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Abstract: This research proposes a Bayesian Network-based methodology to extract moving vessels 

from a plethora of blips captured in frame-by-frame radar images. First, the inter-frame differences or 

graph characteristics of blips, such as velocity, direction, and shape, are quantified and selected as 

nodes to construct a Directed Acyclic Graph (DAG), which is used for reasoning the probability of a 

blip being a moving vessel. Particularly, an unequal-distance discretisation method is proposed to 

reduce the intervals of a blip’s characteristics for avoiding the combinatorial explosion problem. Then, 

the undetermined DAG structure and parameters are learned from manually verified data samples. 

Finally, based on the probabilities reasoned by the DAG, judgments on blips being moving vessels are 

determined by an appropriate threshold on a Receiver Operating Characteristic (ROC) curve. The 

unique strength of the proposed methodology includes laying the foundation of targets extraction on 

original radar images and verified records without making any unrealistic assumptions on objects' 

states. A real case study has been conducted to validate the effectiveness and accuracy of the proposed 

methodology.    

Keywords: Marine Radar; Bayesian Network; Continuous Attribute Discretisation; Evidence Distance; 

Targets Extraction 

1 Introduction and background 

Marine radar is the most important sensor for navigation or port management, as in practice it is 

capable of detecting vessels, waterfronts, and rocks actively. In an efficient form of perception, a 

marine radar system offers sequential images, which mark vessels or other objects as blips on screen. 

Moreover, the dynamic characteristics of blips can also be measured through Doppler velocities. 

However, most marine radar systems work on a low Repetition Pulse Frequency (RPF) mode and the 

Doppler velocities are often ambiguous. Since radar images are the kernel evidence of target 

extraction, many marine radar systems incorporate Automatic Radar Plotting Aid (ARPA) functions to 

identify and track moving blips automatically with green circles reminding operators of potential 

moving vessels. As a special type of marine radar, the coastal surveillance radar is even capable of 

tracking more than 1,000 blips simultaneously with the support of an effective ARPA function. 

Generally, a conventional ARPA function is designed from filtering algorithms, which are formulated 

for extracting actual trajectories of blips (Kosuge et al., 1997).  

Presently, ARPA radar plays an essential role in the estimation of collision risk. Goerlandt et al. 

(2015) described the risks in collision alert system (CAS) applications, and proposed a novel 

framework for maritime risk-informed CAS. Simsir et al. (2014) investigated the CAS in complex 

fairways. Chin and Debnath (2009) proposed a new method to perceive collision risk in a port 

waterway. In their research, ARPA radar is used as the major sensor for tracking vessels, and the 

collision risk estimation is generally based on the information obtained from ARPA targets. 

Problematic ARPA information might trigger false alerts. 
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In recent years, marine radar has been improved rapidly, especially in terms of the sensitivity and 

ability of noise suppression. The latest S band marine radar is capable of tracking a 0.5m
2
 target 5 

miles away. Obviously, radar systems with high sensitivity provide more informative images of 

surroundings. On the other hand, high quality images generally bring a plethora of blips or objects, 

which might confuse operators. A 0.5m
2
 target shown as a blip can be a canoe, a drowning person, a 

sea weed, a background noise, or even a lump of trash floating on the water. However, the ARPA 

function is not capable of distinguishing their differences. Therefore, in the harbour management and 

the CAS systems discussed previously, supervisors always have to identify moving vessels from 

hundreds of ARPA targets and blips manually. In other words, how to identify them effectively 

becomes an important issue related to safety. Meanwhile, ship crews and vessel traffic service (VTS) 

supervisors also have to identify banks, shoals, rocks and channel structures in order for them to avoid 

possible grounding and collision incidents with harbour facilities (Mazaheri et al., 2014; Nam et al., 

2015). 

In fact, supervisors are often able to identify the authenticity of a blip by further inspecting its 

graph and motion characteristics. However, the identification will cost a supervisor a certain amount 

of time. In busy waterways, such one-by-one inspections from too many blips become impractical. For 

instance, in Nantong Waterway of Yangtze River, China, there are about 20,000 vessels passing 

through each day. Therefore, it is impossible to ensure that all the blips are inspected manually. A 

realistic solution is to simulate such human intelligence to extract moving vessels from blips 

automatically. Referring to manual work, this intelligence does not require precise speeds, courses or 

trajectories of blips. Another challenge for marine radar targets extraction is uncertainty. Weather 

conditions and observation angles will change the graph of a blip notably. Since the resolution of radar 

is limited, the moving trajectories of blips are always different from the actual ones and they are often 

unstable. Moreover, multiple blips overlap with or connect to each other frequently, making the direct 

identification difficult. Therefore, the key issue is to address the uncertainties associated with the 

sequential radar images. In practice, a blip caused by background noise might drift with a steady speed 

which is similar to a moving vessel, whilst a real moving vessel might hold an extremely low speed to 

approach a berth, and it looks like a stationary noise. In other words, the differences between moving 

vessel blips and other ones are not distinctive.  

In practice, radar operators often take consideration of several characteristics simultaneously to 

make their judgments. To build this artificial intelligence, an ideal approach should be capable of 

making conjunctive inference with several characteristics of blips under uncertainties. In fact, a 

number of methods have already been introduced into radar research, such as Dempster's rule (Li and 

Pang, 2013; Dempster, 1967), neural network (Shafiei and Binazadeh, 2015) and fuzzy cluster (Ma et 

al., 2015). The human experience mentioned above can be considered as a kind of prior information in 

probabilistic inference. As an efficient probabilistic inference tool to model uncertainty, Bayesian 

Network (BN) is widely considered to be superior and rigorous (Zhang et al., 2013). Montewka et al. 

(2015) used a BN-based probabilistic model to predict a ship performance in dynamic ice. Hänninen 

and Kujala (2014) proposed Bayesian network models for Port State Control studies. Goerlandt and 

Montewka (2014) used a BN-based model for estimating accidental cargo oil outflow from product 

tankers in a ship-ship collision. 
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The research is aiming to propose a BN-based identification methodology to extract moving 

vessels from radar blips based on the inter-frame differences and graph characteristics. The remainder 

of this paper is organised as follows. In Section 2, radar image characteristics, conventional filtering 

and classification methods are introduced. Section 3 presents a BN-based targets extraction 

methodology. In Section 4, a case study is conducted to demonstrate and validate the proposed 

methodology. The paper is concluded in Section 5. 

2 Conventional radar targets extraction methods 

The ARPA function of marine radar is initially designed for collision avoidance, which does not 

concern the authenticity, importance or behaviour of blips (Yoo and Kim, 2003). Presently, in a busy 

waterway, pattern recognition of vessel behaviours becomes increasingly important, especially for port 

management (Riveiro et al., 2008). In this section, typical identification methods in radar image 

research are briefly reviewed. 

