
Control over the Self-Assembly Modes of PtII Complexes by Alkyl Chain Variation: From Slipped to Parallel π-Stacks

http://researchonline.ljmu.ac.uk/id/eprint/4162/

Article

Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work)

Control over the Self-Assembly Modes of Pt(II) Complexes by Alkyl Chain Variation: From Slipped to Parallel π-Stacks

Naveen Kumar Allampally, † María José Mayoral, †,# Sarayute Chansai, ‡ María Cristina Lagunas, ‡ Christopher Hardacre, ‡ Vladimir Stepenenko, † Rodrigo Q. Albuquerque ¥ and Gustavo Fernández*†

† Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg Am Hubland, 97074 Würzburg, Germany
‡ School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, United Kingdom
¥ São Carlos Institute of Chemistry, University of São Paulo, Av. Trab. São Carlense, 400, 13560-970 São Carlos-SP, Brazil

ABSTRACT: We report the self-assembly of a new family of hydrophobic, bis(pyridyl) Pt(II) complexes featuring an extended OPE-derived π-surface appended with six long (dodecyloxy (2)) or short (methoxy (3)) side groups. Complex 2 containing dodecyloxy chains forms fibrous assemblies with a slipped arrangement of the monomer units (d Pt∙∙∙Pt ≈ 14 Å) in nonpolar solvents and the solid state. Dispersion-corrected PM6 calculations suggest that this organization is driven by cooperative π−π, C-H∙∙∙Cl and π-Pt interactions, which is supported by EXAFS and 2D NMR. In contrast, nearly parallel π-stacks (d Pt∙∙∙Pt ≈ 4.4 Å) stabilized by multiple π−π and C-H∙∙∙Cl contacts are obtained in the crystalline state for 3 lacking long side chains, as shown by X-Ray and PM6. Our results reveal not only the key role of alkyl chain length in controlling self-assembly modes but also the relevance of Pt-bound chlorine ligands as new supramolecular synthons.

1. INTRODUCTION

Understanding the non-covalent forces that govern the formation of self-assembled structures and in particular supramolecular polymers,1-4 is a prerequisite to construct functional materials, being optoelectronics and biomedicine two of the most prosperous research fields in this regard.5-17 In order to achieve these functionalities, highly-ordered, adaptive nanostructures formed via a cooperative supramolecular polymerization mechanism are highly desirable.18 The introduction of orthogonal non-covalent interactions,19 from which hydrogen bonding and combinations with other secondary interactions are by far the most exploited ones,20 represents a rational means for this purpose. The majority of these systems include purely organic building blocks, whereas the role of metal ions and polarized metal-bound atoms has been explored to a much lesser extent.

Square-planar Pt(II) compounds are particularly relevant systems in this context due to their exceptional physicochemical, redox, catalytic, anticancer and supramolecular properties.21-30 These systems have a strong propensity to aggregate in solution and in the solid state via Pt∙∙∙Pt and/or other secondary forces, as recently shown for various classes of complexes in a comprehensive review by Yam and co-workers.31 Among them, the self-assembly features of hydrophobic Pt(II) complexes with acetylide,32-36 bidentate,37-39 tridentate N-donor,40-42 and cyclometalating ligands43-45 are relatively well understood.3 In contrast, their hydrophobic counterparts featuring non-chelating ligands and, in particular, bis(pyridyl) Pt(II) complexes have been limited to liquid crystalline materials46-48 and hydrogen-bonded metallo-gelators.49,50 Thus, there is a need for a deeper understanding of this class of Pt(II) complexes, in which not only the nature of the metal ion but also a wide range of weak unconventional forces stemming from the ligands attached to the metal fragment51-53 anticipate the discovery of new supramolecular synthons.

