
Kecskemeti, G, Terstyanszky, G and Kacsuk, P

 Virtual appliance size optimization with active fault injection

http://researchonline.ljmu.ac.uk/id/eprint/3980/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Kecskemeti, G, Terstyanszky, G and Kacsuk, P (2011) Virtual appliance size 
optimization with active fault injection. IEEE Transactions on Parallel and 
Distributed Systems, 23 (10). pp. 1983-1995. ISSN 1045-9219 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Virtual Appliance Size Optimization
with Active Fault Injection

Gabor Kecskemeti, Gabor Terstyanszky and Peter Kacsuk

Abstract—Virtual appliances store the required information to instantiate a functional virtual machine on Infrastructure as a
Service (IaaS) cloud systems. Large appliance size obstructs IaaS systems to deliver dynamic and scalable infrastructures according to
their promise. To overcome this issue, this article offers a novel technique for virtual appliance developers to publish appliances for the
dynamic environments of IaaS systems. Our solution achieves faster virtual machine instantiation by reducing the appliance size while
maintaining its key functionality. The new virtual appliance optimization algorithm identifies the removable parts of the appliance. Then,
it applies active fault injection to remove the identified parts. Afterwards, our solution assesses the functionality of the reduced virtual
appliance by applying the – appliance developer provided – validation algorithms. We also introduce a technique to parallelize the fault
injection and validation phases of the algorithm. Finally, the prototype implementation of the algorithm is discussed to demonstrate
the efficiency of the proposed algorithm through the optimization of two well-known virtual appliances. Results show that the algorithm
significantly decreased virtual machine instantiation time and increased dynamism in IaaS systems.

Index Terms—Virtual appliance, Optimization, Cloud Computing, IaaS

�

1 INTRODUCTION

INFRASTRUCTURE as a service (IaaS – [1], [2]) cloud
systems promise to provide on demand and scalable

infrastructures. The scalability of this new kind of infras-
tructure is provided through virtualization [3]. Even the
most basic IaaS systems offer service interfaces to create
and manage virtual machines (VMs) hosted by various
virtual machine monitors [4], [5], [6]. From the earliest
commercial IaaS systems – like Amazon EC2 – these
systems are marketed as an approach to dynamically
extend service infrastructures. Users prepare virtual ap-
pliances (VAs – [7]) hosting the dynamic components of
their service-based applications. These appliances store
the necessary information to instantiate a functional vir-
tual machine (e.g. an operating system, the dependencies
and the code of the dynamic component itself).

One of the most frequently referred scenarios of com-
mercial IaaS providers offers a solution to handle the
peak demand periods of service-based applications [8],
[9], [10]. The highly dynamic [11], [12] nature of these
applications require IaaS users to instantiate their vir-
tual appliances on demand within a minimal amount
of time. However, the virtual appliance instantiation
time is mainly dependent on the size of the appliance.
Therefore, appliance developers should create virtual

• G. Kecskemeti and P. Kacsuk are with the Laboratory of Parallel and Dis-
tributed Systems at Computer and Automation Institute of the Hungarian
Academy of Sciences, Kende u. 13-17, Budapest 1111, Hungary
E-mail: {kecskemeti,kacsuk}@sztaki.hu

• G. Terstyanszky is with the Centre of Parallel Computing at University
of Westminster, 309 Regent Street, London W1B 2UW, United Kingdom
E-mail: G.Z.Terstyanszky@westminster.ac.uk

The research leading to these results has received funding from the European
Community‘s Seventh Framework Programme FP7/2007-2013 under grant
agreement 215483 (S-Cube).

appliances with the smallest size while they still main-
tain the key functionality of the appliance. The manual
creation of such appliances requires expertise and time
not available for most IaaS users. Consequently, highly
dynamic service environments require techniques for
creating virtual appliances.

Already existing automated appliance creation tech-
niques (e.g. [13]) utilize the dependencies between the
various software components of the future virtual appli-
ance. These techniques require the appliance developer
to define the dependencies and requirements of its dy-
namic components before creating the appliance itself.
Then, they construct the virtual appliance according to
the previous definitions. As a result, these techniques
rely on the virtual appliance developer’s skills of prepar-
ing optimally sized appliances for dynamic service en-
vironments. This research reduces the demands on the
appliance developers by requiring them to only define
the intended usage scenarios (referred as the key func-
tionality) of dynamic components.

Active fault injection is a well-discussed topic for
determining the fault tolerance of various software sys-
tems [14], [15], [16], [17]. This article introduces the
concept of active fault injection to a new domain: virtual
appliance size minimization. We propose to inject faults
to virtual appliances by removing their parts while they
are executed in virtual machines. The article offers a
fault injection technique that is independent from the
granularity of the virtual appliance parts (e.g. they can
be software packages or files). This technique first identi-
fies the smallest individually handled parts of the virtual
appliance. Afterwards, the technique identifies the parts
more favorable for removal. After their removal, the re-
duced virtual appliance is validated against the intended
usage scenarios specified by the appliance developer.

Digital Object Indentifier 10.1109/TPDS.2011.309 1045-9219/11/$26.00 ©  2011 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Finally, the article discusses an approach to parallelize
the removal and validation tasks of our technique.

This new technique is based on the assumption that
the appliance developer intends to create single purpose
virtual appliances. These appliances have a well defined
and single functionality (e.g. provide a specific website).
We assume that the appliance developer is capable to
describe the purpose of the appliance by providing val-
idation algorithms for the key functionality. In contrast,
generic appliances are designed to be customizable by
third parties (e.g. LAMP – Linux, Apache, MySQL, php –
appliances that allow their arbitrary customization after
deployment). As the developers cannot clearly specify
the later use of their appliances they cannot define the
validation algorithms. Consequently, the approach is not
applicable to generic virtual appliances but only to a
subclass of virtual appliances paired with the definition
of their validator algorithms. The research results are uti-
lized as part of an Automated Virtual appliance creation
Service that was introduced and discussed in [18], [19].

This article discusses our implementation that is in-
stantly applicable to IaaS systems similar to Amazon
Elastic Compute Cloud (EC2 – [20]). Then, we evaluate
the proposed technique through experiments executed
on a Eucalyptus [21] based testbed. The experiments
first present the significant virtual appliance size reduc-
tion (e.g. more than 90%) achievable with our technique.
Second, the article reveals how the optimization time
is reduced by refining the proposed technique reaching
less than 2-hour optimization time with a 32 CPU based
cluster on our test VAs (Apache and SSH).

This paper is organized as follows. Section 2 provides
an overview about the related works. Then, Section 3
highlights the architecture that is proposed to include
the optimization approach described in the article. Later,
in Section 4, we discuss the basics of the optimization
algorithm. Then, Section 5 reveals the details and the
decisions we made for the first implementation. Finally,
in Section 6 we measure the effectiveness of the imple-
mented optimization algorithm.

2 RELATED WORKS

Virtual appliance distribution can be optimized by either
optimizing the delivery path of the appliance (e.g. by
caching or replicating some of the appliance contents
for faster, multi-sourced delivery [19], [22], [23]) or by
reducing its size. Size reduction results immediate effects
on appliance instantiation time even without delivery
path changes. This article is focused on the second
approach, therefore this related works section is only
focusing on the appliance size optimization approaches.

The discussed approaches can be classified based on
their input requirements. The pre-optimizing approach re-
quires the appliance developer to provide the application
and its known dependencies that should be offered by
the appliance. In contrast, the post-optimizing approach
uses already existing but non-optimized appliances.

With pre-optimizing algorithms the dependencies of the
user applications are prepared as reusable virtual appli-
ance components. The appliance developers select from
these components so that they can form the base of the
user application. These algorithms then form the virtual
appliance with the selected reusable components and the
application itself. RBuilder [13] applies this algorithm
with an extension that supports creating custom virtual
appliances by building from the source code.