2.1 The uncertainties in radar images 

Radar echo signals can be visualised as blips on screen. In such a form, the radar formulates the 

surroundings as a grey-scale image, or a pseudo-colour image, and each pixel in radar images 

generally represents the echo intensity. For example, the satellite image and the grey-scale radar image 

are shown in Figure 1 respectively, which capture the same location and surroundings of Yangtze 

River, Zhutuo County, Chongqing, China. The radar image is obtained from the maritime radar 

belonging to the local administration, while the satellite image is obtained from the Google map. The 

position of radar is marked as a five-point star in both images. With the help of the radar image on the 

right-hand side, radar operators are able to differentiate the vessels, waterfronts, and bridges. However, 

much information is missing in the radar image. First of all, an area is blocked and marked as 'Blind 

Area', and it cannot be observed. Secondly, the 'Shoal and Rock' marked in the satellite image is 

shown as stationary blips, which are quite similar to vessels. Moreover, some blips marked as 

'Random Noise' are moving like vessels, but they are most likely to be caused by multi-path effects or 

background noises.  

 
Figure 1 The satellite and grey-scale radar image of Yangtze River, Chongqing, China 

Radar 
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Unknown Objects 

Blind Area 

Moving Vessel 

Random Noise 



4 

Using binarization and segmentation algorithms, a radar image can be divided into a group of 

colour spots or blips with different shapes and sizes, which indicate different kinds of objects (Ranjani 

and Thiruvengadam, 2012). The following problem is to identify such blips or objects. In other types 

of radar, the pattern differences can be found in the frequency spectrum characteristics of blips, 

especially for Synthetic Aperture Radar (SAR). Carvalho et al. (2010) proposed a SAR imagery 

segmentation method by statistical region growing and hierarchical merging. Chen (2015) proposed a 

novel method to distinguish low-altitude targets from sea clusters with the spatial and temporal 

features of the radar image sequence. For marine radar, Vicen-Bueno et al. (2009) proposed an 

approach to reduce the influence of sea clusters. In practice, operators are generally able to identify the 

blips correctly, simply based on blips’ graphic characteristics rather than frequency spectrums. 

2.2 Filtering and classification methods on radar objects 

As discussed previously, trajectories captured by blips are doubtful, which are illustrated in 

Figure 2. In the figure, the centres of a cargo vessel named object 26 are represented with white dots, 

and they can be connected with a solid zigzag line, which is presented as the captured trajectory on the 

right-hand side of Figure 2. Obviously, it is impossible for this cargo vessel to move in such a strange 

trajectory. It is more likely to keep a stable direction. Therefore, it can be assumed that the object was 

moving in an approximately linear manner. With appropriate radar filtering algorithms, a linear 

trajectory can be found, which is represented as a dash line on the right-hand side of Figure 2. In high 

speed monitoring, especially for aircrafts or missiles, such assumptions and algorithms are reasonable 

and efficient (Farrell, 2008; He et al., 2015).  

  

Figure 2 Original Trajectory of Object 26 (cargo) observed by radar 

The typical radar filtering algorithms include the least square algorithm, α-β filter, α-β-ϒ filter, 

extended Kalman filter, and particle filter. Yoo and Kim (2003) proposed an algorithm named α–β–Λ 

which incorporates an estimation technique of the tracking index. He et al. (2015) designed the IMM-

UKF-UPF algorithm which combines the Unscented Kalman Filter (UKF) algorithm with the 

Unscented Particle Filter (UPF) algorithm to reduce the influence of flicker noises for ground-based 

radar. De Feo et al. (1997) compared MHT and IMM-JPDA with Kalman filtering in radar tracking. 

However, assumptions on the status of objects and noises have to be made in all the filtering 

algorithms. For marine radar, the differences between noise objects and real moving vessels are not 

distinctive as discussed previously. Therefore, by now, the marine radar ARPA function based on α-β 

Original  

Restored  
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filter is only practical in the open sea. Moreover, due to such assumptions, the values of dynamic 

attributes offered by ARPA functions are not accurate (IEC, 2013). 

To address the problem that radar captures false targets, researchers have introduced several 

classification algorithms to identify them. For marine radar, Ma et al. (2015) proposed a classification 

method to identify the false ARPA targets using fuzzy k-means (FCM), and the reported accuracy is 

91.0%. However, the question is that the dynamic attributes of ARPA targets are not fully reliable. As 

a result, the classification is not completely credible. More research was conducted in other types of 

radar. Zhou et al. (2013) invented a radar target recognition method based on fuzzy optimal 

transformation using high-resolution range profiles. This method can be used to maximize the 

between-class distance, while preserving the within-class structure. Zhai and Jiang (2014) developed a 

novel method to detect and classify targets based on real data collected from a bistatic ultra-wideband 

(UWB) radar system and using a developed target type classification and recognition algorithm. Zhao 

et al. (2014) invented a hierarchical vessel classifier based on k-Nearest Neighbors (KNN) algorithm 

for high-resolution inverse SAR images. All the above classifiers or pattern recognition methods did 

not fully take the uncertainties of radar images into consideration, although they are efficient in 

specific applications. 

3 A proposed methodology 

This research proposes a novel radar extraction or classification methodology to simulate manual 

work based on probabilistic inference. The flow of this methodology is illustrated in Figure 3. At first, 

several inter-frame differences or attributes of radar blips are quantified. Then, to avoid the 

combinatorial explosion, a new method is proposed to discretise the original intervals of these 

attributes. Subsequently, these attributes and the authenticity of blips are used to construct a new DAG 

to reason the probability of a blip being a real moving vessel. Eventually, based on the probabilities 

reasoned by the DAG, final judgements on if a blip is a moving vessel can be made using a receiver 

operating characteristic (ROC) curve. 

 

Figure 3 The flow of the proposed methodology 

3.1 Step 1: Radar image inter-frame differences quantification 

Operators are able to distinguish objects using the inter-frame differences and graphic 

characteristics, including velocity, course, size, colour, width and length of blips. The prominent 

advantage of BN is that the dependencies among all the factors can be modelled properly (Zhang et al., 

2013). Therefore, under the framework of BN, all the characteristics above can be included to conduct 

conjunctive inference. To simplify the model, three pieces of key evidence (i.e., attributes) are selected 
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in this research which are velocity, motion direction, and blip shape (i.e., slenderness) respectively, as 

shown in Figure 4.  

Referring to manual work and the ARPA function requirements (IEC, 2013), operators are 

generally able to identify the targets in 25 seconds, or 10 continuous frames. Therefore, this research 

extracts the velocity and direction characteristics from an analysis of 10 frames. In the future research, 

fewer frames could be considered. 