In this article, we report a new family of hydrophobic bis(pyridyl)dichloride Pt(II) complexes exhibiting a large aromatic oligophenyleneethynylene (OPE)-based platform and peripheral dodecyloxy (2) and methoxy (3) chains. The remarkably different molecular arrangement of 2 and 3 brings to light that the alkyl chain length plays an important role in the self-assembly, inducing the participation of various unconventional non-covalent forces. This has been demonstrated by a battery of experimental methods, including temperature-dependent UV-Vis and 1H NMR, ROESY NMR, atomic force microscopy (AFM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), extended X-Ray absorption fine structure (EXAFS), X-Ray diffraction and dispersion-corrected PM6 quantum chemical calculations. In nonpolar solvents, slipped π-stacks driven by cooperative π−π, C-
H∙∙∙Cl and π-Pt contacts are formed for 2, whereas nearly parallel stacks with Pt∙∙∙Pt distances of 4.4 Å are obtained in the crystal structure of 3. In contrast to previously reported structurally related bis(pyridyl)dichloride Pd(II) complexes,53 our studies demonstrate that not only the presence or absence of peripheral chains but also the nature of the metal ion (Pt(II)) is responsible for the rearrangement of the molecules into various packing modes.

Scheme 1. Synthetic route to obtain Pt(II) complexes 2 and 3.

2. Results and Discussion

OPE-based pyridyl ligand 1a featuring dodecyloxy chains has been previously synthesized according to literature procedures53 whereas its homologue with shorter methoxy groups (1b) has been obtained by a sequence of cross-coupling reactions and selective deprotection protocols (see Supporting Information (SI)). The target OPE-based Pt(II) complexes 2-3 have been successfully obtained in very good yields by refluxing a mixture of 1a-b (2 eq.) and Pt(PhCN)2Cl2 (1 eq.) in dry benzene for 2-3 days under N2 gas. 2 and 3 have been well characterized by NMR, HRMS, IR, elemental analyses and X-Ray diffraction (for 3) (see further details in the SI).

UV-Vis measurements of 2 were recorded in solvents of different polarity (THF, CHCl3, dichloromethane (DCM), cyclohexane (CHY) and methylcyclohexane (MCH)) in order to observe the solvent dependency of the spectra (Figure 1a and S1). In all solvents at a concentration of \(\approx 9 \times 10^{-6} \) M, 2 shows two transitions with maxima at 285 nm and 360 nm. The former can be assigned to a typical ligand centered transition (1LC, π−π*, 275-315 nm) whereas the latter is due to metal to ligand charge transfer (1MLCT, 320 - 380 nm).54 Intriguingly, there is no particular effect of the polarity of the solvent on the absorption maxima at this concentration in the investigated solvents. An increase in concentration to \(1 \times 10^{-4} \) M does not lead to significant spectral changes with the exception of MCH, in which noticeable spectral changes in the course of temperature-dependent experiments at a concentration of \(5 \times 10^{-5} \) M are observed. The maximum red-shifts from 360 to 377 nm, while a new sharp transition rises around 410 nm on varying the temperature from 340 to 273 K (Figure 1a and S2). This particular phenomenon suggests that aggregation does occur and we have observed that it is thermally reversible. Thus, 2 still exists as monomeric state in THF, CHCl3 and CH2Cl2 even at higher concentrations (good solvents), whereas as self-assembled species in MCH (hydrophobic solvent). To confirm that the red shifted band at 377 nm and the sharp shoulder at \(\approx 410 \) nm are due to aggregation, we have prepared thin films from CH3Cl and MCH. The UV-Vis spectrum of a thin film from CH3Cl shows the representative spectral features of a molecularly dissolved state, i.e. an absorption maximum at \(\approx 360 \) nm (Figure S1). The position of this maximum matches well that observed in MCH at high temperatures. In sharp contrast and similarly to the behavior in MCH solution at low temperatures, the thin film from MCH presents a red shifted aggregate band at 377 nm along with a new shoulder at 400 nm, confirming the formation of self-assembled species in this medium (Figure S1).

