
An SLA-based Resource Virtualization Approach For
On-demand Service Provision

Attila Kertesz
MTA SZTAKI

1518 Budapest, Hungary
P.O. Box 63.

attila.kertesz@sztaki.hu

Gabor Kecskemeti
MTA SZTAKI

1518 Budapest, Hungary
P.O. Box 63.

kecskemeti@sztaki.hu

Ivona Brandic
TU Vienna

1040 Vienna, Austria
Argentinierstr. 8/181-1

ivona@infosys.tuwien.ac.at

ABSTRACT
Cloud computing is a newly emerged research infrastruc-
ture that builds on the latest achievements of diverse re-
search areas, such as Grid computing, Service-oriented com-
puting, business processes and virtualization. In this paper
we present an architecture for SLA-based resource virtu-
alization that provides an extensive solution for executing
user applications in Clouds. This work represents the first
attempt to combine SLA-based resource negotiations with
virtualized resources in terms of on-demand service provision
resulting in a holistic virtualization approach. The architec-
ture description focuses on three topics: agreement negotia-
tion, service brokering and deployment using virtualization.
The contribution is also demonstrated with a real-world case
study.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks, Distributed Systems

General Terms
Design, Languages, Management, Experimentation

Keywords
SLA negotiation, Resource virtualization, Service Brokering,
On-demand deployment

1. INTRODUCTION
Grid Computing [16] has succeeded in establishing pro-

duction Grids serving various user communities all around
the world. The emerging Web technologies have already af-
fected Grid development; the latest solutions from related
research fields (e.g. autonomous computing, P2P, etc.) also
need to be considered in order to successfully transform the
currently separated production Grids and Service oriented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VTDC’09, June 15, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-580-2/09/06 ...$5.00.

Architectures to the Internet of Services [25]. Cloud Com-
puting [5] is a novel candidate that aims at creating this
synergy; therefore we consider a cloud-like architecture fo-
cusing on agreement negotiation, service brokering and de-
ployment using advanced virtualization techniques. Both
Grids and Service Based Applications (SBAs) already pro-
vide solutions for executing complex user tasks. The web
service model is based on three actors: a service provider, a
service requester and a service broker [29]. Solutions build-
ing on this model use well-established and widely used tech-
nologies [29] that enable the collaboration of these three
parties to fulfill service executions required by users. The
newly emerging demands of users and researchers call for
expanding this service model with business-oriented utiliza-
tion (agreement handling) and support for human-provided
and computation-intensive Grid services. Most of related
works consider either virtualization approaches [12] [24] [18]
without taking care of Service-Level Agreements (SLAs) or
concentrates on SLA management neglecting the appropri-
ate resource virtualizations [27] [6].

In this paper we propose a novel holistic architecture con-
sidering resource provision using the virtualization approach
and combining it with the business-oriented utilization used
for the SLA agreement handling. Thus, we provide an inte-
grative infrastructure for on demand service provision based
on SLAs. The main contributions of this paper include: (i)
presentation of the novel architecture for the SLA-based re-
source virtualization and on-demand service provision, (ii)
description of the architecture including meta-negotiation,
meta-brokering, brokering and automatic service deployment
and (iii) demonstration of the presented approach based on
a case study. In the following section we summarize related
works, in Section 3 we introduce the overall architecture and
define the participating components and list the general uti-
lization steps. In Section 4 the components of the three
problem areas are detailed, and Section 5 presents a case
study using the architecture. Finally Section 6 concludes
the paper.

2. RELATED WORK
Though cloud-based service execution is rarely studied

yet, some related works have already started to investigate,
how business needs and more dynamicity could be repre-
sented in the web service model. The envisioned framework
in [10] proposes a solution to extend this model by intro-
ducing and using semantic web services. The need for SLA
handling, brokering and deployment also appears in this vi-
sion, but they focus on using ontology and knowledge-based

Figure 1: SRV architecture.

approaches. Works presented in [23] [21] discusses incorpo-
ration of SLA-based resource brokering into existing Grid
systems. The Rudder framework [19] facilitates automatic
Grid service composition based on semantic service discov-
ery and space based computing. Venugopal et al. propose a
negotiation mechanism for advance resource reservation us-
ing the alternate offers protocol [31], however, it is assumed
that both partners understand the alternate offers protocol.

