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Abstract 

In the UK, the Water Services Regulation Authority (OFWAT), estimates that for all 

the water and sewage companies there was over 3,365 Ml/d (megalitres per day) of 

water leakage in the reported period 2010 and 2011, which was still at 3094.21 

Ml/day in the 2013 review. Leakage estimates do not include water siphoned illegally 

through unaccounted connections worsened as asset management of buried utility 

services has been overlooked for years. With the asset management programme 

framework (AMP6) due to come into effect in April 2015, water companies are 

expected to get more out of their existing infrastructure and making considerable 

investment while keeping bills reasonable for customers. Improving the 

management of these assets is therefore a priority, as effective asset management 

enables companies to reduce cost, through leakage management, to plan 

investments and repairs, and to evaluate operational risks by better fault prediction 

rather than the current reactive approach.  

This research focuses on the water distribution network as an asset that include 

leaks and pipe infrastructure with different materials and diameters. A novel method 

for leak detection and asset management using an electromagnetic sensor has 

been developed. Trials in the laboratory showed the sensor is capable of detecting 

pipe types and conditions thus improving leak detection and asset management in 

the water industry without extensive digs and modification to existing access valves 

within the network for system deployment. Furthermore, the sensor would potentially 

benefit the gas industry by modifying the frequency of operation to match gas filled 

cylindrical metal structures. 
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Chapter 1: Introduction 

1.1 Introduction 

Leakage is considered to be any ‘loss of water from the supply network, which 

escapes other than through controlled action’ [1]. Illegal and unaccounted 

connections in the water distribution network are part of these losses and water 

companies would financially benefit from a system that is able to offer a means to 

manage these assets. Utility companies such as water and electricity companies 

are highly dependent on the correct management of their most important asset, their 

distribution network. 

In a country with considerable rainfall, the number of drought alerts, hose pipe bans 

and environmental regulations has put the 22 companies, working in the provision 

of water and or sewerage related services in the UK, under great pressure. Leak 

detection has been at the forefront of this strategy and various types of equipment 

are employed to find and manage leaks. Leakage not only results in water wastage 

but also in the inefficient use of energy required to pump the water around.  

The amount of water leakage in the distribution network varies from region to region 

around the world. In Canada, water leakage was estimated to be as high as 35 or 

45% [2] while in much better maintained networks such as in the Netherlands, this 

is as low as 3-7% [3]. In the UK, the Water Services Regulation Authority (OFWAT), 

estimates that for all the water and sewage companies there was over 3,365 Ml/d 

(megalitres per day) of water leakage in the reported period 2010 and 2011 [4], 

which is about 30%. In the 2013 review, the leakage level was still at 3094.21 Ml/day 

[5]. Leaks are inherent to any water network, however their volume should be within 

the sustainable economical level of leakage (SELL) threshold which determines the 

annual leakage target individually set by the water utilities companies and agreed 
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by the water regulator OFWAT. The total leakage is estimated by summing the 

potable water losses from the treatment plants to the customer’s stop tap provided 

by the water companies. Table 1 shows a 5 year leakage targets for the companies 

in England and Wales. 

Table 1: Company estimates leakage target – megalitres per day (Ml/d) [6]  

  2010-11 2011-12 2012-13 2013-14 2014-15 

Water and sewerage companies 

Anglian 212 212 211 211 211 

Dŵr Cymru 190 188 186 185 184 

Northumbrian-North East 150 147 144 141 141 

Northumbrian-Essex & Suffolk 66 66 66 66 66 

Severn Trent 483 474 468 456 453 

South West 84 84 84 84 84 

Southern 83 93 90 89 88 

Thames 674 673 673 673 673 

United Utilities 464 464 464 463 463 

Wessex 71 71 71 71 71 

Yorkshire 297 297 297 297 297 

Water only companies 

Sembcorp Bournemouth 22 22 22 22 21 

Bristol 52 51 50 49 49 

Cambridge 14.0 14.0 14.0 14.0 14.0 

Dee Valley 10.2 10.2 10.2 10.2 10.2 

Portsmouth 30 30 30 30 30 

South East 95 95 94 94 93 

South Staffordshire 74 74 74 74 74 

Sutton & East Surrey 25 25 25 25 25 

Veolia Water Central 185 185 185 185 185 

Veolia Water East 5.1 5.1 5.1 5.1 5.1 

Veolia Water South East 7.9 7.8 7.7 7.6 7.5 

Industry 3,294 3,288 3,271 3,252 3,245 

 

Twort [7] wrote “distribution losses comprise leaks from mains, joints, valves, 

hydrants and washouts, and leaks from service pipes upstream of consumers’ 

meters or boundary stopcocks”. Leakage estimates do not include water siphoned 

illegally through unaccounted connections. The number of leaks in the network is 

worsened as asset management of buried utility services has been overlooked for 

years. There are still considerable portions of the network after trunk mains, that the 

water companies do not have records of [8]. This is because they were laid at a time 
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when the need of an accurate location was not seen as a priority. It is estimated that 

there are over 1.5 million km of combined water, sewer, gas and electricity services 

[9] of which,  according to a Water UK estimate in 2008, there are 408,500 

kilometres of pipes that form the water supply network in the UK [10]. With the 

expansion of urban areas and the increasing density of the population in these 

areas, a multitude of utility services are being installed. The result of this oversight 

is financial loss, poor service management, longer down times in the event of failure 

and potentially a health and safety issue for maintenance crews digging to improve 

or restore services. In certain areas, these unaccounted branches are sometimes 

discovered by chance or while investigating faults. Currently, water companies rely 

on reactive management in that customers notify the network of issues. Improving 

the management of their asset is therefore a priority as effective asset management 

enables companies to reduce leakage, plan investments and repairs as well as 

evaluate operational risks. 

Despite new figures submitted by water companies to the water regulator, which 

showed that most were hitting the estimated leakage target. The House of Lords’ 

Science and Technology Committee said that the “level of leakage is unacceptably 

high” [11] while Wu [12] estimates this wastage to be over 15% of the water 

produced in the UK. Fixing leaks often requires digging in urban areas, causing 

street congestion with  a social and economic impact estimated at £667.2million [13] 

or £4.2billion [14] or even £5.5billion [15] per year. Regardless of which estimate is 

most accurate, the statutory undertakers as set by the New Roads and Street 

Works Act of 1991 (NRSW) are under even more pressure with the revised charges 

for the occupation of the highway [16]. To be able to protect and better manage the 
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network, a pre-emptive approach is necessary to address potential issues before 

they become major failures and to also find previously unrecorded pipe types and 

branches. It is therefore necessary to detect, identify by type, diameter and the 

condition of these assets without extensive excavations.  

Reliable leak detection and asset management tools are required for the water 

industry to comply with regulations and satisfy the public demand for reduced water 

leakage. Several research groups are looking into, this and many solutions have 

been proposed. However, these have to various extents yielded poor results in field 

trials so far. The project, Mapping the Underworld [17] is a national initiative to 

accurately locate and identify the UK buried utility infrastructure with the Subsurface 

Utility Engineering in the US [8] advocating the use of multi-sensors and multi-

frequencies as identified by Sterling [18] in the “Utility locating technologies: a 

summary of responses to a statement of need distributed by the federal laboratory 

consortium for technology transfer”. 

Different techniques have been researched for leak detection including [19] using 

finite-difference time-domain (FDTD) method analysis to model  the use of ground 

penetrating radar, while Castaldo [20] used time domain reflectometry that requires 

two wires at equal distance to be attached along the pipeline to be monitored thus 

requiring new pipe infrastructure to be laid.  

Inari [21] developed a pig-like optical inspection tool for pipe walls with a ±0.1mm 

resolution for corrosion detection which used a circular optical pattern allowing a full 

circumferential inspection of the inner wall for defects in real time. However, 

practical tests showed that it was necessary to clean the pipe internal walls first [21].  

Another similar pig concept was developed by NDT systems & Services in Germany 
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[22]. This ultrasonic tool allowed a full circumferential inspection of 0.5m to 1.4m 

diameter inner pipe walls over hundreds of kilometres. This modular pig design has 

a recording unit that stores the data collected for later processing; making it 

unsuitable for real-time inspection and the additional drawback is the likelihood of it 

becoming stuck as well as build-up on inner pipe walls affecting the ultrasonic.  

A Qatar group [23] developed an acoustic wireless sensor which transmitted data 

to static relay stations in real-time. The system detects leakage by sensing the noise 

level in underground water pipelines. Results on an unburied plastic pipe showed a 

signal amplitude variation with the simulated leakage magnitude. Another solution 

is the SmartBall [24], a free flowing aluminium ball that uses acoustics technology 

to detect leaks in pipes that have a 150mm or larger diameter. The data is recorded 

and then post processed after retrieving the ball. It should be noted that regardless 

of these results, pig and free flowing wireless sensors tend to get stuck in the 

pipelines due to bends and mineral build up in the internal pipe walls, making them 

very difficult to locate and retrieve without excavation.  

Reported results for these techniques have been inconsistent due to environmental 

noise, poor knowledge of pipe location and the requirement for the system to be 

integrated into the pipeline installation phase. 

LJMU has been researching a non-destructive method of detecting leaks using 

electromagnetic waves. A proof of concept using an antenna connected to a vector 

network analyzer (VNA) through a coaxial cable showed that electromagnetic waves 

were able to detect leaks [25] in water distribution mains. The present research will 

address the need of the water industry for an asset management sensor using 

electromagnetic waves. This will also be used for leak detection purposes in order 
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to reduce the cost to the water companies and to minimise the number of dry digs.    

The electromagnetic sensor will be deployed into the water pipeline through existing 

bore hydrants utilising a deployment system developed by our project partner JD71 

without the need to convert these traditional access points. 

1.2 Aims and objectives 

The main aim of this research is to develop a non-destructive inspection sensor 

using electromagnetic waves for leak detection and asset management for the water 

industry. The sensor will be capable of detecting leaks, differentiating between pipe 

types and diameters, as well as detecting branches connected to the pipe under 

test.  

This project will: 

 Review the current techniques used to localise leaks and manage the 

pipeline infrastructure.  

 Investigate the propagation of electromagnetic waves in a water filled pipe to 

determine the asset type and/or condition. 

 Design various antennas to determine the best antenna design for the sensor 

making better use of the objective above.  

 Develop a graphical user interface (GUI) software to compare and identify 

pipeline features in real time. For cost saving, the user interface should allow 

operators to use the sensor system with minimal training. 

 Develop a sensor prototype with embedded electronics capable of detecting 

and localising leaks or asset within a known range. The size of the sensor 

                                                           
1 JD7 - is a specialized technology provider focused on Pipeline Assessments and Inspection 

solutions for all utility sectors. www.jd7.co.uk 
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should fit in the Ø118mm standard water distribution pipe. 

 Evaluate the performance of the electromagnetic sensor prototype. 

1.3 Research methodology and thesis structure 

To achieve the aim and objectives stated in section 1.2, the following thesis 

methodology and structure was used. 

Chapter 1, this starts by assesses the extent of water leakage through publicly 

available data collected by the water authorities and regulatory bodies before 

moving onto the literature review. This review considers both academic and industry 

research. It discusses existing leak detection methods and ongoing industry 

research, including their limitations and uses sources from leak detection 

companies, conference papers and journals focusing on the use of non-destructive 

methods for leak detection and asset management, as well as books addressing 

electromagnetic wave propagation in cylindrical structures and antenna design. 

In chapter 2, the theory of electromagnetic waves will be reviewed and simulations 

of the standard DN100 water distribution, pipe modelled using CAD software, will 

be presented. These simulations examine the electromagnetic propagation 

properties. This chapter also includes the results of experimental tests which were 

carried out to verify the findings.  

Chapter 3, expands on the models and experiments in chapter 2 and includes the 

antenna theory required for the design. The sensor design requirements provided 

by the industrial partners, in term of the deployment technique used by JD7 and the 

pipeline characteristics of old networks, will be considered for the selection of the 

antenna type using antenna theory through modelling and experimentation. The 

fundamental characteristics of the antennas are explored for a pipeline environment 
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filled with water. The chosen antenna will then be tested in the laboratory facility 

which consists of sections of pipes that represent those encountered in over 40% 

the UK water network. In addition, a water proof sensor housing is designed and 

tested to assess performance. 

In chapter 4, experiments in leak detection using nylon rings of different thickness 

to simulate cracks on the pipe, and another setup with different pipe materials 

inserted to simulate asset management will be carried out in the laboratory.  An 

antenna prototype connected to a VNA will be used both in the laboratory 

experiments and at a test site that will be provided by United Utilities2. The findings 

in this chapter will be used to shape the sensor prototype design in chapter 6. 

Chapter 5 discusses the development of the sensor system to interpret the 

frequency sweeps generated, at this stage of the design by the VNA, and to 

distinguish from each of the frequency responses. The frequency sweep data 

gathered for the various pipe types and conditions will be stored in a database, 

which will then be used to match frequency responses acquired during the current 

test. The design of the user interface will be based on a traffic light system with 

minimal input requirement from the operator and applying existing analysis method 

within the software. The analysis used will look at different technics to compare 

series of data analysis with each other to identify best fit. Finally a conceptual design 

of the sensor system will be created based on these requirement and all the 

knowledge gathered in the previous chapters.  

In chapter 6, components will be identified to work within the required frequency 

                                                           
2 Responsible for the provision and maintenance of water supply in the UK North West region. 
www.unitedutilities.com 
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range so that a prototype can be constructed that will replicate the functionality of 

the VNA, by generating a frequency sweep and measuring the reflected power. An 

incremental design method will be adopted allowing the functionality of individual 

modules to be experimentally verified before integration into the full design. Off-the-

shelf components will be used to test the functionality of the sensor assembly before 

a printed circuit board using surface mount components, is designed to fit into a 

water proof prototype casing in line with the dimensions set by the industrial 

partners. The operational performance of the fully integrated prototype is then tested 

using the lab rig and the results are discussed. 

Finally, chapter 7 describes the novelty and benefit of the developed sensor system 

and reviews the main findings of the research. The thesis will be completed by 

proposing future work to further improve the electromagnetic sensor system. 

The development methodology is summarised in Figure 1. 

. 
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Figure 1: Development methodology 

1.4 Current trend in leak detection 

Companies around the globe utilise various techniques and systems to find and 

manage leaks within the water distribution network, while numerous other 

experimental methods are under development. According to the regulator OFWAT 

[26], water companies mainly use the minimum night flow and total integrated flow 

methods to estimate leakage on their network in defined zones called District 

Metered Areas (DMA). With the minimum night flow, water entering and leaving the 

zones is measured hourly at night while the total integrated flow method relies on 
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the balance of water used and the water supplied over an extended period. 