In order to closely follow the self-assembly process in MCH solution, we have monitored the spectral changes at a given wavelength (400 nm) by slowly cooling down
MCH solutions (conc. 5 - 8 × 10⁻⁵ M) of 2 from 323 to 274 K. To verify that the self-assembly progresses under thermodynamic control, a cooling rate of 1 K/min has been chosen. A particularly interesting temperature range of the self-assembly process is 315-276 K, where a clear transition from monomeric to aggregated species is observed, yielding non-sigmoidal cooling curves (see Figure 1b).

Table 1. Thermodynamic parameters associated to the self-assembly of 2 at different concentrations.

<table>
<thead>
<tr>
<th>Conc. M</th>
<th>ΔH°,neat kJ mol⁻¹</th>
<th>ΔS° kJ mol⁻¹ K⁻¹</th>
<th>Tc K</th>
<th>Ke M⁻¹</th>
<th>K M⁻¹</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 × 10⁻⁴</td>
<td>-17.4 ± 0.3</td>
<td>-81.4 ± 0.5</td>
<td>-0.898 ± 0.007</td>
<td>299.1 x 10⁴</td>
<td>20.2 x 10⁴</td>
<td>2.25 x 10⁻⁶</td>
</tr>
<tr>
<td>6 × 10⁻⁴</td>
<td>-17.5 ± 0.2</td>
<td>-90.5 ± 0.2</td>
<td>-0.2215 ± 0.0007</td>
<td>299.4 x 10⁴</td>
<td>16.9 x 10⁴</td>
<td>1.97 x 10⁻⁶</td>
</tr>
<tr>
<td>7 × 10⁻⁴</td>
<td>-19.3 ± 0.1</td>
<td>-92.0 ± 0.2</td>
<td>-0.2303 ± 0.0006</td>
<td>300.0 x 10⁴</td>
<td>7.5 x 10⁴</td>
<td>1.81 x 10⁻⁶</td>
</tr>
<tr>
<td>8 × 10⁻⁴</td>
<td>-20.4 ± 0.1</td>
<td>-100.2 ± 0.2</td>
<td>-0.2550 ± 0.0005</td>
<td>300.6 x 10⁴</td>
<td>4.7 x 10⁴</td>
<td>1.77 x 10⁻⁶</td>
</tr>
</tbody>
</table>

Global fitting: -12.5 ± 0.5 | -117.4 ± 2.7 | -0.330 ± 0.0009 | 298.4 x 10⁴ | 103.9 x 10⁴ | 1.57 x 10⁻⁶ | 6.6 |

Global fitting: -12.2 ± 0.5 | -119.7 ± 2.7 | -0.3207 ± 0.0009 | 298.4 x 10⁴ | 133.4 x 10⁴ | 1.55 x 10⁻⁶ | 7.3 |

[a] Normalize data with single normalization constant; [b] Normalize each curve individually; [c] average value.

Further to calculate the thermodynamic parameters, the obtained cooling curves are fitted to the ten Eikelder-Markvoort-Meijer model, confirming that the self-assembly mechanism of 2 is a highly cooperative phenomenon (Figure 1b and S2). The corresponding thermodynamic parameters are displayed in Table 1. This model assumes that nuclei of two molecules of 2 are formed in the first unfavorable nucleation step followed by a much more favorable elongation into supramolecular polymeric nanostructures. According to the thermodynamic analysis, the dimerization constants (Kd) range from 4.7 to 20.2 M⁻¹ while the elongation constants (Ke) are around 1000-fold higher (1.77-2.25 × 10⁴ M⁻¹). The quotient between the nucleation and elongation constants yields low values of σ (2.6-8.9 × 10⁻⁴), which denote high degree of cooperativity (for a global analysis of the fits see Table 1, bottom). By comparing these thermodynamic parameters with those calculated for a structurally related OPE-based bisp(pyridyl)dichloride Pd(II) investigated in our group, slight differences can be noticed. For instance, the Kd for Pd(II) complex 2 is approximately two orders of magnitude higher (≈0.65 vs. ≈100 M⁻¹) while the Ke is around three times higher (≈7.7 × 10⁴ vs. ≈2 × 10⁴ M⁻¹) than those obtained for the analogous Pd(II) derivative. This demonstrates that the nature of the metal ion plays a role in the self-assembly and degree of cooperativity.