Regarding meta-brokering, LA Grid [26] developers aim
at supporting grid applications with resources located and
managed in different domains. They define broker instances,
each of them collects resource information from its neigh-
bors and save the information in its resource repository. The
Koala grid scheduler [11] was redesigned to inter-connect dif-
ferent grid domains. They use a so-called delegated match-
making (DMM), where Koala instances delegate resource
information in a peer-2-peer manner. Gridway introduced
a Scheduling Architectures Taxonomy [30], where Gridway
instances can communicate and interact through grid gate-
ways. These instances can access resources belonging to dif-
ferent Grid domains. Comparing the previous approaches,
we can see that all of them use high level brokering that del-
egate resource information among different domains, broker
instances or gateways. These solutions are almost exclu-
sively used in Grids, they cannot co-operate with different
brokers operating in pure service-based or cloud infrastruc-
tures. On the contrary, our proposed Meta-Broker can man-
age diverse, separated brokers.

Finally service deployment solutions are focusing on the
deployment process itself and do not leverage their bene-
fits on higher level. For example the Workspace Service
(WS) [12] as a Globus incubator project supports wide range
of scenarios involving virtual workspaces, virtual clusters
and service deployment from installing a large service stack
like ATLAS to deploy a single WSRF service if the Vir-
tual Machine (VM) image of the service is available. The
WS is designed to support several virtual machines – XEN
[3], VMWare, VServer – to accomplish its task. Then the
XenoServer open platform [24] is an open distributed archi-
tecture based on the XEN virtualization technique. It is
aiming at global public computing. The platform provides
services for server lookup, registry, distributed storage and
a widely available virtualization server. Also the VMPlants
[18] project proposes an automated virtual machine config-

uration and creation service which is heavily dependent on
software dependency graphs. This project stays within clus-
ter boundaries.

3. SLA-BASED RESOURCE VIRTUALIZA-
TION (SRV) ARCHITECTURE

In this paper we present a unified service architecture that
builds on three main areas: agreement negotiation, broker-
ing and service deployment using virtualization. We sup-
pose that service providers and service consumers meet on
demand and usually do not know about the negotiation pro-
tocols, document languages or required infrastructure of the
potential partners. First we introduce the general architec-
ture naming the novelties and open issues, then we detail the
aforementioned three main areas with respect to the shown
architecture. Figure 1 shows our proposed, general architec-
ture. Next we define the actors of the architecture:

• User: A person, who wants to use a service

• MN – Meta-Negotiator: A component that manages
Service-level agreements. It mediates between the user
and the Meta-Broker, selects appropriate protocols for
agreements; negotiates SLA creation, handles fulfill-
ment and violation.

• MB – Meta-Broker: Its role is to select a broker that is
capable of deploying a service with the specified user
requirements.

• B – Broker: It interacts with virtual or physical re-
sources, and in case the required service needs to be
deployed it interacts directly with the ASD.

• ASD – Automatic Service Deployment: It installs the
required service on the selected resource on demand.

• S – Service: The service that users want to deploy
and/or execute.

• R – Resource: Physical machines, on which virtual
machines can be deployed/installed.

The following detailed steps are done during utilization
with respect to the steps shown in Figure 2:

• User starts a negotiation for executing a service with
certain QoS requirements (specified in a Service De-
scription (SD) with an SLA) (step 1)

• MN asks MB, if it could execute the service with the
specified requirements (step 2)

• MB matches the requirements to the properties of the
available brokers and replies with an acceptance or a
different offer for renegotiation (step 3)

• MN replies with the answer of MB. Steps 1-4 may con-
tinue for renegotiations until both sides agree on the
terms (to be written to an SLA document)

• User calls the service with the SD and SLA (step 5)

• MN passes SD and the possibly transformed SLA (to
the protocol the selected broker understands) to the
MB (step 6)

Figure 2: Detailed steps during SRV utilization.

• MB calls the selected Broker with SLA and a possibly
translated SD (to the language of the Broker) (step 7)

• The Broker executes the service with respect to the
terms of the SLA (step 8)

• In steps 9, 10, 11 and 12, the result of the execution
is reported to the Broker, the MB, the MN, finally to
the User (or workflow engine)

• ASD monitors the states of the virtual resources and
deployed services (step a)

• ASD reports service availability and properties to its
Broker (step b)

• All Brokers report available service properties to the
MB (step c)

The previously presented sample architecture and the de-
tailed utilization steps show that agreement negotiation, bro-
kering and service deployment are closely related and each
of them requires extended capabilities in order to interop-
erate smoothly. Nevertheless each part represents an open
issue, since agreement negotiation, SLA-based service bro-
kering and on-demand adaptive service deployment are not
supported by current solutions in cloud-like environments.