The extreme case of pre-optimizing algorithms is the
minimalist pre-optimizing approach that offers opti-
mized virtual appliances with known software environ-
ments. To support this approach several OS and reusable
application vendors offer the minimalist version of their
product packaged together with their just-enough op-
erating system (JeOS – [24]) in virtual appliances [25],
[26], [27], [28]. For example, there are several virtual
appliances available prepared to host a simple LAMP
project. However, this approach requires the appliance
developer to manually install its application to a suitable
optimized virtual appliance. The advantage of these
algorithms is the fast creation of the appliances but at
the price that the developer has to trust the optimization
attempt of the used virtual appliance’s vendor. If the
appliance is not well optimized, or the vendor offers a
generic appliance for all uses then the descendant virtual
appliances cannot be optimal without further efforts.

Other pre-optimizing algorithms determine depen-
dencies within the virtual appliance by using its source
code. Software clone [29] and dependency [30] detec-
tion techniques identify all of the required underlying
software components by analyzing the sources. Once
the dependencies are detected these algorithms leave
only those components that are required for serving the
key functionality of the virtual appliance. Optimizing
a virtual appliance with these techniques require the
source code of all the software encapsulated within the
appliance. Thus they also need to analyze the underlying
systems (e.g. the operating system) of the application.
Unfortunately this last requirement renders these tech-
niques unfeasible in most cases.

The most widely used post-optimizing algorithms are
optimizing the free space in the disk images of the
virtual appliance. If virtual appliances are created from
previously used software systems then their disk images
contain their available free space fragmented throughout
the entire image. Before publication, virtual appliances
are usually compressed for easier transfer. However, the
fragmented free space is harder to compress. Therefore,
these post optimizing algorithms analyze the available
free space and first they fill them with easily compress-
ible data. Next, they offer their users the option to de-
fragment the disk images. As a result, these disk images
can be shrunk so they are not only more compressible
but they do not even store the free space in the disk
image if they are not required. The advantage of this
algorithm, that it can operate on any virtual appliance
so long it can understand and use its file system. This

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



KECSKEMETI ET AL.: VIRTUAL APPLIANCE SIZE OPTIMIZATION WITH ACTIVE FAULT INJECTION 3

technique is utilized by [31].
Our investigations show that the field of post-

optimizing algorithms is less developed, even though
they could bring remedy for the vast amounts of already
existing virtual appliances that are currently unusable
in dynamic service environments. Consequently, the size
optimization technique discussed in this article can also
be classified as a post-optimizing algorithm.

3 THE AUTOMATIC SERVICE DEPLOYMENT
ARCHITECTURE

In our previous work [18] we introduced the Automatic
Service Deployment (ASD) architecture as seen in Fig. 1.
The architecture provides a framework to our recent and
future works. This section gives a short overview of the
architecture and contextualizes current research results.

Fig. 1 presents the service deployment architecture
that supports various tasks of the virtual appliance-
based deployment and also depicts several issues that
the current solutions do not aim at. First, the architecture
offers a solution for initial virtual appliance creation.
Virtual appliances are acquired and managed by the
Automated Virtual appliance creation Service [19]. In the
article only the following virtual appliance preparation
tasks were solved: (i) extracting a virtual appliance from
a running system, (ii) transformation of the appliance
between various virtual machine image formats, and
(iii) uploading the virtual appliance to a repository.
Through the functionality of the optimization facility, this
article extends these tasks with the size optimization of
the previously extracted virtual appliances.

Second, the architecture also supports developers to
create appliances more suitable for highly dynamic en-
vironments via minimal manageable virtual appliances [32]
that they can use as the base of their appliance. This ap-
pliance provides management interfaces offering package
installation, configuration and removal operations.

Third, the architecture defines active repositories with
the following automatic entry management functional-
ity: (i) appliance decomposition, (ii) package merging,
(iii) destruction and (iv) partial replication. Therefore,

Automatic Service Deployment (ASD)

IaaS
Systems

Scheduler 
Assistant 
Service
(SAS)

Automatic Virtual appliance 
creation Service (AVS)

Virtual Appliance 
Optimization 

Facility

Manageable 
Virtual 

Appliances

Active 
Repositories

Fig. 1. Appliance optimization within ASD

these repositories have the ability to identify common
virtual appliance parts and optimize their storage.

Finally, the architecture also offers decision-making
support for schedulers and other high level entities
that make deployment related decisions in a dynamic
service ecosystem. Service deployment can be initiated
by higher-level components (such as service schedulers
or service composition engines), the Scheduler Assistance
Service (SAS) aids their deployment decisions by offering
interfaces to identify deployable services and rank sites
that can host them. The research issues and design
considerations of the SAS are discussed in [33].

4 VIRTUAL APPLIANCE OPTIMIZATION PRIN-
CIPLES

As the first step towards the optimization algorithm,
this section identifies the time reduction options for
virtual appliance instantiation. We have defined the
instantiation as a composite task of three major steps:
(i) download the appliance, (ii) initialize the VM and
start up its operating system and finally, (iii) activate
the service in the VM. Fig. 10 presents the average
execution time of these three tasks for two typical virtual
appliances described in Section 6.3.

It can be observed in Fig. 10 that instantiation time
mainly depends on the download time of the virtual
appliance. This time can be optimized in two ways:
(i) storing the virtual appliance in a repository with
the smallest latency and largest transfer rate towards its
executor host and (ii) minimizing the size of the virtual
appliance while still maintaining its key functionality.
The first option is only viable with IaaS systems that
support multiple repositories (this is not the case with
Amazon EC2 [20] or Eucalyptus [21]), therefore to sup-
port wider range of IaaS systems we only focus on the
size minimization in this article. Throughout this article,
we did not make any assumptions on the IaaS behavior;
therefore, this approach is applicable to any IaaS system.

4.1 The Virtual Appliance Optimization Facility

Before detailing the features of our size optimization
technique, we define the constraints of the optimization
facility and system. The optimization facility incorporates
the algorithms described in this article. It resides on
a single host of the optimization system (ϕ). The opti-
mization system incorporates multiple hosts (hx ∈ ϕ)
within a single administrative domain. These hosts also
implement an IaaS system offering the required virtual
machine management functionality for the facility.

The main task of the optimization facility is to solve
the optimize : P × C → P ′ function. Where the set
P refers to all virtual appliances in the optimization
system, and C defines the possible completion conditions
that can limit the optimization according to the appliance
developer. At the end of the optimization operation, the
p′σ := optimize(pσ, c) function provides a smaller sized

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

version (p′σ) of the original virtual appliance (pσ) and
publish it among the other virtual appliances: P ′ :=
P ∪{p′σ}. If the optimization function receives an empty
completion condition set (c = ∅) then the optimization is
executed until p′σ becomes optimally sized – see Eq. (4).

Active fault injection uses fault injection techniques that
generate hardware and software level faults to test the
fault tolerant behavior of software. However, for virtual
appliance optimization, we do not test for fault tolerant
behavior. Instead, fault injection identifies those parts of
the pσ that are not needed for its key functionality.

First, we define the faults that can be injected in
order to achieve size reduction. Having a virtualized
environment enables the simulation of both software and
hardware level faults. Software level faults could arise
on the file system – e.g. simulating the corruption of
the file system by removing a file or some of its parts.
Hardware faults could occur in the memory or the disk
subsystem. Simulating hardware faults need changes in
virtual machine monitors. This requirement seriously
reduces the adoptability of an optimization technique;
thus, this article only considers software fault injection.

4.2 Appliance Contents Removal

This section describes the basic algorithm of the opti-
mization procedure that is split into four tasks as seen
in Fig. 2. The first task is the selection of the virtual ap-
pliance’s removable parts. The selection task is the most
complex and critical task of the optimization approach.
This task analyzes the package (pσ ∈ P ) of the virtual
appliance and proposes how to partition the appliance.