Generally, moving vessels are more likely to sail with a steady speed and a steerable course. On 

contrary, noise objects are more likely to drift around small areas. Hence, the velocity and motion 

course can be quantified as illustrated in Figure 4. In the figure, the original sequential images have 

been casted on an electronic chart after binarization. Then, the centres of radar blips are marked as 

white dots in sub-figure 4(e). When connecting the centres of a radar blip in adjacent frames, an initial 

radar trajectory can be obtained as illustrated in sub-figure 4(d). The velocity of the radar blip equals 

to the number of units (pixels) that the blip has moved in 10 frames, or the displacement. The direction 

is quantified as the “included angle” between the true north and the motion direction, which is 

illustrated in sub-figure 4(b). For simplicity, all the values above are rounded down to integers.  

Intuitively, according to the images, a moving vessel's blip is more slender than a noise's, and the 

principle is illustrated in Figures 2 and 4. This is because the imagery delay is a common function of 

radar with moving blips possessing afterglows. Therefore, the slenderness of a blip can be considered 

as a distinctive graph characteristic, which can be computed as the quotient of a blip's pixel size (S2) to 

blip circumcircle area (S1). This process is illustrated in sub-figure 4(c), where S2/S1 is defined as the 

slenderness. 

  
Figure 4 Blip characteristics in frames of radar 

3.2 Step 2: Unequal-distance discretisation optimisation 

After appropriate binarization and segmentation algorithms have been used, the velocity, 

direction and shape (slenderness) are quantified. Before inference, the observation (measurement) 

values obtained from graph characteristics and dynamic attributes need further discretisation; 

Original sequential image Binary image on E-Chart 

Velocity 

velocity 

Motion direction 

Binary blip shape characteristic 

S1=blip circumcircle area 
S2=blip size 
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otherwise there will be a combinatorial explosion problem. Taking vessel speed as an example, the 

speed values between 0 and 30.0 knots are considered to be meaningful. As a result, there will be 300 

hundred exclusive observation values when taking the interval size of 0.1 knots. Generally speaking, a 

smaller interval in discretisation makes the model closer to the reality. However, smaller intervals will 

increase the complexity, especially in modelling of the joint probabilities in a BN. 

Much work has been conducted to find optimal intervals in continuous observations, including 

entropy methods, the Adaptive Discretisation Intervals (ADI) method and the Minimum Descriptive 

Length (MDL) method (Kotsiantis and Kanellopoulos, 2006; Clarke and Barton, 2000). Entropy 

methods are based on Shannon Entropy that is an accurate measurement on the amount of information. 

An optimal interval can be solved in the trade-off between the entropy value and the complexity. 

However, Shannon Entropy is a theoretical boundary value. All the entropy measurement methods are 

just similar to Shannon Entropy. Moreover, the optimisation of intervals is generally conducted on 

equal-distance discretisation, which might not provide an optimal solution. Different from entropy 

methods, the MDL method is applied for global optimisation, which combines a measure of the 

underlying probability distributions of the data sample with a consideration of the network complexity 

(Grünwald, 2000). Compared with others, the ADI method is more relevant to heuristic methods, 

which can only be applied under specific assumptions on the distribution (Bacardit and Garrell, 2003). 

In this research, an un-equal distance discretisation method is proposed. In fact, quantified 

characteristics of blips are discrete as described in Section 3.1. Therefore, the discretisation is indeed a 

merging operation, which will reduce the number of original intervals and simplify the inference. 

Simultaneously, such a merging will cause a loss of original information. To find an optimal 

discretisation, the key issue is to quantify this loss. 

3.2.1 Likelihood modelling 

The velocity, direction and slenderness can be considered as three different pieces of evidence to 

reason the authenticity of a blip. In other words, the values of the attributes above can be mapped as 

probabilities or likelihoods of authenticity. Suppose },{ FalseTrue   is a set of mutually exclusive 

and collectively exhaustive propositions for recognitions of blips, where True  is a True state and 

False  a False state. Let Ø represent the empty set. Then,   is referred to as a frame of discernment. 

A Basic Probability Assignment (bpa) is a function p: ]1,0[2 
 that satisfies, 

( ) 0, ( ) 1p p





                                        (1) 

where the basic probability ( )p   is assigned exactly to a proposition   and not to any smaller 

subset of  . ( )p   can be generated from the values of attributes, including the velocity, direction 

or slenderness of a blip. Referring to the research conducted by Yang and Xu (2014), the likelihoods 

of authenticity based on observation values can be presented below. 

Let 1 2{ , , , }KV v v v
 

be the K measurement values observed from a blip’s individual attribute 

(Xu et al., 2013), which can be the velocity, direction, or slenderness. In historical data, the 

observations from the verified objects of the False state are denoted by 
1 2

0 0 0 0{ , , , }
Kv v vQ q q q  with 

the sample size
0S , and 

0

ivq denotes the frequency or amount of a singleton measurement value iv  

in the observations of the False state (noise or stationary). Similarly, the observations from the verified 
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objects of the True state are denoted by 
1 2

1 1 1 1{ , , , }
Kv v vQ q q q  with the sample size 

1S , and 
1

ivq

denotes the frequency or amount of a singleton measurement value iv  in the observations of the True 

state (moving vessels). These two sets of observations are shown in Table I.   

Table I. Radar Observations 

Verified sample 
Radar observation attribute values in the hypotheses 

sample size v1 … vi … vK 

False state (0) 0S  1

0

vq  … 
1

0

vq  … 
1

0

vq  

True state (1) 1S  1

1

vq  … 
1

ivq  … 
1

Kvq  

In the discrimination framework{ (0), (1)}False True , each 
i

j

vc  stands for the likelihood of the 

hypothesis j state when iv  is captured, which is presented in Eq. (2) and Table II: 

/
i i

j j j

v vc q S , for i =1,…, K,  j = 0, 1.                                             (2) 

Table II. Likelihoods 

Hypotheses 
Radar observation attribute values’ likelihoods in the hypotheses 

v1 … vi … vK 

False state (0) 
1

0

vc  … 
0

ivc  … 
0

Kvc  

True state (1) 
1

1

vc  … 
1

ivc  … 
1

Kvc  

If all observations in Table I are conducted independently, the relationship between likelihood 

i

j

vc  and probability (normalised likelihood) 
i

j

vp  is given by (Yang and Xu, 2014), 

0 1/ ( )
i i i i

j j

v v v vp c c c  , for i =1… K, j=0, 1.                                          (3) 

Using Eq. (3), iv  can be mapped to likelihoods of authenticity (the True or False state), or a 

relative likelihood vector 
0 1{ , }
i ii v vvp p p , where 0 denotes the False state, and 1 denotes the True 

state.  