4. REQUIREMENTS AND SOLUTIONS TO
REALIZE SRV

In this section we detail three main categories, where the
basic requirements of SRV-like systems arise. We place these
areas in the SRV architecture shown in Figure 1, and detail
the related parts of the proposed solution. We also empha-
size the interactions among these components in order to
build one coherent system.

In our proposed approach users describe the requirements
for an SLA negotiation on a high level using the concept of
meta-negotiations. During the meta-negotiation only those
services are selected, which understand specific SLA docu-
ment language and negotiation strategy or provide a specific
security infrastructure. After the meta-negotiation process,

a meta-broker selects a broker that is capable of deploying a
service with the specified user requirements. Thereafter, the
selected broker negotiates with virtual or physical resources
using the requested SLA document language and using the
specified negotiation strategy. Once the SLA negotiation is
concluded, service can be deployed on the selected resource
using the virtualization approach.

4.1 Agreement negotiation
As shown in Figure 1 to realize such a system we need to

provide the following means of negotiation:

• User – MN: the User supplies a general meta-negotia-
tion document

• MN – MB: they agree on specific negotiation docu-
ments containing specific negotiation strategy to be
used, negotiation protocols to be used (WSLA, WS-
Ag,) , terms of negotiation (e.g. time, price,), security
infrastructure to be used

• MB – B: they agree on a specific SLA written in a
specific SLA language (e.g. WSLA, WS-Agreement)
containing concrete SLA parameters like concrete ex-
ecution time, concrete price, etc.

• B – ASD: they agree on a specific service to be avail-
able on the ASD managed resources with the resource
constraints resulted from the higher level negotiation
– the service is going to be able to use the requested
resources without disruptions from other parties

• Furthermore we need on each level (MN, MB, B, ASD)
a negotiator which is responsible for generating and
interpreting SLAs.

Before committing themselves to an SLA, the user and
the provider may enter into negotiations that determine the
definition and measurement of user QoS parameters, and the
rewards and penalties for meeting and violating them respec-
tively. The term negotiation strategy represents the logic
used by a partner to decide which provider or consumer sat-
isfies his needs best. A negotiation protocol represents the
exchange of messages during the negotiation process. Re-
cently, many researchers have proposed different protocols
and strategies for SLA negotiation in Grids [22]. However,
these not only assume that the parties to the negotiation
understand a common protocol but also assume that they
share a common perception about the goods or services un-
der negotiation. In reality however, a participant may prefer
to negotiate using certain protocols for which it has devel-
oped better strategies, over others. Thus, the parties to a
negotiation may not share the same understanding that is
assumed by the earlier publications in this space.

In order to bridge the gap between different negotiation
protocols and scenarios, we propose a so-called meta-negotia-
tion architecture [4]. Meta-negotiation is needed by means
of a meta-negotiation document where participating parties
may express: the pre-requisites to be satisfied for a negotia-
tion, for example a specific authentication method required
or terms they want to negotiate on (e.g. time, price, reli-
ability); the negotiation protocols and document languages
for the specification of SLAs that they support; and condi-
tions for the establishment of an agreement, for example, a

1. <meta-negotiation ...>
2. ...
3. <pre-requisite>
4. <security>
5. <authentication value="GSI" location="uri"/>
6. </security>
7. <negotiation-terms>
8. <negotiation-term name="beginTime"/>
9. <negotiation-term name="endTime"/>
10. ...
11. </negotiation-terms>
12. </pre-requisite>
13. <negotiation>
14. <document name="WSLA" value="uri" .../>
15. <protocol name="alternateOffers"
16. schema="uri" location="uri" .../>
17. </negotiation>
18. <agreement>
19. <confirmation name="arbitrationService" value="uri"/>
20. </agreement>
21.</meta-negotiation>

Figure 3: Example Meta Negotiation Document

required third-party arbitrator. These documents are pub-
lished into a searchable registry through which participants
can discover suitable partners for conducting negotiations.
In our approach, the participating parties publish only the
protocols and terms while keeping negotiation strategies hid-
den from potential partners.