The selection task also assigns a weight value to
appliance parts. The highest weighted parts are tem-
porarily erased from the appliance by the removal task.
The third task is the validation of the modified appliance
using validation algorithms provided by the appliance
developer. This task decides whether the erased items
should be permanently removed from the VA. Later, we
refer to the triplet of selection, removal and validation as
the optimization iteration (see the bold arrows in Fig. 2).

The last task of the algorithm decides whether the
system should initiate further optimization iterations.
The decision is based on the appliance developer pro-
vided completion conditions. If the conditions are met the
algorithm publishes the optimized appliance. Otherwise,
the algorithm proceeds with the next iteration. These
four tasks are further outlined in the next sub-sections.

Repository

Original VA Reduced
VA

Selection Removal Validation

[Conditions not met]

<<decisionInput>>:

Check 
completion 
conditions

Fig. 2. Basic appliance optimization technique

4.2.1 Selection
As it was discussed previously, the main task of the
selection is to identify parts to be removed. From the
selection point of view the granularity of the parts in the
VA is not important. However, the selection algorithm
should use the same appliance part granularity that the
removal task uses. Virtual appliance parts can range
from single bytes, sectors, file contents, files to even
directories or software packages.

The identification of the different parts and their meta-
data is called itemization. Items (i ∈ I) are the internal rep-
resentation of the virtual appliance parts with metadata.
Different itemization techniques use different kinds of
virtual appliance parts as items. The set of I represents
all possible items created with a particular itemization
technique. Items are the smallest entities handled by the
selection and removal algorithms. The entire item set of
an appliance is represented with the function it : P → I .

If multiple itemization techniques are available, then
the optimization is executed in several phases. In the first
phase, the facility removes and validates the item set of
the current itemization technique. If there are no more
items to validate and the completion conditions allow,
the facility initiates a new phase using an itemization
technique with smaller granularity.

For example, if the first applied itemization technique
uses software package managers (e.g. the debian pack-
age manager [34] – dpkg), then the facility first removes
all software packages not related to the key function-
ality of the appliance. The facility switches to smaller
granularity when it cannot purge more packages from
the VA with the package manager. Consequently, during
later executed phases, the facility could even erase the
software package manager itself if it is not required for
the key functionality of the appliance.

The second subtask of selection categorizes the var-
ious items according to the following list: (i) the core
items – ic –, (ii) the volatile items – iv – and finally,
(iii) the fuzzy items – if . Those items that the selection
algorithm does not have any prior knowledge about
are called volatile and are primarily exposed to active
fault injection by the optimization facility. In contrast to
volatile items, the core and fuzzy items are identified
by the past knowledge of the selection task. The core
items cannot be removed from an appliance under any
circumstances (e.g. the init application in SystemV
compatible UNIX systems); these items are predefined
in the knowledge base of the selection task. Initially no
fuzzy items are defined. They are identified as those
items that – according to the knowledge base – were
repeatedly validated unsuccessfully in prior optimiza-
tion operations. If the developer specified completion
conditions could not be reached, then the facility starts
removing and validating fuzzy items before offering the
optimized appliance.

Weight functions (w : I × P → V ) assign weight
values (V = {v ∈ R : (0 ≤ v < 1)}) for each item of
the virtual appliance under optimization (i ∈ it(pσ)).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



KECSKEMETI ET AL.: VIRTUAL APPLIANCE SIZE OPTIMIZATION WITH ACTIVE FAULT INJECTION 5

Items with higher weight values are more likely to be
removed. As a result, for any combination of core, fuzzy
and volatile items the following statement is always true:

0 = w(ic, p) < w(if , p) < w(iv, p) (1)

Weight functions utilize metadata available about the
items. As a result, methods for collecting new metadata
have to be specified along with the new weighting
algorithms. Therefore, details of the weight functions
and the collected metadata are discussed in Section 5.1.

The optimization facility decides on the use of the
various weight functions based on the time and cost
constraints specified in the completion conditions. The
facility can even decide whether to use a single or
multiple weight functions throughout the optimization
process. Alternatively, different weight functions can be
used during the different stages of the optimization
process. This strategy ensures that the more expensive
and more precise weight calculations used only if they
would result faster size reduction.

4.2.2 Removal
The removal task sorts the items according to their
weights and removes the highest weighted item (ihw ∈ I)
from the original virtual appliance (pσ).

ihw := i ∈ it(pσ) :
(
w(i, pσ) = max

j∈it(pσ)
w(j, pσ)

)
(2)

it(pred) := it(pσ)\{ihw} (3)

Where pred represents the newly created reduced virtual
appliance that no longer includes ihw. For the removal
operation the optimization facility has to understand the
structure of the appliance and the item type of the used
itemization technique to be able to remove the highest
weighted item. For instance, the facility has to handle
the file system of the VA in case of file based itemization.
We have identified two basic techniques for removal: (i)
pre-execution and (ii) during execution.

First, pre-execution removal operates on the items of the
virtual appliance while it is not running. This technique
first attaches the disk images of the original virtual
appliance to the optimization facility’s host, and removes
the item with the highest weight. Then to allow the
validation of the new appliance, it is initiated in a virtual
machine. However, IaaS systems similar to Amazon EC2
only initiate virtual machines with virtual appliances
stored in their repositories. This requirement forces the
optimization facility to upload the reduced virtual ap-
pliance to the repository of the IaaS system before vali-
dation. Thus, the facility applies this removal technique
if the optimization system uses an IaaS system capable
of instantiating virtual machines with appliances from
external sources (e.g., from the optimization facility).

Second, if the virtual appliance under optimization
offers management interfaces (e.g. [35], [36]) then it
enables a new removal technique, called removal dur-
ing execution. This approach requires the original vir-
tual appliance instantiated in a virtual machine before

the removal operation takes place. Then, the highest
weighted items are removed using the management
capabilities of the virtual machine. Consequently, the
reduced virtual appliance (pred) is created by altering
the virtual machine of the original appliance. However,
the functionality of the appliance could remain intact
even after the management interfaces remove ihw from
the virtual machine because its memory still holds the
removed item. Thus, the VM is restarted to erase its
memory before validation. The restart cleans up the
claimed address space of the VM, thus avoids security
issues unclaimed memory could cause – beyond this
scope we did not consider further security issues. The
validation automatically fails if the restart fails; other-
wise it is executed on the running virtual machine. This
approach is the only practical solution in EC2 like IaaS
systems, because it does not require the repeated upload
of the reduced virtual appliances. This article applies the
management interfaces for active fault injection only, the
detailed definition of these interfaces and their further
usage options are discussed in [32].

Based on the availability of the management inter-
faces the optimization facility automatically determines
the applied removal technique. Before the optimization
starts, the facility tests the management interfaces of
the original virtual appliance. If the appliance offers
them, then the optimization will apply removal during
execution, otherwise the system automatically falls back
to pre-execution removal.

4.2.3 Validation
The optimization facility requires validation algorithms
to ensure that reduced appliances still offer the key func-
tionality of their original appliances. As appliance devel-
opers precisely know the key functionality, we assume
that they can accompany original virtual appliances
with their validation algorithms. For example, to de-
fine validation algorithms, developers could reuse unit
and integration tests (available because of the software
development process [37]). However, these algorithms
must evaluate virtual appliances both semantically and
functionally. E.g., they could ensure response time re-
quirements or they could also confirm the absence of
known security issues. Obviously, validator algorithms
cannot be discussed in the article, therefore we assume
that these algorithms are available for the appliance
developers before they start the optimization process.