As the self-assembly process is observed to be cooperative, the aggregate growth should be governed by the interplay of various orthogonal non-covalent interactions. The presence of an extended aromatic surface in 2 anticipates that strong π-π interactions will be a major contribution to the supramolecular polymerization. According to literature precedent, we hypothesized that either metal-π interactions or weak interactions involving the Cl-Pt(II)-Cl fragment of 2 could represent additional forces to the cooperative growth. In order to find this out, we have performed temperature-dependent 1H NMR and 2D-NMR in MCH-d₄. Variable-temperature 1H NMR studies (8 mM, 400 MHz, 351-308 K) show a slight upfield shift of most aromatic signals with decreasing temperature, in particular those corresponding to the Hₙ protons of the pyridine rings, suggesting that π-stacking interactions are involved in the self-assembly process (Figure S3).

By comparing the COSY and ROESY spectra (Figure S3-S4), we found new cross-peaks in the latter experiments that can be assigned to the coupling of some of the protons of the phenylene rings in the aggregate structure. Interestingly, protons Hₙ of the outer ring are coupling with protons Hₙ and Hₙ of the pyridine units (Figure 2a), which is also predicted by theoretical calculations (vide infra). The appearance of these signals confirms that the units of 2 cannot be arranged into parallel stacks via π-π and Pt-π interactions, as the intermolecular distance between protons Hₙ and Hₙ (≈13 Å) would be much larger than the estimated distance (≤ 5 Å) for nuclear spins to correlate. The results extracted from both 1D and 2D NMR experiments for 2 closely resemble those obtained for analogous amphiphilic Pt(II) complexes investigated in our group. For these systems, the presence of polar glycol side chains induces a translational displacement of the OPE scaffolds within the supramolecular fiber driven by CH···O and CH···Cl weak hydrogen bonding involving the oxygen and hydrogen atoms of the polar chains. Thus, in the light of these results it appears that the hydrophobic Pt(II) complex 2 self-assembles in a similar fashion into slipped π-stacks in MCH solution despite the absence of multiple polarizable oxygen atoms in the side chains. As a result, other secondary forces apart from π-π interactions should be necessarily involved to stabilize the stack, most likely interactions involving the Cl-Pt(II)-Cl fragments and the aromatic rings of adjacent molecules.

To analyse the possible non-covalent interactions that help maintain the slipped packing of 2 deduced by 2D NMR studies, we have performed quantum chemical calculations at the PM6 semiempirical level with dispersion corrections using the MOPAC program. The optimized geometry of a tetramer of 2 is shown in Figure 2b, where hydrogens were omitted for clarity. It is clear how intermolecular van der Waals interactions among alkyl chains contribute to stabilize the stack. Aromatic interactions are also important here: four out of six aromatic rings of each monomer participate in such contacts. Intermolecular interactions between outer aromatic rings
and alkyl chains (CH$_3$–π) are also observed in Figure 2b, where many pairs of alkyl protons-H$_a$ protons (see Scheme 1 for proton labeling) have distances smaller than 5 Å. This is in agreement with the correlation between most protons of the alkyl chains (H$_{a-d}$) and aromatic protons H$_{ad}$ obtained in the ROESY spectra (Figure S3). The intramolecular (H$_{a-d}$–H$_d$ and H$_{a-d}$–H$_c$) and intermolecular (H$_{a-d}$–H$_d$ and H$_{a-d}$–H$_c$) distances obtained from the optimized tetramer are also smaller than 5 Å, which agrees well with the ROESY signals found (Figure 2a). These values suggest that subsequent monomer additions become increasingly more stable for longer aggregates, which is in line with the cooperativity experimentally observed.