The participants publishing into the registry follow a com-
mon document structure that makes it easy to discover ma-
tching documents (as shown in Figure 3). This document
structure consists of the following main sections: Each docu-
ment is enclosed within the <meta-negotiation> ... </meta-
negotiation> tags. The document contains an <entity>
element defining contact information, organization and a
unique ID of the participant. Each meta-negotiation com-
prises three distinguishing parts, namely pre-requisites, ne-
gotiation and agreement as described in the following para-
graph.

As shown in Figure 3 prerequisites define the role a partic-
ipating party takes in a negotiation, the security credentials
and the negotiation terms. For example, the security ele-
ment specifies the authentication and authorization mecha-
nisms that the party wants to apply before starting the ne-
gotiation process. For example, the consumer requires that
the other party should be authenticated through the Grid
Security Infrastructure (GSI) [7]. The negotiation terms
specify QoS attributes that a party is willing to negotiate
and are specified in the <negotiation-term> element. As
an example, the negotiation terms of the consumer are be-
ginTime, endTime, and price. Details about the negotia-
tion process are defined within the <negotiation> element.
Each document language is specified within <document>
element. Once the negotiation has concluded and if both
parties agree to the terms, then they have to sign an agree-
ment. This agreement may be verified by a third party or-
ganization or may be lodged with another institution who
will also arbitrate in case of a dispute. Figure 4 emphasizes
a meta-negotiation infrastructure embedded into the agree-
ment negotiation, brokering and service deployment archi-
tecture as proposed in Figure 1. In the following we explain
the Meta-Negotiation infrastructure.

The registry is a searchable repository for meta-negotia-
tion documents that are created by the participants. The
meta-negotiation middleware facilitates the publishing of

Figure 4: Meta-negotiation in SRV.

the meta-negotiation documents into the registry and the
integration of the meta-negotiation framework into the ex-
isting client and/or service infrastructure, including, for ex-
ample, negotiation or security clients. Besides being as a
client for publishing and querying meta-negotiation docu-
ments (steps 1 and 2 in Figure 4), the middleware delivers
necessary information for the existing negotiation clients,
i.e. information for the establishment of the negotiation ses-
sions (step 4, Figure 4) and information necessary to start
a negotiation (step 5 in Figure 4).

4.2 Service brokering
In this subsection we are focusing on brokering-related as-

pects of the SRV architecture introduced in Section 2. Bro-
kers (B) are the basic components that are responsible for
finding the required services with the help of ASD. This task
requires various activities, such as service discovery, match-
making and interactions with information systems, service
registries, repositories. There are several brokering solutions
both in Grid [17] and SOAs [20], but agreement support is
still an open issue. In our architecture brokers need to in-
teract with ASDs and use adaptive mechanisms in order to
fulfill the agreement (further requirements and interopera-
tion is detailed in Section 4.3).

A higher-level component is also responsible for broker-
ing in our architecture: the Meta-Broker (MB) [14]. Meta-
brokering means a higher level resource management that
utilizes existing resource or service brokers to access various
resources. In a more generalized way, it acts as a mediator
between users or higher level tools (e.g. negotiators or work-
flow managers) and environment-specific resource managers.
The main tasks of this component are: to gather static and
dynamic broker properties (availability, performance, pro-
vided and deployable services, resources, and dynamic QoS
properties related to service execution), to interact with MN
to create agreements for service calls, and to schedule these
service calls to lower level brokers, i.e. match service de-
scriptions (SD) to broker properties (which includes broker
provided services). Finally the service call needs to be for-
warded to the selected broker.

Figure 5: Meta-Broker in SRV.