However, with just over 40% of consumers metered [27] these approaches heavily 

rely on estimates that may not  reflect the true state of the network as both methods 

incorporate the volume of water used.  

1.4.1 Pressure Reduction 

Water loss reduction has been traditionally achieved using pressure management. 

This is done by the creation of district metered areas (DMAs) with pressure reducing 

valves (PRVs) and or pressure maintaining valves (PMVs) thus managing the flow 

of the water into the zone depending on the pressure threshold set or detected, 

effectively managing their asset by pressure reduction.  

It is proven that, subject to variations, a 1% pressure reduction will result in 1.15% 

decrease in leakage. However, the level of this reduction is limited, otherwise, 

certain appliances such as combi boilers may malfunction when the minimum 

design water pressure is not provided[28].  

1.4.2 Listening devices 

Listening devices have been used in the vicinity of suspected leaks to determine 

their location for decades. The low cost leak detection stick is a metal rod with a 

wooden or plastic ear piece, as shown in Figure 2 (a).This device is applied against 

the ground, directly above a pipe, to pick up noise propagated through the soil by 

the vibrations produced by the leak.  
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(a)                                                           (b) 

Figure 2: Operator with (a) listening stick [29] and (b) digital listening device [30]  

Its efficiency, however relies heavily on the operator’s hearing and experience. 

However, a more high tech solution is to use a modern version with piezoelectric 

components, as shown in Figure 2 (b), which amplifies the detected vibrations 

created by any escaping water. Regardless, inspection holes are still required to 

pinpoint the leak. Even though these devices are electronically simple, the operator 

must be experienced enough to distinguish environmental noise from leakage noise 

produced by pressurised water escaping through cracks. 

1.4.3 Ground Penetrating Radar 

Ground penetrating radar (GPR) is a non-destructive method of detecting leaks in 

buried utilities. The device sends radio waves to probe buried objects and uses the 

reflected electromagnetic pulses to build an underground map of the surveyed area. 

It still requires inspection holes to be dug at regular intervals to pinpoint any 

suspected leak. The system efficiency is greatly affected by voids, soil conditions 

[31], such as moisture level, and the type of buried pipeline under inspection. The 
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ground penetrating radar is more suitable for mapping pipeline infrastructure and 

locating buried objects rather than for leak detection. 

    

Figure 3: Operator with (a) handheld [32] and (b) wheeled GPR [33] 

1.4.4 Other leak detection methods:  

In the laboratory, Miller [34] injected nitrogen (‘nitrogen flush’) into a pipe at 1.7 bar 

to improve the leak detection between two external acoustic emission sensors 

placed on the pipe, by creating periodic air and water/nitrogen disturbances. 

Meanwhile, Hudaini [35] proposed a cross-correlation function method to estimate 

the time delay of induced signals in order to locate the leak between two 

simultaneously recorded signals using hydrophones. Furthermore, Wan [36] 

reported laboratory tests using a power spectrum analysis method of the raw 

acoustic data to detect leaks in pipes of a boiler system, while Yang [37] used 

approximate entropy to separate a leak signal with environmental noise achieving a 

92.5% correct detection rate but field tests showed the method to be sensitive to 

noise from other sources in the vicinity of the pipe location area such as building 

work or road traffic. 
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Other systems investigated include low-frequency quasi-static electromagnetic 

fields created by the introduction of a low frequency current, in the region of Hz to 

kHz [17], and leak prediction software such as the WaterGems Darwin Optimisation 

package by Bentley Systems [12] which applies a genetic algorithm to identify 

leakage hotspots in a district metered area. Bimpas [38] proposed the use of a 

2.45GHz continuous wave sensor used above ground over the pipe path. This 

sensor makes use of the Doppler shift generated by electromagnetic waves hitting 

water escaping through a leak. It was unable however to efficiently detect leaks in 

pipes buried deep underground or in wet soils due to the high attenuation of the 

electromagnetic wave. 

1.5 Summary 

The ageing state of the water distribution network in the UK and around the world 

due to the limitations of existing and proposed new leak detection systems 

combined with public and regulators pressure have been driving the water 

companies to seek for a reliable technology that will allow them to pinpoint leaks 

and reduce water wastage through the correct identification of existing buried asset 

without extensive excavation. It is this need that has prompted the development of 

a novel electromagnetic wave based sensor technology for asset management and 

leak detection in real-time.  

The next chapter will look into the properties of the standard ductile iron cement 

lined pipe that makes the majority of existing water distribution network and the 

theory of electromagnetic waves as well as their propagation within these circular 

structures. 
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Chapter 2: Electromagnetic waves in the water distribution pipe 

The use of an electromagnetic wave sensor as a tool for water industry asset 

management is novel. The propagation of electromagnetic waves in standard water 

distribution pipes will be studied and the minimum frequency of propagation will be 

determined for both an empty pipe and a water filled pipe. 

2.1 Water distribution pipe 

In the UK, the majority of water distribution pipes are ductile iron cement lined (DICL) 

and polyvinylchloride (PVC) all approved by the Drinking Water Inspectorate (DWI) 

and governed by the BS EN 545 standard. The DN100 refers to a DICL pipe with 

an outer diameter of 118, and is shown in  

 and a 5mm (-1.5mm tolerance) thick cement liner [39], typically distributed in 5.2m 

or 6m lengths. These pipes are made to withstand the internal pressure created by 

the water flow, and external load due to backfill and road traffic over ground. In the 

present document, the DN100 pipe will be referred to by Ø118 mm pipe. 

The outside wall of the iron has a zinc coating which then is painted with an epoxy 

coating to protect against abrasion and erosion giving a longer lifespan to the pipe.  

                  

Figure 4: Ductile iron with 2 layers zoomed 
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Figure 5: Typical layers in the ductile iron pipe design [40] 

As the iron and zinc/aluminium coating are electrically conductive, the pipe can be 

considered as a circular waveguide. Electromagnetic wave propagation in a circular 

waveguide was therefore considered next. 

2.2 Electromagnetic waves 

The diameter of the pipe limits the propagation of very low frequencies. 

 

Figure 6:  Electromagnetic Spectrum [41] 

The microwave range will therefore be used in this project, the wavelength of 

interest is between 0.3m (1GHz) to 0.03m (10GHz), as shown in Figure 6.  

Electromagnetic waves always have two components: the electrical field E and the 

magnetic field H. These two fields in a time-variation situation are linked by 
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Maxwell’s equations. 

2.3 Maxwell’s equations 

Electromagnetic field theory was developed by James Clerk Maxwell [1831-1879]. 

Maxwell developed the electromagnetic field theory based on Ampere’s law, 

Faraday’s law and Gauss’ law to produce four integral equations now known as 

Maxwell equations. These are listed in Table 2. 

Table 2: Maxwell equations [42] 

Differential Form Integral Form Significance 

𝛁 × 𝐄 = −
𝝏𝑩

𝝏𝒕
 

∮ 𝑬. 𝒅𝒍 = −
𝒅𝚽

𝒅𝒕
𝒄

 

Faraday’s law 

𝛁 × 𝑯 = 𝑱 +
𝝏𝑫

𝝏𝒕
 

∮ 𝑯. 𝒅𝒍 = 𝑰 + ∫
𝝏𝑫

𝝏𝒕
. 𝒅𝒔

𝒔
𝒄

 

Ampere’s circuital law 

𝛁. 𝑫 = 𝝆 

∮ 𝑫. 𝒅𝒔

𝒔

= 𝑸 

Gauss’s law 

𝛁. 𝑩 = 𝟎 
∮ 𝑩. 𝒅𝒔

𝒔

= 𝟎 
No isolated magnetic charge 

Where: 

𝐄 electrical field intensity 𝑩 magnetic flux density 

𝒕 time 𝐇 magnetic field intensity 

𝚽 magnetic flux 𝐃 electric flux density 

𝒍 segment length 𝝆 charge density 

𝒔 surface 𝑱 current density 

𝑸 charge  
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2.4 Propagation of electromagnetic waves  

For a wave propagating in the z direction in a linearly polarised plane, E and H are 

given by the Maxwell equations as: 

 Ex = E0 е(jωt-γz)   (1) 

 Hy = H0 е(jωt-γz)   (2) 

ω being the angular frequency expressed as ω = 2πf were f is the frequency in hertz. 

These two equations take into account the propagation constant γ [43]. 

 γ=α+јβ   (3)   

Were α is the attenuation constant and β is the phase constant.  

 

Figure 7: Electromagnetic wave travelling in the z direction [44] 

The propagation of electromagnetic waves in a lossy medium is different from its 

propagation in lossless medium due to the conductivity 𝜎 of the dielectric. 

When propagating in a lossy medium, the amplitude of the electromagnetic fields 

decrease exponentially as 𝑒−𝛼𝑧 with the propagation distance 𝑧, where 𝛼 is the 

attenuation constant. In a lossy dielectric medium, the electrical field E and the 

magnetic field H are not in phase along the propagation path. Meanwhile, in a 

lossless dielectric medium, both fields are in phase and perpendicular to each other. 
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In free space, electromagnetic waves have a velocity [42] of 𝑐𝑣𝑎𝑐𝑢𝑢𝑚 =

29979245𝑚𝑠−1. They are linked to the permittivity and permeability of free space by 

equation  (4) [42] 

  𝑐𝑣𝑎𝑐𝑢𝑢𝑚 =
1

√𝜀0𝜇0
  (4) 

ε0=8.854×10-12 F/m, the permittivity of free space 

μ0=4π×10-7 H/m, the permeability of free space 

For lossless dielectrics, the electromagnetic wave velocity is reduced by a factor of 

√𝜀𝑟𝜇𝑟 where εr is the relative permittivity and µr the relative permeability of the 

medium in which the wave is propagating. For water, the relative permittivity and the 

relative permeability are respectively 𝜀𝑟 = 81 and µ
𝑟

= 0.9999 [45] at 15oc. 

Thus the EM velocity in water 𝑐𝑤𝑎𝑡𝑒𝑟 (𝐶) is given by equation (5): 

 𝑐𝑤𝑎𝑡𝑒𝑟 =
𝑐𝑣𝑎𝑐𝑢𝑢𝑚

√𝜀𝑟𝜇𝑟
  (5)  

Therefore, the velocity of the electromagnetic wave 𝑐𝑤𝑎𝑡𝑒𝑟 = 33310000𝑚𝑠−1  

Water pipe as a waveguide 

Electromagnetic waves may propagate in a conductive hollow shell such as the 

standard ductile iron pipe used in the water distribution network. 

In a circular waveguide, above the cut-off frequency, electromagnetic waves may 

propagate in a number of modes: the transverse electric TE with a null longitudinal 

electric-field and the transverse magnetic TM with a null longitudinal magnetic-field.  

In all the experiments, the Ø118mm pipe in Figure 4 will be used, including the 

bigger Ø170mm diameter pipe version as they constitute 40-60% of all installed 

pipes for potable water distribution in the UK with a standard wall thickness to up to 

5mm. 
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Above the cut-off frequency, electromagnetic waves are able to propagate through 

empty metal pipes of any cross section, thus acting as a waveguiding structure.  

 

Figure 8: Circular waveguide [42] 

Figure 8 shows a metallic waveguide of radius 𝑎 along the z direction. The enclosed 

medium has characteristic parameters, 𝜀 and 𝜇.      

A circular waveguide can propagate transverse electromagnetic waves (with Ez=0 

and Hz=0), if the wavelength is very much smaller than the radius, but it can also 

support the transverse magnetic (TM) modes and the transverse electric (TE) 

modes at low frequencies both have a longitudinal component; electric-field and 

magnetic-field respectively, and each characteristic cut-off frequency as a lower limit 

[42].  

x 

O 

𝑎 
ø 

ε, µ 

z 
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  TE11      TM01 

Figure 9:  TE11 and TM01 fields configuration in a circular waveguide [46] 

The electric and the magnetic field configurations of the two dominant modes in a 

circular waveguide cross section are shown in Figure 9. 

However, a transverse electromagnetic TEM wave can exist in a dielectric filled 

waveguide if there is an axial [42] [43] such as a coaxial transmission line. These 

operate at all frequencies (ignoring losses at high frequency) down to dc. 

TM and TE will be the only modes that will be considered in this project due to the 

absence of inner conductor in water pipelines and the focus on RF frequency range. 

Propagation within cylindrical waveguide relies on electric field reflection from the 

conductive wall, and these produce modes whose properties are dependent on 

involving roots of the Bessel function of the first kind, 𝐽𝑚(𝑢) [43] and its derivative 

𝐽′
𝑚

(𝑢). 
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Figure 10:  Bessel function of the first kind 

Figure 10 shows 𝐽𝑚(𝑢) oscillations for some values of 𝑚. It should be noted that 

𝐽0(𝑢)=1 when 𝑢=0 the zeroth order while 𝐽𝑚(0)=0 for all 𝑚 except when  𝑚 = 0. 

Furthermore, Jm(u) are oscillations with decreasing amplitude [42]. 

 𝑱𝒎(𝒖) = 𝟎,     𝒖 = 𝒙𝒎𝒏  (6) 

 𝑱′
𝒎

(𝒖) = 𝟎,    𝒖 = 𝒙′𝒎𝒏 (7) 

For TM modes,  

  𝑓𝑐,𝑚𝑛 =
𝑥𝑚𝑛

2𝜋𝑎√𝜀𝜇
  (8) 

For TE modes, 

  𝑓𝑐,𝑚𝑛 =
𝑥′𝑚𝑛

2𝜋𝑎√𝜀𝜇
  (9) 

𝜇 permeability, 𝜀 permittivity, 𝑎 pipe radius, 𝑥𝑚𝑛 root value of the Bessel function, 

𝑥′𝑚𝑛  root value of the derivative of the Bessel function, 𝑓𝑐,𝑚𝑛 cut-off frequency, 𝑚 
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and 𝑛 constants (𝑚 = 0,1,2, … and 𝑛 = 1,2,3, …). 

Table 3: Some root value of the Bessel function [43] 

 xmn  x’mn 

m 0 1 2  m 

 

0 1 2 

n n 

1 2.405 3.832 5.136 1 3.832 1.841 3.054 
2 5.52 7.016 8.417 2 7.016 5.331 6.706 
3 8.654 10.173 11.62 3 10.173 8.536 9.969 

 

In the pipe, the lowest cut-off frequency for the TE mode is TE11 while for the TM 

mode, it is TM01 determined by the lowest root values for each function shown in red 

in the table above. However, TE11 is the true dominant mode as it yields the lowest 

cut-off frequency.  These Bessel function solutions in Table 3 will be used in the 

calculations to determine the minimum cut-off frequency below which there is no 

propagation.  