Validator algorithms are applied by the valid : P ×
ϕ → {true, false} function. This function calls the
appliance’s (pσ ∈ P ) validator algorithm that evalu-
ates the virtual machine (vm ∈ ϕ) instantiated with
the reduced appliance (vm := initV M(pred)). Where
initV M : P → ϕ depicts the instantiation of a virtual
appliance in a virtual machine. Non-successful valida-
tion (valid(pσ, vm) = false) leads to the restoration of
the original virtual appliance and to the omission of the
previously removed item (ihw) from future optimization
iterations.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Itemization

Queueing

Item 
pooling

Item 
grouping

Remove 
item from 

pool

Group 
weighting

Adjust 
weights

Refetch 
removed 

items

Validate 
new VA

Remove 
group from 

VA

Check 
Completion 
conditions 

Knowledge 
base

Repository

Fetch 
initial VA

Publish 
final VA

Storage Selection ValidationRemoval

[C
onditions

not m
et]

[Validation Failed]

Fig. 3. Overview of the proposed optimization technique

4.2.4 Completion

Before every new optimization iteration, the facility de-
cides if it has reached the completion condition of the
appliance developer. The completion condition limits the
time and resource usage of the optimization facility and
allows the creation of sub-optimally sized appliances.

The decision is made by evaluating the completion
condition specified as an arbitrary conditional expression
based on five metrics: (i) the number of optimization
iterations executed, (ii) the current size of the virtual
appliance, (iii) the size reduction achieved by the op-
timization iterations, (iv) the wall time for the entire
optimization process and (v) the size of the remaining (or
not validated) items of the virtual appliance.

If the completion conditions have not been met yet,
then the optimization facility evaluates the feasibility
of creating an intermediate virtual appliance: pσ := pred.
Therefore, the evaluation takes into consideration the
cost of the intermediate virtual appliance creation and
compares it to the possible gains on future optimization
iterations (assuming that the optimization facility will
initiate a virtual machine for every non-validated item).
As a result, the system reduces the time required for
future virtual machine initiations (as the size of pσ is
decreased during the optimization process). In other
words, the facility reduces the optimization time by
utilizing the effects of optimization through intermediate
appliances before reaching the final optimized VA.

The optimization process concludes with the publi-
cation of the final virtual appliance when the completion
conditions are met or there are no more items (optisize :
P → {true, false}) to remove from the appliance:

optisize(p) :=

⎧⎪⎪⎨
⎪⎪⎩

true �i ∈ it(p) :
((

it(px) = it(p)\{i})

∧(valid(p, initV M(px)) = true
))

false otherwise
(4)

During this step the optimization facility first fetches the
original virtual appliance from the repository. Then at-
taches it to the facility’s host machine where the success-
fully validated items are removed from the appliance.
Finally, it uploads the locally modified appliance to the
repository as an optimized version of the original one.

5 IMPLEMENTATION OF THE VIRTUAL APPLI-
ANCE OPTIMIZATION

Fig. 3 depicts the entire optimization process, however
it gives details of the selection related operations only,
the rest of the operations are discussed in later sections.

5.1 Item Selection

5.1.1 Virtual Appliance Itemization
When the optimization facility receives a request for
minimizing a virtual appliance (pσ), it first fetches the
appliance from the repository. The disk image of the ap-
pliance is analyzed by the file-based itemization technique
that reads its file system and identifies items (files in
the current implementation) of the appliance. During
itemization our technique collects and passes the follow-
ing metadata about each file: (i) the item size (size(i)),
(ii) dependencies representing item relations (e.g. inclu-
sion, parent/child relationships) and (iii) creation and
modification timestamps.

The optimization facility contains an item pool used
as a metadata cache to avoid frequent queries on the
appliance’s file system. This pool stores metadata for
all items that are ready for the further tasks of the
optimization iteration. The item queue is used as an
intermediary between the file system and the item pool.
The queue is the source to fill the unused item capacity of
the pool. The length of this queue is automatically deter-
mined by the amount of removable items during a single
optimization iteration. The maximum value is the same

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



KECSKEMETI ET AL.: VIRTUAL APPLIANCE SIZE OPTIMIZATION WITH ACTIVE FAULT INJECTION 7

as the number of virtual machines used for validation
as discussed in Section 5.3. If the queue is full, then the
itemization procedure is blocked until the optimization
facility removes items from the pool. Therefore the item
queue remains full while the itemization processes all
parts of the appliance.

5.1.2 Grouping

The file-based itemization algorithm produces so many
items from a virtual appliance (see Table 3) that creating
a virtual machine for each item’s removal and valida-
tion is inefficient. Therefore, the algorithm groups these
items together to decrease the number of removal and
validation operations. Grouping has two tasks: (i) form
groups from items that are more likely to be removed
together and (ii) aggregate the metadata attached to the
individual items and present them as group metadata.

We propose three different grouping techniques: (i) di-
rectory structure based – items in the same directory will
form a common group – , (ii) software package based –
items in the same package (e.g. dpkg) form a group –
and (iii) creation time proximity based – items created
within specific time periods belong to the same group.

Item grouping operates on the items in the pool. The
algorithm waits until the pool is either full or the
itemization has completed. As a result, grouping always
handles the maximum amount of items.

If the removal of a group fails the validation then
it is split into smaller groups (or items). The previous
groupings of an item are stored among its metadata
enabling the evaluation of the prior group participation
coefficient – see Eq. (7). If the validation fails on an item
then the facility saves its metadata as a negative example
in the knowledge base. Later, this example helps the
calculation of the removal success rate coefficient – see
Eq. (8) – during the optimization of other appliances.

Grouping efficiency is measured through the grouping
failure rate that is the ratio between the number of
successfully and unsuccessfully validated groups formed
by a specific grouping solution (see Fig. 4). The grouping
failure rate can reveal if the applied grouping technique

Fig. 4. Typical group failure rate of the directory-based
grouping algorithm during optimization

cannot be used for a given appliance. We found that
failure rates over 30% indicate the need for switching
between grouping techniques. The current implementa-
tion uses the directory-based grouping.

5.1.3 Item Weight Calculation
After grouping, we discuss the item weighting step in
the selection phase. This step was already introduced
in Section 4.2.1. Here only the implemented weight
calculation algorithm is described as composite of a base
weight function and several coefficients:

wA(i, p) := γ(i)κ(i)wS(i, p) (5)

Where wA : I × P → V is the composite weight
function of volatile items. This function is based on the
size-based weight function (wS : I × P → V ). The
value of the wS(i, p) function is modified by the prior
group participation (γ : I → V ) coefficient that prefers
items with successfully validated group siblings. The
κ : I → V coefficient favors items with high removal
success rates of prior optimizations.

First, we define the base weight function that assigns
weights considering only the item size (size(i)). Conse-
quently, the optimization facility will choose removable
items that have higher impact on the appliance size. As
a result, the facility significantly reduces the appliance
even with highly constrained completion conditions:

wS(i, p) :=
size(i)

max
j∈it(p)

(size(j))
(6)

Therefore, validation progresses from the largest items
towards the smaller ones. As an advantage, this weight
value can be calculated without the knowledge base.

Coefficient γ uses information about prior group par-
ticipation. Thus, previously improperly grouped items
modify each other’s weight. Item metadata stores the
previous groupings of an item along with all previous
siblings. If an item has participated in a wrong group
and some of its group siblings have already passed
validation, then their success rate alters the base weight:

γ(i) :=

{
M(i) > 0 min(1, 1 +

Msuccess(i)−Mfaulty(i)
M(i) )

M(i) = 0 1
(7)

Where M : I → N defines the number of already
validated siblings in a previously faulty grouping where
the current item was a member. Mfaulty : I → N specifies
the number of those siblings that already failed the
validation phase. Consequently, Msuccess : I → N is the
number of successfully validated siblings.

Coefficient κ alters the base weight value with pre-
vious removal success rate of the individual items. As a
prerequisite, validation results of items from previously
optimized virtual appliances are stored in and restored
from the knowledge base. With the help of the knowl-
edge base this coefficient encourages the removal of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

those items that were previously removed successfully.

κ(i) :=
NT (i)−NF (i)

NT (i)
(8)

Where NF : I → N is the number of unsuccessful
removals of a given item, and NT : I → N is the number
of trials made on the item.