Figure 5 details the Meta-Broker (MB) architecture show-
ing the required components to fulfill the above mentioned
tasks. Different brokers use different service or resource
specification descriptions for understanding the user request.
These documents need to be written by the users to specify
all kinds of service-related requirements. In case of resource
utilization in Grids, OGF [1] has developed a resource spec-
ification language standard called JSDL [2]. As the JSDL
is general enough to describe jobs and services of different
grids and brokers, this is the default description format of
MB. The Translator component of the Meta-Broker is re-
sponsible for translating the resource specification defined by
the user to the language of the appropriate resource broker
that MB selects to use for a given call. These brokers have
various features for supporting different user needs, there-
fore an extendable Broker Property Description Language
(BPDL) [15] is needed to express metadata about brokers
and their offered services. The Information Collector (IC)
component of MB stores the data of the reachable brokers
and historical data of the previous submissions. This infor-
mation shows whether the chosen broker is available, or how
reliable its services are. During broker utilization the suc-
cessful submissions and failures are tracked, and regarding
these events a rank is modified for each special attribute in
the BPDL of the appropriate broker (these attributes were
listed above). In this way, the BPDL documents represent
and store the dynamic states of the brokers. In order to
support load balancing, there is an IS Agent (IS refers to
Information System) reporting to IC, which regularly checks
the load of the underlying resources of each connected bro-
ker, and store this data. It also communicates with the
ASDs, and receives up-to-date data about the available ser-
vices and predicted invocation times (that are used in the
negotiations). The matchmaking process consists of the fol-
lowing steps: The MatchMaker (MM) compares the received
descriptions to the BPDL of the registered brokers. This se-
lection determines a group of brokers that can provide the
required service. Otherwise the request is rejected. In the
second phase the MM counts a rank for each of the remaining
brokers. This rank is calculated from the broker properties
that the IS Agent updates regularly, and from the service
completion rate that is updated in the BPDL for each bro-
ker. When all the ranks are counted, the list of the brokers
is ordered by these ranks. Finally the first broker of the pri-
ority list is selected, and the Invoker component forwards
the call to the broker.

Figure 6: Interactions of the components of the
Meta-Broker during utilization.

As previously mentioned, three main tasks need to be done
by MB. The first, namely the information gathering, is done
by the IS Agent, the second one is negotiation handling and
the third one is service selection (illustrated in Figure 6).
They need the following steps: During the negotiation pro-
cess the MB interacts with MN: it receives a service request
with the service description (in JSDL) and SLA terms (in
MN document) and looks for a deployed service reachable
by some broker that is able to fulfill the specified terms. If
a service is found, the SLA will be accepted and the and
MN notified, otherwise the SLA will be rejected. If the ser-
vice requirements are matched and only the terms cannot be
fulfilled, it could continue the negotiation by modifying the
terms and wait for user approval or further modifications.

4.3 Service deployment and virtualization
Automatic service deployment (ASD) is a higher-level ser-

vice management concept, which provides the dynamics to
SBAs – e.g. during the SBA’s lifecycle services can appear
and disappear without the disruption of their overall behav-
ior.

Figure 7 shows the ASD’s related components to the SRV
architecture and their connections. To interface with a bro-
ker the ASD should be built on a repository (as an example
it can use the Application Content Service – ACS [9] – stan-
dard proposed by the OGF [1]). All the master copies of all
the deployable services should be stored in the repository.
In this context the master copy means everything what is
needed in order to deploy a service on a selected site – which
we call the virtual appliance (VA). The virtual appliance
could be either defined by an external entity or the ASD
solution should be capable of acquiring it from an already
running system. The repository allows the broker to deter-
mine which services are available for deployment and which
are the static ones. Thus the repository would help to define
a schedule to execute a service request taking into consid-
eration those sites where the service has been deployed and
where it could be executed but has not yet been installed
(it is also monitored by the IS Agent of the Meta-Broker
detailed in Section 4.2). If the deployed services are not
available, it checks whether any of the latter resources can
deliver the service taking into account the deployment cost.

The Workspace Service (WS), offers the virtualization ca-
pabilities – virtual machine creation, removal and manage-

Cloud or Grid

WS XEN
Domain0

XEN
Domainm

Servicei

...

Repository

VA1 VA2 VAn...

VAi

ServiceiASD

Broker

Figure 7: Service deployment in SRV.

ment – of a given site as a WSRF service. According to
the OGSA-Execution Planning Services (EPS) [8] scenarios,
a typical service broker has two main connections with the
outside world: the Candidate Set Generators (CSG), and
the Information Services. The task of the CSG is to offer
a list of sites, which can perform the requested service ac-
cording to the SLA and other requirements. Meanwhile the
information services should offer general overview about the
state of the SBA, Grid or Cloud. In most of the cases the
candidate set generator is an integral part of the broker thus
instead of the candidate set adjustments, the broker queries
the candidate site list as it would do without ASD. Then
the broker would evaluate the list and as a possible result
to the evaluation it would initiate the deployment of a given
service. As a result the service call will be executed as a
composed service instead of a regular call. The composition
will contain the deployment task as its starting point and
the actual service call as its dependent task. Since both the
CSG and the brokers heavily rely on the information system,
the ASD can influence their decision through publishing dy-
namic data. This data could state service presence on sites
where the service is not even deployed.

