However,
Algorithm 2 limits these extra transfers using the pre-
transfer measurement threshold value (τ ).

The last row of Table 1 compares the total size of
transfers. The row unveils the superiority of the IaaS
based solution: appliances can be transferred directly to the
execution host. Active repositories are less efficient because
first they transfer external packages (E) to the repository
of the requested package then, after rebuilding, they send
the rebuilt appliance (preb) to the IaaS.

First, deployment clients estimate connection proper-
ties (as the pre-transfer measurement threshold – τ –
allows). Then they download all packages for rebuilding
on the client’s host (the first time the entire appliance is
transferred). Later, the rebuilt appliance is published (sec-
ond transfer from the client to a repository). Finally, the
IaaS is tasked with the instantiation of the published
VA, resulting the final transfer during deployment. Thus,
we calculate the required transfer size for deployment
clients (tsizeDC, reltsizeDC) as:

tsizeDC ∶=
measure³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

τ ⋅ size(θ(preq, n))+
rebuild³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ∑

p∈θ(preq ,n)

size({p})
+ size(θ(preq , n))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

publish

+ size(θ(preq , n))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
deploy

(10)

reltsizeDC ∶= τ + 3 (11)

In contrast, when deployment clients utilize MMVAs, first,
they instantiate the MMVA (the entire MMVA is trans-
ferred). Then they estimate connection properties using the
MMVAs management interfaces (see τ in the equation).
Finally, after the client evaluates the optimal construction
path, the MMVA is requested to install the packages along
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Algorithm 3 Simplified size optimization
Require: porig ∈ P // initial package
Require: r ∈ R ∶ (porig ∈ contents(r)) // repository

1: psubopt ← ∑
p∈θ(porig ,1)

p

2: popt ← ∅
3: while it(psubopt)/it(popt) ≠ ∅ do
4: i ∈ it(psubopt)/it(popt) // Arbitrary item selection
5: it(pcand)← it(psubopt)/{i}
6: contents(r)← contents(r) ∪ {pcand}
7: vm← initV M(pcand)
8: if (vm ∈ ϕ) ∧ (valid(porig, vm) = true) then
9: psubopt ← pcand

10: else
11: it(popt)← it(popt) ∪ {i}
12: end if
13: contents(r)← contents(r)/{pcand}
14: end while
15: return optimizebase(porig)← popt // optimized package

the path – θ(preq , optp(preq, vm)). The size of the required
transfers (tsizeVM , reltsizeVM ) by the MMVA based re-
building solution is defined as:

tsizeVM ∶=
init³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

size({pµ})+
measure³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

τ ⋅ size(θ(preq, n))+ size(θ(preq , n)) − ∑
i∈(it(pµ)∩it(p∗))

itsize(i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reconstruct

(12)

reltsizeVM ∶= 1 + τ +M
where:

M ∶= size({pµ}) −∑i∈(it(pµ)∩it(p∗))
itsize(i)

size(θ(preq, n))
(13)

Where M embodies the size of extra items added to the
hypothetical initial virtual appliance (p∗) to offer manage-
ment capabilities (see Section 4.2). If the MMVA builds on
items only from p∗ then M turns 0.

5.2 MMVA and the Optimization facility

The AVS service offers a size optimization facility that
implements the optimize ∶ P → P function. This function
processes the initial virtual appliance (porig ∈ P ) and re-
moves those items from its self-contained package that are
not necessary for its key functionality. The result is an min-
imally sized self-contained package (popt). The properties
and behavior of the optimization facility were detailed in
[33]. This section focuses only on those parts that highlight
the advantages and validate the use of MMVAs.