5.2 Parallel Validation
Fig. 5 exemplifies the items and groups available for
validation throughout an optimization process. During
the individual iterations the removal action has had
more than 400 candidate items (or groups). Our removal
and validation technique (see Sections 4.2.2 and 4.2.3)
requires an individual virtual machine for the evaluation
of each item (or group). However, according to our
measurements seen in Fig. 10, virtual machine instan-
tiation is the most time consuming operation of the
optimization facility. Therefore, multiple removal and
validation tasks has to be executed in parallel. To allow
parallelism, the optimization system must be deployed
on a cluster capable to execute several virtual machines
simultaneously.

Fig. 6 reveals that parallelism in the facility starts after
assigning the weight values. First, the system selects
the highest weighted groups or items, and for each one
of them it initiates a removal and validation task in a
dedicated virtual machine (see the “multiple selection”
action in Fig. 6). As a result, we receive the success
reports on several validation tasks in parallel.

These validation success reports are independent from
each other. However, the key functionality of the appli-
ance could depend on some interchangeable items (e.g.
at least one of the items should be present for the key
functionality). To avoid interchangeability problems, the
optimization facility creates a group with the union of
the successfully removed items. This group is removed
from the original appliance and validated (final vali-
dation) to ensure that removed items does not cause
interchangeability problems. On validation success, the
group members are removed from the item pool and

Fig. 5. Number of groups formed from the items available
during optimization

[F
ai

le
d]Selection of 

items with the 
highest weight

Runs on all the 
available VMs 
in the pool

Multiple 
selection

«parallel»

Removal Validate
Removable 

Item or group

Set of 
successful 

items or groups

Remove all 
succeeded

Final validation

[Failed]Mark all 
successful

Mark best 
successful

Fig. 6. Parallelism in the validation process

from the appliance. Afterwards, their removal success is
added to the positive examples of the knowledge base.

If the final validation fails, the facility selects the
highest weighted successful item or group for perma-
nent removal. Other successfully validated items remain
in the item pool with a successful validation marker.
This enables their early revalidation with the highest
weighted element already removed from the appliance.

However, our strategy for selecting permanently re-
moved items may lead to a suboptimal solution. For
the optimal selection, the optimization facility should
evaluate all possible combinations of the successfully
validated removals and mark the combination with the
highest cumulative size. The cost of evaluating all pos-
sible combinations renders the optimal selection pro-
cedure beyond reason and therefore our system never
applies it.

5.3 Virtual Machine Management Strategy
Parallel validation requires multiple virtual machines
ready to be validated. Therefore, the virtual machine
management strategy aims at pre-initializing virtual ma-
chines before their actual use by the validation tasks.
However, initializing a virtual machine requires substan-
tial amounts of bandwidth and time (see Table 3 and
Fig. 10 for details). Therefore, the management strategy
defines a virtual machine lifecycle (see Fig. 7) that allows
the reuse of previously successfully validated virtual
machines for future optimization iterations.

To reduce the delays between removal and validation
the algorithm prepares a virtual machine pool that lists
those virtual machines that are available for validation.
Our strategy automatically determines the size of the
pool as the number of available virtualized CPUs in the
optimization system. If the optimization system shares
the underlying IaaS system with other services then the
system administrator of the facility can set up resource
usage limitations relative to the entire system.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



KECSKEMETI ET AL.: VIRTUAL APPLIANCE SIZE OPTIMIZATION WITH ACTIVE FAULT INJECTION 9

Prepare VM
Init VM 

(pending 
state)

Conform-
ance checkCancel VM

Configure

Remove all 
marked

Remove 
highest 

weighted

Bind 
Validator

Free

Validate

Defunct

Config
needed

Failed

Frequent
Failures

Terminate
Failed

Success

Fig. 7. Virtual machine management states

The first task of the management strategy (designated
with the “Prepare VM” state) uses the IaaS system to
allocate as many VMs as possible for the optimization.
Each acquired virtual machine is instantiated with the
original appliance (initV M(pσ)) during its “Init VM”
state. Then the “conformance check” state confirms the
accessibility of the created virtual machine to avoid
false validation failure reports on improperly initialized
virtual machines. If the conformance check fails, then
the system repeats the allocation task. Otherwise, the
appliances are “configured” to run inside their virtual
machines. The configuration step handles internal con-
figuration provided by the appliance developer, then it
also manages the external network configuration of the
virtual machine (e.g. setting up the firewall). After the
VMs are initialized they are ready to be used for the
removal and validation tasks (detailed in Section 5.2).

When the virtual machine reaches the “free” state
then it becomes usable for the removal and validation
processes. Afterwards, the next state “binds the validator”
task with a virtual machine. During this phase the
virtual machine handler first removes all the previously
successfully validated (“remove all marked”) items from
the virtual machine. Then it generates the list of re-
moval requests (e.g. through the management interfaces
of the appliance) for the highest weighted removable
items (ihw) or groups. Next, the VM enters the “vali-
dation” state when the handler evaluates the validation
algorithms on the virtual machine running the reduced
virtual appliance (pred). If both the evaluation and the re-
moval requests were successful then the virtual machine
becomes “free” – reusable – again.

Faulty validation renders the affected virtual machine
“defunct”. This leads towards the second task of the
management strategy: the recovery of the defunct VM.
This could imply the addition of the previously removed
item. However, the addition would require the revalida-
tion of the restored virtual machine. Therefore, instead
of trying to recover the defunct VM, the manager termi-
nates it, then initiates a new virtual machine. Next, the
manager synchronizes the successfully removed items
in the new VM. After recovery, the parallel validation
branches compete with each other for the new VMs.

The parallel execution of the validation leads to
VMs running slightly more optimized virtual appliances.
Therefore, on successful validation, the final task of
the manager prepares the content synchronization of all
the successfully validated VMs to allow their reuse for
later validations. The content synchronization is accom-
plished by generating the list of permanently removable
items for the “remove all marked” operation.

6 OPTIMIZATION RESULTS

This section presents the experimental results with the
optimization facility: (i) we introduce the methodology
and the aim of the experiments; (ii) the testbed infras-
tructure for the experiments is detailed; (iii) the test
virtual appliances are discussed; finally, (iv) we evaluate
and analyze the experimental results.

6.1 Methodology

This article represents measurements with the func-
tion M : F → R. This function evaluates its argu-
ments (F represents an arbitrary function and a specific
parameter set) repeatedly and measures the execution
time (tev) for each individual evaluation. Measurements
are executed until the sample standard deviation (sN ) of
the tev values becomes stable, thus the value of two sub-
sequent standard deviation calculations are within 1%:

sN (tev)− sN+1(tev)

sN (tev)
< 0.01 where N ≥ 2 (9)

Function M calculates the median of the measured
evaluation times of F after the deviation is stabilized.

6.1.1 Speedup

We have defined the efficiency of the optimization facil-
ity with the speedup function – S : (P ) → R:

S(pσ) =

baseline︷ ︸︸ ︷
M(initV M(pσ))

M(initV M(p′σ))︸ ︷︷ ︸
optimized

(10)

Speedup (S(pσ)) is the ratio of the measured instantia-
tion times of a service package before (pσ) and after (p′σ)

Repository

IaaS
Deploy 
Client

4 6

5

pσ
Optimization 

Facility

1,7

pσ'

2,8

39

Fig. 8. Efficiency of size optimization

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

the size optimization was applied. We consider the op-
timization algorithm successful if the optimized virtual
appliance can be instantiated faster than the original:

S(pσ) > 1 (11)

The baseline measurement (M(initV M(pσ))) for the
speedup values is presented in step 1-3 in Fig. 8. During
this measurement, we used the deployment client to
request the IaaS system for the instantiation of pσ .