![Figure 2](image-url)

Figure 2. a) Partial ROESY NMR spectrum (MCH-d$_{4}$, 600 MHz, 8.73 mM, 305 K) of 2. The green and red squares highlight intra- and intermolecular through-space coupling signals, respectively. b) PM6 geometry-optimized structure of a tetramer of 2. c) Enlarged section of the structure depicted in (b) showing the most relevant non-covalent interactions.

Figure 2c shows a zoomed region of the optimized tetramer revealing different kinds of intermolecular interactions involving Cl, Pt, H-C and aromatic moieties. Protons H$_{ad}$ are also labeled to show their close relative proximity, which explains why their 2D NMR signals are coupled (Figure 2a). The semiempirical calculations suggest that the slipped stacking depicted in Figure 2b is promptly destabilized if the alkyl chains are removed, i.e., if we use 3 instead of 2 to build the same stack. The optimized geometry of an octamer of 3 built in the slipped arrangement evidences that outer aromatic rings of the first and third (or second and fourth, etc) monomers in the stack would be strongly distorted to interact with each other (Figure S6). This distortion hampers further growth of the aggregate in the slipped arrangement, which nicely points out that the alkyl chains play a key role in the final arrangement of the supramolecular aggregate: the long side groups of 2 favor the slipped arrangement while the much shorter ones of 3 appear to destabilize it (vide infra).

Due to its hydrophobic character, 2 has a strong propensity to gel various hydrophobic solvents such as hexane, isooctane, dodecane and MCH in a reversible manner for various cycles (see SI). Their respective critical gelation concentrations (CGC) were observed to decrease upon increasing the chain length of the solvent, confirming that the gelation capacity of solvents containing shorter hydrocarbon chains is less effective. The surface morphology of the gels has been investigated by means of SEM and AFM. The respective SEM and AFM images of xerogels displayed in Figures 3 and S7 confirm that the surface morphology is not significantly affected by the solvent. The length of the fibers is in the order of µm and the width ranges from 50 to 100 nm. WAXS studies of a gel of 2 in hexane display a reflection at 2θ = 26.8° that corresponds to a π–π distance of 3.3 Å between the units of 2 (Figure S7), in agreement with the values predicted by PM6 calculations.

![Figure 3](image-url)

Figure 3. Surface morphology of xerogels of 2. (a) SEM image from a gel in isooctane. (b) AFM of a dodecane gel on silicon wafer.

To rationalize the influence of the alkyl side groups on the self-assembly of 2, we have investigated the analogous Pt(II) complex 3 lacking the dodecyloxy chains by X-Ray diffraction. The removal of these chains facilitates substantially the realization of single crystals in contrast to 2, in which the presence of six long side groups cause a significant disorder in the crystal lattice. Nevertheless, the limited solubility of this complex in highly nonpolar solvents such as MCH precludes a detailed analysis of the supramolecular polymerization mechanism. Suitable crystals of 3 for X-ray analysis were obtained by slow evaporation from a concentrated solution (~1 mM) of CH$_3$CN and CH$_2$Cl$_2$ (1:1). Figure 4 shows the molecular arrangement of 3 in the crystal structure in four different views. Within the monomeric units of 3, the OPE-based ligands are nearly coplanar whereas the chlorine atoms attached to the Pt(II) ion are slightly bent out of the plane to facilitate interactions with neighbouring units of 3.
(Figure 4a). This slightly distorted square-planar coordination is stabilized by two intramolecular C-H···Cl interactions (2.919 and 2.869 Å) between the H of the pyridine rings and the chlorine atoms of the same molecule (Figure S9). The packing of 3 in the crystal structure is primarily driven by intermolecular C-H(aromatic)···Cl and translationally stacked π···π interactions, as the relatively bulky chlorine atoms hinder the alignment of the units of 3 in a perfect parallel fashion through Pt···Pt bonding. Each chlorine atom is involved in three intermolecular (py)CH···Cl interactions with two neighboring monomers belonging to a parallel 1D stack (d = 3.09 and 2.79 Å) and to one monomer inside the same stack (d = 2.76 Å, Fig. S9). The three CH···Cl intermolecular contacts together with multiple π···π interactions (3.3 Å) involving the aromatic OPE rings facilitate the growth of the structure into 1D stacks (Figure 4a) and are responsible for the packing of the molecules as shown in Figures 4b-d. The molecular arrangement of 3 extracted from X-ray studies (Figure 4) is remarkably different when compared with that of 2 in MCH solution suggested by 2D NMR studies and theoretical calculations (Figure 2c), although for both systems the chlorine ligands are very important to stabilize the aggregates. Whereas 2 forms slipped stacks with (d_{Pt···Pt} = 14 Å), the removal of the long chains in 3 enables a tighter molecular arrangement into almost parallel stacks with much shorter distances between the Pt centers (4.4 Å). It is important to note that the Pt···(C≡C) interaction is exclusively found in aggregates of 2 and it can involve σ and π electron donations to Pt, as well as δ and π back-donations. This interaction can contribute to a certain extent to the stabilization of the slipped configuration found for 2, even though the PM6-predicted Pt···(C=C) bond distances are larger than those usually found in Pt(II)-alkyne complexes. Although the molecular packing within a self-assembled structure and in the crystal state sometimes differ, our results bring to light that the presence of flexible alkyl chains in 2 represents a major contribution to shifting the packing in solution, as already pointed out by the theoretical calculations.