3.2.2 Discretisation modelling with buckets 

As discussed, taking original observation values as intervals (discrete states) in BN modelling is 

not appropriate, which might lead to combinatorial explosion. To reduce the intervals of a single 

attribute or node in BN modelling, some consecutive observation (measurement) values have to be 

merged together as a new interval. This merging will cause information losses. With the help of 

likelihood vectors, such losses can be quantified and described as follows. 

As shown in Figure 5 and Table I, for the K individual original observation (measurement) values 

1{ , , }Kv v , their likelihood vectors 
1

{ , , }
Kv v

p p can be computed with Eqs. (2) and (3). To reduce 

the number of intervals in BN modelling, these original observation values have to be merged to L 

buckets as shown in Figure 5. A bucket here denotes a set of consecutive observation values, or an 

interval after merging. In this figure, the consecutive observation values between two adjacent bold 

lines are merged into a bucket. Let lI  denote the number of consecutive observation values which 

fall into the l
th
 bucket, hence

1

L

ll
I K


 . Suppose that measurement values mv  to nv  ( mv  and 
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nv  are included) have been merged into the l
th
 bucket, and the new likelihood vector is presented as 

0 1{ , }l ll
p p p , after this merging, according to Eq. (3), where 

0 1( ) / ( )
n n nj j

l v v vm m m
p c c c

      
     , j=0, 1.                                  (4) 

Hence, the original values mv  to nv  have to share the same likelihood vector
l

p . Obviously, it might 

cause some loss of the original information.  

 
Figure 5 Information losses when merging a set of consecutive measurement values 

The question is that if , ,
m nv v

p p  are exactly the same as 
l

p , this merging will cause no 

information loss; if , ,
m nv v

p p are different but close to 
l

p , this merging can be considered as 

partially correct. Hence, the next issue is to quantify the differences or distances between vector 
l

p  

and each of , ,
m nv v

p p . 

3.2.3 Information loss modelling and discretisation optimisation 

Many researchers have proposed methods to evaluate the distances or similarities between 

evidence. The following definition proposed by Jousselme et al. (2001) has been widely used: 

 
2 2

1 2 1 2 1 2

1
( , ) ( 2 , )

2
pbad p p p p p p                                      (5) 

where 
2

1 1 1
,p p p , and 1 2

,p p  denotes the dot product operation of vectors 
1

p  and 
2

p . 

1 2
( , ) [0,1]pbad p p   can be considered as an expected error rate under the condition that the actual 

likelihood vector is 
1

p , but the merged or reported one is 
2

p .  

Therefore, for the original observation value iv  in the l
th
 bucket, its expected error rate is 

denoted as ( , )
ipba v l

d p p . Let ( )iv denote the density (probability of occurrence) of the original 

observation value iv . Hence, the product of the expected error rate ( , )
ipba v l

d p p  and the density 

( )iv  can be considered as an expected information loss when the observation value iv  has been 

merged into the l
th
 bucket. The densities of the original observation values 1{ , , }Kv v  can be found 

in the verified samples, as in Table I. The ( )iv  is presented as, 

Normalised likelihoods of authenticity 

Observation Values 

0 

1 
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0 1 0 1( ) ( ) / ( )
i ii v vv q q S S                                                             (6) 

Then, the global expected information loss is the sum of all the expected information losses on 

original observation values 1{ , , }Kv v . An optimal merging or discretisation on these values should 

keep the sum of information losses minimum. As mentioned, 
1

p  denotes the merged likelihood 

vector of the l
th
 bucket, which contains Il original measurement values. Since 

pbad  in Eq. (4) is 

denoted for the expected error rate, an appropriate 1{ , }LI I  can be solved in an optimisation, 

which is presented as, 

1

1 1
{ , } arg min [ ( , ) ( )]

n n

mn

L k I

L bpa mv nn m k
I I I d p p v

 

 
                            (7) 

where 1

1

1, 1

, 1
nn

n
k

I n






 


 and 

1

L

ll
I K


 . Obviously, K ≥ L. Therefore, there are finite values 

of I . Through enumerating all the possible values, I  can be found. In practice, this algorithm is 

limited by the number of original measurement values, where K should be smaller than 100, otherwise 

this optimisation will be computationally intensive.  

After merging, the buckets with different sizes can also be considered as new un-equal distance 

intervals, or an optimal discretisation on a node. 

3.3 Step 3: BN inference with structure and parameters learning 

After discretisation, the following problem is to build an inference framework whose 

formalization as described below. 

BN is defined by a pair ( , )sS  , where ( , )S E  is a directed acyclic graph (DAG) with a 

set of nodes  , and with a set of arcs or nodes {( , ) | , , }i j i j i jE X X X X X X    representing 

probabilistic dependencies among domain variables (Monti and Cooper, 1998). s represents the 

parameterization of a probability measure   defined over the space of possible instantiations of   . 

Given a node iX  , Pai is used to denote the set of parents of iX in S. The essential property of 

BNs is summarized by the Markov property, and it assumes that each variable is independent of its 

non-descendants given its parents. The application of the chain rule, together with the Markov 

property, yields the following factorization of the joint probability of any particular instantiation x  

of all n variables: 

1 1
( ) ( , , ) ( | , )

n

n i Si
x x x x Pai  


                                          (8) 

In this research, the authenticity (A) or the judgment of a blip can be described as two possible 

propositions or states {True (moving vessel), False (noise or stationary object)} as described 

previously. In an initial DAG, the velocity (D), direction (V), shape /slenderness (S), and authenticity 

(A) are formulated as nodes. It is worth mention that there are different kinds of objects in the False 

state, including shallows, rocks, noises, or even stationary vessels. It may be necessary to identify 

them in navigation and collision/grounding alert systems. In other words, there could be more states in 

the authenticity (A) node. For simplicity reasons, only the True and False states are considered in this 

research.    
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To address the problem of uncertainties, the structure of the DAG should be optimised or learned 

from verified data samples. There are several algorithms that can be applied, including the Bayesian 

Dirichlet equivalent scoring algorithm, K2 scoring algorithm (Cooper and Herskovits, 1991) and GS 

(Grow-Shrink) algorithm (Yang and Chang, 2002). Presently, the K2 scoring algorithm is widely 

accepted for constructing a BN from databases or records. 

The principle of the K2 scoring algorithm is to assess the appropriateness of a structure based on 

verified records and the Dirichlet distribution. Under assumptions associated with lack of missing 

values, and independent parameters, the K2 scoring algorithm can be further simplified. Subsequently, 

the best scoring structure can be found using a hill-climbing heuristic algorithm. More detailed 

information about the K2 scoring algorithm can be found in the reference (Cooper and Herskovits, 

1991). Presently, the K2 scoring algorithm is fully supported by the software tools of BN, including 

Netica, Hugin, and the MATLAB bnt toolbox. 