5.2.1 The simplified algorithm
Algorithm 3 describes a simplified version of the opti-
mization facility. This algorithm focuses on the repository
and virtual machine handling operations, because these are
the areas that will be changed after utilizing the MMVA
functionality in the appliances. The algorithm starts with
the creation of the candidate package (pcand, see lines 4–
5) by removing an arbitrary (but not yet evaluated) item
from the suboptimal package. Then, to allow the creation
of a VM based on the candidate package, it is uploaded

to the repository of the target IaaS system (see line 6).
Next, in line 7, the candidate appliance is instantiated in
a virtual machine on the target IaaS system. In case of
successful instantiation, a valid host (vm ∈ ϕ) is returned
by initVM . This new virtual machine is evaluated with
the validator algorithm of the initial appliance (see line 8).
On successful validation, we consider the candidate as the
new suboptimal package (psubopt in line 9). Otherwise, item
i must be part of the optimal package (see line 11). Finally,
the algorithm reduces storage costs by cleaning up the
temporarily published candidate package in line 13.

5.2.2 The improved algorithm
The analysis of Algorithm 3 reveals that its most expensive
operations are (i) the publication of the candidate package
– due to implicit transfer and storage costs – and (ii) the
creation of the suboptimal virtual machine – due to the
involved time consuming steps. Algorithm 3 publishes and
creates a VM for each item in the initial appliance. To
improve the performance of the optimization facility, we
introduce Algorithm 4 that is specifically aimed at reducing
the average number of VM creations and package publica-
tions. The two key elements of the advanced algorithm are:
(i) virtual machine reuse and (ii) intermediate appliances.
First, the algorithm reuses every VM, unless the candidate
appliance inside is dysfunctional. This is achieved by using
the management interfaces to create the candidate VA
inside a VM. Second, only successfully evaluated can-
didate appliances are published (as intermediate VAs). To
further reduce publication costs, the algorithm uses an
intermediate appliance upload threshold ratio (ut – see
line 11 in Algorithm 4) to publish only relevant candidate
appliances: those that are significantly smaller than the
latest intermediate appliance.

A detailed look at Algorithm 4 reveals that it keeps
a virtual machine running with the actual suboptimal
VA (see lines 5 and 17). Most IaaS systems do not allow VM
creation from unpublished appliances (e.g., the suboptimal
appliance). Thus, the algorithm uses the intermediate VA
for the basis of the current VM. During the runtime of
the algorithm, the suboptimal and intermediate appliances
are rarely identical. Line 19 synchronizes the contents of
the intermediate VA by removing those items that are not
present in the suboptimal VA.

The MMVA enabled algorithm simplifies the way to
reach the VM of the candidate VA: it utilizes the removeFile
operation of current VM. As a result, the algorithm creates
the candidate package only inside the current VM (see
line 8). The now prepared VM is validated in line 9. Based
on the validation results, the algorithm either creates a new
suboptimal package (see line 10) or initiates a new VM in-
stead of the unsuccessfully validated one (see line 17). The
technique for VM creation was already discussed, thus we
can now focus on the handling of the suboptimal package.
When creating a new suboptimal package, the algorithm
optionally updates the repository (see lines 11–14). First,
the update procedure removes the previous intermediate
appliance, then it publishes the current suboptimal package
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Algorithm 4 MMVA enabled size optimization
Require: porig ∈ P ∶ (manageable(porig) = true)
Require: r ∈ R ∶ (porig ∈ contents(r))
Require: ut ∈ R // upload threshold

1: psubopt ← ∑
p∈θ(porig ,1)

p

2: contents(r)← contents(r) ∪ {psubopt}
3: popt ← ∅
4: pim ← psubopt
5: vm← initV M(pim)
6: while it(psubopt)/it(popt) ≠ ∅ do
7: i ∈ it(psubopt)/it(popt) // Arbitrary item selection
8: removeF ile(vm, i)
9: if valid(porig, vm) = true then

10: it(psubopt)← it(psubopt)/{i}
11: if ut < size({pim})

size({psubopt})
then

12: contents(r)← contents(r)/{pim}
13: pim ← psubopt
14: contents(r)← contents(r) ∪ {pim}
15: end if
16: else
17: vm← initV M(pim)
18: for all ix ∈ it(psubopt)/it(pim) do
19: removeF ile(vm, ix)
20: end for
21: it(popt)← it(popt) ∪ {i}
22: end if
23: end while
24: return optimizemmva(porig)← popt

as the new intermediate virtual appliance (pim). If the
validation fails in line 9, then intermediate appliances show
their second advantage: compared to the initial appliance
used by the simplified algorithm, intermediate VAs are
instantiated considerably faster because of their size.