The effective internal pipe radius 𝑎 and the available length used for this experiment 

are shown in Table 4 below: 

Table 4: Pipe dimensions 

Pipe Type Internal Radius Length 

Cast iron 52mm 720mm 

 

The cut-off frequencies are calculated using the smallest values in Table 3 to derive 

the two dominant modes for 𝑇𝐸𝑚𝑛 and 𝑇𝑀𝑚𝑛 : 

 (𝑓𝑐)11
𝑇𝐸𝑧

=
1.8412

2𝜋𝑎√𝜇𝜀
  (10) [46] 

  (𝑓𝑐)01
𝑇𝑀𝑧

=
2.405

2𝜋𝑎√𝜇𝜀
  (11) [46] 

Where (𝑓𝑐)11
𝑇𝐸𝑧

and (𝑓𝑐)01
𝑇𝑀𝑧

 are the corresponding cut-off frequencies for the TE11 
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and the TM01 modes respectively, 𝑎 is the radius of the pipe, and 𝑧 is the direction 

of propagation which will be along the length of the pipe.  

As well as the surrounding dielectric, the wavelength of the propagating waves is 

also dependent on the radius of the guide. In free space, the wavelength is:  

 𝜆 =
𝐶

𝑓11
= 3.413𝑎 [43] 

 𝜆 =
𝐶

𝑓01
= 2.612𝑎  

However, the wavelength of the waves that exist inside a waveguide 𝜆𝑔 is expressed 

by: 

𝝀𝒈 =
𝝀

√𝟏−(
𝒇𝒄
𝒇

)
𝟐
   when  𝒇 > 𝒇𝒄 = (𝒇𝒄)𝒎𝒏    (12) [46] 

And the phase constant 𝛽 along the 𝑧 axis of the wave is  

 𝛽𝑧 =
2𝜋

𝜆
√1 − (

𝑓𝑐

𝑓
)

2

   (13) [46] 

With a sample pipe of radius 52mm, the theoretical cut-off frequencies in the empty 

pipe are calculated using the solutions from the Bessel function and shown in Table 

5. The cut-off frequencies shown in red correspond to the dominant modes. 

Table 5: Some cut-off frequencies (GHz) in air for the Ø118mm pipe 

TM01 TM11 TM21 TM02 TM12 TM22 TM03 TM13 TM23

x mn 2.405 3.832 5.136 5.520 7.016 8.417 8.654 10.173 11.620

f c,mn 2.204 3.512 4.708 5.060 6.431 7.715 7.932 9.325 10.651

TE01 TE11 TE21 TE02 TE12 TE22 TE03 TE13 TE23

x' mn 3.832 1.841 3.054 7.016 5.331 6.706 10.173 8.536 9.969

f c,mn 3.512 1.687 2.799 6.431 4.886 6.147 9.325 7.824 9.138  

For waves propagating in the pipe, the wavelength at frequencies above the cut-off 

frequencies is calculated using equation (12). The calculated wavelength for 
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frequencies above the dominant modes TE11 and TM01 set respectively at 1.75GHz 

and 2.5GHz are 670.6mm and 611.7mm inside the empty waveguide. 

The velocity of electromagnetic waves is reduced by interaction with the medium, 

as described by equation (14). 

 𝑐𝑚𝑒𝑑𝑖𝑢𝑚 =
𝑐𝑣𝑎𝑐𝑢𝑢𝑚

√𝜀𝑟𝜇𝑟
 (14)   

Where 𝜀𝑟 is the relative permittivity and µ𝑟 is the relative permeability. 

For water, the relative permittivity and the relative permeability are  respectively 𝜀𝑟 =

81 and µ𝑟 = 0.9999 [45] at 15oc. 

Therefore, the velocity of the electromagnetic wave in water is 𝑐𝑤𝑎𝑡𝑒𝑟 =

33310000𝑚𝑠−1.  

Using equation (14), the cut-off frequencies in water are shown in Table 6. 

Table 6: Some calculated cut-off frequencies (MHz) in water for the Ø118mm pipe 

 TM01 TM11 TM21 TM02 TM12 TM22 TM03 TM13 TM23 

xmn 2.405 3.832 5.136 5.520 7.016 8.417 8.654 10.173 11.620 

fc,mn 245.19 390.68 523.62 562.77 715.29 858.13 882.29 1037.15 1184.68 

          

 TE01 TE11 TE21 TE02 TE12 TE22 TE03 TE13 TE23 

x'mn 3.832 1.841 3.054 7.016 5.331 6.706 10.173 8.536 9.969 

fc,mn 390.68 187.69 311.36 715.29 543.50 683.69 1037.15 870.26 1016.36 

 

There will be no wave propagation below the cut-frequency shown in red in the table.  

Table 7: Calculated cut-off frequencies (MHz) in ascending order 

Mode TE11 TM01 TE21 TM11 TM21 TE12 TE22 TE02/TM12 … 

Frequency 187.69 245.19 311.36 390.68 523.62 543.50 683.69 715.29 … 

As the radius 𝑎 increases, the cut-off frequency decreases. Hence, for the second 
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most used pipe in the water distribution network, the Ø170mm pipe, which has an 

internal radius of 78.7mm, the cut-off frequencies for TE11 and TM01 are respectively 

124MHz and 162MHz in a water filled pipe. 

In water filled pipes, the minimum frequency to be used with the Ø118mm should 

be above 187.69MHz while the Ø170mm requires just above 124MHz. 

2.5 Scattering parameters 

Experimentally testing the wave propagation inside the pipeline will require the use 

of antennas to transmit and receive the waves. The signal strength is observed 

through the reflection and transmission coefficients measured inside the pipe; which 

will introduce the concept of scattering or s-parameters. These two antenna ports 

are modelled in a two port network in Figure 11 and energy propagation can be 

quantified using the two dimension scattering matrix. A two port device is 

represented as:  

 

Figure 11: A two port network [47] 

The s-parameters matrix of this network is shown below: 

 𝑆 = [
𝑆11 𝑆12

𝑆21 𝑆22
]  [47] 

𝑆11 and 𝑆22 are the reflection coefficients from port 1 and port 2 respectively. 

While 𝑆12 and 𝑆21 are the transmission coefficients from port 2 to port 1, and from 

port 1 to port 2 respectively. 

This matrix connects the input power wave to the output power wave: 

Port 2 Port 1 

a1 

b1 

a2 

b2 
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[
𝑏1

𝑏2
] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑎1

𝑎2
] [44] 

Where 𝑎1 and 𝑎2 are the incident voltage wave amplitudes, and 𝑏1 and 𝑏2 are the 

reflected voltage wave amplitudes. 

If port 1 and port 2 are alternatively terminated with a matched impedance, the 

resulting reflection and transmission coefficients of the network of the 2 ports will be 

as the following: 

𝑆11 =  𝑏1/𝑎1 – Reflection coefficient at port 1 

𝑆21 =  𝑏2/𝑎1 – Transmission coefficient from port 1 to port 2 

𝑆12 = 𝑏1/𝑎2 – Transmission coefficient from port 2 to port 1 

𝑆22 = 𝑏2/𝑎2 – Reflection coefficient at port 2 

2.6 Wave propagation modelling 

In this section, the electromagnetic wave behaviour in the empty pipe and the water 

filled pipe will be shown. The propagation only takes place when the operating 

frequency is above the cut-off frequency. The transmission in the Ø118mm pipeline 

acting as a waveguide will be modelled with two ports to determine the frequency of 

propagation using the s-parameter 𝑆21 and show the electromagnetic field 

distribution in the pipe above the cut-off frequency.  

This step was achieved by modelling and simulating a cylindrical waveguide of the 

same radius as the pipe with perfect conducting walls using ANSYS’s high 

frequency structure simulator (HFSS) software version 13 [45] which uses the finite 

element method to solve Maxwell equations for complex structures.  

The cylinder was drawn with two wave ports at each end to transmit the signal and 

receive the signal respectively. These wave ports were excited and the transmission 

curve was plotted as well as the electric and magnetic field distribution.  
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Using a wave port at each end of the pipe section ensures that the propagating 

wave is not reflected and the pipe section does not act as a cavity. 

The results of the pipe simulations in Figure 12 through Figure 15, show the field 

distribution for an empty pipe (air) and for a fresh water filled pipe with both the TE11 

and TM01 modes. 

In HFSS, a frequency sweep was set from the cut-off frequency of the dominant 

mode TE11 to a frequency below the TM01 mode in order to ensure transmission 

within the TE11 mode only.  

In air, the electrical and magnetic fields distribution is plotted for the TE11 in Figure 

12. 

   

          Figure 12:  TE11 in air 

For transmission in the TM01 mode, the frequency is above 2.2GHz and below the 

next mode. The electromagnetic field distribution is shown in Figure 13. 
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Figure 13:  TM01 in air 

Both figures of the field distribution for the air filled pipe above showed no wave 

attenuation. 

After the simulation using the empty pipe, it was filled with fresh water.  

Taking into account the reduction factor √𝜀𝑟𝜇𝑟 in the medium of propagation, in 

water, the frequency was set 300MHz to cover both modes. 

The electromagnetic fields from the simulations are shown in Figure 14 and Figure 

15. 
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Figure 14:  TE11 in water 

   

Figure 15:  TM01 in water 

When the pipe is filled with water, the electromagnetic waves propagate but at a 

velocity of only 3.3x107m-1 due to the water permittivity. 
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Both in the TE11 and TM01 mode, signal attenuation is observed as the wave 

propagates away from the excited port.  

The modelling results showed the pipe used for water distribution satisfies the 

properties of a circular waveguide and various electromagnetic propagation modes 

are possible. 

2.7 Wave propagation experimental test 

To compare the theory to the actual pipe, measurements were taken on an 

experimental setup using two equivalent common, loops and monopole antennas, 

with a Ø118mm cast iron potable water pipe section. Figure 16 - Figure 18 show the 

equipment used for the experiment.  

 

Figure 16: A vector network analyser - Rhode & Schwarz ZVL-3GHz 
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Figure 17:  Loop and monopole antenna 

 

 

Figure 18:  Full setup with the Ø118mm pipe 

Two caps at each end of a 720mm cast iron pipe section with the same antenna 

type at each end were connected to ports 1 and 2 of a Rhode & Schwarz ZVL-3GHz 

[48] vector network analyzer (VNA) to measure the transmit a signal and measure 

its reflected power. 

The electromagnetic wave is generated on port 1 and received on port 2. The 

transmission 𝑆21 is plotted against frequency in Figure 19.  

Cap with 

antenna 

Cap with 

antenna 
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Figure 19: Cut-off frequency in the empty pipe 

In the empty pipe, for the loop antenna, the measured transmission starts around 

1.63GHz while the monopole starts around 2.18GHz. These transmissions are 

slightly below the theoretical cut-off frequency calculated. This discrepancy may be 

explained by the dielectric properties of the mortar lining. 

The loop antenna transmitted the signal in air in the TE with the TM mode starting 

at 2.208 GHz shown in Figure 19, while the monopole antenna transmitted much 

better from the TM mode above the calculated 2.204GHz (TM01) which is the cut-off 

frequency of this mode shown in Table 5. This effect is due to the fact that the loop 

antenna is more sensitive to the magnetic field [49]. 

The experiment above was repeated with the pipe filled with fresh water. 

Due to water dielectric properties, higher frequency range transmission was not 

observed during the experiment due to high attenuation.  
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Figure 20: Cut-off frequency in the water pipe 

When the pipe was filled with fresh water, the cut-off frequencies are expected to 

be lowered by a factor of √µ𝑟𝜀
𝑟
. 

In water, the cut-off frequencies are:  

  𝑓11 = 1.841
𝑐𝑤𝑎𝑡𝑒𝑟

2𝜋𝑎
 (15)  

 𝑓11 = 1.841 × (3.331 × 107/2𝜋 × 0.05205) = 187.45𝑀𝐻𝑧  

 𝑓01 = 2.405
𝑐𝑤𝑎𝑡𝑒𝑟

2𝜋𝑎
 (16)   

 𝑓01 = 2.405 × (3.331 × 107/2𝜋 × 0.05205) = 244.88𝑀𝐻𝑧 

Compared to the 222MHz measured frequency, in water both the loop and the 

monopole antenna transmitted from the TE mode with a theoretical cut-off frequency 

of 187.51MHz. Both antennas couple with the electric and magnetic fields and give 

a S21 value of -10dBm between 227MHz and 351MHz while attenuation was 

observed as shown in Figure 20. 

The cut-off frequencies for the HFSS model, calculated and experimentally 
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measured have shown that the standard Ø118mm cast iron pipe, widely used for 

water distribution, satisfies the properties of a circular waveguide based on the 

propagation of the electromagnetic modes TE11 and TM01. 

Electromagnetic waves will propagate differently in non-metallic pipes due to the 

material’s ability to reflect the waves. Metal are highly reflective because their mobile 

electrons will not sustain an electric field component parallel to the surface. In the 

case of plastics, reflections will occur due to the difference in permittivity of the pipe 

medium and water but transmission through the pipe wall is possible.  

2.8 Summary 

The modelling and experiments carried out in this chapter have shown that the 

ductile iron cement lined standard water distribution pipe acts as a circular 

waveguide due to its electrically conductive shell. Each pipe radius has a minimum 

frequency below which there is no wave propagation. In a circular waveguide, the 

dominant electromagnetic wave propagation mode is the transverse electric TE11, 

which correspond to the lowest cut-off frequency. The cut-off frequency of the water 

filled pipe was shown to be 187.69MHz. This value will be the minimum frequency 

for the sensor to cover both the Ø118mm and Ø170mm pipes. In the next chapter, 

the selection and design process of the appropriate antenna for the sensor will be 

described. 
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Chapter 3: Antenna design 

The choice of the antenna is governed by its ability to be integrated into a sensor 

case which must comply with the form and size restrictions imposed by the 

stakeholders. Due to this size constraint, the sensor will be built around a single 

antenna which will transmit a signal and detect the amount that is reflected using 

the reflection coefficient at port 1, as described in the two port network theory in the 

preceding chapter. 