Fig. 8 reveals that the baseline measurement is fol-
lowed by the request to optimize the original appli-
ance (pσ – steps 4-5). After the completion of the op-
timization process, the final reduced appliance (p′σ) is
stored in the repository (step 6). Finally, the testbed is
ready to evaluate the speedup by measuring the instan-
tiation time of p′σ in steps 7-9 – M(initV M(p′σ)).

6.1.2 Cost Efficiency
There is a tradeoff applying the technique introduced
in this article. For example, before any user initiated
deployment could occur, the optimization process cre-
ates virtual machines on purpose to allow the validation
of the reduced appliance. To evaluate this tradeoff, we
measure the time spent during the optimization process
according to steps 4-6 in Fig. 8. Then, we calculate
the number of virtual machine instantiations (or user
initiated deployments – Ndep) required to compensate
the time spent on the appliance size optimization task:

Ndep(pσ) :=
M(optimize(pσ, ∅))

M(initV M(pσ))−M(initV M(p′σ))
(12)

By default, the optimization – and therefore the measure-
ment – is executed until p′σ := optimize(pσ, ∅) reaches its
minimal size: optisize(p′σ) = true.

6.2 Testbed Infrastructure

The optimization facility is designed for implementation
on top of IaaS systems (e.g. Eucalyptus [21] or Virtual
Workspaces Service [38] that is part of Nimbus). In this
article, we discuss an implementation based on Euca-
lyptus, because of its two advantages: (i) Eucalyptus
supports all functionalities of the optimization facility
without extensions or modifications, and (ii) Eucalyp-
tus could be easily replaced with Amazon EC2 [20] to
present the viability of the optimization facility on a
commercial IaaS cloud system.

Fig. 9 shows the infrastructure used for the experi-
ments. In this infrastructure there is a single Internet con-
nection available only for the Eucalyptus HeadNode. This
node runs as the controller of the local cluster by man-
aging both its IaaS behavior and also its networking –
e.g. DHCP, DNS and routing. We also have the internal
Eucalyptus repository, Walrus, installed on this node.
Finally, this node also hosts the optimization facility itself
in order to have a low latency and high bandwidth
connection with the IaaS system and its repository. This

Host1

Node control

Xen

Host2

Node control

Xen

Host4

Node control

Xen

Host3

Node control

Xen

Host6

Node control

Xen

Host5

Node control

Xen

Host7

Node control

Xen

Host8

Node control

Xen
HeadNode

Cloud 
controller
Cluster 

controller

Repo-
sitory

Internet

Local Cluster

Optimization 
Facility

Internet

Fig. 9. The testbed

infrastructure satisfies the facility’s requirement to have
a high bandwidth connection with the repository.

The remaining hosts are configured with the same
software. They run the Xen virtual machine monitor [6]
in order to enable virtual machine creation and manage-
ment on the nodes. They also execute the Eucalyptus
node controller that enables the remote access to the
locally available virtual machine monitor. All the nodes
have the same hardware configuration (4 CPUs, 4GB of
RAM and 80GB of HDD) and they are connected with
gigabit Ethernet towards the HeadNode.

6.3 The Experimental Virtual Appliances
In this subsection, we outline the virtual appliances
selected to test the optimization facility. Based on the
popularity of basic Internet services we have selected
and defined two appliances: the SSH and the Apache
web server appliance. The key functionality of the SSH
appliance (see Table 1) enables a user to transfer shell
scripts to the machine and allows their execution. In con-
trast, the key functionality of the Apache appliance (see
Table 2) does not allow arbitrary code execution, how-
ever it enables users to upload static html content that

TABLE 1
The definition of the SSH virtual appliance

Key
func-
tionality

The SSH virtual appliance should offer a virtual ma-
chine image that provides remote execution and transfer
capabilities. Therefore, this is a general-purpose virtual
appliance that enables the execution of arbitrary code.
As a prerequisite, the user has to transfer the executable
and its dependencies before execution.

Con-
struc-
tion

1) Create a virtual machine image for Xen with xen-
tools of debian.

2) Start up the created VM image.
3) Add the ssh daemon and the rsync transfer utility.
4) Enable remote ssh based root logins in the VM.

Validator
algo-
rithm

1) Create a shell script that prints out “hello world”.
2) Transfer the previously created shell script to the

target virtual machine with rsync.
3) Remotely execute the transferred script.
4) Check whether the execution returns with “hello

world”. If not then the virtual machine is not valid.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



KECSKEMETI ET AL.: VIRTUAL APPLIANCE SIZE OPTIMIZATION WITH ACTIVE FAULT INJECTION 11

TABLE 2
The definition of the Apache virtual appliance

Key
func-
tionality

The aim of the Apache appliance is to provide an HTTP
server that is capable of serving static html pages to its
users. As a prerequisite, the user has to transfer the
static html pages that should be offered by the server.

Con-
struc-
tion

1) Create a virtual machine image for Xen with xen-
tools of debian.

2) Start up the created VM image.
3) Add the ssh, rsync and apache daemons.

Validator
algo-
rithm

1) Create an HTML document that has an html header
with the text of “hello world”.

2) Transfer the previously created HTML document to
the apache web server’s folder on the target VM.

3) Download the pre-transferred HTML file with an
HTTP request.

4) Check for the html header with the text “hello
world”. If the header is not present then the target
virtual machine is not valid.

can be served later by its hosting machine. Tables 1
and 2 also describe the validation algorithms for their
corresponding appliances; these algorithms were simpli-
fied for demonstration purposes. The proposed system
does not limit developers in algorithm design so they
can include more functional requirements and even non-
functional ones like security related checks.

Both virtual appliances were based on xen virtual ma-
chine images created with the xen-create-image tool
offered by Debian Linux. We have altered the images by
installing the necessary Debian packages to support SSH
or Apache. We have configured both virtual appliances
with 100 MB of free space to allow custom content for
their users. The free space is big enough to allow the
initial use of the appliance, however for advanced usage
it either has to be extended with one of the available
tools (e.g. resize2fs, xfs_growfs) before publishing
the appliance or alternatively a new file system can be
attached for the custom content (e.g. by attaching an
elastic block store – EBS – volume on Amazon EC2).
As several commercial cloud providers require the use
of new file systems for persistence, developers would
similarly configure their appliances as we did with the
test appliances. Neither of these virtual appliances re-
quire configuration during their instantiation, because
they are standalone services and they do not depend
on external network connections. The properties of the
original virtual appliances are listed in Table 3.

This article does not discuss optimization results with
other virtual appliances because of the generic and
widespread use of the previously introduced ones. How-
ever, we have already discussed the application of the
optimization facility on the biochemical application of
TINKER in our previous paper [39].

6.4 Evaluation
6.4.1 Basic Optimization Results
First, we have executed the optimization process on the
previously selected virtual appliances without any com-

Fig. 10. Instantiation time before and after optimization

TABLE 3
Basic properties of the test appliances

Appliance Compressed Size Number of Files
SSH 120MB 10647
Apache 165MB 14050

pletion condition (see Section 4.2.4 for details). Therefore,
the optimization facility executed the optimization task
until it exhausted the removable items from the virtual
appliances. The resulting appliances are presented in
Table 4. The eight machines optimized the appliances
to less than tenth of their original size within no more
than two hours. In addition, appliance file counts have
dropped to less than 1

50 th of their originals. In case of the
test appliances, the removed files included documenta-
tion, unused libraries and executables.

To allow comparison, Table 4 also lists the proper-
ties of the rPath [13] Apache appliance [40] (a typical
appliance created with the pre-optimizing algorithm of
rPath – see Section 2). This appliance is a typical devel-
oper created appliance that does not take into considera-
tion the key functionality of the appliance therefore even
after optimization it contains non-necessary content.