5.2.3 Comparison of the two algorithms
Section 5.2.2 identified the two main factors of potential
performance degradation in Algorithm 3. To show the
intrinsic differences between the simplified and the im-
proved algorithms, we analyze their behavior during an
optimization operation focusing on the two main factors
only. First, we provide an estimate of the number of virtual
machine creations during the optimization. Then, we give
an upper bound for the total transferred data towards the
repositories during the same period.

First, the simplified algorithm creates a virtual machine
for all items in the initial appliance (∣it(porig ∣). In contrast,
the MMVA enabled algorithm reduces the number of VM
creations to the number of items impossible to remove from
the appliance (∣it(popt∣). Consequently, the MMVA enabled
algorithm always performs better as ∣it(popt)∣ ≤ ∣it(porig)∣.

Next, we compare the cost (in terms of data volume
transferred) of package publications in the repository. In
order to support the widest range of IaaS systems, the sim-
plified algorithm publishes a candidate package for every
item in the appliance (see line 7 in Algorithm 3). Thus,
the simplified algorithm transfers the following amount
of data: TotTransferS = size({porig}) ⋅ ∣it(porig)∣). In com-
parison, the improved algorithm decreases the transfers
towards the repository because it publishes appliances

TABLE 2
Properties of the experimental appliances

Compressed Size Files Deployment Time
MMVA (pµ) 6.6 MiB 197 4.65 seconds

Initial VA (pAp) 165 MiB 14050 36.4 seconds
Apache (pσ) 13 MiB 236 7.78 seconds

only if the following conditions are met: (i) the current
appliance offers the key functionality – see line 9 of Algo-
rithm 4 – and (ii) there is a significant reduction in virtual
machine instantiation time – see line 14 of Algorithm 4. As
a result, the transfer requirements of the improved algo-
rithm decrease significantly: TotTransferI < size({porig}) ⋅
∣it(porig)/it(popt)∣.

6 IMPLEMENTATION AND RESULTS

We have implemented the MMVA extensions on the AVS
service. This extended service could utilize multiple IaaS
systems. We have conducted a series of experiments to
analyze the effects of MMVAs on the AVS.

6.1 Implementation and experimental setup
First, we created a simple MVA based on a small De-
bian Squeeze installation extended with ssh and rsync.
Through ssh, we allow running shell scripts generated by
the AVS service or the deployment client. Rsync is used to
provide reliable file transfer and removal operations over
ssh. The installPackage operation of the improved manage-
ment interface (see Section 4) is accomplished by uploading
a package to the virtual machine of the MVA then running
a pre-configuration script that parses package contents and
places them to their designated locations. To create an
MMVA, we minimized the size of our simple MVA with
AVS’s optimization facility. This size optimized MVA (pµ)
is detailed in Table 2.

Next, we have selected a widely used application (the
Apache http server) as the key functionality of our exper-
imental virtual appliance. The Apache http server is the
base for several widely used applications thus, the effects
of our system on its delivery also gives a solid estimation
for other applications. To prepare the Apache appliance,
we have extended our simple MVA (similarly to the MMVA
extension scenario in Section 4.2). The added apache http
server was configured to only offer static webpages to
its clients. The just created Apache appliance (pAp) shares
common roots with our MMVA (pµ) because they are
both based on our simple MVA. Consequently, the new
appliance can be used to demonstrate the effects of the
embedded MMVAs on the AVS (thus generally on delivery
time optimization systems).