The wave quantity measured from the antenna is the scattering parameter S11, 

which with just a source at port 1 is the reflection coefficient Γ expressed by: 

 Γ =
b

a
    (17) [50] 

Γ is the ratio of the incident power 𝑎 to the reflected power 𝑏. The scattering 

parameter S11 is a quantity measured from a one-port device as illustrated in Figure 

21: 

 

Figure 21: One-port device with incident and reflected waves [50] 

In this illustration, the incident wave is partially reflected by the device under test 

(DUT) back to the source.  

This reflection coefficient is a complex quantity derived from the complex impedance 

𝑍 of the DUT using: 

D
U

T  

Incident wave 𝑎  

𝛤 

Reflected wave 𝑏 
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 𝛤 =
𝑧−1

𝑧+1
    (18) 

With 𝑧 =
𝑍𝐷

𝑍0
  where 𝑍0 is the reference impedance, typically 50Ω.  

The return loss 𝑅𝐿 is a measure of how much power is delivered from a transmission 

line to a load expressed in decibels: 

 𝑅𝐿 = 10log10 (
𝑃𝑖𝑛

𝑃𝑟𝑒𝑓
) 𝑑𝐵   (19) [51] 

The power reflected P𝑟𝑒𝑓 cannot be higher than the incident power P𝑖𝑛. 

In this document, the magnitude of S11in dB versus frequency will be referred to as 

the return loss calculated as: 

 S11(𝑑𝐵) = 20log10|S11|  

Along the return loss parameter, bandwidth will be considered. 

The bandwidth of an antenna is the range of frequencies, in relation to the centre 

frequency, over which the power dissipation is high. A narrow bandwidth should be 

an advantage, as any structural change to the shell of the water distribution pipe 

should affect the frequency and amplitude of the spectrum. 

3.1 Antennas 

There are numerous types of antennas and the most popular are categorised into 

wire-type made with conducting wires, aperture type widely used in high frequency 

applications and antenna arrays which are geometric arrangement of multiple 

radiating elements to form a single antenna [44]. For example, the dipole, loop and 

helical antennas are all classed in the wire-type antenna category. In this group, the 

most familiar antenna is the Yagi-Uda antenna used for domestic TV reception. Horn 

and microstrip antennas as well as reflectors are part of the aperture group.  

The choice of the antenna type to use for this project is limited by the 100mm 
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maximum length of the sensor body set by the industrial partners and its ability to fit 

in a standard water distribution pipe. Therefore three antenna types, a loop, a 

monopole and a patch, were considered for this research because they are common 

antennas for the frequency range needed and are potentially easier to integrate into 

the sensor. Antennas with resonant frequencies in free space above the cut-off 

frequency of the pipe, will be designed and simulated. These antennas will be tested 

and experimented with and their performance compared. 

3.1.1 Loop antenna  

The diameter (𝑑) of the loop antenna was chosen based on the results from a 

previous LJMU project [52]. The maximum size of the antenna is bound by the 

maximum diameter of the sensor body imposed by water industry stakeholders. The 

size was set in order to allow the sensor to be inserted inside water pipes through 

existing hydrants in the distribution network. Due to the insertion angle and mineral 

deposit build up over time, the maximum antenna diameter allowed was estimated 

to be 28mm. 

The circumference of a loop antenna is expressed with equation   (20). For a one 

wavelength loop of 28mm diameter antenna, 𝜆 the wavelength is equal to 𝐶 the 

circumference of the loop antenna (𝜆 = 𝐶).  

   𝜆 = 𝐶 = 𝜋 × 𝑑  (20) [53] 

 𝜆 = 𝐶 = 𝜋 × 28𝑚𝑚 = 87.96𝑚𝑚 

This antenna is classed as an electrically large loop antenna with a non-uniform 

current. 

The wavelength is linked to the frequency by equation (21): 

 𝑓 =
𝑐

𝜆
   (21) 
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 𝑓 =
2.99792×108

0.08796
= 3408 × 106 = 3.4𝐺𝐻𝑧  

With the calculated frequency, a resonant loop antenna was then modelled and 

simulated in HFSS and its output shown in Figure 22. 

 

Figure 22: Loop S11 in air 

 

Figure 23: Large loop radiation field 
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This loop satisfies the electrically large loop property because the circumference 

𝐶 = 2𝜋𝑎 is more than 
𝜆

3
 (𝐶 = 2𝜋 × 28 > 175.92/3). It is stated that when the loop 

circumference is almost equal to the wavelength, the maximum radiation fields shift 

by 90o (𝜃 = 0 and 𝜋) on it axis perpendicular to the plane loop [44] as shown in the 

3D radiation plot in Figure 23. 

As this is an electrically large loop, the current along the circumference of the 

antenna is non-uniform and is better expressed by a Fourier series: 

 I(∅′) = I0 + 2 ∑ In cos(n∅′)M
n=1     (22) [54] 

The Q factor of the antenna is calculated using equation (23): 

 Q =
f0

∆fHP
   (23) [55] 

f0 the centre frequency 

∆fHP the bandwidth at half power 

While its directivity D is given by equation (24): 

 D = 0.68Cλ   (24) [53] 

Where Cλ is the loop circumference. 

A loop of this size was then designed and experimentally tested to evaluate its return 

loss. 
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Figure 24: 28mm loop antenna 

 

Figure 25: 28mm loop antenna S11 in air 

𝑆11 is plotted against frequency in Figure 25. The resonant frequency was 

3.3769GHz, which is very close to the theoretical frequency of 3.4GHz with a 

525MHz bandwidth at -10dBm.  
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determine its return loss and radiation pattern for comparison. This monopole 

antenna was 
𝜆

4
 long with a ground plane and was also designed to resonate at 

3.4GHz.  

 

Figure 26: Monopole S11 in air 

In air, the simulated monopole had a high return loss but a smaller bandwidth of 

400MHz as shown in Figure 26. 
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Figure 27: λ/4 monopole radiation pattern 

Meanwhile, the radiation of the monopole antenna is omni-directional and based on 

its radiation pattern, this antenna would be perfect for the purpose of covering the 

full circumference of the internal pipe.  

A 
𝜆

4
 monopole was constructed and tested. Its resonant frequency in Figure 29 is 

50MHz lower than the target frequency. This could be tuned using a larger ground 

plane. 
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Figure 28: λ/4 Monopole antenna 

 

Figure 29: Monopole S11 in air 

Despite having the appropriate radiation characteristics and bandwidth of 225MHz, 

however, this antenna was considered to be too fragile and mechanically unsuitable 

for integration into the proposed sensor case. 
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was considered due to its rigidity, mechanical strength and directivity.  

In order to check the suitability of this type of antenna for our sensor, a patch 

equivalent to the previous antennas was designed and modelled in HFSS. 

To design the patch antenna, the PCB characteristics below were used with the 

patch antenna design parameters [44]. The following parameters of the double sided 

copper clad epoxy glass FR4 [56] PCB board  were known through the datasheet: 

permittivity 𝜀𝑟 = 4.3 and thickness 𝑑 = 1.588𝑚𝑚. 

The width of the patch (𝑊) was determined using: 

 𝑊 =
1

2𝑓𝑟√𝜀0𝜇0
√

2

𝜀𝑟+1
     (25) 

Using the electromagnetic wave propagation in air, 𝑊 = 27.1𝑚𝑚 

The length of the patch antenna is 

 𝐿 =
1

2𝑓𝑟√𝜀𝑟𝑒𝑓𝑓√𝜀0𝜇0
− ∆𝐿  (26) 

Where 

 𝜀𝑟𝑒𝑓𝑓 =
𝜀𝑟+1

2
+

𝜀𝑟−1

2√1+
12𝑑

𝑊

  (27) 

and  

 ∆𝐿 =
0.412𝑑(𝜀𝑟𝑒𝑓𝑓+0.3)(

𝑊

𝑑
+0.264)

(𝜀𝑟𝑒𝑓𝑓−0.258)(
𝑊

𝑑
+0.8)

  (28) 

These equations gave 𝐿 = 20.84mm 

A microstrip 
𝜆

4
 transformer was used to match the impedance of the patch to 

the 50Ω impedance of the source. This industry standard characteristic impedance 

specifies the ratio of voltage to current for a single travelling wave. Matching the 

impedance between the input and the output maximises the transmitted power. 
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Equations (29) through (34) were used: 

 𝑍𝑎 = 90
𝜀𝑟

2

𝜀𝑟−1
(

𝐿

𝑊
)

2

   (29) 

 𝑍𝑇 = √50𝑍𝑎    (30) 

 𝑍0 =
60

𝜀𝑟
ln (

8𝑑

𝑤𝑇
+

𝑤𝑇

4𝑑
)   (31) 

 𝜀𝑟𝑒 ≈
𝜀𝑟+1

2
+

𝜀𝑟−1

2√1+
12𝑑

𝑤𝑇

   (32) 

 
𝜆

4
=

𝜆0

4√𝜀𝑟𝑒
    (33) 

 𝑍0 =
120𝜋

√𝜀𝑟(
𝑤𝑚

𝑑
+1.393+0.667 ln(

𝑤𝑚
𝑑

+1.44))
= 50Ω  (34) 

The transition line width and length were 𝑤𝑇 = 0.187𝑚𝑚 and 
𝜆

4
= 13.15𝑚𝑚 

respectively, while the microstrip feed width was 𝑤𝑚 = 2.41𝑚𝑚. 

The patch return loss and radiation pattern are shown below. 

 

Figure 30: Patch S11 in air 
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Figure 31: Radiation pattern 

The strongest radiation field is perpendicular to the surface of the patch antenna 

and its bandwidth, shown in Figure 30, is much smaller compared to the monopole. 

The patch was then constructed, Figure 32, and tested. Its return loss is shown in 

Figure 33. 

  

Figure 32: Patch antenna using transition line with λ/4 transformer 



Chapter 3: Antenna design 

 

 

Mamadou A Diallo                                                                                                                                   48 
 

 
 

 

Figure 33: Patch antenna S11 in air 

Testing this patch antenna showed that the measured frequency was 3.35GHz 

which was lower than the design frequency. In Figure 32, the quarter-wave matching 

transition line width is a 0.18𝑚𝑚.  

This strip width- 𝑊𝑇 = 0.18𝑚𝑚 - is very thin thus creating a practical challenge as 

cutting this dimension accurately with the existing CNC router equipment available 

in the laboratory is very difficult. To minimize potential failures in manufacturing, a 

different type of feed was chosen for the patch, the inset feed. 
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Figure 34: Microstrip antenna with inset feed line 

The dimensions of the inset feed cutting into the patch, as shown in Figure 34, were 

found using equation (35) and optimised in HFSS.  

 𝑅𝑖𝑛(𝑥 = 𝑥0) = 𝑅𝑖𝑛(𝑥 = 0)𝑐𝑜𝑠2 (
𝜋

𝐿
𝑥0)  (35) [44] 

𝑥0 = 7.6𝑚𝑚 

HFSS was used to optimise the antenna inset gap and depth of the cut into the 

patch. Different inset gaps were tried and the resonant frequency compared in 

Figure 35. 

Inset gap 

Inset recess 

𝑥0 
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Figure 35: Return loss from Inset gap size 

The values listed in Table 8 show that 1.45mm is the optimum inset gap for matching 

at 3.4GHz. 

Table 8: Inset gap optimisation frequency and return loss results 
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Figure 36: Patch antenna using transition inset feed 

After designing the patch antenna from the calculations and the HFSS optimisation, 

the inset gap was found to be best at 1.45mm while the inset cut into the patch is 

6.9mm. The constructed patch antenna in Figure 36 inset gap and recess were, 

however, measured to be 1mm and 7mm respectively. 

 

Figure 37: Patch antenna return loss in air 
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The two patch antennas were compared in Figure 37 and the results showed 

measured frequency was closer to the 3.4GHz target frequency for the inset type 

antenna (Patch_I_S11) with a better return loss than the transition line 

(Patch_T_S11) type. However, as shown by the HFSS radiation pattern simulation, 

the patch antenna will not cover the internal wall full circumference due to its 

directivity.  

Despite the shortcoming of the patch antenna in terms of directivity, the single patch 

antenna was evaluated in the pipe filled with water and results showed very poor 

return loss as shown in Figure 38. Within the range of frequency measured, the 

different sections of the test rig returned frequency responses very similar to each 

other thus unusable for this purpose.  

 

Figure 38:  Test with patch antenna 
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3.2 Choosing the antenna 

For the purpose of this project, multiple antenna types, shown in Figure 39, were 

designed and tested on the rig. 

 

Figure 39:  Set of antennas tested in the laboratory rig 

However, the patch antenna with its poor return loss in water was rejected and the 

monopole antenna was discarded as it is more prone to physical damage and could 

not be integrated to the intended sensor casing which is based on the shape and 

dimensions provided by the stakeholders. 

Therefore, considering the electrical and the physical characteristics of the different 

antennas, the loop antenna was chosen. Moreover, in water, experimental tests 

showed a better coefficient of reflection with a size small enough to fit in the pipe 

and within the sensor size constraint.  

The loop antenna was retested with the standard Ø118mm water distribution pipe. 

To conform to the desired sensor casing shape, the straight loop was bent 90o to 

test for its usability with the sensor. These two 28mm loop antennas were mounted 

on two caps ( as shown in Figure 18) acting as the ground plane on each end of 

720mm long Ø118mm pipe section filled with water.  
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(a)                                                            (b) 

Figure 40: 28mm diameter a) straight loop and b) 90o bent loop 

The two ends were then connected to a vector network analyzer to measure the 

transmission S21 in order to compare the performance of the standard straight loop 

antenna and the 90o bent version. 

The graph in Figure 41 shows S21 for the loops when the pipe was filled with water. 

 

Figure 41: Cut-off frequency in the water pipe 
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earlier in chapter 2. Furthermore, the two markers (1) and (2) show the transmission 

around 168MHz through 200MHz and dropping to the ambient noise level within the 

pipe below -50dB before restarting at above 250MHz as the frequency increases. 

These ‘OFF’ zones can be explained by the presence of different propagation 

modes that exist in the water pipe acting as a circular waveguide. 

The antenna that will be used for the prototype is a loop for its low radiation 

resistance and its high sensitivity to the magnetic field H of the electromagnetic 

waves. 

3.3 Laboratory facility 

After using the 720mm cast iron section to determine the minimum frequency that 

would be used for the sensor, a test rig was built in the laboratory and it was used 

for all subsequent experiments. 

The test rig is a 12 metre long, horizontal run comprising various sections, as shown 

in Figure 42. 