The selected placement of the ASD depends on the site
policies on which the brokering takes place. In case the site
policy requires a strict scheduling solution then either the
CSG or the information system can be our target. If there
is no restriction then the current broker can be replaced with
an ASD extended one. In case the candidate set generator
is altered then it should be a distributed, ontology-based
adaptive classifier to define a set of resources on which the
service call can be executed [28]. The CSG can build its clas-
sification rules using the specific attributes of the local in-
formation systems. Each CSG could have a feedback about
the performance of the schedule made upon its candidates.
The ASD extended CSG should have three interfaces to in-
teroperate with other CSGs and the broker. First of all,

the CSGs could form a P2P network, which requires two
interfaces. The first manages the ontology of the different
information systems by sharing the classifier rules and the
common ontology patterns distributed as an OWL schema.
The second interface supports decision-making among the
peers. It enables the forwarding of the candidate request
from the broker. The third interface lies between the bro-
ker and the CSGs to support passing the feedback for the
supervised learning technique applied by the CSGs. This in-
terface makes it possible for the broker to send back a metric
packet about the success rate of the candidates.

The brokers should be adapted to ASD differently depend-
ing on where the ASD extensions are placed. If both the
CSG’s and the broker’s behavior is changed then the bro-
ker can make smarter decisions. After receiving the candi-
date site set, the broker estimates the deployment and usage
costs of the given service per candidate. For the estimation
it queries the workspace service (WS). This service should
accept cost estimate queries with a repository entry (VA)
reference as an input. The ASD should support different
agents discovering different aspects of the deployment. If
only the broker’s behavior is changed, and the CSG remains
untouched, then the ASD would generate deployment service
calls on overloaded situations (e.g. when SLA requirements
are endangered). These deployment service calls should use
the workspace service with the overloaded service’s reposi-
tory reference.

Finally it is possible to alter the information system’s be-
havior. This way the ASD provides information sources of
sites, which can accept service calls after deployment. The
ASD estimates and publishes the performance related en-
tries (like estimated response time) of the information sys-
tem. These entries are estimated for each service and site
pair, and only those are published which are over a prede-
fined threshold.

Regarding component interactions, the ASD needs to be
extended with the following in order to communicate with
brokers: Requested service constraints have to be forced in-
dependently from what Virtual Machine Monitor (or hyper-
visor [3]) is used. To help the brokers making their decisions
about which site should be used the ASD has to offer de-
ployment cost metrics which can even be incorporated on
higher level SLAs. The ASD might initiate service deploy-
ment/decommission on its own when it can prevent service
usage peaks/lows, to do so it should be aware of the agree-
ments made on higher levels.

5. CASE STUDY
In this section we discuss a case study on the Maxillo

Facial Surgery Simulation (MFSS) in order to demonstrate
the utilization of the presented architecture. The MFSS ap-
plication facilitates the work of medical practitioners and
provides the pre-operative virtual planning of maxillo-facial
surgery. The application consists of a set of components
running on local and different remote machines. These com-
ponents may be organized as a workflow in order to simplify
the work of the end users [4]. The main steps of the simu-
lation are: (i) mesh generation is used for the generation of
meshes necessary for the finite element simulation; (ii) mesh
manipulation defines the initial and boundary conditions for
the simulation; (iii) finite element analysis is a fully parallel
MPI application usually running on a remote HPC cluster.
In the followings we describe step by step how MFSS can

Figure 8: MFSS workflow with meta-negotiation
specification.

be executed on the proposed architecture for the SLA-based
Resource Virtualization. MFSS application can be modeled
and executed using the Amadeus workflow tool, a QoS-aware
Grid modeling, planning, and execution tool [4], see Figure
8.

