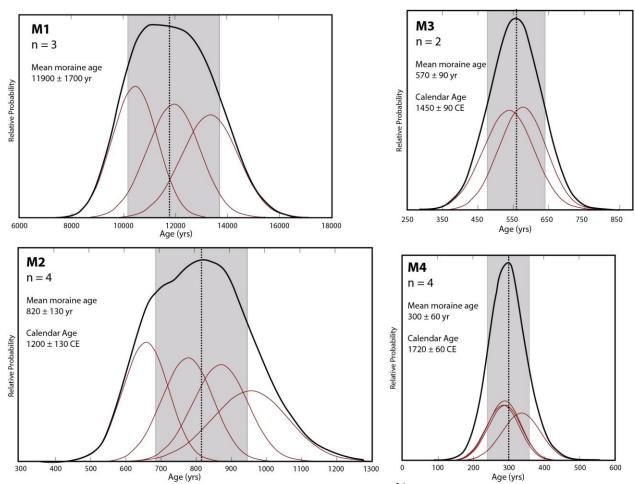
Supplementary Online Material

Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic


Vincent Jomelli*, Timothy Lane, Vincent Favier, Valerie Masson-Delmotte, Didier Swingedouw, Vincent Rinterknecht, Irene Schimmelpfennig, Daniel Brunstein, Deborah Verfaillie, Kathryn Adamson, Laëtitia Leanni, Fatima Mokadem, ASTER Team

The following pages include:

Figure S1

The list of extended tables 1-5

References

Extended Data Figure 1. Summed probability plots the 36 Cl surface exposure ages for each moraine based on the "Schimmelpfennig" production rate set (Methods). Red gaussians are the individual boulder ages with 1σ analytical uncertainty only. Dashed vertical lines are the arithmetic means. Grey bands represent the 1σ errors including standard deviation, analytical and production rate errors.

- **Table S1:** Sample locations and sample-specific information.
- **Table S2:** Chemical compositions of two bulk rock samples before acid etching. Analysis performed at the SARM-CRPG (Nancy, France) by ICP-OES (major elements), ICP-MS (trace element), atomic absorption (Li), colorimetry (B) and spectrophotometry (Cl). The
- **Table S3:** Concentrations of the ³⁶Cl target elements, determined in splits taken from the samples after the acid etching to remove ~20% of the samples. Analysis performed at the SARM-CRPG (Nancy, France) by ICP-OES. Concentrations of the target element Cl
- **Table S4:** ³⁶Cl dating results, including measured ³⁵Cl/³⁷Cl and ³⁶Cl/³⁵Cl ratios, inferred ³⁶Cl and Cl concentrations, individual sample ages, and landform mean ages. Data for the two procedural blanks (DIS-Bk_01 and DIS-Bk_02) are also included. DIS-Bk_

Table S5: Climate models decription

Supplementary References

- 40-Schimmelpfennig, I., *et al.* Calibration of cosmogenic ³⁶Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38°N, Italy) and Payun Matru (36°S, Argentina). *Geochimica et Cosmochimica Acta* **75**, 2611-2632 (2011).
- 41-Ivy-Ochs, S., *et al.* Initial results from isotope dilution for Cl and 36Cl measurements at the PSI/ETH Zurich AMS facility. *Nuclear Instruments and Methods in Physics Research Section B* **223** 623- 627, (2004).
- 42-Sharma, P., et al. Development of ³⁶Cl standards for AMS. *Nuclear Instruments and Methods in Physics Research Section B* **52**, 410-415 (1990).
- 43-Schimmelpfennig, I., *et al.* 36Cl production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). *Journal of Quaternary Science* **29**, 407-413 (2014).
- 44- Marrero, S.M., Phillips, F.M., Caffee, M.W., & Gosse, J.C. CRONUS-Earth cosmogenic ³⁶Cl calibration. *Quaternary Geochronology* **31**, 199-219 (2016).
- 45-Fink D., Vogt S. & Hotchkis M. Cross-sections for 36 Cl from Ti at $E_p = 35-150$ MeV: applications to in-situ exposure dating. *Nucl. Instrum. Meth. Phys. Res. Sect. B* **172**, 861–866 (2000).
- 46-Stone J.O., Fifield, K., & Vasconcelos, P. Terrestrial chlorine-36 production from spallation of iron. Abstract of 10th International Conference on Accelerator Mass Spectrometry. September 5-10, 2005, Berkeley, USA. http://llnl.confex.com/llnl/ams10/techprogram/P1397.HTM (2005).
- 47-Phillips, F.M., Stone, W.D., & Fabryka-Martin, J.T. An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. *Chem. Geol.* **175**, 689–701 (2001).
- 48-Masarik, J. Numerical simulation of in-situ produced cosmogenic nuclides. *Geochimica Cosmochimica Acta* **66**, A491. (2002).
- 49-Marrero, S.M. *et al.* Cosmogenic nuclide systematics and the CRONUScalc program. *Quaternary Geochronology* **31**, 160-187 (2016).

- 50-Muscheler, R., et al. Solar activity during the last 1000 yr inferred from radionuclide records. Quat. Sci.Rev. 26, 82-97 (2007).
- 51-Gao, C., Robock, A., & Ammann, C. Volcanic forcing of climate over the past 1500 years. An improved ice core-based index for climate models. *Journal of Geophysical Research: Atmospheres* **113**, 1984–2012 (2008).
- 52-Crowley, T.J.& Unterman, M.B. Technical details concerning development of a 1200-yr proxy index for global volcanism. *Earth System Science Data*, **5**, 187-197 (2013).
- 53-Landrum, L. *et al.* Last Millennium Climate and Its Variability in CCSM4. *Journal of Climate* **26**, 1085–1111 <u>doi/abs/10.1175/JCLI-D-11-00326.1</u> (2013).
- 54-Jungclaus, J.H., Lohmann, K. & Zanchettin, D., Enhanced 20th century heat transfer to the Arctic simulated in the context of climate variations over the last millennium. *Climate of the Past Discussions* **10**, 2895–2924. http://www.clim-past-discuss.net/10/2895/2014/ (2014).
- 55-Schmidt, G. a. *et al.* Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). *Geoscientific Model Development* **5**, 185–191. (2012).
- 56-Zhang, J., & Wu, T. The impact of external forcings on climate during the past millennium: Results from transient simulation with BCC_CSM1. 1, in Proceedings EGU General Assembly Conference Abstract 14, 448. (2012).
- 57-Zhou, T. et al. A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model. *Chinese Science Bulletin*, **56**, 3028–3041 (2011).