A 5m long Ø118mm cast iron section was cut into at 2.5m for leak simulation, and 

a Ø118mm cross section was used to simulate T junctions while it is also used for 

antenna radiation tests in the pipe. 

A 1.5m Ø118mm PVC section was included for the asset management experiments 

while a 5.5m Ø170mm pipe section was also connected for both asset management 

and leak detection experiments. 

The insertion of any test equipment into the pipe was through an access hatch, 

which connects the Ø118mm section to the Ø170mm section. 
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Figure 42:  Laboratory test rig 

To facilitate the insertion and removal of pipe sections into the rig, all the sections 

were mounted on wooden wheeled buggies, which also kept the rig level along its 

whole length.  

3.4 Signal Attenuation 

In wave propagation, the signal attenuates as the distance of propagation increases. 

This attenuation is dependent on the frequency and medium of propagation. 

The wave attenuation in the propagation medium is the reciprocal of the skin depth 𝛿 
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which is the distance that the wave will travel before its power is reduced to 36.8% 

[46]. It is expressed by equation (36): 

 𝛿 =
1

𝛼
=

1

𝜔√𝜇𝜀 {
1

2
[√1+(

𝜎

𝜔𝜀
)2−1]}

1
2⁄

𝑚   (36) [46] 

𝛼 the attenuation constant 

𝜎 the medium conductivity 

This test was carried out using the 5m Ø118mm pipe filled with water, shown in 

Figure 43, with an antenna attached on a flange at its end which then was connected 

to the VNA port 1. Another antenna was connected to port 2 and pulled away at 

fixed distances to measure the transmission coefficient S21 for comparison at 

various frequencies.  

 

Figure 43: Sensor pushed inside the test pipe 

Considering 187.51MHz, the cut-off frequency in the pipe derived earlier in water, 
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the attenuation was tested using a loop antenna in the range of 100MHz to 1GHz to 

cover both the TE and TM dominant modes. The results of the test are plotted in 

Figure 44. 

 

Figure 44: Attenuation with a loop antenna 

As expected, it can be observed that the attenuation increases at high frequency in 

water and the waves propagation starts above the cut-off frequency.  

For example, the loop antenna, at 250MHz, the attenuation is 21.7dBm at 20cm 

rising to 72dBm as the distance increases to 200cm and 83dBm at 350cm. 

Meanwhile, at high frequency, the amplitude starts as low as -33dBm at 20cm and 

dropping to -93dBm within the ambient noise level of the VNA. 

With attenuation of the wave at the set frequency range determined, the size of the 

antenna was reviewed following an amendment to the sensor design dimensions by 

the stakeholders. This allowed the maximum diameter to be 60mm and meant that 

a larger loop could be considered. 
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3.5 Antenna sizing 

In a water distribution network, access valves like the one shown in Figure 45 at the 

United Utilities Worthington test site are placed strategically along the network to 

allow system maintenance. These have a limited diameter from which the sensor is 

expected to be inserted using a launching system. This launching system, which will 

be designed by a partner company, will allow the insertion of the sensor without 

disrupting the water to the customer in the section under inspection. 

However, the length of the sensor is still set to 100mm maximum in relation to the 

tight insertion angle usable in existing access valves.  

 

Figure 45: Access valve in the Worthington UU test site 

The implication of this change was that the diameter of the loop antenna could be 

increased if necessary, thus affecting the resonance frequency of the antenna. To 

determine the resonance frequency of the loop antenna, equation (37) is used: 

 𝒇 =
𝒄

𝝀
  (37)  
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 with 𝝀 = 𝝅 × 𝒅  (38) 

With this sizing flexibility, different types of antennas shown in Figure 39 were tested 

in the rig built in the lab - Figure 42. However, only the results of four loops were 

included in this document as a loop antenna type was chosen for the sensor. With 

the new constraints, tests were carried out in the laboratory using the 12m long rig.  

In addition to measuring the coefficient of reflection of the antennas, each loop 

antenna was tested against its 90o bent version to determine the best orientation. 

Each section of the rig had corresponding marks taped along the PVC pushing rod. 

The antenna was pushed at distances corresponding to a section. The acronyms 

BL and SL represent bent loop and straight loop respectively. Branching in the 

network is simulated by the insertion of a Ø118mm cast iron cross section 

referenced on all the graphs as Cross. 

 

Figure 46:  Test with 24mm bent loop 
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Figure 47:  Test with 24mm straight loop 

Both the 24mm straight and bent loops resonated in the 500MHz region in the pipe 

filled with water, and it was decided to design one for lower frequency so to reduce 

the attenuation. Thus, a bigger loop was designed in order to shift the resonance in 

a lower frequency region. The diameter of the antenna was increased to 39mm 

corresponding to a resonant frequency in air of 2.45GHz, which reduces to around 

272MHz in water. The range of the frequency of interest in water was set to between 

50MHz to 600MHz. This range was chosen because it covered the cut-off frequency 

in water required for the Ø118mm and Ø170mm pipe which is 187.51MHz and 

124MHz respectively. 

The resizing of the antenna improved the signal coefficient reflection response in 

the region of 170MHz to 350MHz from -5dBm to -7dBm. 
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Figure 48:  Test with 39mm bent loop 

 

Figure 49:  Test with 39mm bent loop 
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Experiments with the 39mm loops showed a shift in the resonance peaks and a 

clearer difference between the frequency responses. 

The 39mm standard straight loop (39mm SL) antenna showed the best 

characteristics for leak detection and asset management in the water distribution 

pipes with distinct frequency responses for each pipe section and condition in the 

rig. The coefficient of reflection and the frequency response bandwidth were shown 

to be acceptable as the power level range from -5dBm to -50dBm, in the frequency 

range of 200MHz to 600MHz, was well within the capability of the VNA. 

3.6 Antennas radiation pattern 

In this section, the radiation of the antenna was investigated. The antennas were 

tested in both the pipe filled with water and in an open water tank. The radiation 

pattern is “a mathematical function or a graphical representation of the radiation 

properties of the antenna as a function of space coordinates. In most cases, the 

radiation pattern is determined in the far-field region and is represented as a function 

of directional coordinates...” [54]. This was done to show how the electromagnetic 

waves radiated in the pipe compared to open water. Radiation, which interacts with 

the full circumference of the internal wall of the water distribution pipe is desired.  

When the antenna dimension is significantly smaller than the wavelength, the 

following near field and far fields conditions apply: 

For the near field:  

  
𝛌

𝟐𝛑
< 𝒓 < 𝟑𝝀   (39) [44] 

For the far field: 

 r > 3𝜆  (40) [44] 

r is the distance from the antenna 
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With the loop antennas used for these measurements in the Ø118mm pipe, the 

radiation field was in the near field region as r was less than the maximum 52mm 

internal diameter for the Ø118mm and less than the maximum 152mm internal 

diameter for the Ø170mm pipe. 

With the wavelength of the 39mm loop using equations (39) [44] and (40) [44], the 

distance of the antenna at 3𝜆 from the receivers or the walls of the pipes, were 

226.1mm and 367.5mm respectively. 

In the pipe, this distance is greater than the maximum radius available of the pipe. 

Therefore, the radiation pattern to be measured was within the near field region. 

To carry out this test, 3 antennas were used for the setup as shown in Figure 50. 

 

Figure 50:  Antennas setup diagram in the Ø118mm cross section 

Using ‘Loop A’ and ‘Loop B’ to receive the power transmitted from the ‘Primary loop 

antenna’ will show if the sensor is able to cover the full circumference of the pipe. 

The advantage of reading from two symmetrical positions (Loop A and Loop B) was 

that the rod was only turned 36 times instead of the 72 times required to complete 
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the 360o. 

This was setup for the experiment shown in Figure 51. 

In the pipe setup, a primary antenna was connected to a signal generator – R&S 

SMB-B103[57]  through a 360 degree dial plate. The primary antenna was turned in 

5 degree steps to a full circle. Two identical secondary antennas A and B were 

positioned symmetrically on both side of the primary antenna and connected to a 

spectrum analyzer – HAMEG HMS-3G [58] - to read the power level of the signal 

radiated as  shown in Figure 51. 

With this distance of 226.1𝑚𝑚, r < 3𝜆 and the plotted radiation pattern is in the near 

field region. 

 

Figure 51:  In pipe radiation pattern setup 

The readings taken were then plotted to show the radiation pattern within the pipe.  
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Figure 52: Radiation pattern of 24mm loop in the Ø118mm water pipe 

 

Figure 53:  Radiation pattern of 39mm loop in the Ø118mm water pipe 

The results for the pipe filled with water showed that all the loops displayed a nearly 

omni-directional radiation pattern at 300MHz. Using these antenna for the sensor at 

a range including this frequency would therefore ensure the full coverage of the 

circumference of the pipe internal wall. 

Because the sensor also needs to be used in bigger pipes, a second experiment to 
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determine the behaviour of the antenna was also carried out in an unbounded 

environment to simulate the increase of pipe diameter. The amount of water 

surrounding the antenna was large enough that any waves reflected from the 

boundary are absorbed. 

This experiment was setup as in the diagram in Figure 54 in a plastic tank filled with 

fresh water. The Tx antenna was maintained under water by a concrete block 

attached to the transmitting antenna casing made to keep the connector watertight. 

 

Figure 54: Setup diagram in the tank 

The transmitter loop antenna Tx was connected to the same signal generator – R&S 

SMB-B103 while the antenna under test Rx was connected to the spectrum analyzer 

– HAMEG HMS-3G as the previous setup and 72 measurements were taken at 5o 

steps. 
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Figure 55: Tank radiation pattern setup 

 

Figure 56:  Radiation pattern of 24mm loop in the Ø118mm water tank 
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Figure 57:  Radiation pattern of the 39mm loop in the Ø118mm water tank 

As in the pipe, the radiation plots taken from the tank experiment are nearly omni-

directional at 300MHz. 

However, for both straight loops (SL), the radiation pattern at 200MHz matches the 

pattern of a typical loop antenna. 
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effect would be significant. 
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without the nylon casing. 

  

Figure 58: Nylon casing 

This nylon casing housed the 39mm straight loop antenna. The two parts were 

bonded together around the Ø1.6mm wire forming the antenna. 
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 Figure 59: Test with no casing in water 

Results of this test showed that the transmission S21 between the transmitter and 

the receiver has attenuation less than 5dBm for transmission within most of the 

frequency range but over 5dBm from 350MHz when at 30cm distances and rising 

to 20dBm at 560MHz. The frequency range of the sensor will be set below 1GHz to 

minimise the attenuation while starting above the cut-frequency of the pipe. 

3.8 Summary 

While the three selected antenna types performed well in air, only the monopole and 

the loop antenna showed an acceptable return loss in water. The loop antenna was 

selected because of its physical strength and ease of integration into the circular 

sensor casing. The signal attenuation test showed that the potential range of the 

sensor is up to 1.5m at 300MHz. The radiation pattern test in the pipe and the tank 

confirmed that the loop antenna covers the circumference of the pipe, reaching 

cracks developing into the shell. This distance between the sensor and the wall is 
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within the near field region of the antenna, so if the pipe size significantly increases, 

the diameter of the antenna may also need to be increased in order to detect leaks. 
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Chapter 4: Leak detection and asset management 

This chapter explores the use of electromagnetic waves to detect simulated leaks 

using nylon rings and detecting pipe materials and diameters to simulate asset 

management. The loop antenna will be connected to a VNA and measurements 

taken and compared.   

4.1 Leak detection experiments 

Experimentation was required to test if the designed loop antenna is able to identify 

a leak in a water distribution pipe. 

The laboratory experiment setup shown in Figure 60, is a 1230 mm long pipeline 

filled with fresh water made with two Ø118mm cast iron sections of individual length 

of 720mm and 510mm and using a 50mm PVC pipe to keep the sensor centred. It 

is expected that if a leak is present, the spectrum frequency and or amplitude should 

vary with the magnitude of the leak. 
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Figure 60: Lab experiment setup pipe filled with water 

In order to simulate leaks, three nylon rings of different thickness shown in Figure 

61 were used between the two cast iron pipe sections. The thickness of the rings 

were 3mm, 5mm and 10mm respectively. When no ring is used between the two 

cast iron sections, the gap used to simulate the leak is less than 1mm.  
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Joint  
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sections 
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Figure 61: Three nylon ring thickness used 

A 28mm straight loop antenna prototype was used to take measurements of the 

frequency response of all the simulated leaks for comparison from 150MHz to 

600MHz. This frequency range was selected based on the cut frequency of the pipe 

determined in chapter 2 and the signal attenuation level determined in chapter 3. 

The antenna was connected through a coaxial cable to the Rhode & Schwarz ZVL-

3GHz VNA and lowered to the coupled section through the centring PVC pipe. 

Measurements were then taken with all 3 rings inserted in turn and as well as without 

any ring to simulate the 1mm leak. 
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Figure 62: The S11 measurement with the loop antenna 

The result plotted in Figure 62 showed a different frequency response for each 

simulated leak, varying between 200MHz to 310MHz. However, the most significant 

response is in the range of 209MHz and 240MHz. 

After the setup experiment with these short pipe sections, tow leaks were simulated 

in the 12m horizontal rig by partially sawing through the metallic shell of both the 5 

metre Ø118mm section and the Ø170mm section at the 2.5m mark on each shown 

in Figure 63 and Figure 64.  
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Figure 63: Crack to simulate leak 

 

Figure 64: Leakage from the Ø118mm pipe 

After experimenting with multiple antenna types and sizes, the 39mm straight loop, 

Figure 65, was retained as it showed consistent results, which could be used to 

determine whether the sensor was close to the leak. 

To make the connection water proof the antenna and the coaxial cable were glued 
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in a 50mL polypropylene centrifuge tube and wrapped with parafilm as shown in 

Figure 65. 

  

Figure 65: Loop antenna with fins and coaxial cable on the push PVC rod  

This loop antenna assembly was then pushed inside the rig filled with water - Figure 

66. The loop antenna was connected to the Rhode & Schwarz ZVL-3GHz VNA with 

the coaxial cable insulated from the water using a clear plastic tube. Measurements 

were then taken at fixed distances along the Ø118mm pipe. 
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Figure 66: Test rig in the lab – 12m long 

The frequency response from the measurements showed a distinct spectrum for the 

leak and no leak condition in Figure 67. 
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Figure 67: Leak detection on the Ø118mm pipe 

Using the PVC rod, the sensor was then pushed inside the Ø170mm which also was 

sawn to simulate the leak. 

 

Figure 68: Leak detection on the Ø170mm pipe 
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the sensor is away from the crack by 80cm. 