Meanwhile, when the structure is determined, the conditional probability tables (CPTs) can be 

learned from verified samples. Usually, maximum likelihood estimation (MLE) is implemented to 

estimate CPTs if the training data is available. In this research, the expectation maximization (EM) 

algorithm is adopted, which is an iterative method to carry out MLE (Bilmes, 1998). It makes up for 

the disadvantage of traditional MLE methods that usually need to derive the analytical expressions of 

solutions (Peña et al., 2000). Such a process is also supported by the software tools mentioned above. 

Hence, the details of the EM algorithm will not be given here.  

3.4 Step 4: Judgments based on a receiver operating characteristic (ROC) curve 

Following the procedures above, the DAG for blip authenticity probability evaluation can be 

constructed. However, such probability values from the DAG do not directly lead to the final 

judgments on blips. In reality, noise blips will usually stay in the radar scan area for a long time; on 

contrary, moving vessels always pass through the waterway in a short period of time. In other words, 

there are far more noises than moving vessels in prior observations. The inferred probabilities of blips 

being moving vessels are probably much lower than 50%. The methodology proposed in this paper is 

required to make judgements on radar blips based on their inferred probability distributions. For 

example, a blip is regarded as a moving vessel with the likelihood of 75%, a noise with 25%. In this 

occasion, a threshold or a criterion should be obtained. If the probability of a blip being a moving 

vessel is larger than this threshold value, the blip is considered to be a true moving vessel; otherwise, it 

is considered as a noise or stationary object. 

A receiver operating characteristic (ROC) can be used for the threshold optimisation. In statistics, 

a ROC curve is a graphical plot that illustrates the performance of a binary classifier system with 

different discrimination thresholds. Such a curve is created by plotting the true positive rate against the 

false positive rate at various threshold settings. In fact, a ROC curve can also be created by plotting 

false negatives rate against true negatives rate, which might be practical for collision/grounding alert 

systems. In this research, only the ROC curve plotting the true positive rate against the false positive 

rate is used for ease of the analysis. Some feature points such as inflection points are considered as 

optimal solutions (Hand and Till, 2011). In this research, as there are enough prior data, a more 

appropriate threshold can be learned from verified samples. The procedure of obtaining the threshold 

will be discussed in the case study. 
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4 A Case study 

Overall, with a likelihood modelling, the intervals of blip graphic identities and inter-frame 

differences can be merged based on the minimization of expected information losses using Eq. (7). 

Based on this, a DAG for authenticity recognition can be constructed with structure and parameter 

learning. Eventually, final decisions will be made using a ROC curve. To validate the proposed 

methodology, a field testing was conducted in Yangtze River, Zhutuo County, Chongqing City, China 

from 11:55:36 to 16:05:35 on 11th January 2015. 

4.1 Experimental platform and process 

The photograph of the experiment platform is shown in Figure 6, and the testing radar is 

FAR2117S and installed on a wharf boat, which belongs to the local maritime administration. During 

the test, the radar provided 5,808 sequential radar images as illustrated in Figure 1, and 718 suspected 

moving vessel blips were captured. During the experiment period, there were actually only 42 moving 

vessels through manual verification. In four hours, there were 212,944 individual observations from 

these blips. However, only 8,143 observations were from moving vessels. As discussed in Section 3.4, 

the majority of observations were from noises or stationary objects. 

It is worth mentioning that the waterway is only about 100 meters wide, thus the blips were 

validated by visual inspection.  

 
Figure 6 Experiment radar at Zhutuo County, Yongchuan, Chongqing, China 

For further validation of the proposed methodology, the verified samples have been divided into 

three sets by time. The samples from the first two hours are used to obtain the correlations between 

characteristics of blips and likelihoods of authenticity, which have been discussed in Section 3.1. 

Meanwhile, they are also used as the learning samples for the DAG. The samples from the third hour 

are used for obtaining an appropriate threshold in a ROC curve. Eventually, the verified objects in the 

last hour are used for validating the methodology. 

4.2 Step 1: Inter-frame differences extraction of blips/objects 

To implement the quantification methods of inter-frame differences described in Section 3.1, a 

software program was developed and presented in Figure 7. This program was built with VC++ in 
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Windows 7. As shown in Figure 7, radar images have already been overlapped on the S57 (A map 

format defined by the International Maritime Organization) electronic chart of the waterway. Three 

typical verified objects were notified as the red squares, and the enlarged images are shown on the top 

of the figure. They are noise objects No.17, No.27, and vessel object No.29. The white and orange 

circles are the objects' labels, which also mark the centres of the objects. Especially, the white dots are 

the trajectories of objects in former frames. Intuitively, a moving vessel object is different from a 

noise/stationary object in terms of the characteristics of velocity, direction, and shape.  

Using the method proposed in Figure 4 and Section 3.1, such characteristics can be quantified.  

 
Figure 7 Experiment software based on VC++ 

All the blips in sequential images have been transformed to verified records with discrete 

attribute values, and these records are presented in a text form. A typical record is presented in Figure 

8. As shown in this figure, a record contains several fields, which are separated by commas and 

represent different types of discrete attribute values. In this way, the course (direction), velocity, and 

slenderness are all stored in one record. Moreover, in this research, the vessel and noise/stationary 

records are saved separately. 

Binary Graph of Vessel, No.29 Binary Graph of Noise, No.17 Binary Graph of Noise, No.27 
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Figure 8 Text record definitions 

4.3 Step 2: Node discretisation 

The blip samples have been transformed to text forms, and the next step is to process them. As 

mentioned in Section 3.3, the discretisation of all the characteristics or nodes in a DAG are necessary 

in order to avoid a combinatorial explosion. Such discretisation is conducted as follows. In particular, 

the authenticity of a blip is denoted as two states: A1 (False, a noise or stationary object), A2 (True, a 

moving vessel). 

In the following experiment, all the inference is processed using the bnt tool box (FullBNT_1.0.6) 

run in MATLAB 2013b. Detailed information about the bnt tool box can be found in the Google code 

website (Last access: 30
th
, Dec, 2015, https://code.google.com/p/bnt/). 

 Velocity 

The 100,893 verified samples from the first two hours are used to find the correlations between 

quantified values and likelihoods of authenticity based on Tables I, II, Eq. (2). For demonstration 

purposes, 20 of these verified samples are presented in Appendix A.1. Then, the vessel and noise 

velocity likelihoods of authenticity are presented in Figure 9, where the X axis represents the 

observation values of the velocity, and the Y axis represents the likelihoods of the states (True and 

False), or 
i

j

vc in Eq. (2). It is clear that the vessels are more likely to sail at 3 to 10 units (pixels), while 

the noise/stationary blips are more likely to move at lower than 2 units. It is logical that the noise blips 

are mostly drifting around a small area. In this figure, there are 13 original intervals in observation. As 

mentioned in Section 3.3, to reduce the complexity of the DAG, merging some observation values is 

necessary.  