As a last step to prepare the experiments, we have
deployed three IaaS systems (namely Nimbus, Eucalyptus
and a proprietary solution) on the infrastructure of the Uni-
versity of Westminster. These IaaS systems did not coexist.
We have executed an initial batch of experiments using
each IaaS system. These experiments were all focusing
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on the way the AVS behaved with and without utilizing
the management capability embedded in our Apache ap-
pliance. The behavior of the AVS was independent from
the actual IaaS system that managed the infrastructure of
the university. Therefore, we have selected an IaaS system
that was used in the later evaluations of the extended
AVS service. The selected IaaS system was a proprietary
solution – similar to Amazon EC2 – that was designed
to resemble the properties and behavior of larger scale
IaaS systems. Thus, it ensures the applicability of our
conclusions on large – even commercial – IaaS systems.
This proprietary IaaS used a round-robin VM placement
algorithm for virtual machine scheduling and provided
active repositories (of the AVS system) on all hosts. This
repository installation ensured a two level hierarchy: local
and remote with package access latencies of 22ms and
53ms respectively). The underlying infrastructure of the
university consists of eight hosts each configured with 4
CPUs, 4 GiBs of RAM and 80 GiBs of HDD (40MB/s write
throughput). All hosts were interconnected with gigabit
Ethernet.

6.2 Experimental results
First, we investigated how MMVAs influence the behavior
of the optimization facility. We ran the size optimization
of our Apache appliance (pσ = optimize(pAp)) 20 times –
10 with and 10 without using the management capabilities.
The properties of the optimized Apache appliance are sum-
marized in Table 2 (these properties are independent from
the use of the management capabilities). We monitored the
resource (e.g., network and CPU) usage costs throughout
each optimization run. We also measured the deployment
time of the suboptimal appliances created throughout the
optimization runs. Using these measurements, we calcu-
lated the deployment time advantage of each suboptimal
appliance compared to the original one. Using this time
advantage value, we estimated the minimum number of
future deployments (Ndep) necessary to overcome the op-
timization time spent for creating a particular suboptimal
appliance. This estimate can be used as a guide for ap-
pliance developers when they determine on further appli-
ance optimization (as mentioned in Section 3.1). Finally,
we calculated the average of these estimates for every
optimization run.

These averaged estimates are presented in Fig. 7. The
results show that by reusing virtual machines, the MMVA
based Algorithm significantly reduces the optimization
time (from 2 hours 3 minutes to 1 hours 22 minutes – a
33% decrease) and it also reduces the initial optimization
cost (90%-25% decrease for more than half of the optimiza-
tion time). When we utilize management interfaces, the
overall optimization cost is notably cut. With the simplified
algorithm, 343 deployments were necessary to regain the
optimization time. Whereas the MMVA based optimiza-
tion required only 223 deployments to regain costs (35%
decrease in overall cost).

As several IaaS providers charge for consumed band-
width, we also measured the data transfers caused by

Fig. 7. Number of future deployments required

TABLE 3
Summary of transferred data during size optimization

Transferred Used BW MMVA effect
Original 832.6 GiB 157.1 MB/s Baseline

MMVA only 114.2 GiB 21.6 MB/s 7.3x
Int. VAs only 143.4 GiB 27.1 MB/s Baseline

MMVA + Int. VAs 36.9 GiB 7 MB/s 3.9x

our algorithms. On each optimization run, whenever the
MMVA based algorithm would create an intermediate
virtual appliance, we measured the total data transfers
since the last evaluation. The results are presented in Fig. 8
and summarized in Table 3. The results show that the
MMVA based algorithm excels independently from the use
of intermediate appliance creation (by using an upload
threshold of 1.1). The MMVA based approach reduced
the necessary transfers for the optimization operation by
over 85% compared to the original algorithm. To show
the potential of MMVAs, we also added intermediate VA
creation to the simplified algorithm. The results of this
solution are presented in the third line of the Table and
in Fig. 8b as the baseline. Compared to this solution, the
MMVA based approach still offers almost 75% reduction
in transfers.