A further test was completed to demonstrate that what sensor was measuring was 

in fact the disturbance of the electromagnetic field due to the insertion of a 

discontinuity (crack) into the pipe metallic shell.  The areas around the cuts into both 

pipes were sanded to remove the surface paint and then aluminium tape AT502-50 

– TAPE [60] was used to restore the conductive continuity of the pipe. 

 

 Figure 69: Non-conductive paint removed 

Measurements were taken and compared with previous test on from both pipes. 
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Figure 70: Pipe shell integrity restoration 

As the frequency responses for ‘No Leak 4’ and ‘Leak MT 4’, and ‘No Leak 6’ and 

‘Crack Level MT 6’ respectively overlap in Figure 70, a high correlation of 0.987 and 

0.992 is calculated. This high correlation is because of the metallic tape (MT) used 

to restore the continuity of the metallic shell with the electrical field thus the integrity 

of the pipe was no longer compromised.  

Meanwhile, with duct tape (DT) used on the Ø170mm section, the spectrum was 

still consistent with a leak. 

Both pipes conditions corresponding spectrums are showing significant peaks within 

190MHz and 393MHz region. 

This experiment proved that leaks on the standard Ø118mm and Ø170mm water 

distribution mains can be detected using electromagnetic waves. In the next section, 

it will be shown that electromagnetic waves can be used for asset management for 

the water industry. The experiments and results will be discussed. 
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4.2 Asset Management 

It is believed that water wastage due to leaks in the distribution network can be 

significantly reduced with better asset management because of the numerous 

unaccounted connections and ageing pipes encountered on the network. 

Asset management of buried utility services has been overlooked for years. In the 

UK, it is estimated that there are 335,000 km of pipe network managed by the water 

companies [61]. However, after trunk mains, there are still considerable portions of 

the network that the water companies are unaware of and that are not shown in their 

records [8] because these were laid at a time when the need of an accurate location 

did not seem to be a priority. Today, this results in financial loss, poor service 

management and longer down times in the event of failure.  

With 40% of pipes over 100 years old in areas such as London [62], ageing water 

network repairs often involve the introduction of sections of different materials. The 

ability to reflect these changes in surveys will improve decision making for repair or 

replacement planning. Figure 71 summarises the effects of poor asset 

management. 
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Figure 71: Effect of poor asset management [8] [14] [16]  

 To reflect the insertion of a section made from a different material, a Ø118mm PVC 

pipe section measuring 420mm in length was introduced. The new setup with the 

PVC section inserted between two cast iron sections, shown in Figure 72, was used 

to investigate asset management with electromagnetic waves.  

In chapter 2, it was shown that a water pipe can be considered as a waveguide and 

that electromagnetic waves can propagate along it provided the frequency of 

operation is above the cut-off for that particular mode. 
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Figure 72: Asset management experiment setup with the PVC section 

This test setup had a total pipe section length of 1650mm. The 28mm loop antenna 

was connected to the vector network analyser - Rhode & Schwarz ZVL-3GHz 

through a coaxial cable and pushed down the pipe. The bottom of the pipe was 

closed using a nylon block to prevent the water from escaping. 

Measurements were taken at 225mm, which is inside the first cast iron section; at 

510mm where the cast iron meets the PVC pipe; in the middle of the PVC section 

at around 720mm; at 935mm, the second junction between the PVC and the bottom 

cast iron, and finally at 1295mm half way down the lower cast iron section. No nylon 

rings that were used to simulate the leaks were inserted as this experiment was to 

investigate asset management. 

Joint  

Cast iron section 

PVC section 



Chapter 4: Leak detection and asset management 

 

 

Mamadou A Diallo                                                                                                                                   86 
 

 
 

Table 9: Results summary 

Pipe section Resonant 

peak 

Notes 

PVC section 170MHz Length 420mm 

Upper cast iron 

section 

227MHz Length 720mm 

Lower cast iron 

section 

213MHz Length 510mm 

Joint top 224MHz Junction of the cast iron with the PVC 

section. 

Joint bottom 204MHz Junction of the PVC with the cast iron 

section. 

 

In addition to amplitude difference in the cast iron sections, there was a 14MHz 

frequency shift observed while the two junctions showed a 20MHz difference. 

The PVC section was clearly identifiable through this frequency shift in Figure 73. 
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Figure 73:  Pipe section distinction with EM waves 

This test was repeated using the new 39mm loop size on the 12 metre rig that had 

a Ø118mm 2.5m cast iron pipe with a cross section and a Ø170mm cast iron pipe 

section. However, the Ø118mm cast iron pipe section was cut into two pieces of 

2.5m to insert the Ø118mm 1.5m PVC pipe section.  

Measurements taken from the vector network analyser - Rhode & Schwarz ZVL-

3GHz showed specific frequency response for all three sections for the Ø118mm 

pipe and the Ø118mm cross section as well as for the PVC section shown in Figure 

74. 
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Figure 74: Ø118mm section cast iron with PVC inserted 

In Figure 75, the combined results show each section and pipe state has a distinct 

frequency response. Moreover, the PVC section has return loss above -10dBm 

because the electromagnetic waves escape from the pipe walls giving a lower return 

loss compared to the cast iron pipe.  
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Figure 75: Combined frequency responses 

After these successful experiments which proved that electromagnetic waves could 

be used to improve leak detection and asset management, field tests were 

organised in Worthington, United Utilities reservoir and training site, on 19th, 20th, 

21st and 24th of March 2014.  

However, the original sensor with the 39mm loop was not used due to the lack of a 

suitable access hydrant. The sensor head with its 60mm diameter could not be 

inserted in any of the hydrants, so a 45mm sensor head diameter with a 25mm 

antenna was constructed as shown in Figure 76. 
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Figure 76: 45mm test sensor head 

The test was carried out on a buried Ø118mm section with no prior information about 

the pipe type. 

The sensor was connected to the Rhode & Schwarz ZVL-3GHz VNA and inserted 

through the access point as shown in Figure 77, and moved in 1m increment along 

the pipe, using a carbon fibre reinforced glass rod. 

The sensor was then inserted from the opposite end and the experiment repeated. 
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Figure 77: 2 inch access point 

The frequency responses are shown in Figure 78 and Figure 79. 

Used for training, the test site has a stop valve end isolating it from the distribution 

network. The flanged end is used to drain the this isolated section as necessary 

without impacting consumers connected to the public network, upstream.  
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Figure 78: Stop valve end (underground) 

 

Figure 79: Flanged end 
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Both buried sections sides spectrum responses were highly correlated except near 

the access point area (1m to 2m) as shown in Table 10.  

Table 10: Correlation table 

Signals Correlation 

1ma and 1mc 0.86156 

2ma and 2mc 0.89838 

3ma and 3mc 0.91877 

4ma and 4mc  0.92296 

5ma and 5mc  0.92801 

6ma and 6mc  0.94566 

7ma and 7mc  0.96661 

8ma and 8mc 0.95008 

9ma and 9mc 0.98118 

 

The lower correlation around this region is due to the difference in length of the pipe 

sections on each side of the used access point shown in Figure 80. 

 

Figure 80: Sections around the access point used 

Results from the measurements taken from the test setup in the laboratory using 

the same sensor showed that the pipe buried underground was unlikely to be of any 

of the type from the sections available in the lab test rig setup. 
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Figure 81: Lab rig results compared to field test 

The resulting signatures from the underground pipe shown in Figure 81 (red and 

green), are different from signatures for sections available in the lab.  

These results showed that both ends are likely to be made of the same material and 

that the diameters of the pipes are the same. It is believed that these unknown 

buried sections are PE100 Ø118mm due to the low return loss, which need to be 

confirmed with further tests. 

4.3 Summary 

In this chapter, it has been proven that electromagnetic waves can be used to detect 

leaks and identify various pipe materials and diameters for asset management by 

identifying unique frequency responses. These signatures were measured above 

the cut-frequency determined in chapter 2. The leak simulation using different nylon 

rings has shown that the frequency response of the leak in the form of amplitude 
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variation has a magnitude which corresponds to the thickness of the ring. While in 

the asset management experiment, tests showed that each pipe type and diameter 

also has a unique frequency response. The next chapter describes the proposed 

electromagnetic wave sensor system including the applied data analysis and the 

graphical user interface. 
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Chapter 5: Data capture interface system 

The success of the electromagnetic sensor system needs to be consolidated by a 

robust data analysis method. Samples stored in the database representing the 

signature of a given pipe condition and or type will be recalled and compared with 

the current reading in real time. This technique will be used for the automation of 

the detection and the result will be displayed on a graphical user interface. The aim 

of the system is to allow its operation by network maintenance engineers, with 

minimal additional training. 

5.1 Graphical user interface GUI 

The graphical user interface was designed using the visual programming software, 

LabVIEW version 13.0f2 [63]. This software from National Instruments is a 

development platform widely used in the control and measurement systems with 

graphical user interface, it also has dedicated drivers to interface with third party 

equipment such as the Rhode & Schwarz ZVL series making it very attractive for 

prototyping.  

The user interface included three status lights to display when the sensor is in air, 

in a bucket or the water distribution pipe section both filled with fresh water. 
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Figure 82: Graphical User Interface - GUI 

The prototype success will reside in the ease of interpretation of the measurements 

by displaying the results using a traffic light method.  

The colour red will be used for inconclusive results while the green will be used 

when the confidence of the data analysis fits within a set threshold. 

The GUI will show the current frequency spectrum resulting from the section under 

test as the data is being acquired with the option to discard or save the final data as 

a new sample file if no fit is found. 

5.2 Database 

The various pipe signatures were added to a system database, in the comma 

separated values (csv) format - Figure 83. 
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Figure 83: Signature samples in the CSV file 

In the database, each sample has a unique frequency response based on the 

condition of the pipe structure – leak, no leak, PVC, Ø118mm or Ø170mm. These 

frequency responses can be compared to any other recorded spectrum in the 

frequency range using appropriate data analysis. 

5.3 Data analysis 

Each data sample stored in the CSV file will be compared to the real-time sample 

using cross correlation method to compare frequency and amplitude of the signals. 

Ideally, two complementary data analysis types will be applied in comparing the 

measured data with the stored data to strengthen the degree of confidence into the 

returned results displayed to the operator.  

The primary data analysis method used is the Pearson cross-correlation technique 

between the current sample and each stored sample. This technique determines 

how tight the relationship between two signals is.  

The Pearson correlation coefficient function is expressed as: 
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𝒓 =
∑ 𝒙𝒊𝒚𝒊 − (∑ 𝒙𝒊𝒚𝒊)/𝒏

√∑ 𝒙𝒊
𝟐

− (∑ 𝒙𝒊)𝟐/𝒏  √∑ 𝒚𝒊
𝟐

− (∑ 𝒚𝒊)𝟐/𝒏 

   (41) [64] 

n measurements of xi and yi 

i = 1 to n  

xi and yi the sample data 

Using equation (41) to compare two samples will return a value between -1 a perfect 

negative correlation and 1 a perfect positive correlation. 

To improve the degree of confidence, a secondary data analysis method was 

implemented to compare the amplitude of the signals. 

𝑑 = ∑ ||𝑥𝑖| − |𝑦𝑖|
𝑛
𝑖=𝑛 |   (42) 

n measurements of xi and yi 

i = 1 to n  

This method sums the results of the absolute value of subtracted individual data 

points representing the amplitudes of the real-time sample with the stored sample. 

The total sum of subtraction results are then evaluated to determine which has the 

lower value thus corresponding to the best match. 

If each of the data analysis method returns the same result, then it can be 

considered highly likely to be the correct pipe type or condition, and the green light 

is shown. Otherwise the result is inconclusive due to the mismatch and the red light 

shown. If no match is found, the data can be stored for future use in the once the 

attributes are known. 

The process of the data acquisition and analysis is illustrated by the flow diagram in 

Figure 84. 
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Figure 84: Data acquisition and processing 

5.4 Sensor 

A standalone sensor has to partially replicate the Rhode & Schwarz ZVL vector 

network analyser used in the initial experiments.  
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The sensor has to be able to generate a signal within the frequency range 

determined above the cut-off frequency of the Ø170mm pipe at 124MHz and up to 

600MHz with a power level of 0dBm to 5dBm and be able to detect any reflected 

power from the antenna above the noise floor of -50dBm. 

For this purpose, the sensor system is designed based on the block diagram in  

Figure 85 with the interconnected components. 

Directional Coupler Power Detector

Signal Generator

GUI

Database

in

LabVIEW

Antenna

Amplifier

 

Figure 85: Sensor block diagram 

Each component was chosen with the characteristics to match the sensor 

requirement. The sensor was designed in a modular form to facilitate 

troubleshooting and upgrades. These specifications of the modules are as follows: 

- The signal generator: a sweep frequency 247MHz-600MHz will be generated 

to feed the antenna. 

- The antenna: will be capable of resonating within generated frequency range. 

- The directional coupler: will be able to sample the power reflected from the 
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antenna at it coupled port with low insertion loss on the mainline and below 

the ambient noise level observed with VNA at -50dBm. 

- The amplifier: this component will be optional and only added to the circuit if 

the received signal is too close to the noise level. 

- The power detector: will be an RF detector range that can operate in the 

frequency sweep range and detect power as low as -50dBm. 

- The database: will store sample files in the comma separated values (csv) 

format. These samples are a combination of frequency and amplitude 

responses of pipe types and conditions. 

- The graphical user interface: will use coloured light indicators to display test 

results to the operator. 

5.5 Summary 

A graphical user interface was developed using LabVIEW with the results of 

measurements captured from the VNA and displayed in a traffic light system. These 

results are obtained by comparing the stored signatures with the measured 

frequency response using two separate data correlation methods. If the measured 

sweep frequency does not match any stored frequency response in the database, 

the result is stored for post processing or discarded. To develop the electromagnetic 

sensor system, modules were identified based on their function and operating 

frequency to form a block diagram. In the next chapter, the prototype of the sensor 

system electronic circuit will be designed and evaluated using the existing 12m test 

rig in the lab. 
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Chapter 6: Prototype design 

The final prototype size must be small enough to freely fit inside a Ø118mm standard 

pipe. It should be noted that in order to protect the sensor from water damage, it will 

be housed in a casing not exceeding the 100mm by 60mm dimensions set to allow 

its insertion into the pipe through existing hydrants and meeting the IP68 rating for 

prolonged submersion in water.  

6.1 Electronic circuit design 

To design the electronic circuit version on a printed circuit board (PCB), off shelf 

components were acquired and used to test the concept and operation of the 

sensor. A prototype of the sensor was assembled on the bench and connected to a 

computer.  