As depicted in Figure 8, meta-negotiation for the MGSe-
quence activity (used for mesh generation) is specified by
means of (a) negotiation terms, (b) security restrictions,
(c) negotiation protocols, (d) document languages and (e)
preconditions for the agreement establishment. Negotiation
terms are specified as begin time, end time, and price. In or-
der to initiate a negotiation, GSI [7] security is required. The
negotiation is performed based on the alternate offers pro-
tocol [32]. Therefore, the workflow application understands
only the alternate offers protocol, and negotiation with re-
sources which do not provide alternate offers protocol cannot
be properly accomplished. Additional limitation considers
document language used for the specification of SLAs. As
shown in Figure 8, QoS is specified using WSLA [13]. The
constraints shown in Figure 8 are transformed into a XML
based meta-negotiation document. Thereafter this docu-
ment is passed to the Meta-Broker. During the execution of
the workflow, the Meta-Broker receives the service descrip-
tion in JSDL and the SLA terms in the meta-negotiation
document. First a matchmaking process is started to select
a broker that is able to execute the job with the specified
requirements (resource requirements and agreement terms).
The broker with the best performance values is selected,
and the description and agreement is translated to the for-
mat understandable by the broker. Thereafter the broker
is invoked with the transformed descriptions. The selected
broker receives the descriptions and calls the ASD to de-
ploy a service on a Cloud or a Grid, taking into account the

cost requirements of the agreement, or chooses an already
deployed, idle computing service. The job is executed and
the results are returned to the workflow enactor. Finally the
ASD decommissions the service.

6. CONCLUSIONS
In this paper a novel architecture for SLA-based resource

virtualization with on-demand service deployment is intro-
duced. The solution incorporates three enhancements: a
meta-negotiation component for generic SLA management,
a meta-brokering component for diverse broker management
and an automatic service deployment for resource virtual-
ization on the Cloud. We have stated the essential require-
ments for building the target architecture and demonstrated
the utilization through a future case study. Our future work
aims at finalizing the presented components and interfac-
ing the architecture to commercial Clouds and production
Grids.

7. ACKNOWLEDGEMENTS
The research leading to these results has received fund-

ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube), and by the Vienna Science and Technology Fund
(WWTF) under agreement ICT08-018, FoSII – Foundations
of Self-governing ICT Infrastructures.

8. REFERENCES
[1] Open grid forum website. http://www.ogf.org, 1999.

[2] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows,
A. Ly, S. McGough, D. Pulsipher, and A. Savva. Job
submission description language (jsdl) specification,
version 1.0. Technical report, 2005.
http://www.gridforum.org/documents/GFD.56.pdf.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM.

[4] I. Brandic, D. Music, S. Dustdar, S. Venugopal, and
R. Buyya. Advanced qos methods for grid workflows
based on meta-negotiations and sla-mappings. In The
3rd Workshop on Workflows in Support of Large-Scale
Science, pages 1–10, November 2008.

[5] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
Computer Systems, 2009.

[6] M. Q. Dang and J. Altmann. Resource allocation
algorithm for light communication grid-based
workflows within an sla context. Int. J. Parallel
Emerg. Distrib. Syst., 24(1):31–48, 2009.

[7] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
security architecture for computational grids. In CCS
’98: Proceedings of the 5th ACM conference on
Computer and communications security, pages 83–92,
New York, NY, USA, 1998. ACM.

[8] I. Foster, H. Kishimoto, A. Savva, D. Berry,
A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,

F. Siebenlist, R. Subramaniam, J. Treadwell, and
J. Reich. The open grid services architecture, version
1.5. Technical report, 2006.
http://www.ogf.org/documents/GFD.80.pdf.

[9] K. Fukui. Application contents service specification
1.0. Technical report, 2006.
http://www.ogf.org/documents/GFD.73.pdf.

[10] R. Howard and L. Kerschberg. A knowledge-based
framework for dynamic semantic web services
brokering and management. In DEXA ’04: Proceedings
of the Database and Expert Systems Applications, 15th
International Workshop, pages 174–178, Washington,
DC, USA, 2004. IEEE Computer Society.

[11] A. Iosup, T. Tannenbaum, M. Farrellee, D. Epema,
and M. Livny. Inter-operating grids through delegated
matchmaking. Sci. Program., 16(2-3):233–253, 2008.

[12] K. Keahey, I. Foster, T. Freeman, and X. Zhang.
Virtual workspaces: Achieving quality of service and
quality of life in the grid. Sci. Program.,
13(4):265–275, 2005.