 

Figure 9 Velocity (D)-based normalised likelihoods of the states (True and False) 
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Figure 10 Velocity (D) intervals vs expected information loss  

With the minimization of the expected losses in Eq. (7), the optimisation results are presented in 

Figure 10. In this figure, the X axis denotes the number of objective intervals, and the Y axis denotes 

the sum of the expected losses when optimal discretisation is satisfied, as described in Section 3.2. A 

computation example of the expected loss is presented in Appendix A.2. Having analysed the 100,893 

verified samples in the first two hours, the expected losses in Figure 10 are generally presented as a 

concave curve. The inflection point on this curve can be considered as appropriate, and its 

corresponding value on the X axis is chosen as the number of objective intervals (Hand and Till, 2011; 

Nguyen and Sanner, 2013). In this occasion, the number of objective intervals is 4. It is worth noting 

that other optimisation methods can be introduced in the selection of the number of objective intervals. 

When the number of objective intervals is 4, based on Eq. (7), the optimal unequal distance intervals 

are presented as {D1, D2, D3, D4} = {{0,1}, {2,3}, {4,5}, {6,7,8,9,10,11,12}}.  

 Slenderness 

With the same verified samples, the slenderness likelihoods of authenticity are presented in 

Figure 11, where the X axis represents the intervals of slenderness, and the Y axis represents the 

likelihoods of the states (True and False). As the quotient of the pixel size to the circumcircle area, a 

slenderness value is continuous, meaning that there are infinite intervals. However, in the radar images, 

the pixel size of a blip is limited; as a result the interval of 0.1 is sufficient to describe it accurately. 

According to the figure, the moving vessel blips are more slender than the noise/stationary ones. In 

this figure, there are also 13 original intervals in the observations. Particularly, the blip size is based on 

how many pixels it occupies, and the value is denoted as an integer. The value of the circumcircle area 

is determined by the float’s circumscribing circle of outermost edge points. Therefore, if a blip is too 

small, the size is possibly larger than the circumcircle area. In other words, the slenderness might be 

greater than 1. 

The selected number of intervals 

Y 

X 
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Figure 11 Shape/Slenderness (S)-based normalised likelihoods of the states (True and False) 

  
Figure 12 Shape (S) intervals merging vs expected loss  

Just like the velocity (D), the optimisation results are presented in Figure 12. In this figure, the X 

axis denotes the number of objective intervals, and the Y axis denotes the sum of the expected 

information losses when optimal discretisation is satisfied, which is defined in Section 3.2 and Eq. (7). 

With the same principle as the velocity node (V), the number of objective interval number of shape 

evidence is selected as 5, and the optimal un-equal distance intervals are {S1, S2, S3, S4, S5} = 

{{0,0.1,0.2}, {0.3,0.4}, {0.5,0.6}, {0.7,0.8,0.9}, {1.0,1.1,1.2}}. 

 Direction 

The direction is different from the velocity and slenderness. Since the radar images have been 

pixelated and transformed to the binarization form, the blip is probably drifting around a small area 

when its values crowd on 0, 45, 90, 135, 180, 225, 270 or 315 degrees, and is more likely to be a noise 

target as shown in Figure 13. In this figure, the X axis denotes the angle; the Y axis denotes the 

normalised likelihoods of the states (True and False). As discussed in Section 3.2, when the number of 

intervals is large, the proposed merging method will take a long time. Therefore, the proposed 

optimisation in Eq. (7) is not appropriate in this node. Nevertheless, the pattern will be easily 

recognized using a simple principle, and all the intervals can be simplified to two sets {V1 (noise of 

stationary object), V2 (moving vessel)} = {{45, 90, 135, 225, 270, 315}, V-V1}, where V denotes all 

the possible direction values. Special attention needs to be paid to the fact that there are not many 
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observations with 0 or 180 degree from noise samples. Therefore, 0 and 180 degree are not included in 

set V1.  

 
Figure 13 Direction (V)-based normalised likelihoods of the states (True and False) 

4.4 Step 3: DAG updating using the K2 algorithm 

After discretisation, a BN can be used to infer the authenticity of a blip. At the very beginning, an 

initial DAG has to be established based on the expert judgments on how the authenticity (A) is 

influenced by the velocity (D), direction (V), and slenderness (S). In fact, slenderness (S) is influenced 

by velocity (D) considering the fact that the faster an object moves, the more slender its blip is. 

Direction (V) is also influenced by velocity (D) given that when an object moves slowly, it is more 

likely for the blip drifting around a small area to have its course/direction on 45, 90, 135, 215, 270 or 

315 degrees. Therefore, the initial DAG obtained through investigating the causal and dependent 

relationships between D, V, S and A is presented in Figure 14. 

 

Figure 14 Initial DAG for authenticity recognition before learning 

However, as discussed in Section 3.2, the DAG might not be the best reflection of the 

relationships among Velocity (D), Direction (V), Slenderness (S), and Authenticity (A). The samples 

collected from the first two hours of the experiment are used for improving the structure. With the help 

of the K2 scoring algorithm, an improved DAG structure can be constructed. Such a procedure is 

implemented with the ‘learn_struct_K2’ function in the MATLAB 2013b bnt toolbox, and the output 

is presented as Figure 15 where the nodes named 1, 2, 3 and 4 denote the Velocity (D), Direction (V), 

Slenderness (S), and Authenticity (A) respectively. Hence, the updated DAG structure is shown in 

Figure 16. From the new DAG, Direction (V) also has direct influence on Slenderness (S).  
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Figure 15 The output of the ‘learn_struct_K2’ function in MATLAB 2013b 

 

Figure 16 Upgraded DAG after learning using the K2 scoring algorithm  

Subsequently, the CPT of each node can be learned using the EM algorithm and the verified 

samples from first two hours of the experiment as mentioned in Section 3.3. Such a procedure is 

supported by the ‘learn_params’ in MATLAB 2013b bnt toolbox. The CPTs for all the nodes are 

presented as Table III to Table VI. Eventually, the formulated DAG in Figure 16 will be used to 

reason the authenticity of blips in observations.  