Different configurations were tested - Figure 86 and Figure 87 - using the spectrum 

analyzer to monitor the frequency generated by the voltage controlled oscillators 

POS-400+3 and ZX95-535-S+4 and a voltmeter to measure the output voltage from 

a ZX47-60-S+5 power detector.   

                                                           
3 Plug in voltage controlled oscillator by Mini-Circuits (www.minicircuits.com) 
4 Coaxial voltage controlled oscillator by Mini-Circuits (www.minicircuits.com) 
5 Coaxial power detector by Mini-Circuits (www.minicircuits.com) 
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Figure 86:  POS-400+ VCO evaluation 

In Figure 87, the different components were interconnected and tested to observe 

the generated frequency and amplitude as well as the reflected signal through the 

directional coupler and power detector. 

 

Figure 87:  ZX95-535-S+ VCO evaluation 
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Following the evaluation, the components listed below were chosen and used for 

the bench test shown in Figure 88:  

- The antenna: the size of the antenna can be changed according to the 

requirement, provided that the resonant frequency is kept within the limit 

imposed by the electronic components and the water distribution pipe cut-off 

frequency but no more than 45mm diameter due to the imposed sensor size 

dimensions. 

- The signal generator: this module was built around the ROS-625-219+6, a 

voltage controlled oscillator which generated frequencies from 247.5MHz to 

618.2MHz using up to 14.6 volts for tuning to the desired frequency. 

- The directional coupler: the ZFDC-10-5-S+7, a directional coupler with a 

wideband frequency 1MHz to 2000MHz capable of coupling to 10dB. 

- The amplifier: this is made with the ZFL-500LN+8 low noise 24dB amplifier. 

The use of an amplifier is to boost the reflected signal before detection. 

- The power detector: the MAX20159 logarithmic detector with up to 3GHz 

frequency range. It can detect down to -75dBm well below the ambient noise 

level measured inside the pipe at around -50dBm. 

- The control automation and data processing: this part of the system is built 

using LabVIEW, running on a host computer. The data acquisition hardware 

is the CompactDAQ NI cDAQ-917210 through which the tuning voltage is 

supplied to the voltage controlled oscillator and the reflected power read as 

                                                           
6 Surface mount voltage oscillator by Mini-Circuits (www.minicircuits.com) 
7 Coaxial directional coupler by Mini-Circuits (www.minicircuits.com) 
8 Coaxial low noise amplifier by Mini-Circuits (www.minicircuits.com) 
9 Logarithmic power detector by Maxim (www.maximintegrated.com) 
10 Data acquisition system by National Instruments (www.ni.com) 
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voltage from the power detector.  

 

Figure 88:  Electronic concept test 

After the electronic concept test, surface mount components (SMD) were chosen to 

be used instead. However, the ZFDC-10-5-S+ directional coupler was changed for 

the DBTC-7-152LX+11 which has a smaller frequency range of 10MHz to 1500MHz 

and a 3dB better coupling factor.  

                                                           
11 Surface mount directional coupler by Mini-Circuits (www.minicircuits.com) 
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Figure 89:  Modular SMD components  

These components mounted, on modular PCBs, were assembled as shown in 

Figure 89 to allow testing of the modules separately or together in Figure 90. 
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Figure 90:  SMD modules evaluation 

With the modules operating separately and together as intended, a schematic was 

drawn with all the components wired on a single circuit board. The board was 

generated from the circuit diagram (Figure 91 and Figure 92) using the CAD 

software EAGLE (Easily Applicable Graphical Layout Editor) [65] version 6.5.0.  
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Figure 91:  Circuit schematic 

 

Figure 92:  Circuit board layout 

The EAGLE file was then exported to a vector based file format compatible with the 

PCB milling machine and routed in the lab. 

The resulting board, shown in Figure 93, was checked using an electronic magnifier 

to ensure correct connectivity, as per the schematic and board layout files, before 

being populated using solder paste and heated on a hot plate to up 280oC.  
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Figure 93: Sensor circuit prototype v2.0 

6.2 Prototype test  

In order to assess the designed sensor, measurements were taken while being 

operated through LabVIEW connected to the CompactDAQ. 

The printed circuit board prototype in Figure 93 was connected to the 39mm loop 

antenna. A voltage of up to 14.6V was applied to the VCO in 0.2V increments 

controlled through the analogue output NI926312 module in order to generate the 

signal in the frequency range of 247.5MHz to 617.1MHz. Meanwhile, the power 

detector MAX2015 output pins were connected to the analog input NI920513module 

to record the reflected signal as an output voltage. 

Multiple readings were taken in a bucket filled with water (Test1, Test 2 and Test 3), 

in air (Test 4, Test 5 and Test 6) and then the antenna was covered by hand (Hand) 

and plotted in the graph in Figure 94. 

                                                           
12 Analog output module by National Instruments (www.ni.com) 
13 Analog input module by National Instruments (www.ni.com) 
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Figure 94:  Sensor circuit prototype reading with the 39mm loop antenna 

Plotting all the readings showed that frequency responses within these three 

conditions were highly correlated at over 0.99. 

The power detected by the MAX2015 was 4dBm which may require the use of the 

amplifier module at the directional coupler output in the event of considerable noise 

in the water main pipe. 

The sensor operated correctly with the available VCO frequency range - 247.5MHz 

to 617.1MHz. However, repeated measurements showed that the output frequency 

from the ROS-625-219+ voltage controlled oscillator varied by as much as 4.1MHz. 

This was due to noise in the tuning voltage.  

6.3 DAC and Microcontroller 

To solve this problem, a digital-to-analog converter (DAC) was introduced in the 
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Figure 95 using the integrated circuit MAX531214 which is a 12-bit serial voltage 

output, configured as a unipolar 10V output with a 5V reference voltage. It has a 4 

bit control word and 12 bit DAC data.  

The data output function is expressed as [66]: 

𝑉𝑜𝑢𝑡 = 𝐿𝑆𝐵𝑈𝑁𝐼 + 𝐶𝑂𝐷𝐸 (43) 

Where   𝐿𝑆𝐵𝑈𝑁𝐼 =
2×𝑉𝑟𝑒𝑓

212  (44) 

𝑉𝑜𝑢𝑡 the output voltage 

𝐿𝑆𝐵𝑈𝑁𝐼 the unipolar Least Significant Bit step size 

𝑉𝑟𝑒𝑓 the reference voltage 

𝐶𝑂𝐷𝐸 the decimal equivalent of the binary 12 bit dac data 

 

Figure 95: Sensor circuit v2.3 with DAC 

As the maximum output of the DAC is 10V, a voltage doubling unit was inserted 

using the operational amplifier CA3140 15 to attain the maximum required 14.6v 

tuning voltage to generate the highest frequency from the VCO. The full schematic 

and board design are attached in Appendix 1: VCO with DAC sensor schematic. 

                                                           
14 Digital-to-analog converter by Maxim (www.maximintegrated.com) 
15 Operation amplifier by Intersil (www.intersil.com) 
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Having improved the stability of the sensor, the CompactDAQ was dropped for a 

faster controller able to connect the sensor directly to computer hosting the GUI. 

This required serial or parallel connectivity to the computer. However, the serial 

connectivity was a natural choice as it requires fewer wires and moreover, most 

modern computers have no parallel port available. 

To control the DAC and the data input/output to the host computer of the GUI, the 

Arduino open-source prototyping electronic hardware and software was used based 

on the ATmega32816 microcontroller chip.  This widely available module can be 

configured to provide all of the serial digital inputs to the DAC and analogue inputs 

for the power detector. The connection to LabVIEW is achieved using the transmit 

pin (TX) and the receive pin (RX) of the serial port. 

 

Figure 96: Arduino mini [67]  

The choice of the Arduino Pro Mini breadboard (in Figure 96) is motivated by its 

availability, flexibility, speed and ease of programming. 

The integration of the DAC and microcontroller in the sensor system block diagram 

is shown in Figure 97. 

                                                           
16 Microcontroller by Atmel (www.atmel.com) 
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Figure 97: Block diagram with Arduino and DAC 

Figure 98 shows the redesigned prototype with the Arduino Pro Mini microcontroller 

attached underneath for control. 

 

Figure 98: Arduino and DAC added 

To control the sensor, the Arduino microcontroller needed to be programmed to 

generate the required bits for stepping the output voltage from the MAX5312 DAC 

chip using its C like programming language shown in the sketch in Figure 99.   

Arduino 
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The use of the MAX5312 allowed a resolution of up to 12 bits for the voltage thus 

the generated frequency from the VCO becomes very accurate with negligible 

fluctuations due to the voltage fluctuation. 

To have control over the execution of the programme when running, special 

characters (> and #) are used as triggers for the interrupts and also to read the 

analogue pin A0 which was the input for data from the power detector, and was then 

transferred to LabVIEW. 



Chapter 6: Prototype design 

 

 

Mamadou A Diallo                                                                                                                                   116 
 

 
 

 

Figure 99: Arduino sketch 

The sketch is preloaded into the Arduino mini and LabVIEW connecting to it through 

the serial port shown in Figure 100 in the block diagram at 115200 baud rate. The 
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full Arduino code and LabVIEW block diagram are attached in the Appendix 2 and 

Appendix 3. 

  

 

Figure 100: LabVIEW serial connection 

The evaluation of the generated signal using the sensor with the DAC through the 

microcontroller showed high repeatability with the frequency sweep range without 

noticeable variation of either the frequency or the amplitude using the ZVL-3 VNA 

[48] set in the spectrum mode connected to LabVIEW in Figure 101 to record the 

frequency sweep. 
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Figure 101: Sensor evaluation 

Regarding the amplitude, the plotted data showed attenuation of the signal as the 

frequency increased. However, this variation is in the range of 3dBm to -2dBm at 5 

and 10 milliseconds interval between readings in Figure 102, slightly less than 5dB.  

 

Figure 102: Amplitude variation 
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Furthermore, loop antennas - 39mm loop and 28mm loop – were alternatively used 

with delay set at 5 (5D) and 10 (10D) milliseconds through LabVIEW. The reading 

from the power detector output showed different frequency responses for the 

antennas in air and when covered with by a hand in  

Figure 103:. 

 

Figure 103: Sensor system connected to antenna 
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24mm 90o bent loop antenna as shown in Figure 104 through an SMA connector. 

  

Figure 104: Electromagnetic sensor in the protective tube 

This sensor was connected to LabVIEW through a NI9205, a 32-Channel, ±200 mV 

to ±10 V, 16-Bit analogue input to read and record the voltage detected by the 

MAX2015 power detector.  

The sensor was powered with a 5V DC power supply. A second antenna positioned 

at the other end of the pipe mounted on a PVC flange, was connected to the SMB-

B103 - signal generator with a variable frequency range and the power set at 0dBm. 

The sensor was then pushed inside the pipe - Figure 105 - to the desired distance 

using the Data/Power cable attached to a PVC rod. Both the fixed loop at the end 

flange and the sensor inside the pipe were centred within the water pipe using fins.  

Detector 
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Figure 105: Sensor pushed inside the test pipe 

The results at 0dBm showed that the frequency with the largest transmission was 

300MHz while 250MHz was shown to give the worst performance as observed from 

Figure 106 through to Figure 108. The sensor range was determined to be no more 

than 1.5m at 300MHz in Figure 108; however, at 1m distance, the signal was well 

above the ambient noise as shown in Figure 106. 
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Figure 106: Sensor position 1m 

 

Figure 107: Sensor position 1.1m 
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Figure 108: Sensor position 1.5m 

 

Figure 109: Sensor position 2m 
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frequency as shown in Figure 109. 

6.5 Sensor casing 

To deploy the sensor inside the water distribution pipe, the electronic circuit needs 

to be protected against dust ingress and continuous submersion in water, therefore 

the casing must meet the IP68 rating, the degree of protection provided by 

enclosures of the British BS EN 60529:1992 standard. Also, the antenna needs to 

be protected against physical damage caused by collisions with the pipe walls.  

To protect the electronic circuit board and the antenna without affecting the 

electromagnetic waves, a Polyvinyl chloride (PVC) casing was designed using the 

CAD software SolidWorks [68]. The casing dimensions were provided by the project 

stakeholders from the water industry. This latest front casing design was dictated by 

the antenna type used, while its overall dimensions remained unchanged.  

For a 90o bent loop, the casing for the straight loop antenna (Figure 58) was no 

longer convenient, therefore a new casing was designed and is shown in Figure 110 

with the integration of two bent loop antennas sizes and a centre hole to 

accommodate a camera as the sensor is improved in the future. 
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Figure 110: Sensor casing drawings (dimensions in mm) 

The casing was then machined in a grey polyvinyl chloride rod [69] shown in the 

assembly in Figure 111. 
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Figure 111: Sensor PVC casing assembly 

The use of PVC was motivated by the Water Regulations Advisory Scheme (WRAS) 

safety requirement to prevent waste, misuse and most importantly contamination of 

public drinking water. According to the WRAS material guidance [70], non-metallic 

materials should not introduce a change in odour or flavour, change the colour or 

cause turbidity, increase microbial growth or leach metal or substances harmful to 

human consumption into the water.  

Any component that has to come into contact with drinking water whereby 

contaminants may be introduced into the public potable water network has to be 

WRAS approved. However, in general no approval for metallic materials is 

http://www.wras.co.uk/
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considered unless the supplier has a satisfactory method of assessing the effect of 

the metallic product on the water quality. 

Thus only already WRAS approved materials are to be used for the sensor case to 

allow its use in the field where test site are connected to the public water network 

as opposed to an independent self-contained loop. 

The bill of material of the sensor is included in Appendix 4. 

 

Figure 112: Sensor assembled 

When the sensor was fully assembled, no water ingress was observed due to the 

O-rings on each cap and WRAS approved jointing compound. 

6.6 Sensor system setup and operation 

The earlier sensor prototype was controlled through an external data acquisition 
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interface the CompactDAQ NI cDAQ-9172 [71] prior to the introduction of the 

MAX5312 DAC and Arduino microcontroller as shown in Figure 113.  

  

Figure 113: Sensor prototype with NI cDAQ-9172 

The sensor was connected to the computer using the external data acquisition 

CompactDAQ NI cDAQ-9172 with a NI9263, which is a 4-Channel, ±10V, 16-bit 

analogue voltage output module used to generate the stepped voltage for the ROS-

625-219+ VCO frequency generation and the NI9205, a 32-Channel, ±200 mV to 

±10V, 16-bit analogue input to read the voltage detected by the MAX2015 power 

detector.  