Figure 4. Arrangement of 3 in the crystal structure, a) vertical and b) horizontal views and c) 2D and d) 3D-Packing. The hydrogens have been omitted for clarity. Colour codes: Pt: pink; Cl: green; O: red; N: light blue; C: grey

Pt L III extended EXAFS studies have been performed to further support the supramolecular assembly of 2 and establish a correlation between the solid-state packing and solution/gel of 2 in both hexane and MCH. k^3-weighted EXAFS spectra and Fourier Transforms (FTs) for the three samples are shown in Figure S10. The theoretical models for the EXAFS were constructed using crystallographic data from complex 3, as well as from an analogous compound with unsubstituted pyridine ligands [PtCl2(py)2].60 The latter was chosen in order to reproduce the slipped molecular arrangement proposed for complex 2 (see Figure 2), in contrast to the almost parallel stacks with relatively short Pt···Pt distances (4.4 Å) observed in 3. In particular, in the crystal packing of [PtCl2(py)2], the molecules are organised in a such a way that two of the pyridine C atoms of one molecule are close to the Pt centre of the adjacent molecule (ca. 3.6 Å, see Figure S10). Details of EXAFS data analysis and of the scattering paths included in the theoretical models are provided in the SI (Tables S2-S5; Figures S11-S13).
Figure 5. Data (solid line) and best-fit model (dotted line) for complex 2 in the solid state: k3-Weighted EXAFS spectra (left) and magnitude of Fourier transform (right).

Figure 5 shows data and best-fit model for the EXAFS spectrum and FT for complex 2 in the solid state. Structural information extracted from the EXAFS fittings is included in Table S3. The two main features in the FT at ca. 1.6 Å and 2 Å (Figure 5) correspond to single scatterings from the N and Cl atoms, respectively, whereas the next peaks at 2.3-2.8 Å correspond mainly to contributions of the pyridine ortho-C atoms (single and multiple scattering paths). The smaller features between 2.8 and 3.5 Å can be best fitted by including multiple scattering paths Pt→N→Cl and Pt→N→N.