Table III. The CPT of node Velocity (D) 

D1 D2 D3 D4 

0.8318  0.1023  0.0418  0.0241  

Table IV. The CPT of node Direction (V) 

 V1 V2 

D1 0.6997  0.3003  

D2 0.0867  0.9133  

D3 0.0396  0.9604  

D4 0.0156  0.9844  

Table V. The CPT of node Slenderness (S) 

 S1 S2 S3 S4 S5 

V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 

D1 0.1859 0.2603  0.2601   0.2985 0.3617 0.3441 0.1557 0.086 0.0365 0.0111 

D2 0.3072 0.2038  0.4153 0.4782 0.2267 0.2519 0.0508 0.0605 0 0.0056 

D3 0.2273 0.1859 0.3864 0.6142 0.3068 0.1592 0.0795 0.0389 0 0.0019 

D4 0.75 0.73 0.1000 0.1750 0.15 0.0578 0 0.0253 0 0.0119 

Table VI. The CPT of node Authenticity (A) 

 A1 (False) A2 (True) 

Velocity  

(D) 

Direction 

 (V) 

Slenderness 

 (S) 

Authenticity 

 (A) 
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S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

D1 0.9978 0.9987 0.9971 0.968 0.9984 0.0022 0.0013 0.0029 0.032 0.0016 

D2 0.8999 0.7926 0.975 0.9662 1 0.1000 0.2074 0.025 0.0338 0 

D3 0.6595 0.5884 0.9918 0.9556 1 0.3405 0.4116 0.0082 0.0444 0 

D4 0.5411 0.8969 0.9868 0.9688 1 0.4589 0.1031 0.0132 0.0313 0 

4.5 Step 4: Final judgments using the authenticity probability and a ROC curve 

For a blip, the probabilities of the True state will be evaluated using the above procedures. The 

next step is to find an optimal threshold probability value for a final judgment and to determine 

whether this blip is a real moving vessel.  

As described in Section 4.1, the samples from the third hour are used for training the threshold 

value. First, the authenticity probabilities of these verified samples can be reasoned by the DAG. 

Subsequently, the ‘plotroc’ function in MATLAB 2013b can be used to plot these verified samples for 

formulating a ROC curve, which is presented in Figure 17. As discussed previously, the ROC curve 

can also be created by plotting false negatives rate against true negatives rate for other applications.  

 
Figure 17 ROC curve on result 

Then, there are 23 recommended threshold values (England, 1988) offered by this ‘plotroc’ 

function based on statistical characteristics. Eventually, an optimal threshold can be determined in 

accordance with a particular objective. In this research, the objective is to maximize the global 

accuracy. Let t denote the threshold value, and an optimal threshold value t* can be presented as, 

 
*

1 1
arg max( sgn( ( ) ) sgn( ( )))

P Q

p qp q
t B V t t B N

 
                               (9) 

where 

sgn( ) 1, 0

sgn( ) 0, 0

sgn( ) 1, 0

x x

x x

x x

 


 
   

, 1{ , , , , }p PV V V  denote the P observations from the verified vessels, 

1{ , , , , }q QN N N  denote the Q observations from the noise or stationary objects. ( )pB V  is the 

probability that observation pV  was from a moving vessel;  ( )qB N  is the probability that qN  
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observation was from a moving vessel. Both ( )pB V  and ( )qB N  are calculated using the formulated 

DAG shown in Figure 16 and the CPTs in Tables III~VI. The possible values of t can be obtained 

through the ROC function (‘roc’ and ‘plotroc’) in MATLAB 2013b.  

Using Eq. (9), the threshold is obtained as 0.0373. Therefore, if the probability of a blip being a 

moving vessel is larger than this threshold value, the blip is considered to be a true moving vessel. It is 

worth noting that the threshold value is usually low as described in Section 3.4. In the observations of 

this research, the number of noises is much larger than that of real moving vessels. 

With the threshold value, the samples of the last hour in the experiment are used for a global 

validation. For these verified samples, the probabilities of authenticity are reasoned by the DAG, and 

the judgements are determined using the threshold value 0.0373. Eventually, the result is presented in 

Table VII. 

Table VII Results of analysis of the verified samples in last hour using the developed model 

 Total Correct identification In-correct identification  Accuracy 

Moving vessel  2,035 1,692 343 83.14% 

Noises or stationary objects 51,201 46,120 5,081 90.08% 

Overall  90.03% 

 

This table shows the results obtained from the developed model. From Table VII, it can be seen 

that there are 2,035 verified observations of being moving vessels and 51,201 verified observations of 

being noises or stationary objects in the analysis. The developed model produced 1,692 correct 

identifications out of 2,035 moving vessel observations, leading to the recognition accuracy of 83.14%. 

As for the 51,201 verified observations of being noises or stationary objects, the model produces a 

recognition accuracy of 90.08%. In total, the global accuracy reached 90.03%.  

When the threshold is unknown, the ROC curve of the samples in the last hour is presented in 

Figure 18. 

 

Figure 18 The ROC curve of the samples in the last hour 

Particularly, incorrect identifications might be a threat to safety in collision/grounding alert 

systems. In fact, consecutive incorrect identifications are rare on any particular object using the 
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methodology. More accurate identification on an object can be implemented from the analysis of more 

consecutive frames, which may need to be further analysed in the future research. 

 

4.6 Comparisons with other classifiers 

For comparison purposes, the research introduces three kinds of classifiers, namely logistic 

regression, fuzzy c-means (FCM) (Ma et al., 2015), and error back-propagation (BP) based artificial 

neural networks (ANN) to process the same samples. 

Logistic regression is a common binary classifier in medical sciences (Rasmussen et al., 2014). It 

measures the relationship between target attributes and patterns by estimating probabilities using a 

logistic function. The velocity, course, and slenderness quantified in Section 4.2 can be used as the 

attributes. The detailed formulation of logistic regression can be found in Rasmussen et al. (2014). The 

same samples of the first two hours can be used to train the coefficients of the logistic function. 

Particularly, this procedure can be implemented with the ‘glmfit’ command of MATLAB 2013b. 

Subsequently, the probabilities about the two patterns can be inferred with the ‘glmval’ function. 

Generally, 0.5 is used as a threshold in logistic regression (Rasmussen et al., 2014) in judgements. In 

this occasion, the classification result is presented in Table IX, and the proposed methodology is more 

accurate than logistic regression in this application. 

Table IX Results of analysis of the verified samples in last hour using logistic regression 

 Total Correct identification In-correct identification  Accuracy 

Moving vessel  2,035 1,738 297 85.42% 

Noises or stationary objects 51,201 43,603 7,598 85.16% 

Overall  85.17% 

 

Without any inference and discrete models, FCM is capable of classifying a dataset to objective 

number subsets. In principle, FCM is based on the distribution of data in a vector space. Hence, a three 

dimensional space has to be defined first. In this space, the X-axis represents the normalised velocity 

(D), the Y-axis represents the normalised direction (V), and the Z-axis represents the normalised 

slenderness (S). Subsequently, a blip with three attributes quantified in Section 4.2 can be denoted as a 

vector or a coordinate {D, V, S} in such a space. Then, FCM can be introduced to classify all the blips 

in this space into two sub-sets and the detailed procedures can be found in Ma et al. (2015). The result 

of FCM is presented in Table VIII. Obviously, the BN-based methodology proposed in this research is 

also superior to the FCM classifier in this application. 