This setup was bulky and slow. Furthermore, the tuning of the VCO was at a step 
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of 0.2V, with less than 100 resolution points along the full voltage range. 

After the integration of the MAX5312 serial DAC and the Arduino mini pro, the full 

system setup was much more compact as shown in Figure 114 using our project 

partner JD7 chassis design.  

 

Figure 114: Integrated sensor prototype system setup 

The system still required a host computer for the operator and a 16 volts power 

supply (100mA) as the sensor required 87mA when in operation. A 6 core stranded 
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generate a sweep frequency between 247.9MHz and 618MHz. The integration of 

the DAC and the microcontroller greatly improved the tuning resolution to thousands 

of points with good signal stability both in frequency and amplitude and the speed 

of operation was less than 5 seconds for a full sweep of 2710 points. 

The operation of the sensor was straightforward as the objective was to allow 

inexperienced network maintenance engineers to be able to use the system with 

minimal training. 

When the sensor is inserted into the pipe under test, measurements were taken at 

regular interval that can be tracked as the length of the data cable is known. The 

current test measures the reflected power that is detected through the logarithmic 

MAX2015 power detector. This detector provides output voltage proportional to the 

input power. Due the small variation range, the detected signal is converted into 

decibels using equation (45) : 

 𝑽(𝒅𝑩) = 𝟐𝟎𝒍𝒐𝒈 (
𝑽(𝑽)

𝟏𝑽
)  (45) [44] 

The current data sample acquired by the sensor is compared against each stored 

signature in the database in real-time applying the two data analysis methods 

implemented in LabVIEW. 

The sensor was tested on the 12m rig in the lab with different pipe sections 

connected. The sensor was inserted into the water pipe filled with water and 

positioned using a set of Ø20mm PVC round conduit marked along its length 

according to the rig pipe section. 

Tests carried out using the 25mm and 39mm bent loop antenna alternatively with 

the sensor showed distinct frequency responses. Different pipe sections showed 

corresponding match from samples stored in the database and shown from Figure 
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115 to Figure 118 with the 25mm loop to the left and 39mm loop to the right. 

  

Figure 115: Sensor in air 

  

Figure 116: 4 inch no leak 

  

Figure 117: Cast iron 6 inch no leak 
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Figure 118: Cast iron 4 inch cross section 

The test results above positively identifies the pipe type and or condition as stored 

in the database. This sensor with the integrated DAC and evaluation has shown 

remarkable performance. However, a closer look to the correlation values shows a 

very small margin between one pipe type or condition detected to the next different 

pipe between as low as 0.003 to 0.015. This tiny different between the results means 

the slightest change on the signal will impact the results as the accuracy of the 

sensor decreases. 

To verify the accuracy of the electromagnetic sensor and to validate the results from 

the test, a camera was integrated, allowing visual verification of the results returned 

on the display. 

This visual inspection module should operate without interfering with the 

electromagnetic wave sensor. 
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Figure 119: Sensor head with camera and LEDs lights 

To investigate this potential impact, an off the shelf camera - HUE HD [72] in Figure 

119 - was used to determine the interference level over the signal generated by the 

electromagnetic sensor. This USB camera was mounted in a replica sensor case 

use for the prototype. A 5m USB cable ran from the camera to the computer and a 

5m coaxial cable connected the integrated loop antenna to the Rhode & Schwarz 

ZVL-3GHz VNA. 

The concern was that when the 12 light emitting diodes (LED) ring is turned On - 

Figure 120 - to improve visibility in the water pipe, this might interfere with the 

frequency response from the electromagnetic sensor.  
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Figure 120: LEDs lights ring 

This is because, LEDs on or off may change the electromagnetic signal frequency 

response. 

The effect of the LEDs was tested both in air and in water using the sensor head in 

Figure 119. The sensor was pushed inside the rig filled with water and then 

measurements were taken with and without the LEDs on for comparison using the 

setup shown in Figure 121. 
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Figure 121: Test setup in the lab 

The first test consisted of checking the LEDs effect on the frequency response in 

air. Both traces of the frequency response with and without the LEDs On were 

plotted and compared Figure 122. The results showed little effect from the LEDs 
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Figure 122: LEDs test in air 

The next test was carried inside the pipe filled with water which, however showed 

very slight shift on the frequency and amplitude as observed in Figure 123. 

 

Figure 123: LEDs test in water 
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While carrying out this testing, a pocket of air was discovered inside the top part of 

the test rig in the lab. This discovery was made thanks to the use of the camera.  

In a real situation, the operator would visually confirm that no air pockets such as 

the one shown in Figure 124 are present using the camera which will affect the 

frequency response thus changing the signature due the difference in dielectric 

properties. Air pockets are not expected in water pipes under pressure unless there 

is a severe pressure issue due to a failure in the network therefore this visual 

inspection module is expected to be used primarily for confirming pipe type or status 

when the electromagnetic sensor results are inconclusive. 

 

Figure 124: (a) Air pocket in non-inclined and (b) inclined pipe 

To minimise the air pocket, one end of the rig was lifted enough to reduce the air 

pocket in the water filled pipe as shown in Figure 124. 

Below are some snap shots taken using the camera to confirm the internal condition 

of the pipe. 
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Figure 125: Reducer to 4inch cross section 

 

Figure 126: Cross section to 4inch cast iron. 

 

 Figure 127: Cast iron to PVC. 
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The integration of the camera had shown the potential of considerably improving the 

asset management side of the sensor capability by increasing it detection rate. 

However, more work is needed in order to truly integrate the camera module with 

the electromagnetic sensor by implementing an image processing algorithm to 

compare snapshots with saved samples alongside the frequency response analysis. 

6.7 Summary 

An incremental design method was used to develop the sensor system prototype 

using off-the-shelf components before progressing to surface mount components 

on a single printed circuit board to fit into the designed waterproof casing in line with 

agreed dimensions. A graphical user interface with a traffic light system was 

designed to minimise the training requirement for the users, saving the water 

companies time and money. This integrated sensor prototype was then tested in the 

lab using a rig with various pipe sections and conditions. Results showed that the 

electromagnetic wave sensor prototype can be used for leak detection and asset 

management as it conclusively detected the pipe condition and diameter of the 

Ø118mm and Ø170mm pipes section on test rig in the lab. 
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Chapter 7: Conclusion 

The overall aim of this research was to develop a non-destructive sensor for leak 

detection and asset management for the water industry. 

The novelty of this work has been its focus on the water distribution network as an 

asset that include leaks and pipe infrastructure of different materials and diameters. 

This has led to the development of a novel method of detection using an 

electromagnetic sensor capable of detecting pipes materials, diameters and 

conditions to improve leak detection and asset management in the water industry 

without extensive digs and modifications to the existing access valves for system 

deployment. Furthermore, this sensor can potentially be used in the gas industry by 

modifying the frequency of operation to match gas filled cylindrical metal structures. 

The development of the sensor was constrained by the requirements set by the 

project partners regarding its size and the material coming into contact with drinking 

water, as well as cost saving through ease of operation by field engineers. The size 

constraint dictated the use of the 90o bent loop antenna which allowed the overall 

sensor size to be kept within 100mmx60mm as set by the industrial partners. 

To achieve the aim of the research, some objectives were set such as reviewing 

currently used leak detection techniques, investigating electromagnetic wave 

propagation in the standard ductile iron cement lined water pipe, designing a 

suitable antenna for the sensor, developing the sensor system and a prototype and 

finally evaluating the performance of the electromagnetic wave sensor prototype. 

 The current techniques used in the water industry and ongoing research to 

improve leak detection and locate buried assets, were reviewed and this 

highlighted their limitations due to environmental interference and poor 
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knowledge of pipe location. These techniques also focus mainly on detecting 

leaks when they are reported without considering the state of the 

infrastructure and missing or unrecorded branches all together. Regulatory 

and public pressure has been pushing the water industry to reduce the water 

wastage thus the need for a novel system. 

 The propagation of electromagnetic waves were investigated and it has been 

shown that the standard ductile iron cement lined water distribution pipes act 

like cylindrical waveguides and as such electromagnetic waves above a 

certain cut-off frequency propagate along the pipe in a number of modes. 

This cut-off frequency was found to be 187.69MHz for the Ø118mm pipe and 

this frequency would also be suitable for larger pipe diameters. 

 Three common antennas were tested for use with the sensor: monopole, 

patch and loop. Experiments using these antennas proved that the frequency 

response varies with the diameter and condition of the pipe thereby enabling 

the use of electromagnetic waves for leak detection and asset management.  

 The loop antenna was shown to be better suited for the intended application 

because of better return loss and physical robustness allowing it to withstand 

knocks and tolerate the aqueous environment inside the water distribution 

pipe. The 90o bent loop antenna version proved to be more suitable to be 

integrated to the PVC casing due the size constraints imposed by the 

project’s industrial partners. These results led to the development and design 

of a sensor prototype based on the scattering wave theory for a single port 

device.  

 Despite the high attenuation in water, the sensor detection range was 
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determined to be up to 1.5m. This finding implies that when a dig is required 

for repair, the detected fault is within 1.5m relative to the sensor head saving 

in the number of dry digs where excavations do not result in finding the asset 

let alone pinpointing the fault. 

 Results taken with the final prototype in the 12m rig comprising various pipe 

types and conditions, showed accurate detection of the Ø118mm pipe from 

the Ø170mm pipe, the leaking pipe from the non-leaking pipe and the cross 

that simulates on unrecorded branch in the network. 

Sourcing potable water requires energy, and wasting this water through leakage 

increases costs due to pumping and treatment, therefore water companies will see 

a direct financial benefit from the introduction of this sensor as more previously 

unrecorded branches are discovered and added to their assets. This novel non-

destructive electromagnetic sensor will improve detection rates and reduce costs 

and benefit the end customer as the down time in case of failure is shortened. The 

use of the sensor will also require minimal training of the operators due to the simple 

graphical user interface which displays the test results in real-time allowing for faster 

planning and repair. 

7.1 Future work 

To improve the detection rate and the accuracy of this novel electromagnetic sensor 

prototype, some recommendations for future work were identified. 

The amplitude of the detected signal by the power detector currently in the range of 

2dB, showed the need to investigate the introduction of an amplifier before the 

detector in order to improve the detection rate by emphasising changes to the 
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electromagnetic signal which are used in the correlation with the stored samples. 

As the file containing the recorded samples grows, a more advanced storing method 

will be required using popular platforms such as the open source database 

MySQL[73] to improve speed and data analysis which will require more 

sophisticated queries to sort the considerable volume of data. 

The frequency range of the voltage controlled oscillator is limited to a 350MHz span 

while a wider span of 450MHz would provide more comparison points between 

signatures. To remedy this, direct digital synthesising (DDS) signal generation with 

sweeping capability should be explored. DDS such as the AD985817 would 

significantly improve speed and accuracy as the frequency range is digitally stored 

as profiles with up to 32 bits resolution. Furthermore, it will introduce flexibility in 

modifying the signal parameters by simply loading the required profile. This will also 

allow the use of an on-board battery to supply power taking the sensor ultimately to 

an un-tethered version with an on-board storage module.  

                                                           
17 1 GSPS Direct Digital Synthesizer. www.analog.com            
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Appendices 

Appendix 1: VCO with DAC sensor schematic
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Appendix 2: Arduino 1.0.5.rs sketch used 
 

#include <SPI.h>  

const int ldacPin = 3; 

const int clrPin = 7; 

const int uniPin = 8; 

const int ssPin = 10; 

//pin 11(MOSI) on Arduino connected to pin 2(DIN) on DAC 

const int sclkPin = 13; 

int VoltDetected = A0; //To read the output from the detector 

int val = 0; //Store A0 

int timer = 1; 

int x = 1; 

int command = 0b0100000000000000; // 0100  Load input and DAC registers from shift register; 
DAC output updated. 

int commandPlusData; 

int iB = 0; 

void setup() { 

  SPI.begin(); 

  Serial.begin(115200); 

  pinMode(ssPin,OUTPUT); 

  digitalWrite (ssPin, HIGH); 

  pinMode(clrPin,OUTPUT); 

  digitalWrite (clrPin, HIGH); //To clear DAC 

  pinMode(ldacPin,OUTPUT); 

  digitalWrite (ldacPin, HIGH); 

  pinMode(uniPin,OUTPUT); 

  digitalWrite(uniPin, HIGH); //Needed to set DAC to unipolar mode pin 8 on the dac 

} 
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void loop() { 

  val = analogRead(VoltDetected);// Show data in the terminal window   

  Serial.println(">"); //Indicate ready and waiting loop start      

  while(1) 

  { 

    while(iB!=83){ //Capital S to start the DAC sequence 

      iB = Serial.read();  //Send space to start back the loop 

    }   

    iB = 0; 

    /* 

  The data value set at 2710 generate upto 591.66MHz with 16V supply to the sensor 

     */      

    for (int data=0b0000000000000000; data < 2710; data = ++x)  // Increment upto data<xxxx 

    { 

      commandPlusData = command | data; 

      digitalWrite (ssPin, LOW); // pin 10 - initiate serial communication 

      SPI.transfer (highByte (commandPlusData)); 

      SPI.transfer (lowByte (commandPlusData)); 

      digitalWrite (ssPin, HIGH); 

      Serial.print(data); //Show data in the terminal window 

      Serial.print(","); 

      delay(timer);  

      Serial.println(val);//Show in the terminal window the saved input to the analog pin 

} 

    Serial.println("#"); //Indicate end of loop as Serial.write(35) but newline after 

};     

}
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Appendix 3: LabView block diagram
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Appendix 4: Materials in the sensor manufacturing and use in contact with 
drinking water 

Part Material Supplier Order 
code 

WRAS 
approval 
number 

WRAS section that 
may apply? 

PVC casing Grey Polyvinyl 
Chloride 

rs 700-9859  5300 
5305 

Seal PTFE Tread seal The bss group 
ltd 

79024607 1306531  

Pipe 
Jointing 
compound 

Boss White 
Universal paste 

The bss group 
ltd 

84410700 1312504  

Screw nylon metric 
screw 
 

rs 524-095  5175 
5180 

Cable 
Access Kit 
10m 
 

Glass-reinforced 
plastic 

Screwfix 82483  5120 

Brass connectors  

Transparent 
camera 
cover 

Acrylic Sheet 
 

rs 824-654   

Straight 
3/8in 
Coupling 
Body 

Acetal rs 325-0315  5010 
5015 

 

 