Afterwards, we prepared an experiment for the evalua-
tion of the new rebuilding technique. First, our MMVA (pµ)
was added to all repositories: ∀r ∈ R ∶ (pµ ∈ contents(r)).
Then, the optimized Apache appliance (pσ) was pub-
lished in a single dedicated repository: ∃rx ∈ R ∶ (pσ ∈
contents(rx) ∧ (∀r ∈ (R/{rx}) ∶ (pσ ∉ contents(r))). That

Fig. 9. Comparing the delivery of the Apache appliance
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(a) Without creating intermediate appliances: ut =∞ (b) While creating intermediate appliances: ut = 1.1
Fig. 8. Transferred data for VM instantiations during size optimization

repository automatically decomposed the Apache appli-
ance and identified the 39 new files that are not common
with the our MMVA: pσ → {pµ, p′σ}. After decomposition,
the repository held the following packages: contents(rx) =
{pµ, pσ , p′σ}. The decomposition defined the new Apache
package with the following properties: dep(p′σ) = {pµ} and
size(p′σ) = 6.4MiB. This new Apache package directly
represents the key functionality of the initial pσ .

After these preparations, we deployed p′σ 100 times on a
host that did not store p′σ so the system needed to acquire
the package with the key functionality from repository rx.
During the deployments we measured Apache webserver’s
VM instantiation time (composed of the instnatiation time
of our MMVA and the rebuilding time of the Apache appli-
ance). For the MMVA based rebuilding (see Section 5.1), we
used the pre-transfer measurement threshold value of τ = 0.1.
The second row of Fig. 9 shows the average measurement
results and compares them to the scenario when the IaaS
system downloads and instantiates the entire optimized
Apache appliance from the remote rx. The deployment
time decreased by 14% that also positively affects the
optimization by further reducing the number of future
deployments necessary to regain the optimization cost. In
the current case it reached 216 (a 37% reduction in costs
compared to the simplified approach).

7 CONCLUSIONS

This article analyzed and identified the adoptability issue
of current virtual appliance delivery optimization systems.
They are either dependent on changes of the current
IaaS systems or they require change in virtual appliance
repositories. To overcome this problem we introduced the
concept of the minimal manageable virtual appliance. This ap-
pliance can be used as a template by appliance developers
to construct their own appliances with embedded man-
agement functionalities required for delivery optimization
systems. Then, we offer a methodology to embed MMVAs
in custom appliances and analyse the impact of MMVAs
on delivery systems.

The article evaluates the use of MMVAs in the Auto-
mated Virtual appliance creation Service (AVS). Through-

out the evaluation, we discuss the new ways the AVS can
interact with virtual appliances and with their instances.
The article reveals and analyzes how the MMVA based so-
lutions reduce the impact of delivery optimization systems
(like the AVS) on the current IaaS systems and repositories.
Finally, the measurements confirm the presumed effects on
the experimental IaaS system: the MMVA enabled delivery
optimization system does not need any changes in IaaS
systems or in repositories but maintains the improved
delivery times.

We have identified several future research goals. First, a
developer friendly toolset needs to be designed for man-
ageable appliance creation utilizing the basic methodology
for embedding MMVAs. This toolset should also consider
scenarios that allow developers to debug the multi phased
virtual appliance instantiation process. Next, the current
testbed was set up for short running experiments, however
the use of MMVAs could also affect delivery costs on the
long term. Research needs to focus on the long term effects
of using MMVAs compared to non-MMVA enabled deliv-
ery systems. Rebuilding and size optimization represent
just the initial use cases where the application of MMVAs
are beneficial. Further investigations are needed to identify
possible new use cases (e.g., focusing on maintenance
cost reduction options or new VM image transformation
approaches). Also, to improve the performance of instan-
tiating multi-package virtual appliances, new more com-
plex kinds of MMVAs and new algorithms for measuring
connectivity should be investigated. Finally, for rebuilding
scenarios where initial virtual machine startup is priorized,
we are also aiming at combining the benefits of MMVAs
with novel copy-on-read/write methods.
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