Table VIII Results of analysis of the verified samples in last hour using FCM 

 Total Correct identification In-correct identification  Accuracy 

Moving vessel  2,035 1,548 487 76.06% 

Noises or stationary objects 51,201 36,649 14,552 71.58% 

Overall  71.75% 

 

The BP-based ANN is another popular algorithm in un-supervised machine learning applications 

(Bishop, 1995; Schmidhuber, 2015). For simplicity reasons, the neural pattern recognition tool 

(nprtool) of MATLAB 2013b is used to implement the BP-based classification (KrishnaSri et al., 

2016). Generally, the element number of the hidden layer of ANN is set to be 2 times of the number of 

the input elements (velocity, course, and slenderness) (Jamli et al., 2015), or 6 in this research. The 
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same samples of the first two hours are used for training the ANN, and the ones from the last hours are 

used for validation. Particularly, a ROC curve is needed here since there is no conventional threshold 

value in an ANN model. Eventually, the classification ROC curve of the validation samples is given in 

Figure 19 with the help of “nprtool” of MATLAB 2013b. In this figure, the ROC curve of the BP-

based ANN model is presented as a blue solid line, and the one of the proposed methodology is 

presented as a red dash line. The highest overall identification accuracy on moving vessels and noises/ 

stationary objects through the use of the BP-based ANN is 96.34% when the threshold is 0.045. The 

detailed recognition result is presented in Table X. In particular, the recognition accuracy on real 

moving vessels is only 65.06%. Given the significance of identifying moving vessels from the blips on 

a radar screen, the recognition process is less impressive in this occasion. The BN-based methodology 

is superior to the BP-based ANN in this application. 

 

Figure 19 The output of neural pattern recognition tool 

Table IX Results of analysis of the verified samples in last hour using BP-based ANN 

 Total Correct identification In-correct identification  Accuracy 

Moving vessels  2,035 1,324 711 65.06% 

Noises or stationary objects 51,201 49,962 1,239 97.58% 

Overall  96.34% 

 

5 Conclusions 

Marine radar is the kernel sensor in the management and avoidance of collision. The study 

proposed a BN-based identification methodology for identifying moving vessels from blips in radar 

images. The conclusions are given as follows: 

1) Referring to manual work, this methodology is based on original sequential radar images which 

contain sufficient information for further recognition. Different from traditional filtering 

algorithms, it does not need to make any assumption on objects’ states.  

2) With the inter-frame differences in frames, the BN-based methodology incorporating the velocity, 

course and shape of blips is capable of updating the structure and parameters from verified 

samples. The attribute value intervals can be merged based on the likelihood vector distances and 

the minimization of expected information losses. The judgments can be made through a ROC 

curve, achieving high classification accuracy.  

BP-based 

ANN 

Proposed 

Methodology 
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3) In future study, the quantification of radar blip attributes may be conducted in fewer frames to 

improve the recognition speed. Identification of specific objects such as rocks and shoals from 

background noises may also prove useful.  

4) The continuities of blips may need to be introduced into the conjunctive inference, which might 

further improve the classification accuracy. It may also be desirable to develop an interactive 

optimisation model in response to the feedback from radar operators, in order to achieve 

improved accuracy of identifying moving vessels from blips on a real time basis. 

The proposed methodology can also be used in situations where the behaviours of moving vessels 

need to be further investigated for safety and security reasons.  
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Appendix 

A.1 

As described, there are 100,893 verified samples which have been captured in the first two hour. 

These samples are saved as a text form presented in Section 4.2 and Figure 8. It is worth mentioning 

that there are about 10 to 100 records for a blip, as it usually stay in the observation area for about 20 

to 300 seconds. To make it more visualised, several verified samples in the text form are presented as 

follows.  

10 observations from verified vessel blips are presented as: 

178,12,4,135,549.5-479.5,5,11,33,0.3 

178,12,4,135,549.5-479.5,5,11,33,0.3 

301,0,0,240,629.0-611.0,16,8,81,0.3 

301,10,3,246,589.5-597.5,15,9,72,0.3 

770,14,4,244,590.5-592.0,19,10,86,0.2 

770,9,3,214,518.5-534.0,3,4,12,0.6 

962,0,0,270,624.5-610.5,13,7,74,0.4 

962,5,2,270,624.0-610.5,14,7,74,0.4 

1206,8,8,338,564.0-296.5,6,13,59,0.4 

1206,9,8,338,563.5-297.5,7,15,62,0.3 

10 observations from verified noise blips are presented as: 

0,1,0,225,533.0-181.5,23,10,94,0.2 

0,1,0,225,533.0-181.5,23,10,94,0.2 

1,0,0,0,521.0-189.5,10,9,56,0.4 

1,1,0,90,521.0-189.5,10,9,55,0.4 

1524,1,0,270,571.0-512.0,38,106,343,0.0 

1524,0,0,270,571.5-512.0,39,106,343,0.0 

2086,5,2,355,517.0-312.5,6,3,25,0.7 

2086,6,2,355,517.0-312.5,6,3,25,0.7 

2837,4,1,300,559.5-286.5,9,7,28,0.3 
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2837,4,1,326,561.0-287.5,6,9,25,0.3 

A.2 

The expected loss is defined as Eq. (7),  

1

1 1
{ , } arg min [ ( , ) ( )]

n n

mn

L k I

L bpa mv nn m k
I I I d p p v

 

 
                            (7) 

There are 13 original intervals in the velocity observations. These intervals are presented as 

1 13{ , , } {0,1, ,12}v v   . Suppose L = 4, the objective is to merge these intervals into L = 4 

buckets. According to Eq. (6) and Table I, 1 13{ ( ), , ( )}v v    {0.12059, 0.01730, 0.07519, 

0.25390, 0.28153, 0.04276, 0.07735, 0.07134, 0.04324, 0.01417, 0.00240, 0.00024, 0.00000}. The 

normalised likelihoods of authenticity ,
mv n

p p  can be solved with Table II and Eq. (4). Afterwards,  

4 1

1 2 3 4 1
{ , , , } arg min [ ( , ) ( )]

n n

mn

k I

bpa mv nn m k
I I I I I d p p v

 

 
                        (10) 

where 1

1

1, 1

, 1
nn

n
k

I n






 


. Since 1 2 3 4 13I I I I     and they are integers, all the possible I  

can be enumerated. Using Eq. (10), 
1 2 3 4{ , , , } {2,2,2,7}I I I I I  , which denotes that the optimal 4 

buckets contain 2, 2, 2, and 7 original observation intervals. Therefore, the buckets are presented as  

{D1, D2, D3, D4} = {{0,1}, {2,3}, {4,5}, {6,7,8,9,10,11,12}}. By this moment, 

4 1

1
[ ( , ) ( )]

n n

mn

k I

bpa mv nn m k
d p p v

 

 
  or the expected loss equals to 0.056. 
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