Then, we deployed both the optimized and the origi-
nal virtual appliances and measured the execution time
of the different instantiation steps. These results are
presented in Fig. 10 according to the three steps of virtual
appliance instantiation introduced in Section 4. Table 4
proves that we reached significant speedup on the in-
stantiation time of the original virtual appliances. After
the comparison of the service activation times of the orig-
inal and the optimized appliances, we conclude that the
optimization facility successfully removed items causing
unnecessary delays in activation (e.g. some unused sys-
tem level services that were not important for the key
functionality of the appliance). This feature increases the
security of the optimized virtual appliances compared to
the original ones, because the size-optimized appliances
cannot be attacked through unused system level services.

6.4.2 Increasing Optimization Efficiency
For the purpose of the evaluation, special optimization
processes were initiated that monitored the state of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

(a) Effects of intermediate virtual appliance creation (b) Stability of completion conditions

(c) Effects of remaining size completion condition on
execution time

(d) Required number of future instantiations to over-
come the optimization time of the Apache appliance

Fig. 11. Increasing the effectiveness of the optimization facility

TABLE 4
Basic virtual appliance properties of the optimized test

appliances

Appliance Compressed Size Files Opt. time S(pσ)

SSH’ 6.6MB 197 4958 secs 4.72×
Apache’ 13MB 236 7468 secs 5.85×
rPath Apache 152MB 28923 N/A N/A

the optimization system at the end of the optimization
iterations (see Section 5.1). The gathered data includes
(i) the items removed, (ii) the current value of the five
completion condition metrics (defined in Section 4.2.4),
(iii) the number of virtual machines used, (iv) the
number of validations passed, (v) the average time to
initiate a virtual machine, etc. Based on these values, the
system’s behavior can be evaluated without executing
the optimization process in too many configurations.

As it was depicted in Table 4, the unlimited optimiza-
tion process requires hours to complete. We have imple-
mented a snapshotting technique that creates an inter-
mediate virtual appliance after the optimization iterations
as discussed in Section 4.2.4. Fig. 11a presents the opti-
mization of the SSH virtual appliance with and without
the creation of the intermediate virtual appliances. The
figure reveals that intermediate VAs can dramatically
decrease (e.g. from twenty minutes to less than five) the

time and cost of later optimization iterations. As a result,
this technique immediately results in the reduction of the
total optimization time.

However, this approach still does not exploit the
completion condition evaluation. We have observed, that
the optimization process could not reach significant size
reduction in its late stages (the size of the remaining non-
validated items follows a Pareto distribution). Thus, to
avoid the tail problem, we have investigated the vari-
ous completion conditions (introduced in Section 4.2.4)
whether they can predict the inefficiencies of the last
phase of the optimization process. Unfortunately, most of
the completion conditions cannot predict inefficiencies,
because they are either not stable enough throughout
the entire optimization process (see reduction in Fig. 11b),
or their inefficiency threshold cannot be generalized for
multiple appliances (e.g. optimization time). A stable
completion condition has to be monotonic, in order
to allow the definition of a threshold value that the
completion condition variable only crosses once during
the optimization process. Consequently, we define ineffi-
ciency indicators as special completion condition variables
that reveal the inefficiency of the optimization process
after passing a predefined threshold value.

From the list of Section 4.2.4, we have identified two
completion condition variables as candidates for the
role of inefficiency indicator. The first one is the size
reduction percentage achieved during a single iteration.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



KECSKEMETI ET AL.: VIRTUAL APPLIANCE SIZE OPTIMIZATION WITH ACTIVE FAULT INJECTION 13

The second one is the percentage of the cumulative
size of the remaining (non-validated) items compared to
the current size of the intermediate virtual appliance.
Fig. 11b presents the changes of these two completion
conditions throughout an entire optimization process.
We have chosen the remaining completion condition for
further investigation because its monotonic nature.

Fig. 11c demonstrates the effects of applying different
remaining completion condition variables. In this figure,
we have normalized the optimization time for better
comparison (for the explicit optimization time values see
Table 4). In order to decrease optimization time but still
maintain adequate appliance size we have identified that
the remaining completion condition variable can be used
as an inefficiency indicator with the threshold 10%. This
threshold reduces the optimization time by 40% and still
maintains close to optimal virtual appliance sizes.

Finally, using the previously introduced options for
increasing effectiveness we have calculated the Ndep

values (see Eq. 12) based on the statistical informa-
tion collected during the execution of the optimization
processes. Fig. 11d presents the calculated values and
presents the minimum amount of the future instanti-
ations required before the optimization becomes prof-
itable. According to the figure, the cost of the optimiza-
tion procedure is high in the early stages reflecting the
high grouping failure rates (see Fig. 4) and the long
iteration lengths (see Fig. 11a). Later, the cost increases
linearly with the executed optimization iterations be-
cause the last iterations of the process are not reducing
the instantiation time considerably.

7 CONCLUSIONS

In this article, we have outlined the challenges of using
virtual appliance based deployment in highly dynamic
service environments and Infrastructure as a Service
cloud systems. We have shown how to address these
challenges by virtual appliance size optimization. The
proposed approach uses active fault injection to remove
parts of virtual appliances. The reduced virtual appli-
ances are validated with appliance developer provided
validator algorithms in order to maintain the key func-
tionality of the appliance. The algorithm also includes
several item selection and grouping techniques in order
to decrease the number of validation steps required to
achieve the optimized virtual appliance.

The proposed size optimization approach offers sev-
eral advantages over the existing solutions. First, the
appliance developer does not need to know the depen-
dencies of the service that it plans to encapsulate in a
virtual appliance, instead this article assumes the appli-
ance developers can define the key functionality of their
desired appliance in the form of validation algorithms.
Second, this solution could also be used with existing
virtual appliances. Thus, it can significantly reduce the
operating costs of those appliances that are already used
in highly dynamic service environments. The proposed

technique not only reduces the virtual machine instantia-
tion time, but it also provides a technique that minimizes
the virtual appliance optimization time and allows the
early release of the optimal appliances.

We have presented our implementation by experi-
menting on two well-known services encapsulated in
virtual appliances. The results revealed that the size of
typical virtual appliances could be significantly opti-
mized. Based on these experiments, we have also identi-
fied that the time and cost efficiency of the optimization
algorithm can be improved by (i) creating intermedi-
ate virtual appliances and by (ii) terminating the opti-
mization process using the ratio of the remaining non-
validated items in the suboptimal VA as the completion
condition.

Future research considers the further optimization of
the item selection and grouping techniques. We are
also considering research on more efficient scheduling
algorithms for the parallel validation phase in order to
reduce the resource usage caused by the revalidation of
previously successful validation results. We also plan
to investigate the security related effects of the pro-
posed optimization approach including the effects of vir-
tual machine reuse for multiple removal and validation
phases and whether the optimized appliance is more
vulnerable than the original.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwin-

ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” Uni-
versity of California at Berkley, Tech. Rep. UCB/EECS-2009-28,
Febr. 2009.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Gener-
ation Computer Systems, vol. 25, no. 6, pp. 599–616, June 2009.

[3] N. Susanta and C. Tzi-Cker, “A survey on virtualization tech-
nologies,” ECSL-TR-179, Stony Brook University, Tech. Rep., Febr.
2005.

[4] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
Proceedings of the USENIX Annual Technical Conference, FREENIX
Track, 2005, pp. 41–46.

[5] Vmware. [Online]. Available: http://www.vmware.com
[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebar, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in ACM Symposium on Operating Systems Principles
(SOSP), 2003.

[7] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow,
M. S. Lam, and M. Rosenblum, “Virtual appliances for deploying
and maintaining software,” in LISA ’03: Proceedings of the 17th
USENIX conference on System administration. Berkeley, CA, USA:
USENIX Association, 2003, pp. 181–194.

[8] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner,
“A break in the clouds: towards a cloud definition,” SIGCOMM
Computer Communication Review, vol. 39, pp. 50–55, Dec. 2008.

[9] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified
ontology of cloud computing,” in Grid Computing Environments
Workshop, 2008. GCE’08. DOI: 10.1109/GCE.2008.4738443: IEEE,
2009, pp. 1–10.