[13] A. Keller and H. Ludwig. The wsla framework:
Specifying and monitoring service level agreements for
web services. Journal of Network and Systems
Management, V11(1):57–81, March 2003.

[14] A. Kertesz and P. Kacsuk. Meta-broker for future
generation grids: A new approach for a high-level
interoperable resource management. In Grid
Middleware and Services Challenges and Solutions,
pages 53–63. Springer US, 2008.

[15] A. Kertesz, I. Rodero, and F. Guim. Data model for
describing grid resource broker capabilities. In Grid
Middleware and Services Challenges and Solutions,
pages 39–52. Springer US, 2008.

[16] C. Kesselman and I. Foster. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann
Publishers, November 1998.

[17] K. Krauter, R. Buyya, and M. Maheswaran. A
taxonomy and survey of grid resource management
systems for distributed computing. Software: Practice
and Experience, 32(2):135–164, 2002.

[18] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and
R. J. Figueiredo. Vmplants: Providing and managing
virtual machine execution environments for grid
computing. In SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing,
Washington, DC, USA, 2004. IEEE Computer Society.

[19] Z. Li and M. Parashar. An infrastructure for dynamic
composition of grid services. In GRID ’06: Proceedings
of the 7th IEEE/ACM International Conference on
Grid Computing, pages 315–316, Washington, DC,
USA, 2006. IEEE Computer Society.

[20] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation
and policing in dynamic web service selection. In
WWW Alt. ’04: Proceedings of the 13th international
World Wide Web conference on Alternate track papers
& posters, pages 66–73, New York, NY, USA, 2004.

[21] D. Ouelhadj, J. Garibaldi, J. MacLaren,
R. Sakellariou, and K. Krishnakumar. A multi-agent
infrastructure and a service level agreement
negotiation protocol for robust scheduling in grid
computing. In Proceedings of the 2005 European Grid
Computing Conference (EGC 2005), February 2005.

[22] M. Parkin, D. Kuo, J. Brooke, and A. MacCulloch.
Challenges in eu grid contracts. In Proceedings of the
4th eChallenges Conference, pages 67–75, 2006.

[23] D. M. Quan and J. Altmann. Mapping a group of jobs
in the error recovery of the grid-based workflow within
sla context. Advanced Information Networking and
Applications, International Conference on, 0:986–993,
2007.

[24] D. Reed, I. Pratt, P. Menage, S. Early, and
N. Stratford. Xenoservers: Accountable execution of
untrusted programs. In In Workshop on Hot Topics in
Operating Systems, pages 136–141, 1999.

[25] N. G. G. Report. Future for european grids: Grids and
service oriented knowledge utilities – vision and
research directions 2010 and beyond. Technical report,
December 2006.
ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3 eg fi-
nal.pdf.

[26] I. Rodero, F. Guim, J. Corbalan, L. Fong, Y. Liu, and
S. Sadjadi. Looking for an evolution of grid
scheduling: Meta-brokering. In Grid Middleware and
Services Challenges and Solutions, pages 105–119.
Springer US, 2008.

[27] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska.
Experiences with gria – industrial applications on a
web services grid. In E-SCIENCE ’05: Proceedings of
the First International Conference on e-Science and
Grid Computing, pages 98–105, Washington, DC,
USA, 2005. IEEE Computer Society.

[28] M. Taylor, C. Matuszek, B. Klimt, and M. Witbrock.
Autonomous classification of knowledge into an
ontology. In The 20th International FLAIRS
Conference (FLAIRS), 2007.

[29] A. Tsalgatidou and T. Pilioura. An overview of
standards and related technology in web services.
Distrib. Parallel Databases, 12(2-3):135–162, 2002.

[30] T. Vazquez, E. Huedo, R. S. Montero, and I. M.
Llorente. Evaluation of a utility computing model
based on the federation of grid infrastructures. In
Euro-Par 2007 Parallel Processing, pages 372–381.
Springer Berlin / Heidelberg, 2007.

[31] S. Venugopal, R. Buyya, and L. Winton. A grid
service broker for scheduling e-science applications on
global data grids. Concurrency and Computation:
Practice and Experience, 18(6):685–699, 2006.

[32] S. Venugopal, X. Chu, and R. Buyya. A negotiation
mechanism for advance resource reservation using the
alternate offers protocol. In 16th International
Workshop on Quality of Service (IWQoS 2008), pages
40–49, June 2008.