At this stage, the effect on the fitting of including contributions from other scattering paths from complex 3 and/or [PtCl$_2$(py)$_2$] was carefully considered. The best-fit was obtained by including additional scattering paths only from [PtCl$_2$(py)$_2$], in particular single and multiple scatterings involving the C atoms at 3.6 Å of adjacent molecules (adj-C) and the pyridine meta-C atoms. These paths contributed to the FT of the data in the region between 3.5-4.5 Å. Inclusion of additional or alternative scattering paths did not make a significant difference in the fitting. Particularly, if Pt→Pt and Pt→meta-C single scattering paths from complex 3 are considered instead of the C contributions from [PtCl$_2$(py)$_2$], the fit worsens. These results support the molecular aggregation deduced by 2D NMR and quantum chemical calculations for complex 2 in solution, as discussed above. It should be noted that the Pt-adj-C distance determined by EXAFS for complex 2 (3.95±0.02 Å) is longer than that in the crystal structure of [PtCl$_2$(py)$_2$] (3.6 Å), and can be related to the bulky pyridine substituents in 2.

The EXAFS data for the gels in both hexane and MCH were then fitted applying the same parameters used in the best-fit model for the solid sample. The results obtained were analogous to those of the solid, with the best-fit achieved when using scattering from from Pt→adjC, thus suggesting that the molecules in both gels aggregate in the same way as in the solid sample (Figures S12-S13, Tables S4-S5).

3. Conclusions

The self-assembly of a new family of hydrophobic π-conjugated (bis)pyridyl Pt(II) complexes equipped with long (dodecyloxy, 2) or short (methoxy, 3) side groups is described. A collection of experimental and theoretical results shows remarkable differences in the self-assembly modes depending on the alkyl group length. Whereas Pt(II) complex 2 with long chains self-assembles into slipped π-stacks, the removal of the side groups in 3 enables a nearly parallel molecular arrangement with Pt→Pt distances of 4.4 Å. NMR studies, X-Ray, EXAFS and PM6 calculations have given insight on the multiple intermolecular interactions (π–π, Cl–H, Pt→π) involved in both arrangements. For both complexes, the Cl atoms have revealed to be fundamental to explain the driving force behind the self-assembly of 2 and 3. Our findings show: 1) the key role of alkyl groups in controlling self-assembly modes and 2) the establishment of metal-bound Cl atoms as new synthons in the field of supramolecular chemistry.

ASSOCIATED CONTENT

Supporting Information: Synthesis and characterization, additional UV-Vis studies, cooling curves, 1D and 2D NMR, PM6 calculations, gelation studies, SEM, AFM, WAXS, X-ray diffraction and EXAFS experiments.

AUTHOR INFORMATION

Corresponding Author

* E-mail: fernandg@uni-muenster.de

Present Addresses

§ Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

§ Organisch-Chemisches Institut, Westfälisch-Wilhelms Universität Münster, Corrensstraße, 40, 48149 Münster, Germany.

Author Contributions

All authors contributed equally.

Funding Sources

We thank the Humboldt Foundation (Sofja Kovalevskaja Award) and the Brazilian agencies CAPES (A061_2013) and CNPq (305082/2013-2) for financial support.

ACKNOWLEDGMENT

We thank Prof. Frank Würthner for helpful discussions and Dr. David Schmidt for crystal structure analysis.

REFERENCES

Mater.

Chromophores.

molecular Polymers.

-Conjugated Materials.

pramolecular Materials for Regenerative Medicine.

Chem. Rev.

Their Syntheses, Physical Properties, Supramolecular

logels.

metal complexes in solution.

Tam A. Y.-Y.; Yam, L.; Lanigan N.; Wang, X. S. Supramolecular chemistry of

moiety: beyond the links.

Wang W.; Yang, H.-B. Linear neutral platinum –acetylide

Mauro, M.; Aliprandi, A.; Septiadi, D.; Kehra, N. S.; De

Controlled-Release Systems for Metal -Based Nanomed i-

Korevaar, P. A.; De Greef T. F. A.; Meijer, E. W. Pathway

Boekhoven J.; Stupp, S. I. 25 th Anniversary Article: Su-

Molla, M. R.; Ghosh, S. Aqueous self-assembly of chro-

2014

Müllen, K. Evolution of Graphene Molecules: Structural

Aida, T.; Meijer E. W.; Stupp, S. I. Functional Supramo-

Insert Table of Contents artwork here