[10] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environ-
ments Workshop, 2008. GCE’08. DOI: 10.1109/GCE.2008.4738445:
IEEE, 2009, pp. 1–10.

[11] B. Benatallah, Q. Sheng, and M. Dumas, “The self-serv environ-
ment for web services composition,” IEEE Internet Computing,
vol. 7, no. 1, pp. 40–48, 2003.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

[12] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl,
“A journey to highly dynamic, self-adaptive service-based appli-
cations,” Automated Software Engineering, vol. 15, no. 3, pp. 313–
341, 2008.

[13] rPath - rBuilder, http://www.rpath.com/rbuilder/.
[14] M. Sußkraut, S. Creutz, and C. Fetzer, “Fast fault injections

with virtual machines,” in the Fast Abstracts track of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, Edinburgh, UK, June 2007.

[15] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault injection for dependability
validation: A methodology and some applications,” IEEE Trans.
Softw. Eng., vol. 16, no. 2, pp. 166–182, 1990.

[16] J. A. Clark and D. K. Pradhan, “Fault injection,” Computer, vol. 28,
no. 6, pp. 47–56, 1995.

[17] S. Bruning, S. Weißleder, and M. Malek, “A fault taxonomy for
service-oriented architecture,” in Proceedings of the 10th IEEE High
Assurance Systems Engineering Symposium, 2007.

[18] G. Kecskemeti, P. Kacsuk, G. Terstyanszky, T. Kiss, and T. Delaitre,
“Automatic service deployment using virtualisation,” in Proceed-
ings of 16th Euromicro International Conference on Parallel, Distributed
and network-based Processing. IEEE Computer Society, Febr. 2008.

[19] G. Kecskemeti, G. Terstyanszky, P. Kacsuk, and Z. Nemeth, “An
approach for virtual appliance distribution for service deploy-
ment,” Future Generation Computer Systems, vol. 27, no. 3, pp. 280–
289, Mar. 2011.

[20] Amazon Web Services LLC. (2009) Amazon elastic compute
cloud. [Online]. Available: http://aws.amazon.com/ec2/

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The eucalyptus open-source
cloud-computing system.” in CCGRID, F. Cappello, C.-L. Wang,
and R. Buyya, Eds. IEEE Computer Society, 2009, pp. 124–131.

[22] T. Zhanga, Z. Dua, Y. Chenb, X. Jic, and X. Wang, “Typical virtual
appliances: An optimized mechanism for virtual appliances pro-
visioning and management,” The Journal of Systems and Software,
vol. 84, pp. 377–387, 2011.

[23] K. Wang, J. Rao, and C.-Z. Xu, “Rethink the virtual machine
template,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments, Newport Beach,
California, USA, Mar. 2011.

[24] D. Geer, “The os faces a brave new world,” Computer, vol. 42, pp.
15–17, Oct. 2009.

[25] Public Amazon Machine Images, http://developer.
amazonwebservices.com/connect/kbcategory.jspa?categoryID=
171, 2010.

[26] VMWare public virtual appliances, “http://www.vmware.com/
appliances/,” 2010.

[27] SUSE Appliance tookit, “Suse galery,” http://susegallery.com/,
Jan. 2011.

[28] Science Clouds, “http://scienceclouds.org/marketplace/,” Jan.
2011.

[29] H. A. Basit and S. Jarzabek, “Detecting higher-level similarity
patterns in programs,” in Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, Lisbon,
Portugal, Sept 2005, pp. 156 – 165.

[30] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using dependency
models to manage complex software architecture,” SIGPLAN
Notices, vol. 40, no. 10, pp. 167–176, Oct. 2005.

[31] Vizioncore Inc., “voptimizer, optimization of virtual machine size
and performance,” 2008.

[32] G. Kecskemeti, G. Terstyanszky, P. Kacsuk, and Z. Nemeth, “Im-
proving virtual appliance deployment using minimal manageable
virtual appliances,” Submitted: IEEE Transactions on Computers.

[33] A. Kertész, G. Kecskeméti, and I. Brandic, “An sla-based resource
virtualization approach for on-demand service provision,” in Pro-
ceedings of the International Conference on Autonomic Computing, 3rd
International Workshop on Virtualization Technologies in Distributed
Computing, 2009, pp. 27–34.

[34] D. Blackman, “Debian package management, part 1: A user’s
guide,” Linux Journal, vol. http://www.linuxjournal.com/article/
4352?page=0,0, Dec. 2000.

[35] W. Vambenepe, “Services distributed management: Man-
agement using web services (muws 1.0),” web, Aug.
2005. [Online]. Available: http://docs.oasis-open.org/wsdm/
wsdm-mows-1.1-spec-os-01.pdf

[36] S.-M. Yoo, J. W.-K. Hong, J.-G. Park, C.-W. Ahn, and S.-W. Kim,
“Performance evaluation of wbem implementations,” KNOM Re-
view, vol. 8, no. 2, p. 7, Febr. 2006.

[37] A. Bertolino, “Software testing research: Achievements, chal-
lenges, dreams,” Future of Software Engineering, pp. 85–103, 2007.

[38] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron, “Virtual
workspaces in the grid,” ANL/MCS-P1231-0205, 2005.

[39] A. Kertesz, G. Kecskemeti, and I. Brandic, “Autonomic sla-aware
service virtualization for distributed systems,” in Proceedings of the
19th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2011). Ayia Napa, Cyprus: IEEE, Febr. 2011.

[40] rPath, “Apache appliance,” http://www.rpath.org/project/aa/
releases, 07 2010.

Gabor Kecskemeti has received his MSc de-
gree from the Institute of Information Technol-
ogy at the University of Miskolc, in 2004. He is
currently working on his Ph.D. in the Centre of
Parallel Computing at the University of Westmin-
ster. He also participates in the research of the
Laboratory of Parallel and Distributed Systems
at MTA-SZTAKI, Hungary. He has got involved in
several successful grid related projects and re-
search resulting the P-Grade Grid Portal of MTA-
SZTAKI and the Grid Execution Management for

Legacy Code Applications (GEMLCA) of the University of Westminster.

Gabor Terstyanszky is Reader in Distributed
Systems at the University of Westminster, Lon-
don, United Kingdom. He is the co-leader of the
Centre for Parallel Computing at the University
of Westminster. He received his MSc degree at
the Electrotechnical University, St. Petersburg,
Russia. He obtained his MPhil and Ph.D. degree
at the University of Miskolc, Hungary in 1990 and
1997, respectively. His research interests cover
distributed and parallel computing systems in-
cluding clouds, desktop and service grids. He

was involved in more than 20 research projects either as Local Co-
ordinator or Principal Investigator. He has published more than 100
papers in periodicals and conference proceedings on distributed and
parallel computing systems. He was member of Program Committee of
several European and world conferences. He was also Guest Editor of
several special issues published in periodicals on distributed computing
infrastructures.

Peter Kacsuk is the Head of the Laboratory of
Parallel and Distributed Systems in MTA SZTAKI
Computer and Automation Research Institute of
the Hungarian Academy of Sciences. He re-
ceived his MSc and university doctorate degrees
from the Technical University of Budapest in
1976 and 1984, respectively. He received the
kandidat degree (equivalent to Ph.D.) from the
Hungarian Academy in 1989. He habilitated at
the University of Vienna in 1997. He received
his professor title from the Hungarian President

in 1999 and the Doctor of Academy degree (DSc) from the Hungarian
Academy of Sciences in 2001. He has been a part-time full professor
at the Cavendish School of Computer Science of the University of
Westminster and the Eotvos Lorand University of Science Budapest
since 2001. He has published two books, two lecture notes and more
than 200 scientific papers on parallel computer architectures, parallel
software engineering and Grid computing. He is co-editor-in-chief of the
Journal of Grid Computing published by Springer.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


